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Abstract— When it comes to observing and measuring human
gait data for further analysis, determining whether the observed
behavior is within the normal range of variability, or should
be considered abnormal, is very challenging. Moreover, usually
gait data are multivariate including motion capture, electromyo-
graphy, force measurements, etc., each source having its own
unique causes of irregularities and anomalies. This paper intro-
duces a unique algorithm for outlier detection in periodic gait
data using multiple sources and multiple procedures to improve
the overall accuracy. The proposed algorithm’s performance
is evaluated using realistic synthetic gait data to gauge its
accuracy to a truly objective known solution. It is shown that
the proposed method is able to detect 91.2% of the true outliers
in an extensive synthetic dataset, while only producing false
positives at a rate of 0.1%, outperforming other procedures
usually utilized in gait data outlier detection. The proposed
method is a systematic way of removing outliers from gait data,
with direct applications to human biomechanics, rehabilitation
and robotics, and can be applied to other scientific fields dealing
with periodic data.

I. INTRODUCTION

Biological life will always present a natural variability,
inherent to both the environment’s physics and to the past
decisions made by such creature. When it comes to ob-
serving human behaviors, determining whether the observed
behavior is within the normal range of variability, or should
be considered abnormal is very challenging. Furthermore,
when studying a human’s reaction to a specific intervention,
determining whether the observed behavior is consciously
induced, or is a product of sensor noise or other artifacts
has been a major problem in many science fields. The above
necessitate the need for anomalies, or outliers, to be detected
and removed from the recorded data in a systematic and non-
biased way [1].

Outliers are defined in many ways, depending on the
application or field of study [2, 3]. The formal definition
for the purpose of this work is: “An observation (or subset
of observations) which appears to be inconsistent with the
remainder of that set of data” [1]. Focusing on human
biomechanics data, outliers can originate from many different
sources: ElectroMyoGraphic (EMG) data can be corrupted
with sensor noise that originates from sensor detachment
from the skin, change of skin impedance etc [4, 5]. Motion
capture data usually include outliers originating from skin
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detachment [6], clothing interference [7], mislabeled mark-
ers, or comfort-related intentional sources such as postural
adjustments [8]. It is often the case that without proper
outlier removal, many study conclusions can be altered. It
is then established, that the goal is to remove outliers while
preserving the natural biological variation [9].

Many methods have been proposed to remove outliers
from data that exist on one dimension [10, 11], but there
are limited methods for outlier detection in large, complex
and multivariate data [12, 13]. Outlier detection methods
for either case can be grouped based on the categories of
techniques that are employed [14], but few have proposed
combining outlier detection methods to increase performance
relative to single methods [15].

In this work, methods that apply to gait-specific data are
of interest, and observing the data from a different lens can
be useful in determining outliers. Gait data usually include
motion capture, EMG signals, and ground reaction force
recordings. Therefore, there is a need for determining outliers
in multivariate data that have inherent but different variability
among each other. Walking rhythm anomalies have been
detected from video data using a Fast Fourier Transform
(FFT) to observe the data from a frequency perspective [16].
Principal Component Analysis (PCA) has been used to aid
in outlier detection [17] with good performance against a
human control [18]. A simple method using the integral of
the signal can also be used to select outliers in gait data [19],
taking into account multiple kinematic variables. However,
outlier detection procedures are usually completed manually
without much afterthought, while considering multiple vari-
able sources as input is often overlooked. Therefore, there
is a need for a systematic and thoughtful outlier detection
method for gait-related data.

This paper introduces a technique to implement outlier
detection by combining and building upon many known
and established methods that are known to be useful for
gait-specific data, but can be generalized to any periodic
data. The generalized technique performs initial tentative
outlier labelling using each method individually, with tuned
parameters for gait specific data, then performs a decision
algorithm employing significance testing to determine a
quantitative threshold for the tentatively labelled data to be
considered outliers, taking into consideration all sources that
are input into the algorithm, that commonly include EMG or
kinematic data. This technique outperforms singular methods
in outlier detection. The proposed algorithm’s performance
is evaluated with realistic, but artificially created gait data to
verify against a truly objective known solution. We show that
this algorithm outperforms the individual methods chosen, in



minimizing both false negatives and false positives. The pro-
posed method is a systematic way of removing outliers from
gait data, with direct applications to human biomechanics,
rehabilitation and robotics, while being generalizable enough
to be applied to other scientific fields utilizing periodic data.

