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Key Points
1. Secondary nitrite and pH maxima emerge in the oxygen deficient zone's
upper anoxic core, overlaying a distinct tertiary nitrite maximum.
2. Anammox is the dominant mechanism for bioavailable nitrogen loss, and its
relative rate is dependent on organic matter composition.
3. Denitrification of nitrite is the primary driver of the pH increase in the

uppermost anoxic layers.
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Abstract

The Eastern Tropical North Pacific (ETNP), like the other marine oxygen deficient
zones (ODZs), is characterized by an anoxic water column, nitrite accumulation at the
anoxic core, and fixed nitrogen loss via nitrite reduction to N,O and N2 gases. Here, we
constrain the relative contribution of biogeochemical processes to observable features
such as the secondary nitrite maximum (SNM) and local pH maximum by simultaneous
measurement of inorganic nitrogen and carbon species. High-resolution sampling within
the top 1 km of the water column reveals consistent chemical features previously
unobserved in the region, including a tertiary nitrite maximum. Dissolved inorganic
carbon measurements show that pH increases with depth at the top of the ODZ,
peaking at the potential density of the SNM at og = 26.15 + 0.06 (1 s.d.). We developed
a novel method to determine the relative contributions of anaerobic ammonium
oxidation (anammox), denitrification, nitrite oxidation, dissimilatory nitrate reduction to
nitrite, and calcium carbonate dissolution to the nitrite cycling in the anoxic ODZ core.
The calculated relative contributions of each reaction are slightly sensitive to the
assumed C:N:P ratio and the carbon oxidation state of the organic matter sinking
through the ODZ. Furthermore, we identify the source of the pH increase at the top of
ODZ as the net consumption of protons via nitrite reduction to N, by the denitrification
process. The increase in pH due to denitrification impacts the buffering effect of calcite
and aragonite dissolving in the ETNP.

1. Introduction

Marine oxygen deficient zones (ODZs) play a significant role in the global
nitrogen cycle by removing 30-50% of fixed nitrogen in the ocean, even though they
comprise less than 0.1% of the ocean’s volume (Brandes & Devol, 2002; Codispoti et
al., 2001; DeVries et al., 2013; Gruber & Sarmiento, 1997; Karstensen et al., 2008). The
Eastern Tropical North Pacific (ETNP) off Mexico and Central America is one of the
three largest permanent ODZs (Kwiecinski & Babbin, 2021; Paulmier & Ruiz-Pino,
2009). The ETNP is characterized by highly productive coastal regions due to nutrient
supply by the coastal upwelling (Lopez-Sandoval et al., 2009; Stramma et al., 2010) and
a large region of low-oxygen water column overlaid by predominantly oligotrophic

surface ocean (Fuchsman, Palevsky, et al.,, 2019; Pennington et al., 2006). Below a
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well-mixed surface layer, oxygen concentrations decrease to levels as low as 10 nmol L
' (Morrison et al., 1998; Revsbech et al., 2009; Thamdrup et al., 2012; Tiano et al.,
2014), corresponding to aerobic subsistence concentrations at which anaerobic
metabolism can coexist with or dominate over aerobic respiration (Zakem & Follows,
2017).

Nitrite (NO2") is a central dissolved inorganic nitrogen (DIN) compound in the
ODZ nitrogen cycle because it is a product or reactant for denitrification, anammox, and
recycling of nitrate via dissimilatory nitrate reduction to nitrite (DNRN) and nitrite
oxidation (Figure 1). A nitrate deficit and a similar magnitude excess of dissolved
dinitrogen gas (N2) concentrations in the ETNP implies the reduction of nitrite in the
ODZ and consequential removal of the DIN (Chang et al., 2012; Fuchsman et al., 2018).
Removal of biologically available DIN in ODZs is typically performed by either a
heterotrophic denitrification process or autotrophic anaerobic ammonium oxidation
(anammox) reaction (Babbin et al.,, 2014; Bristow et al., 2016; Ward, 2013). The
proportion of nitrogen loss via denitrification and anammox, respectively, in the anoxic
water column, and the complexity of the complementary metabolisms that support them,
remain unresolved, particularly when considering the ODZ not as a uniform system but
as a complex combination of multiple isopycnal layers and water masses. While some
studies suggest that, on a whole, anammox is the dominant production pathway for N,
in the ODZ (Babbin et al., 2017; Kalvelage et al., 2013), others report that denitrification
exceeds anammox in anoxic environments (Dalsgaard et al., 2012; Ward et al., 2009).
Since denitrification and DNRN generate ammonium used in anammox (Figure 1),
anammox would account for approximately 30% of N, production in the ODZ solely
based on reaction stoichiometry for canonical organic matter composition (Devol, 2003).
However, variations in the organic matter composition (Babbin et al., 2014), differences
in the oxygen inhibition of denitrification and anammox reactions (Dalsgaard et al.,
2014), or existence of other metabolisms (Babbin, Buchwald, et al., 2020; Lam et al.,
2009) could alter the proportion N, production attributable to anammox. Elucidating the
denitrification-anammox dichotomy is critical for understanding the connection between
the global nitrogen cycle and climate. Denitrification is a significant marine natural
source of nitrous oxide (N2O) (Babbin et al., 2020; Babbin et al., 2015; Ji et al., 2015),
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which is a key greenhouse gas and stratospheric ozone-depleting substance in the
atmosphere (Naqvi et al., 2000; Ravishankara et al., 2009). In addition, anammox and
denitrification have a differential impact on dissolved inorganic carbon (DIC) chemistry
because autotrophic processes such as anammox consume DIC, whereas
heterotrophic processes such as denitrification release DIC. Denitrification can
admittedly also occur as an autotropic process involving the sulfur redox chemistry
(Fuchsman et al.,, 2017; Raven et al., 2021; Saunders et al., 2019), or methane
oxidation (Thamdrup et al., 2019). However, in ODZs autotrophic denitrification is less
significant compared to heterotrophic denitrification, so it is neglected in this study.
Furthermore, recent studies assessing anammox and denitrification rates with
incubation experiments suggest that the organic matter (OM) supply and composition
play a critical role in the relative contributions of anammox and denitrification to nitrogen
loss (Babbin et al., 2014; Chang et al., 2014; Ganesh et al., 2015; Kalvelage et al.,
2013; Ward, 2013).
[Figure 1]

