

EGU21-627

<https://doi.org/10.5194/egusphere-egu21-627>
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mineral protection regulates the long-term global preservation of natural organic carbon

Jordon Hemingway¹, Daniel Rothman², Katherine Grant³, Sarah Rosengard⁴, Timothy Eglinton⁵, Louis Derry³, and Valier Galy⁶

¹Harvard University, Earth and Planetary Sciences, United States of America (jordon_hemingway@fas.harvard.edu)

²Lorenz Center, Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology

³Department of Earth and Atmospheric Sciences, Cornell University

⁴Departments of Geography and Earth, Ocean, and Atmospheric Sciences, University of British Columbia

⁵Geological Institute, Department of Earth Sciences, ETH Zürich

⁶Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution

The vast majority of organic carbon (OC) produced by life is respiration back to carbon dioxide (CO₂), but roughly 0.1% escapes and is preserved over geologic timescales. By sequestering reduced carbon from Earth's surface, this "slow OC leak" contributes to CO₂ removal and promotes the accumulation of atmospheric oxygen and oxidized minerals. Counteracting this, OC contained within sedimentary rocks is oxidized during exhumation and erosion of mountain ranges. By respiration previously sequestered reduced carbon, erosion consumes atmospheric oxygen and produces CO₂. The balance between these two processes—preservation and respiration—regulates atmospheric composition, Earth-surface redox state, and global climate. Despite this importance, the governing mechanisms remain poorly constrained. To provide new insight, we developed a method that investigates OC composition using bond-strength distributions coupled with radiocarbon ages. Here I highlight a suite of recent results using this approach, and I show that biospheric OC interacts with particles and becomes physiochemically protected during aging, thus promoting preservation. I will discuss how this mechanistic framework can help elucidate why OC preservation—and thus atmospheric composition, Earth-surface redox state, and climate—has varied throughout Earth history.