II. METHODS

This paper introduces an outlier detection algorithm
(ODA) consisting of a combination of a flagging procedure
and a post-processing decision making method for removing
outliers in human gait data that could consist of EMG
recordings and kinematic data. First, we present the data pre-
processing steps required before algorithm input. Then, the
flagging process and subsequent procedures are presented,
followed by the post-processing decision process1.

A. Input Data Description

The input data sources that are accepted to use with this
method are any periodic waveforms that would normally be
acquired during gait studies. Such data could for example
consist of muscle EMG signals, joint kinematics, force plate
measurements, or inertial measurement unit data such as
accelerometer, gyroscope or magnetometer. Let ns ∈ Z+

be the number of sensors we record data from. All data
should be temporally synchronized and then partitioned such
that all sources contain nc ∈ Z+ periods of data, or gait
cycles, all starting from a periodic event that is the same
across all sources. For example, a periodic event that is
usually used in gait data is the heel-strike of one foot, with
many methods available to determine it robustly from raw
kinematic data [20, 21]. Assume that all sensors have either
the same sampling frequency fs ∈ R+, or data from them
can be resampled to have the same final sampling frequency.
Then a nc × np matrix A(i), can be defined to include all
nc gait cycles of the data, with np ∈ Z+ samples for each
gait cycle, coming from each sensor i = 1, 2, · · · , ns. If
we vertically concatenate the data matrices A(i) from each
sensor i, then we arrive at the matrix

A =
[
A(1) A(2) · · · A(ns)

]T
(1)

which describes the ncns × np input data to the ODA. It
must be noted that all standard pre-processing of the data
should be done before including them in the algorithm data
input. For example, the linear envelop method for EMG data
[22] should be applied before any processing of the data
by the proposed algorithm. Moreover, if the data originates
from a trial with at least one independent condition from a
baseline or control, data belonging to each condition should
be separately considered in the proposed ODA. For the
remaining of the paper, all data inputs will correspond to
one condition, unless otherwise noted.

The proposed ODA includes two main steps: first a
flagging step is implemented that includes procedures to flag
each gait cycle as a possible outlier, for each sensor source.

1The code implementation of the entire proposed ODA method can be
found at github.com/HORC-Lab/ICORR_2022

Then, a decision procedure follows to ultimately determine
whether a gait cycle is an outlier or not.

B. Flagging Procedures
The goal of the flagging step is to assign a binary flag

f
(i)
j ∈ {0, 1} to each gait cycle or row j = 1, 2, · · · , nc of the

input data submatrices A(i), i = 1, 2, · · · , ns. Those flags
are assigned for each sensor separately, and then combined
in a flagging vector later. A value of 1 for the binary flag
f
(i)
j corresponds to a potential outlier, while 0 denotes the

opposite, i.e. normal data. This binary status is determined
through five independent and distinct procedures in order
to increase the probability of accurate classification. Each
procedure examines the data in a unique way, looking for
specific characteristics in the data. A flagging vector H(i)

{1},

H
(i)
{2}, H(i)

{3}, H(i)
{4}, H(i)

{5} will be defined by each of the

five distinct procedures respectively, and the final f
(i)
j for

each sensor and gait cycle will be decided based on those.
The five procedures chosen are: Shape-based, Feature-based,
Time-based, Amplitude-based, and Statistics-based.