Nitrite profiles in ODZs differ markedly from the oxygenated global ocean. In the
ODZs, nitrite accumulates in the water column at two distinct horizons: (i) the primary
nitrite maximum (PNM) at the base of the euphotic zone, which also occurs globally,
and (ii) the secondary nitrite maximum in the anoxic core, which is restricted to ODZs
(Brandhorst, 1959; Buchwald et al., 2015; Buchwald & Casciotti, 2013; Lipschultz et al.,
1996). The formation of the PNM is typically related to light-limited phytoplankton
assimilation of nitrate or an imbalance of aerobic ammonium and nitrite oxidation
(Buchwald & Casciotti, 2013; Lomas & Lipschultz, 2006; Zakem et al., 2018) and is
outside the scope of this article. Nitrite accumulation in the anoxic core results from the
rate differences between nitrite sources, i.e., dissimilatory nitrate reduction to nitrite
(DNRN), and sinks, i.e., nitrite reduction via denitrification or anammox and nitrite
(re)oxidation. Both direct rate measurements of denitrification and natural abundance
isotopic analyses report that rapid recycling of nitrate (NO3™) and nitrite by DNRN and
nitrite oxidation is dominant compared to nitrite reduction at the top of the ODZ (Babbin
et al., 2017; Buchwald et al., 2015; Fussel et al., 2012; Kalvelage et al., 2013; Peters et
al., 2016). Since the discovery of nitrite oxidation in the ODZs (Fussel et al., 2012),
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multiple studies have attempted to provide a possible mechanism for nitrite oxidation in
the anoxic core, such as intrusion of oxygenated water masses (Bristow et al., 2016;
Tsementzi et al., 2016), oxygen production by Prochlorococcus (Garcia-Robledo et al.,
2017), oxidation by iodate and metals (Babbin et al., 2017; Evans et al., 2020; Hardisty
et al., 2021; Moriyasu et al., 2020), nitrite dismutation (Babbin, Buchwald, et al., 2020)
and anaerobic nitrite oxidation by anammox bacteria (Brunner et al., 2013).
Understanding the relative distribution of nitrite oxidation in the ODZ core can
significantly improve the understanding of the source and mechanism of nitrite
oxidation.

Marine ODZs also exhibit unique inorganic carbon chemistry compared to the
oxygenated pelagic ocean, containing, for instance, some of the lowest pH waters in the
open ocean and correspondingly shallowest aragonite and calcite saturation horizons
(Hernandez-Ayon et al., 2019; Jiang et al., 2019; Millero, 2007). Due to the long
residence time accumulating remineralization products, these waters contain very high
dissolved inorganic carbon (DIC) resulting from aerobic respiration and correspondingly
low pH. High DIC concentrations up to 2350 pmol kg™ and in-situ pH (total scale) values
below 7.5 at 50 m depth have previously been reported in the Eastern Tropical South
Pacific ODZ (Hernandez-Ayon et al., 2019; Paulmier et al., 2011), and similar features
such as approximately 2300 pmol kg'1 DIC and pH below 7.6 are observed in historical
data, such as the P18 WOCE section sampled during CLIVAR and GO-SHIP, from the
ETNP (Lauvset et al., 2021; Olsen et al., 2020). Calcite and aragonite are calcium
carbonate (CaCOs3) minerals produced by phytoplankton such as coccolithophores,
zooplankton such as pteropods, and protozoans such as foraminifera. The dissolution of
calcium carbonate has a buffering effect on ocean acidification, impacts the ocean’s
ability to absorb CO, from the atmosphere (Feely et al., 2002), and acts to ballast
sinking organic material. Furthermore, in-situ pH conditions are thought to affect the
dissolution of biogenic CaCOjs particles by impacting the DIC speciation and CO3*
concentrations in the water column (Millero, 2007). Classically, saturation state (Q) has
been defined to indicate a thermodynamic tendency for calcium carbonate to precipitate
(Q > 1) or dissolve (Q < 1). However, the dissolution of CaCO3; cannot be simplified to

just ambient pH, and saturation conditions as prior studies suggest that mineral
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structure and other biogeochemical dynamics play significant roles in modifying
dissolution kinetics and distribution (Adkins et al., 2021; Milliman et al., 1999; Pan et al.,
2021; Subhas et al., 2022; Woosley et al., 2012). Consequential to low pH, aragonite
saturation horizon depths (where Q = 1, see Equation 6) shallower than 100 m are
notably observed in ODZs (Feely et al., 2002; Hernandez-Ayon et al., 2019).

Even though inorganic nitrogen and carbon chemistry in the ODZs are
interconnected, there are few data from ODZs examining the inter-related cycling of
these elements or investigating the impact of denitrification on pH in these waters. While
denitrification of nitrite accompanied by the respiration of sinking organic matter in
ODZs releases CO», potentially decreasing pH, it also consumes protons and produces
alkalinity (Koeve & Kahler, 2010), which can counterbalance the pH decrease. In
addition, sulfate reduction (Jagrgensen, 1982; Raven et al., 2021) and particle- or
zooplankton-associated methanogenesis (Sasakawa et al., 2008; Schmale et al., 2018)
can impact the biogeochemistry in the ODZ. However, the contributions from such
processes are typically negligible in comparison to nitrogen metabolisms (Raven et al.,
2021; Schmale et al., 2018) and excluded from this analysis of the major
biogeochemical pathways. Understanding the interrelated cycling of DIN and DIC
requires simultaneous and spatially high-resolution measurements that can reveal sharp
chemical gradients in the ODZs. High-resolution measurements ensure that the critical
features such as local extrema or large vertical changes in nutrient and pH profiles are
accurately represented so that the critical link between DIN and DIC cycles can be
resolved.

Here, we present a novel framework for studying ODZ biogeochemistry and the
nitrogen cycle, focusing on nitrite accumulation and pH increase across the broad SNM
by investigating the coupling between inorganic carbon chemistry and the nitrogen cycle
based on in-situ biogeochemical measurements. Although prior process-based studies
focus intensively on the ODZ nitrogen cycle with DIN measurements and by determining
reaction rates from incubation experiments, they generally overlook DIC measurements
and the role of pH in ODZ biogeochemistry. Such studies require perturbation or
stimulation of natural populations and potentially indicate current local conditions alone
(Dalsgaard et al., 2012; Ward et al., 2009). On the other hand, simultaneous DIC and
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DIN geochemical measurements represent the integrated net changes in a water parcel
moving along an isopycnal surface within the ODZ over time. Therefore, a new term,
relative contribution, is introduced in this study to represent the net effect of cumulative
biogeochemical metabolisms in the ETNP ODZ. Relative contribution refers to the
proportional effect metabolic reactions have in producing or consuming a shared
reference tracer. For example, the relative contribution of anammox, compared to
denitrification, is the proportion of fixed nitrogen lost via anammox relative to the total N,
production by anammox and denitrification combined. We assess the relative
contribution of key reactions, including DNRN, nitrite oxidation, nitrite reduction to N, via
canonical heterotrophic denitrification (referred to as denitrification from this point
onward), anammox, and calcium carbonate dissolution by constraining observed
changes in DIN and DIC concentrations and speciation. Building on prior work, we
investigate the correlation between the relative contribution and organic matter content
by varying the carbon oxidation state and C:N:P ratio in a model framework based on
literature values. Lastly, we compare observations to a hypothetical water pH profile to
investigate the impact of denitrification on observed pH in the ETNP ODZ and CaCOs3;
saturation state in the water column.
2. Methods
2.1. Sample collection, tracer measurements, and data analysis

The present study focuses on data collected during a research cruise on R/V
Falkor (FK180624) in the Eastern Tropical North Pacific (ETNP) in June—July 2018.
Additionally, nitrite, pH, alkalinity, and oxygen data from the AT37-12 cruise on R/V
Atlantis in the southern part of the ETNP in Apri-May 2017 are presented as
supplemental information. Samples at various depths were acquired using a 24-bottle
CTD rosette equipped with temperature, salinity, pressure, and oxygen sensors at 19
stations while focusing on the upper 1 km during the FK180624 cruise (Figure 2). The
same sample acquisition method was followed during AT37-12 for 8 stations (Figure
S1). All stations mentioned in the main text and presented in the main figures belong to
FK180624. AT37-12 data are presented for comparison in the supporting information.