1) Shape-Based Procedure: The shape of each gait cycle
is defined by the acute visual shape of the waveform. The
procedure finds potential outliers based on acute shape dif-
ferences is a piece-wise variant of median absolute deviation
technique (pMAD). This procedure is applied to each of the
data submatrices A(i), i = 1, 2, · · · , ns. Each one of the
nc gait cycles corresponding to the nc rows of A(i) has np

data points (columns of A(i)). If a(i)j,l is the (j, l) element of
the matrix A(i), then for each element the method computes
the median absolute deviation (MAD) measure matrix M (i),
which (j, l) elements are given by: m(i)

j,l = ∥a(i)j,l−ãl∥ where,
l = 1, 2, · · · , np, j = 1, 2, · · · , nc, al is the l-th column of
A(i), ãl is the median of the data in al, and median ( ) is
the function that gives the median value of the values in a
vector. Then, for each column l, the standard deviation of
the MAD measures is computed and defined as:

σ(i) =
[
σ
(i)
1 σ

(i)
2 · · · σ(i)

np

]
=

[
std

(
m

(i)
1

)
std

(
m

(i)
2

)
· · · std

(
m(i)

np

)]
(2)

where m
(i)
l , l = 1, 2, · · · , np are the columns of M (i), and

std ( ) is the function that computes the standard deviation
of the values in a vector. Finally, a binary matrix B(i)

of the same size as M (i) is created, where each element
b
(i)
j,l is 0 if the m

(i)
j,l is inside the range of 3 standard

deviations from the median value ml
(i) of each column l, i.e.

if m
(i)
j,l ∈

[
−3σ

(i)
l +ml

(i), 3σ
(i)
l +ml

(i)
]
, l = 1, 2, · · · , np,

and 1 otherwise. The elements of the final flagging vector

for this method H
(i)
{1} =

[
h
(i)
{1},1 h

(i)
{1},2 · · · h(i)

{1},nc

]T
, are

given by:

h
(i)
{1},j =

{
0 , if

∑np
l=1 b

(i)
j,l

np
≤ t1

1 , otherwise
(3)

where j = 1, 2, · · · , nc, and t1 is a threshold parameter
for this method. The goal of this parameter is to set the



minimum number of ones in each row of the binary matrix
B(i), above which, the gait cycle or period is flagged as a
potential outlier. This parameter was set to 4% for our data
to balance potential false positives and false negatives.

2) Feature-Based Procedure: The features of each period
are defined by the distinctive peaks and valleys of the overall
waveform. This procedure uses dimensionality reduction via
standard principal component analysis (PCA) to determine
potential outliers based on those features that do not appear
in most gait cycles.

This procedure is applied to each of the data submatrices
A(i), i = 1, 2, · · · , ns. For a submatrix A(i), first each
column is transformed to have a zero mean by using:

A′(i) = A(i) −
[
µ1 µ2 · · · µnp

]
(4)

where µl is a vector ∈ Rnc whose all elements are equal
to the mean of the column l of the matrix A(i), l =
1, 2, · · · , np. Then the PCA method is applied and the
matrix W is computed as the np × np matrix of weights
whose columns are the eigenvectors of A′(i)A′(i)T . More
details on the PCA implementation can be found in [23]. By
selecting only the first two principal components, we can
compute a low-dimensional representation of the original
data as: A

(i)
L = A′(i)WL where WL is a np × 2 matrix

including only the 2 columns (eigenvectors) associated with
the 2 largest eigenvalues of W , and A

(i)
L is a nc × 2 low-

dimensional representation of the data. The next step of the
procedure is identical to the Shape-Based procedure men-
tioned above using the MAD, however in this case instead
of the data in A(i), the low-dimensional representation A

(i)
L

is used.
Following the same process as above (see Sec. II.B.1),

the final flagging vector for this method H
(i)
{2} =[

h
(i)
{2},1 h

(i)
{2},2 · · · h(i)

{2},nc

]T
is defined. The new threshold

value t2 included in (3) for this procedure is set to 50%,
which will flag a gait cycle as a potential outlier if at least
one out of the two dimensions of the data are outside the
corresponding 3 standard deviations range.