Total alkalinity (TA) was collected in borosilicate glass bottles and poisoned

immediately with 0.02% mercuric chloride. Samples were stored in the dark at room
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temperature and measured in the lab following the cruise using a custom-designed
open-cell titration system designed and built by the laboratory of Andrew G. Dickson
(Scripps Institution of Oceanography) following best practices (Dickson et al., 2007).
The pH was collected and poisoned in the same manner as TA but measured onboard
within 6 hours of collection. A custom-designed automated spectrophotometric system
similar to Carter et al., (2013) using an Agilent 8454 UV-Vis spectrophotometer was
used to measure the pH on the total scale at 25°C with purified meta-cresol purple
indicator provided by Robert H. Byrne (University of South Florida). More details of the
system can be found in Woosley, (2021). Nitrite, ammonium, and phosphate
measurements were made spectroscopically with a 10 cm quartz cell and Ocean Optics
QE Pro spectrometer (Babbin et al., 2014; Strickland & Parsons, 1972). NO,~ (total
nitrite and nitrate) measurements were performed using a Teledyne T200 analyzer via
the standard chemiluminescence protocol (Babbin & Ward, 2013; Braman & Hendrix,
1989).
[Figure 2]

Physical seawater properties such as potential temperature (8), density (p), and
potential density anomaly referenced to surface (og) were calculated using the TEOS-10
GSW package (Firing et al., 2021). Dissolved inorganic carbon (DIC) and in-situ pH
calculations were done by PyCO,SYS package version 1.8 for Python 3.8 (Humphreys
et al., 2020; Van Heuven et al., 2011). Dissociation constants K; and K, were based on
Lueker et al., (2000). The total boron of Lee et al., (2010) and the Kyr of Perez and
Fraga, (1987) were used.

2.2. Organic matter composition and reaction stoichiometry

The chemical composition of organic matter sinking to the ODZ during our
occupation was estimated by calculating the relative changes in nutrient, DIC, and
apparent oxygen utilization (AOU) along the oxycline surface across all 19 stations.
Admittedly, relative changes in nutrients, DIC, and AOU are impacted by processes
other than the organic matter remineralization such as vertical diffusion and lateral
mixing. Therefore, determining the organic matter composition using relative changes in
nutrients, DIC, and AOU in the oxycline surface is a simplification and estimate for this

region at the time of sampling. Nevertheless, the sensitivity analyses in the later
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sections with standard organic matter formulations show similar results. The oxycline
was defined between 45-95 dbar pressure based on the water column oxygen profile
(Figure S4a). The study focuses on stations 1-14, excluding station 5 for further
analysis because (i) stations 5, 15, and 17 are impacted by mesoscale eddies that can
alter the water column structure and chemistry (Figure S5) and (ii) stations 16, 18, and
19 have the lateral intrusion of oxygenated water masses at the top of ODZ (Figure
S3a). These layers diverge from the canonical definition of the ODZ due to oxygen
intrusion and have a different water column chemistry. DIC, DIN, and oxygen
concentration data from the selected stations were fitted against phosphate
concentration in the oxycline using robust regression with Huber's t M-estimation
method available on the Scikit-learn package (Pedregosa et al., 2011). Huber’s t robust
regression assigns varying weight values to outliers based on the predicted residual
values, reduces the contribution of outliers to the regression, and increases the
accuracy of slope value (Huber, 1973).

Sinking organic matter (OM) composition was calculated from the resulting C:N:P
ratio following Moreno et al. (2020) and Paulmier et al. (2009). Stoichiometric
coefficients for remineralization of the OM via DNRN and denitrification (Koeve &
Kahler, 2010) and autotrophic anammox reaction (Strous et al., 1998) were determined
from previous studies. Generic nitrite oxidation to nitrate without prescribing a specific
oxidant and the calcium carbonate dissolution reaction were added to the list of key
reactions occurring within the ODZ (Table 1).

[Table 1]

The variables a—e in Table 1 refer to the elemental ratios of the organic matter
remineralized in the ODZ. These variables are used to calculate stoichiometric
coefficients of nitrate, nitrite (x and z), and water (y and w) in DNRN and denitrification
reactions based on Koeve and Kahler (2010). Additionally, the (b — 2c) term refers to
the hydrogen content of the organic matter with respect to the oxygen content. Since
organic matter hydrogen and oxygen content cannot be assessed in our data, the (b —
2c) term was set by balancing the oxidation states for the organic matter. The Cyx term
refers to the oxidation state of organic carbon and was calculated from the respiration

quotient that describes the molar ratio of oxygen to organic carbon consumed during the
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aerobic respiration (Moreno et al., 2020). Oxygen consumption to phosphate production
ratio (raou:p) in the oxycline was used to calculate Cox because the respiration quotient is
restricted to the amount of oxygen consumed by aerobic respiration and nitrification in

oXxic environments.

2.3. Relative reaction rates and relative contribution calculations
Based on the observed vertical oxygen, nitrite, and pH profiles, the suboxic
ETNP water column (25.0 < 0p < 27.4 kg m™) was divided into 16 layers (isopycnal
surfaces) to calculate the relative contribution of 5 key reactions (DNRN, nitrite
oxidation, denitrification, anammox, and calcium carbonate dissolution) to the
biogeochemical cycling of DIN and DIC in the ODZ (Table S1). It is important to note
that the anoxic core of the ODZ is narrower than the full range of 16 layers, typically
covering only layers 3 - 14 (Figures 2c & S2). Initially, 8 layers were defined based on
oxygen, nitrite, and pH data from stations 1-14, excluding station 5. Then, each layer
was divided into 2 to capture the spatial resolution in the results while balancing the
number of data points at each layer. For the 16 layers, the change in 5 tracer
concentrations was calculated with respect to changes in DIC. The tracers were nitrate
(NO37), nitrite (NO27), ammonium (NH4"), N* and total alkalinity (TA). The quasi-
conservative N* tracer refers to the relative DIN deficiency relative to phosphate based
on the N:P ratio in the organic matter (Equation 1) (Deutsch et al., 2001; Gruber &
Sarmiento, 1997).
N* = ([NO3]+ [NO;]+ [NH}]) —ry.p[PO3"]+ 2.9umol kg~ (1)
The tracer concentrations within a layer were plotted against DIC using Huber’s t
M-estimation method (Pedregosa et al., 2011), which accounts for outliers in each
isopycnal layer separately. The slope of the regression fit is denoted as Atracer
(formally, this is the change in the tracer quantity normalized per unit change of DIC).
Assuming Atracer values are impacted only by the 5 key reactions in the ODZ, Atracer
is a linear combination of each tracer’s stoichiometric coefficients in each reaction
(Equation 2). Subscripts i refer to tracers, including DIC, and j refer to 5 key reactions. R

is a 6-by-5 matrix that combines each tracer’s stoichiometric coefficients and relative