It must be noted that the choice of the number of principal
components to keep for the low-dimensional representation
is a free choice, however for biomechanical periodic data,
two principal components seem to suffice as they are able to
explain about 70% of the original data variability.

3) Time-Based Procedure: The time-based changes of
each gait cycle waveform can be due to common patterns
such as lengthened or shortened walking stride and can be
manipulated or lost when all gait cycles are resampled at
the same number of data points; a common practice in gait
analysis. However, those subtle changes can be found if the
data is converted in the frequency domain after being resam-
pled. This procedure determines the underlying frequencies
and amplitudes associated with each gait cycle through the
discrete Fast-Fourier Transform (FFT).

Similarly to above, this procedure is applied to each of the
data submatrices A(i), i = 1, 2, · · · , ns. For each column of
A(i), the discrete FFT is calculated and let Y (i) be the

resultant spectrum matrix. The next step of the procedure
is identical to the Shape-Based procedure mentioned above
using the MAD, however in this case instead of the data in
A(i), the spectrum matrix Y (i) is used. Therefore, following
the same process as above, the final flagging vector for this

method H
(i)
{3} =

[
h
(i)
{3},1 h

(i)
{3},2 · · · h(i)

{3},nc

]T
is defined.

The new threshold value for this procedure defined as t4,
similar to the one included in (3), is set to 10%. This is
based on the frequency components of gait data, which are
usually much lower (1-3 Hz) compared to the usually high
acquisition frequency (usually 100 Hz).

4) Amplitude-Based Procedure: This procedure aims to
detect outlier gait cycles with irregular peaks or valleys.
Similarly to above, this procedure is applied to each of
the data submatrices A(i), i = 1, 2, · · · , ns. For each
row of A(i), which corresponds to each gait cycle, the
area under the amplitude curve when plotted with respect
to time is calculated using the standard trapezoidal inte-
gration (TI). This results to a vector of integral values

I(i) =
[
I
(i)
1 I

(i)
2 · · · I(i)nc

]T
∈ Rnc , where each element

corresponds to the integral value for each gait cycle (row
in A(i)) given by:

I
(i)
j =

np−1∑
l=1

a
(i)
j,l + a

(i)
j,l+1

2
(5)

where j = 1, 2, · · · , nc. Then, a similar approach to that of
the MAD is followed. The median value of the I(i) vector is
calculated, and each of its elements are tested whether they
belong in the 3 standard deviations range from the median
value or not. From that, the final flagging vector for this

method H
(i)
{4} =

[
h
(i)
{4},1 h

(i)
{4},2 · · · h(i)

{4},nc

]T
, is calculated

by:

h
(i)
{4},j =

{
0 , if I

(i)
j ∈

[
−3ϵ(i) + I

(i)
, 3ϵ(i) + I

(i)
]

1 , otherwise
(6)

where I
(i)

is the median value of the vector I(i) and ϵ(i) is
its standard deviation.

5) Statistics-Based Procedure: The fifth and final proce-
dure for flagging periods as potential outliers is a multi-
dimensional variation of the iterative Generalized Extreme
Studentized Deviate (GESD) method. Similarly to above,
this procedure is applied to each of the data submatrices
A(i), i = 1, 2, · · · , ns. This method assumes that there is
one outlier gait cycle (row) in A(i), finds that row that
maximizes the test statistic value Rg defined in [2], and
removes that gait cycle from the data. This is done iteratively
for g− 1 iterations. The final number of outliers is found by
finding the highest number of iterations that give Rg > λg ,
where λg is the critical value corresponding to Rg [2]. Let
G be the set of gait cycles that are considered outliers by
this method, then the final flagging vector for this method

H
(i)
{5} =

[
h
(i)
{5},1 h

(i)
{5},2 · · · h(i)

{5},nc

]T
, is calculated by:

h
(i)
{5},j =

{
0 , if j /∈ G
1 , otherwise

(7)



For ease of use, the built-in Matlab (Mathworks) function
rmoutlier(’gesd’) was used for this purpose.

C. Post-Flagging Decision Procedure

At this point, each gait cycle of the data has accumulated
a number of possible flags noting it as a potential outlier.
After applying the above 5 procedures for each of the data
submatrices A(i), i = 1, 2, · · · , ns coming from all the
possible ns sensor sources, we can finally define the final
flagging vector F ∈ Rnc using the following expression:

F = [F1 F2 · · · Fnc
]
T
=

ns∑
i=1

5∑
k=1

H
(i)
{k} (8)

Each element of this vector has the total number of po-
tential outlier flags assigned to each of the nc gait cycles
after applying the aforementioned five procedures. Fj ∈
{0, 1, 2, · · · , 5ns}, j = 0, 1, 2, · · · , nc, i.e. the largest num-
ber of flags per gait cycle is 5ns, while the higher the number
of flags for a given gait cycle, the higher the likelihood that
gait cycle is an outlier.

The Post-Flagging Decision Procedure (PFDP) is the last
necessary procedure for final outlier detection. It is an
iterative process that defines the optimum threshold number
of possible outlier flags that would determine whether a gait
cycle is an outlier or not. The procedure starts by defining a
cutoff number of flags C ∈ {1, 2, · · · , 5ns} (Step 1). Based
on that choice of C, the gait cycles are separated into two
groups. Group N includes data from the gait cycles that
have a total number of flags less than C, while group O
includes data from the gait cycles that have a total number
of flags greater than or equal to C (Step 2). All data from
all sensor sources from the corresponding gait cycles are
included, i.e. each set N and O includes the corresponding
rows of A as defined in (1). Let N and O be the n1 × np

and n2 × np matrices with these data respectively, where
n1 + n2 = nsnc. Then, a piece-wise variant of a two-
tailed t-test with unequal means is implemented between the
data in the rows of N and O, for each of the np columns
(Step 3). Let q ∈ {1, 2, · · · , n1} denote a row in N , and
r ∈ {1, 2, · · · , n2} denote a row in O. The t-test performs a
test of the hypothesis that the data from the l-th column of
N and the l-th column of O come from distributions with
equal means, and returns the result ηl, l = 1, 2, · · · , np.
A result ηl = 0 indicates that the null hypothesis of the
means being equal cannot be rejected at the 5% significance
level, while ηl = 1 indicates that the null hypothesis can
be rejected at the 5% level. A total number of npns tests
are performed , and the results are summed up in a variable
η given by η =

∑npns

ξ=1 ηξ (Step 4) . Then the process is
iterated for another choice of C (back to Step 1), until all
possible values of C ∈ {1, 2, · · · , 5ns} are selected. The
resulted values η for each possible value of C are included in
a vector η = [η1 η2 · · · η5ns ]

T . The value of C that results
in the maximum ηv , v = {1, 2, · · · , 5ns} is selected as the
final cutoff number of flags Cf for outlier determination, i.e.

Cf ∈ {1, 2, · · · , 5ns} : ηf = max (η) (9)

where max () is the function that returns the maximum value
of a vector.

III. RESULTS

Objective performance of any outlier detection method is
difficult to determine since true data outliers are not always
obvious, and it is especially dependent on which lens the
data is being observed from. To overcome this limitation,
with the goal of quantifying performance metrics of the
proposed algorithm, synthetic periodic data is proposed with
intelligent creation of outliers within the dataset. The goal of
this dataset is to be as realistic as possible, and as such, will
contain outliers that will be challenging for any algorithm to
find. This realistic dataset is inspired by real human gait data
taken from vastus medialis EMG recordings, shown in Fig.
1, with natural variations that are expected and observed in
real human trials.