10
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reaction rates (referred to as y in the following equations) varying by layer. All the terms
in Equation 2, including the relative reaction rates in y matrix, are unitless because no
time proxy was measured in the study. An example calculation is provided in the
supplemental information. Reaction coefficients were calculated by solving the linear
system of equations using a non-negative least-squares method (scipy.optimize.nnls()
function) available on Python SciPy package (Virtanen et al., 2020).
ATracer; = ¥; (Ry; X x;) (2)
Building upon the relative reaction rates, the relative contribution (RC) of each
reaction in a particular layer is calculated with respect to a reference tracer. For
example, (i) the relative contribution of denitrification and anammox reactions is
calculated with respect to ANO,™ (Equations 3 and 4). Expressions for the other relative

contribution calculations are given in the supplemental information (Equations S1-S10)

RC _ RNOZ,denitrificationXXdenitrification 3
denitrification — p e e AR X ( )
NO2,denitrification X Xdenitrification tRN0O2,anammoxXXanammox

RCanammox = 1 — RCqenitrification (4)
The error in the relative reaction rates (y) and RC values was assessed by Monte
Carlo simulations (n = 10,000), as follows. A Atracer value was randomly selected from
the normal distribution defined based on the robust fit regression results, then used to
calculate relative reaction rates and RC values as described above. x and RC values
are reported as the mean of 10,000 such simulations with one standard deviation (1
s.d.) of the simulation.
2.4. Expected ApH calculation in the presence of denitrification
Based on Table 1 and Table S2, denitrification consumes protons, hence
increasing pH. However, CO; released due to denitrification speciates in the water
column, releasing protons and decreasing pH. Overall, net proton consumption and pH
increase is expected based on the denitrification stoichiometric coefficients (Table 1 and
S2). To estimate the net pH increase (ApH) at the top of the ODZ due to denitrification,
in-situ pH per organic carbon remineralized is calculated for an approximate range of
total alkalinity (2200—2450 pymol kg™') and DIC (2000-2400 pmol kg™') observed in the
ETNP based on GLODAP v2.2021 (Lauvset et al., 2021; Olsen et al., 2019, 2020).
Some specific combinations plotted, e.g., low DIC and high total alkalinity or high DIC
and low total alkalinity are unlikely to be observed. ApH represents the increase in pH

11
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due to denitrification compared to a baseline case assuming no water-column
denitrification. In-situ pH values are determined using the CO,SYS package with set
temperature (11 °C), salinity (35), and pressure (300 dbar) inputs selected as
representative values in the ETNP ODZ.
2.5. Water column pH and CaCQg saturation state

Observed in-situ pH data from the selected stations are fitted as a function of
depth (z) between 50-900 dbar with a linear combination of exponential decay and
Gaussian curve using ordinary least-squares (scipy.optimize.curve_fit() function)
available on SciPy package (Equation 5) (Virtanen et al., 2020). Exponential decay is
parameterized by an amplitude (a) and a decay coefficient (b). The Gaussian function is
parameterized by the amplitude (c), mean (d), and spread (e) variables. Since pH
values converge to a constant value rather than zero at depth, an additional constant (f)
is also included. Then, a hypothetical pH curve is constructed with an exponential decay
function that approximates a hypothetical pH profile with no local pH maximum arising

from denitrification (i.e., pH reflects only oxygen concentrations).

(z—d)?

pH = ae™P? + ce” 22 + f (5)

For both pH curves, calcite and aragonite saturation state (Q) (Equation 6) were

derived using pyCO,SYS (Humphreys et al., 2020) for in-situ temperature, salinity, and
pressure conditions in the ETNP ODZ.

R (6)
sp
3. Results
3.1. Oxygen, dissolved inorganic nitrogen, alkalinity, and pH profiles in the
ETNP ODZ
[Figure 3]

Oxygen concentration data for the collection of stations suggest that the anoxic ODZ
in the ETNP is located approximately between og = 25.50 — 26.67 kg m™ potential
density surfaces (Figure 2c). An intrusion of oxygenated water masses is also
observable for stations 16 and 19. Based on the nitrite profiles for each station (Figure
3a) and the profile for the collection of stations, nitrite starts accumulating at layer 5 and
peaks at 0g = 26.15 + 0.06 kg m™ (1 s.d.) initially and at 0g = 26.43 + 0.06 kg m™ (1 s.d.)

12
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for a second time before nitrite is consumed as oxygen concentration starts increasing
again. Due to the existence of a local nitrite minimum (LNM) in concentration at og =
26.27 + 0.10 kg m™ (1 s.d.), we define the upper peak as SNM and the lower peak as a
tertiary nitrite maximum (TNM), although note that canonically the secondary nitrite
maximum refers to the full swath of nitrite accumulation rather than an individual specific
maximum. Furthermore, pH increases at the top of the ODZ (layers 3-6), coincident with
the accumulation of nitrite, to a peak that coincides with the SNM (Figures 2c and 3b)
except for stations where oxygen intrusions are observed (Figure S3). In a smaller
subset of stations, such as station 9, an additional increase in pH is observed below the
local pH maximum, coinciding with the LNM.

Furthermore, similar two-peaked nitrite profiles can be observed in the anoxic core
of a previous ETNP occupation in 2017 (Figure S1). However, prominent oxygen
intrusions observed around 200 m in the southernmost stations reduce the thickness of
the anoxic core. A narrower ODZ and prominent oxygen intrusions have been
previously reported in the southern ETNP (Kwiecinski & Babbin, 2021; Margolskee et
al., 2019), and are responsible for differences in nitrite accumulation among different
stations in that previous occupation. Notably, however, the local nitrite minimum with
concentrations below detection in station 1 from the AT37-12 cruise is observed at the
same depths of a small (<5 pmol kg™') oxygen intrusion.

[Figure 4]

Station 9 (14°N, 110°W) was selected as the representative station for the ETNP
ODZ, because coincident nitrite and pH peaks are apparent in the upper ODZ core
(Figure 4), and it can be compared to previously reported data along the P18 line at
110°W. Furthermore, increases in nitrate, phosphate, and alkalinity with increasing
density were observed at this station, likely due to organic matter remineralization and
calcium carbonate dissolution. In addition, ammonium is depleted (maximum of 0.03
umol kg™') in the ODZ, likely via autotrophic processes such as anammoyx, in agreement
with previous studies (Widner et al., 2018). When compared to previous measurements
(CLIVAR in 2007 and GOSHIP in 2016) at the same location (Figure 5), similar ranges
of oxygen, nitrite, and pH are recorded. However, sparse sampling previously did not

permit distinct SNM and TNM of similar magnitudes to be observed in these studies,
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even though the density surface of the TNM aligns in all three cruises (Figure 5). Yet,
the pH increase in the upper ODZ is apparent in both our and CLIVAR data. Local pH
minima and maxima from both cruises are observed at the same density surfaces.
[Figure 5]

3.2. Organic matter composition and key reactions

Based on nutrient, oxygen, and DIC calculations in the oxycline, the C:N:P ratio was
determined for this limited region at the time of sampling as 112.50+4.25: 11.40+0.34: 1
mol/mol (1 s.d). In addition, apparent oxygen utilization (AOU) normalized to phosphate
OM content (raou-p) was calculated as 107.47+£0.97 mol/mol (1 s.d.). If we assume that
all the ammonium released during the respiration of organic matter is converted into
nitrate via nitrification, the carbon oxidation state (C.x) associated with the organic
matter is +0.99 for the calculated raou.p. On the other hand, if no nitrification is
performed in the oxycline and AOU only represents the respiration, Cox becomes +0.18.
Since the rates of nitrification or anammox are unknown, both endmembers for C. are
examined. The results presented in the following sections correspond to Cox of +0.99,
and the results for Cox of +0.18 are given in the supporting information. Even though the
analysis does not provide the exact oxygen and hydrogen content of the organic matter
in both cases, the relative number difference of oxygen-to-hydrogen in the OM can be
used to determine stoichiometric coefficients in DNRN and denitrification reactions
(Table 1 and Table S2). The amount of water produced is not reported for balanced
DNRN and nitrite denitrification reactions, but the biological production of H,O has a
negligible effect on the seawater chemistry. Based on the balanced reactions given the
sinking organic matter composition, the reaction matrix (R), which represents the net
change in a tracer due to reaction, is developed and shown in Table 2.

[Table 2]

Since the specific nitrite oxidation mechanism is not yet resolved under anoxic
conditions and is likely a combination of numerous pathways, a general reaction
expression is used. A recent study of two marine nitrite-oxidizing bacteria (Nitrospira
moscoviencis and Nitrospina gracilis) reports that 0.0216 moles of carbon are fixed via
the reductive tricarboxylic acid (rTCA) cycle per mole of nitrite oxidized (Zhang et al.,
2020). Therefore, a ADIC:ANO3™ of -1:46.296 is selected for the nitrite oxidation column
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in the R matrix. With the R matrix given in Table 2, relative reaction rates are calculated
by non-negative least squares solution for each layer (Figure S6).
3.3. Relative contributions of biogeochemical reactions

Using set reaction stoichiometries and the observed changes in our inorganic
nutrient tracers with respect to inorganic carbon, we calculate the reaction relative
contribution (RC) to describe the distributions of key reactions in the ODZ and their
proportional effect on the budget of a tracer (Figure 6). In terms of the loss of
bioavailable fixed nitrogen (i.e, N2 production), anammox accounts for between 34.9
and 79.2%, depending on the specific ODZ layer. Higher values are observed at the
SNM and the bottom of the ODZ. In the layers above and below the anoxic ODZ core,
where oxygen is more abundant, anammox accounts for 98.5% of N, production
compared with denitrification. Notably, the distribution of the denitrification and
anammox reactions calculated here do not precisely agree with the findings from
microbial studies in the region (Fuchsman et al.,, 2017), which suggest dominant
denitrification over anammox at the top of the ODZ. The discrepancy can be attributed
to the presence of denitrifying organisms on particles and differential activity by
individual organisms. This distribution does agree well, however, with data from the
direct incubations (Babbin, Buchwald, et al., 2020). From our calculations, the relative
denitrification contribution peaks just below the local nitrite minimum (LNM, layer 9) with
an RC of 65.1% compared to anammox. Yet, anammox and denitrification combining to
reduce nitrite to dinitrogen are not generally the major consumption pathway for nitrite.

Nitrite oxidation typically accounts for over 80% of all nitrite consumption except
just below the top of the ODZ and the LNM (layers 4 and 9). Yet, nitrite production via
DNRN and its combined consumption from anammox, denitrification, and nitrite
oxidation are typically close to balanced, with the slight net rate leading to the shape of
the profiles observed. Indeed, the first step of canonical denitrification, DNRN, is always
greater than denitrification from nitrite, supporting the concept of rapid recycling of
nitrate in the ODZ. Comparing the rates of DNRN with nitrite oxidation directly, we find
that nitrate reduction is between 1 and 10 times as large as nitrite oxidation, with peak
DNRN to nitrite oxidation ratios at the top of the ODZ and just below the LNM, i.e., both

depth zones where nitrite accumulates. Finally, in comparing the production of DIC
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between net biological remineralization and calcium carbonate dissolution (Figure 6f),
the contribution of CaCOj3 dissolution decreases with depth between the top of the ODZ
and the LNM and increases below the LNM. CaCOs; dissolution accounts for 15.5—
60.7% (but typically less than half) of DIC production in the ODZ, with a minimum in
layer 9, which is found to be a hotspot of denitrification.

[Figure 6]

3.4. Variations in the organic matter carbon oxidation state and C:N:P ratio

Since this study does not determine the amount of nitrification occurring in the
oxycline, total oxygen consumption during the aerobic remineralization of organic matter
is only partially constrained. Therefore, any organic matter C.x value between the two
endmembers (+0.18 when no nitrification occurs and +0.99 when all the ammonium
from respiration is oxidized to nitrate) is possible within the study domain based on AOU
observations. However, the proposed C,x values are outside the C,x range observed
across the Eastern Pacific determined by Moreno et al., (2020). Moreno et al. (2020)
reports that the mean Co value in the ETNP along the P18 line (between ~10-20°N) is -
0.76, although their full range spans -1.92 to -0.32 in the ETNP. Since a wide range of
oxidation states are reported, it is necessary to determine the effect of carbon oxidation
state on the relative contribution. We repeated the relative contribution calculations in all
16 layers in the ETNP ODZ for Cox values ranging between -2.5 and +1.5 with 0.5
increments. The wider Cox range was selected based on C, observed globally in
Moreno et al. (2020). In addition, we investigated the impact of C:N:P ratio on the
relative contribution of all the key reactions in the ODZ by repeating each calculation for
the Redfield C:N:P ratio (106:16:1)(Redfield, 1958) (Figure 7). The general vertical
pattern that suggests higher nitrite reduction at the top of the ODZ and the LNM did not
change when different Cox and C:N:P ratios were used in the calculations (section 3.3,
Figure S7-9). However, the specific balance of anammox, denitrification, and nitrite
oxidation changed slightly for each layer, as shown in the supporting information and
illustrated as the range of values for anammox %, nitrite oxidation to reduction ratio, and
nitrite oxidation to DNRN ratio (Figure 7).