A. Creation of Realistic Synthetic Dataset

The artificial but realistic dataset is created so that it has
a total of 500 gait cycles. Out of the 500 cycles, 460 are
normal, while the remaining 40 will be designed as outliers.
All gait cycles have 100 samples taken at a frequency of 100
Hz, i.e. total duration of 1 s per gait cycle. A normal, i.e.
non-outlier, gait cycle vector is generated by the following
function:

x[t] = 1−Qcos (2πfct) +Qsin (πfct) + β (10)

where t = 1, 2, · · · , 100 is the sample number, x[t] is the
sampled signal, Q = 1 is an amplitude factor, fc = 2Hz
is the chosen frequency and β is a uniformly distributed
random noise with values in the range [0, 0.9]. The resulted
signal x[t] is finally low-pass filtered with a low-pass 4-th
order Butterworth filter and a cut-off frequency of 10 Hz in
order to smooth the signal while not significantly affecting
the contribution of β. The set of 460 normal artificial gait
cycles generated is shown in Fig. 2 (black lines). Finally, an
outlier gait cycle is generated by: y[t] = x′[t]+Q′sin (πf ′

ct),
where y[t] is the sampled outlier signal, x′[t] is the low-
pass filtered version of x[t] i.e. the non-outlier signal, Q′ is
a scalar taking uniformly distributed random values in the
range [0.1, 1], and f ′

c is a scalar taking uniformly distributed
random values in the range [0.5, 1.05]. As it is seen, the
artificial outlier gait cycles are generated from the normal
gait cycles by adding a randomly conditioned sinusoidal
function. Furthermore, the variation between artificial out-
liers include visible differences in time, frequency, amplitude
and overall shape. These variations are intentionally designed
to be subtle, and quite similar to the non-outliers, making it
more challenging to separate them. The set of 40 artificial
outlier gait cycles generated is shown in Fig. 2 (red lines).
Because this work is an explanation of the proposed ODA
procedure, it is not necessary to validate with an artificial
dataset containing mutliple sources. In fact, as more sources
are added to the algorithm, the accuracy and validity of
the proposed ODA increases, and as a result, performance



Fig. 1: Real Right Vastus Medialis Oblique (RVMO) EMG acti-
vation during treadmill walking. 500 gait cycles are plotted, while
the duration of each gait cycle is normalized from Left Heel Strike
(LHS) to the next LHS.
metrics from this particular dataset is considered a worst-
case scenario. As such, this synthetic dataset is considered
to be from one sensor source only.

B. Evaluation Using Realistic Synthetic Dataset

The five flagging procedures are applied to the above
synthetic dataset of 500 gait cycles, and their results are
input to the PFDP. For analysis purposes, in addition to
the evaluation of the proposed method that includes all five
flagging procedures, each flagging procedure is evaluated
separately, the results of which are again input to the PFDP.
The performance of each case is determined by counting
how many outliers were found, as well as how many false
positives (FPs) and false negatives (FNs) resulted. When the
method flagged a gait cycle that was one of the 460 non-
outlier gait cycles, that flag is considered a FP. Similarly,
when the method failed to flag a gait cycle that was one of
the 40 gait cycles created to be an outlier, that absence of flag
is considered a FN. Finally, in order to evaluate the proposed
method more extensively, 100 different sets of 500 synthetic
gait cycles were generated using the procedure outlined in
Section III-A, each randomly generated as analyzed above.
The proposed method was evaluated in all of those 100
different datasets.

Table I summarizes the results of the evaluation across all
the 100 generated datasets. Since each dataset has 40 outlier
gait cycles, there are a total of 4000 outlier gait cycles. As
it can be seen, the Shape-based method alone detected more
outlier gait cycles (3728 (93.2%)) compared to the proposed
ODA (3648 (91.2%)), however it flagged over four-times the
amount of False Positives (263), compared to how many
the proposed method did (60). This highlights the value
of the proposed ODA in balancing the trade-off between
maximizing the number of found outliers and minimizing
the number of mischaracterized non-outliers. Table I also
shows that the other methods alone did not perform as well as
the proposed ODA. Overall, the proposed method performed
very well (91.2% accuracy) in an extensive dataset, while not
over-flagging the data, resulting in only 60 false positives
out of 50,000 total gait cycles (0.1%), and less combined
FN’s and FP’s (412) than all other methods individually.