[Figure 7]
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Anammox % (percentage loss of fixed nitrogen attributed to anammox), nitrite
oxidation to reduction ratio, and nitrite oxidation to DNRN ratio are three critical values
that show the impact of varying organic matter content on the relative contribution
distribution by layer (Figure 7). Anammox % is mostly constant at different Cox values
except for at the top of the ODZ where the highest nitrite reduction contributions are
observed. Therefore, we show that anammox % is strongly dependent on C. only at
the top of the ODZ when C,y is higher than zero. Anammox % for Redfield C:N:P ratio
shows approximately a 10-17% increase compared to that for OM with observed C:N:P
ratio (112.5:11.4:1 mol/mol) in all the layers due to an increase in organic nitrogen
content. Moreover, the ratio of nitrite oxidation to reduction for the generic organic
matter decreases with increasing Cox and the change is more gradual at the top of ODZ
compared to the other layers. Similarly, nitrite oxidation to DNRN ratio decreases with
increasing Cox, but more gradually for lower oxidation states. On the other hand,
changing the C:N:P ratio does not vary the nitrite oxidation to reduction ratio and nitrite
oxidation to DNRN ratio as much as anammox %.

Moreover, Cox affects the pH increase relative to a baseline case with no
denitrification at the top of the ODZ through changes in denitrification RC% (Figure 8).
For OM with +0.99 carbon oxidation state, the increase in pH due to denitrification is
calculated by taking the proton consumption, and DIC release into account (Table S2)
at various alkalinity and DIC conditions in the water column (Figure 8a). Even though
CO, is produced by the denitrification reaction, simultaneous consumption of protons
balances the pH decrease due to DIC production. As a result, a net increase in pH is
observed for the OM with +0.99 carbon oxidation state. For varying Cox values, pH
increase due to organic matter denitrification is observed below +1.27 On the other
hand, other reactions, such as DNRN, consume fewer protons compared to those
released via DIC production and result in a net pH decrease. Therefore, we can safely
state that pH increase at the top of the ODZ signals nitrogen loss via denitrification of
organic matter compositions reported in the ETNP ODZ because other key nitrogen
cycle reactions cannot increase the pH.

[Figure 8]
3.5. pH and CaCOj; saturation state
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Observed pH values are fitted with a function of depth as described in the
methods. In addition, a theoretical exponential decay curve with depth is generated to
represent a pH profile that closely tracks dissolved oxygen as elsewhere in the global
ocean and where the observed increase at the top of the ODZ is absent. Using equation
6, calcium carbonate saturation (Q) is determined for each pH profile. In both cases, the
aragonite saturation horizon (Q = 1) is found above the ODZ, whereas the calcite
saturation horizon is found below the ODZ (Figure 9). In addition, differences in Q
between the baseline case with no denitrification and the one where denitrification is
permitted is greatest at the local pH maximum as expected, showing denitrification adds
buffering capacity in the ocean. The Q difference between two cases is notably larger
for calcite compared to aragonite.

[Figure 9]
4. Discussion
4.1. High resolution nitrite and pH measurements

Simultaneous measurements of inorganic nitrogen and carbon offer an
integrative approach for resolving which metabolisms shape biogeochemistry in the
ETNP ODZ. Our relative contributions terms represent the integrated impact of a
reaction, as a water parcel traverses the ODZ instead of an instantaneous reaction rate
at a specific location or time that can carry methodological artifacts due to the
perturbation of natural microbial communities in incubation experiments. Changes in the
total alkalinity, pH, and DIC complement DIN measurements in Atracer calculations and
allow further distinction between key reactions. As a result, the system of equations
connecting DIN and DIC measurements with relative reaction rates (Equation 2) can be
solved successfully.

Moreover, investigating ODZ biogeochemistry requires measurements with the
high spatial resolution because the ODZ is not a single well-mixed box and consists of
distinct biogeochemical regimes along different layers or isopycnal surfaces. For
example, low-resolution CLIVAR and GOSHIP measurements (Figure 5) either blend
the SNM and TNM together or underrepresent the nitrite accumulation across the SNM,
whereas high-resolution FK180624 data show two distinct coherent nitrite peaks. Due to

the global nature of CLIVAR and GOSHIP programs, only very low resolution of DIC
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and DIN measurements within the ODZs is typically permitted. These programs include
only a few ODZ stations spanning the entire water column instead of focusing on the
suboxic depths. Furthermore, the organic matter composition and size, which is a key
factor impacting local relative contributions, vary significantly across the ETNP and with
depth (Cram et al., 2022), and could alter the observed individual tracer profiles.
Therefore, integrative approaches coupled with high-resolution data such as reaction
relative contributions and high-resolution DIC and DIN measurements create a new
standard for future investigations of ODZ biogeochemistry.
4.2. Nitrite cycle in the ETNP ODZ

Using simultaneous DIN and DIC measurements, our study determined the
composition of the organic matter sinking to the ODZ from the surface. The N:P ratio
estimated for the organic matter sinking in the ETNP (11.4:1) is less than the canonical
Redfield ratio (16:1) (Anderson, 1995; Redfield, 1958). The N:P ratio observed in the
oxycline in the ETNP is considerably less than the Redfield N:P ratio because the fixed
nitrogen in the water masses transiting the ODZ is consumed relative to phosphate via
denitrification and anammox. These water masses upwell in the coastal areas of the
ODZ to supply the surface ocean with similarly depleted fixed nitrogen and a low N:P
ratio. We continue to find anammox is the dominant pathway for nitrogen loss in the
ETNP overall regardless of Cox and C:N:P ratio, but the specific magnitude of anammox
% depends on C:N:P ratio. Because denitrification, not anammox, produces the
climatically important gas N2O, the dependence of the contribution of denitrification to
fixed nitrogen loss on the N-content of organic matter affects N.O production. This
organic matter remineralized in the ODZ can be sourced, in addition to sinking surface
material, from marine organisms such as zooplankton migrating into ODZ (Bianchi et
al., 2014; Cram et al., 2022). The composition of the zooplankton-derived organic
matter is reported to be enriched in nitrogen compared to the canonical stoichiometry
(Pitt et al., 2009; Ventura, 2006). The resulting lower C:N ratio would yield an increased
anammox %, as suggested by Figures 7a and 7d in order to consume additional
ammonium produced by DNRN and denitrification. Reconciliating the organic matter

supply to ODZs remains a long-standing need.
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Denitrification relative contribution values imply that denitrification is within one
order of magnitude of anammox, similar to other studies in the Pacific ODZs (Babbin,
Buchwald, et al., 2020; Babbin et al., 2017; Peng et al., 2015). Other studies report that
anammox, while affected, is less inhibited by oxygen than denitrification (Dalsgaard et
al., 2014), which explains higher anammox relative contribution values at the anoxic-
oxic interface (top and bottom 3 layers) in Figure 6. Calculated anammox % strongly
depends on C at the top of the ODZ, implying that denitrification is enhanced by higher
carbon oxidation states when the environment is fully anoxic. The standard deviation in
the relative contributions (Figure 6) is generated by the error in Atracer best-fits for each
layer. These standard deviation values also suggest that the total reduction of nitrite is
better constrained than the partitioning between anammox and denitrification, potentially
explaining why there is less agreement between previous studies regarding anammox
% in the ODZs. Additionally, denitrification in anaerobic particles outside and within the
anoxic core (Bianchi et al., 2018; Fuchsman, Paul, et al., 2019) could alter the relative
contributions. Here, denitrification in particles is not distinguished from the water column
as we solely ascertain integrated metabolic impacts on the water. Additionally,
denitrification outside of the 16 layers is not investigated as the simple system of
reactions (Table 2) does not capture the biogeochemistry outside the anoxic core and
suboxic boundaries.

Even though our work does not directly determine changes in nitrite oxidation
rate magnitudes with depth, the shape of nitrite oxidation relative contribution with
respect to nitrite reduction and DNRN is consistent with studies in the ETSP and ETNP
ODZ cores in which nitrite oxidation is more important at the edges of the ODZ (Babbin,
Buchwald, et al.,, 2020; Peng et al., 2015, 2016). Furthermore, nitrite oxidation to
reduction ratios are expected between 0-6.5 and nitrite oxidation to DNRN ratios are
between 0-0.8 in the ETSP ODZ from integrated natural abundance isotope surveys
(Casciotti et al., 2013). The ratios calculated by our novel relative reaction contribution
method fall within these ranges at the top of the ODZ and the TNM. Furthermore, the
highest denitrification rates are likely to be observed at the ODZ top compared to the
rest of the ODZ core (Babbin, Buchwald, et al., 2020). The low nitrite oxidation to

reduction ratio also suggests that the ODZ top is more significant for fixed nitrogen loss
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in the ODZ compared to other layers. Recent studies report that the largest N
concentrations are found deeper within the ODZ (Fuchsman et al., 2018). The
difference could be attributed to physical aspects such as the residence time of water
masses and their chemical constituents or to a greater role in migrating zooplankton
(Fuchsman et al., 2018), but it requires further investigation. Enhanced denitrification at
the top is responsible for low nitrite concentrations in layers 3-4 due to increased nitrite
consumption in these layers. Layers at the bottom of the ODZ and in the LNM show
amplified nitrite oxidation suggesting a different water column chemistry than that of the
anoxic core.

Moreover, a comparison between different biogeochemical regimes within the
ODZ core (Figure 6) suggests that the SNM and TNM are distinct due to mainly the
difference in anammox %. While the SNM has a higher anammox % and nitrite
oxidation to reduction ratio, the TNM has a lower anammox % and nitrite oxidation to
reduction ratio. Higher nitrite oxidation at the SNM is likely the cause of a decrease in
nitrite concentration below the SNM, similar to the ecosystem oscillation trend in the
ODZ core investigated by Penn et al., (2019) (see their Figure 3A). Furthermore, Penn
et al., (2019) reported that physical oxygen supply at low nitrite and ammonium
concentrations could induce an increase in nitrite by reestablishing the competitive
advantage of aerobic organisms. Even though no detectable oxygen in the anoxic core
is observed in the selected FK180624 stations at the time of sampling, physical
intrusion of oxygenated water masses is observed in similar regions of the ETNP such
as station 1 from AT37-12 cruise (Figure S1c) and as reported by previously (Kwiecinski
& Babbin, 2021; Margolskee et al., 2019). Therefore, intrusions of oxygen at nanomolar
concentrations might be a likely cause for the nitrite increase above the TNM.

4.3. Denitrification, pH, and calcium carbonate dissolution in the water column

As illustrated in Figures 2-4, the pH peak at the top of the ODZ is coincident with
SNM for the majority of stations. According to balanced reactions in Table 1,
denitrification and calcium carbonate dissolution increase pH while the other reactions
decrease pH, when accounting for both proton consumption and DIC speciation due to
CO, release. DNRN also consumes protons; however, speciation of the DIC produced

more than compensates for this pH increase. Since pH is increasing with depth at the
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top of ODZ, where denitrification and carbonate saturation are higher, it is likely that this
locally higher pH arises due to denitrification rather than calcium carbonate dissolution
affecting local chemistry. Indeed, predictions based on the reaction stoichiometries are
also verified by the ApH calculations performed for denitrification in the ODZ. In
addition, Figure 8 implies that nitrogen loss due to denitrification is responsible for the
pH increase at the top of the ODZ, even at varying possible carbon oxidation states.
Under the observed average temperature, salinity, alkalinity, and phosphate
profiles in the ODZ, ambient Q of aragonite reaches saturation above the ODZ top,
while that of calcite reaches saturation below the ODZ. However, metabolic processes
such as organic matter remineralization or DNRN above the ODZ and on particles are
likely to decrease local pH, and lower Q further. For instance, the impact of local
metabolism on Q is reported to shift the saturation horizon for calcite to shallower
depths that coincide closely with the ambient aragonite saturation horizon (Subhas et
al., 2022). Further work into sinking organic matter and calcium carbonate chemistry at
highly localized microscales is necessary to elucidate whether the denitrification-driven

pH increase helps to preserve CaCO3 and impact biogeochemistry and export.

5. Conclusion

High-resolution sampling in the top 1 km of the ETNP ODZ and high-precision
measurements of nutrients, total alkalinity, and pH allowed for an investigation of
biogeochemical features unique to ODZs. To explain the coincident pH and secondary
nitrite maxima as well as the two-peaked structure of nitrite profiles in the anoxic core,
we divided the ODZ into 16-layers and determined the spatial distribution of various
nitrogen-cycle reactions and calcium carbonate dissolution in each layer. The results
suggest that the SNM and TNM are two distinct features derived from variations in the
contributions of anammox vis-a-vis denitrification and the ratio of nitrite oxidation to its
reduction. Since these distinct features were clearly observed and subsequently
analyzed due to high-resolution sampling, future studies investigating the nitrogen cycle
in the ODZs need to increase sampling frequency to better understand DIN dynamics in
these regions. In addition, the correspondence between the relative contribution of

nitrite oxidation and oxygen profiles from AT37-12 imply that the intrusion of oxygenated

22



662
663
664
665
666
667
668
669

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Manuscript submitted to Global Biogeochemical Cycles

water masses is a potential source of the LNM and subsequent TNM. However, this
study did not examine the role of other potential oxidants such as iodate, iron, or
manganese, the in-situ oxygen production by cyanobacteria, or other particle-
associated processes such as sulfate reduction or methanogenesis. Furthermore, the
pH increase at the ODZ top is attributed to the denitrification reaction considering
increased denitrification relative rates at the ODZ top and net consumption of protons by
the reaction. The pH increase implies that the dissolution of sinking calcium carbonate

particles could be partially abated in the ODZ.
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Figure Captions

Figure 1. Conceptual illustration of the major nitrogen and carbon cycling reactions in
the ETNP ODZ. DIN species are colored green, DIC species are colored red, and
protons are colored purple. Heterotrophic processes are represented as consuming
organic matter and releasing CO, and NH," while autotrophic processes are

represented as consuming COz and NH," and producing organic matter.