Fig. 2: Synthetic data of EMG activation, resembling real data
shown in Fig. 1. 500 gait cycles are plotted. Both normal (460
black lines) and outlier (40 red lines) gait cycle data are shown.
The duration of each gait cycle is normalized from Left Heel Strike
(LHS) to the next LHS.
We expect that the method will be even more accurate if
additional sensor sources data are used, as in real gait data
analysis.

The performance of the individual flagging methods and
how their combination is effective in detecting outliers is
further analyzed. For brevity, an example with two flagging
methods is provided. The performance of the Feature-Based
Procedure that utilized the PCA for dimensionality reduction
in one set of 500 synthetic gait cycles is shown in Fig.
3. As it can be seen, most of the outliers were correctly
flagged, except from a few (7 out of 40), that were very
close to the normal gait cycles, when projected in the low-
dimensional space. However, most of those missed outliers
(False Negatives) were flagged by the other flagging pro-
cedures. Specifically for this dataset, the Amplitude-Based
Procedure that utilized the Integral values was able to detect
all 7 of those gait cycles that the PCA-based method failed
to detect. The results are shown in Fig. 4, where all the gait
cycles are represented with their computed integral values.
Although these values are scalars, i.e. one-dimensional data,
a 2D scatter plot is created with both axes being the single-
dimensional integral score to better visualize the gait cycle
selections and to be able to compare them to Fig. 3. As seen
in Fig. 4, although this procedure had many false negatives,
all 7 gait cycles that were missed by the PCA-method were
flagged as outliers using this method, noted with the magenta
squares. This is an example of the importance of analyzing
the data from different perspectives in order to improve the
overall accuracy, a strength of the proposed method.

IV. CONCLUSION

This paper introduces a unique algorithm for outlier detec-
tion in periodic gait data using multiple sources and multiple
procedures to improve the overall accuracy. It is shown
that the proposed method is able to detect 91.2% of the
true outliers in an extensive synthetic dataset, while only
producing false positives at a rate of 0.1%, outperforming
other procedures usually utilized in gait data outlier detec-
tion. The proposed method is a systematic way of removing
outliers from gait data, with direct applications to human



Fig. 3: Results using the Feature-Based Procedure using PCA
for dimensionality reduction in a synthetic dataset. The low-
dimensional representation of the data using only the first two
principal components (see Sec. II.B.2) is shown. Green and red
circles (◦) represent normal (non-outlier) and outlier gait cycles
respectively. Gait cycles in black squares (□) represent the gait
cycles flagged as outliers by this method.

Fig. 4: Results using the Amplitude-Based Procedure using the
Integral values in a synthetic dataset. The scalar integral values for
each gait cycle are shown in two dimensions for clarity. Green and
red circles (◦) represent normal (non-outlier) and outlier gait cycles
respectively. Gait cycles in black squares (□) represent the gait
cycles flagged as outliers by this method. Gait cycles in magenta
squares (□) represent the outliers that were missed by the Feature-
Based Procedure noted in Fig. 3.

biomechanics, rehabilitation and robotics, while it can be
applied to other scientific fields dealing with periodic data.
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Shape-based Feature-based Time-based Amplitude-based Statistics-based Proposed ODA
Detected outliers (of 4000) 3728 (93.2%) 3047 (76.2%) 3185 (80%) 1829 (45.8%) 3566 (89.2%) 3648 (91.2%)

False Negatives (FN’s) (of 4000) 272 (6.8%) 953 (23.8%) 815 (20.4%) 2171 (54.3%) 434 (10.9%) 352 (8.8%)
False Positives (FP’s) (of 46000) 263 (0.57%) 113 (0.25%) 366 (0.80%) 72 (0.16%) 12 (0.03%) 60 (0.13%)
Total FN’s and FP’s (of 50000) 535 (1.07%) 1066 (2.13%) 1181 (2.36%) 2243 (4.49%) 446 (0.89%) 412 (0.82%)

TABLE I: Evaluation of each separate flagging method and the proposed outlier detection algorithm (ODA).