Figure 2. (a) Dissolved oxygen concentration at og = 26.2 kg m™ potential density
surface in the Eastern Tropical North Pacific. Gridded O, concentration data are from
Kwiecinski & Babbin (2021). The area enclosed by dashed lines is plotted separately in
panel (b) with the R/V Falkor cruise track overlayed on the oxygen concentration
contours. Interpreting the dissolved oxygen data is performed using the inpaint_nans()
function on MATLAB R2021b (D’Errico, 2022). (c) Oxygen, nitrite, and pH vertical
profiles in the ETNP ODZ (25.0 < 0p <27.4 kg m™) for a representative collection of
stations. Figure S2 shows the same profiles with depth (dbar) as the y-axis. The
background shading indicates 16 layers, starting with layer 1 at the top, defined based
on the three profiles. See Table S1 for potential density anomaly and depth ranges for

each layer.

Figure 3. Vertical nitrite (a) and pH (b) profiles between og = 25.4 — 27.0 kg m™ at each
station respectively. Color for each station is based on the maximum nitrite
concentration and pH values within the og range. Darker colors denote higher nitrite

concentrations and pH values.

Figure 4. Measured tracer profiles at Station 9 during FK180624 research cruise. The
accuracy of total alkalinity measurements was 0.11 + 1.77 umol kg™, determined from
certified reference material (CRM). The TA precision was + 2.28 pmol kg™ determined
from duplicates (N=46). The precision of pH measurements was + 0.0025 from (N=58)
duplicates. The precision of NO,~ (NO,™ + NO3s”) was + 0.035 umol kg™ from (N=39)
duplicates. The precision of nitrite (NO,”) measurements was + 0.14 pmol kg™ from (N =

32) duplicates. The precision of ammonium (NH,;") measurements was + 0.056 umol kg’
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" from (N = 32) duplicates. The precision of dissolved inorganic phosphorus (DIP)
measurements was + 0.46 umol kg™ from (N = 32) duplicates. Precision calculations

with duplicates is based on (Dickson et al., 2007).

Figure 5. Vertical oxygen, nitrite and pH profiles with respect to potential density
anomaly in the Eastern Tropical North Pacific along the P18 line over a decade.
CLIVAR and GO-SHIP P18 data are obtained from GLODAP v2.2021 (Lauvset et al.,
2021; Olsen et al., 2019, 2020). GO-SHIP and CLIVAR P18 data are from cruises
33R020161119 and 33R020071215 respectively. Oxygen concentration data are
shifted to align all the profiles at 0 pmol kg” in the ODZ core. Therefore, a new
parameter O, is defined. 0.5, 3.2, and 2.5 umol kg™ is subtracted for each data point in
FK180624, CLIVAR and GO-SHIP respectively to O, parameter.

Figure 6. Relative contribution of key reactions to nitrogen and carbon chemistry in
each of 16 layers in the ODZ. The results are for the organic matter with +0.99 carbon
oxidation state. Secondary nitrite maximum (SNM), tertiary nitrite maximum (TNM), and
local nitrite minimum (LNM), and ODZ boundaries are indicated with arrows on the right
side. 50% value is marked with a vertical red dashed line. Reference tracer for panels a,
b, ¢, e is nitrite. Reference tracer for panel d is nitrate. Reference tracer for panel f is
DIC. Equations for calculating each relative contribution value are given in equations 3—
4 and S1-S10.

Figure 7 (a,d) Anammox % for nitrite reduction to N, compared to denitrification, (b,e)
nitrite oxidation to nitrite reduction ratio, and (c,f) nitrite oxidation to DNRN ratio for four
layers in the ETNP ODZ based on relative contribution analysis. Panels a-c are based
on C:N:P ratio (112.5:11.4:1 mol/mol) calculated in this study and panels d-f are based
on Redfield C:N:P ratio (106:16:1 mol/mol). Layers 4, 6, 7, 11, 14 correspond to the top
of the ODZ, secondary nitrite maximum, local nitrite minimum, tertiary nitrite maximum,
and bottom of the ODZ respectively. Gray shading represents the range of carbon
oxidation states (-1.92 < Cox < -0.32) reported by Moreno et al (2020) in the ETNP and

the dashed lines represent +0.18 and +0.99.
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Figure 8. (a) Expected change in pH per organic carbon (Cox = +0.99) remineralized at
the top of ETNP ODZ due to denitrification compared to a baseline case with no
denitrification for a range of TA and DIC values. (b) Expected change in pH per organic
carbon with varying oxidation state due to denitrification. Each data point represents the
mean ApH within the red box on panel (a) which corresponds to observed TA and DIC
values in the ODZ. Gray shading represents the range of carbon oxidation states (-1.92
< Cox < -0.32) reported by Moreno et al (2020) in the ETNP and the dashed lines
represents +0.18 and +0.99.

Figure 9. (a) pH and (b) aragonite and calcite saturation state depth profiles in the
ETNP. Data collected in the study for the selected stations are represented as blue
dots. Solid lines represent the fit to the data points while the dashed lines represent
hypothetical scenario where no pH increase is observed at the top of the ODZ and there

is no physical water mass mixing at depth.

Table 1. Key reactions observed in the ETNP ODZ for the generic organic matter (OM)

composition C,H,O.NP,.

Table 2. Reaction matrix (R) for the sinking organic matter (C;1,sH,O0.N;1 4P, b — 2c =

—82.17, C,, = + 0.99). All the values are normalized to ADIC for each reaction.
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Table 1

Process

Chemical Reaction

DNRN

OM + xNO; + dH* - aC0, + d NH{ + eH;PO, + xNO; + yH,0

Denitrification

Z
0M+ZN02_ + (Z+d)H+ - aCOZ +dNHI +eH3P04+§ NZ +WH20

Anammox NH} +1.32N0; +0.11C0, + 0.02H* - N, + 0.11 OM*™* + 1.90H,0 + 0.3NO3
Nitrite NO; + Oxidiant - NO3; + Reductant

Oxidation

CaCOs; CaC0; - Ca?* + CO%~

Dissolution

Note. C,, = 4 — 2Caou)=2d] " p _ 90y = (3 — a+C,, —5e), x=[2a+0.5(b—2c)—

a

15d +2.5¢], y =[0.5b —1.5d — 1.5¢],, z=[;a+;(b—2c)—d+2e],w=[ca+>b—

lC—Zd—Ee]
3 3




Table 2

Tracer | DNRN Denitrification | Anammox | Nitrite Oxidation | CaCO3; Dissolution
ANO3~ | -1.505 0.000 2.909 46.296 0.000
ANO,~ | +1.505 |-1.003 -12.000 -46.296 0.000
ANH4" | 0.101 0.101 -9.091 0.000 0.000
AN* 0.000 -1.003 -18.182 0.000 0.000
ATA 0.092 1.096 0.181 0.000 2.000
ADIC 1.000 1.000 -1.000 -1.000 1.000
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