

Co(II) Complex with a Covalently Attached Pendent Quinol Selectively Reduces O₂ to H₂O

Segun V. Obisesan, Cayla Rose, Byron H. Farnum, and Christian R. Goldsmith*

Cite This: <https://doi.org/10.1021/jacs.2c08315>

Read Online

ACCESS |

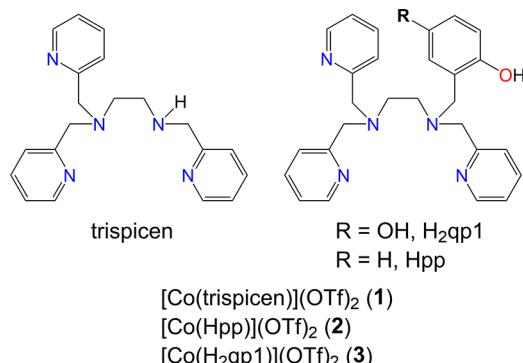
Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: A Co(II) complex with the polydentate quinol-containing ligand H₂qp1 acts as an efficient electrocatalyst for oxygen reduction. Without any additional electron–proton transfer mediators, the electrocatalysis is selective for H₂O; a related complex that substitutes a phenol for the quinol, conversely, instead produces mostly H₂O₂ under the same conditions. We propose that the ability of the redox-active quinol to donate two electrons impacts the product-determining step.

The oxygen reduction reaction (ORR) features prominently in many biological processes and proposed technologies for energy storage.¹ O₂ can be reduced either by two or four electrons to H₂O₂ or H₂O, respectively. H₂O₂ is vital to many industrial processes, making reactions that can readily prepare it from O₂ attractive, but this oxidant can degrade both biomolecules and the membranes used in fuel cells. Consequently, there is great interest in understanding the factors that favor the production of either H₂O or H₂O₂ from O₂ and preparing catalysts and electrocatalysts that are highly selective for one over the other.


A number of first-row transition metal complexes have been explored as homogeneous electrocatalysts for ORR.^{2–8} These include iron-porphyrin complexes, which resemble the cytochrome c oxidases essential for respiratory redox in mitochondria^{9–17} and iron and cobalt complexes with dianionic ligands with N₂O₂ donor sets.^{6,18–22} With respect to the cobalt-containing electrocatalysts, Anson and Stahl found that the addition of *para*-hydroquinone (quinol) was able to both accelerate the O₂ reduction and shift the product from mostly H₂O₂ to mostly H₂O.¹⁹ In these reactions, the quinol is proposed to act as an electron–proton transfer mediator. Hooe et al. found that the addition of quinol likewise shifted the selectivity of a manganese-salen electrocatalyst for ORR toward H₂O.²³ Singha et al. subsequently grafted quinols to iron porphyrins, which were then attached to electrodes and used as heterogeneous electrocatalysts.²⁴ With these, the incorporation of a quinol was found to alter the mechanism of O₂ reduction relative to complexes with appended phenols, but the rates of oxygen reduction were similar. Further, both the quinol and phenol systems overwhelmingly produced H₂O.

Here, we report two cobalt-containing homogeneous electrocatalysts for ORR. These differ from earlier catalysts from the Machan and Stahl groups in that they feature neutral and potentially more highly coordinating ligands with N₅O donor sets. The O-donor is, at best, loosely coordinated and comes from either a phenol or a quinol. We find that with these electrocatalysts the phenol-for-quinol substitution strongly impacts the product selectivity. When the O-donor

is completely absent, the resultant cobalt complex performed poorly as an electrocatalyst for the ORR.

We prepared Co(II) complexes with *N,N,N'*-tris(2-pyridinylmethyl)-1,2-ethanediamine (trispicen), *N*-(2-hydroxybenzyl)-*N,N',N'*-tris(2-pyridinylmethyl)-1,2-ethanediamine (Hpp), and *N*-(2,5-dihydroxybenzyl)-*N,N',N'*-tris(2-pyridinylmethyl)-1,2-ethanediamine (H₂qp1, Scheme 1). We had

Scheme 1. Structures of the Polydentate Ligands

previously synthesized H₂qp1 and used it as a component in a redox-responsive magnetic resonance imaging contrast agent and in two functional mimics of superoxide dismutase.^{25–28} The complexation reactions between Co^{II}(OTf)₂ and the ligands were all performed in MeCN. Adding ether precipitates the following products in moderate yields: [Co(trispicen)](OTf)₂ (1, 72%), [Co(Hpp)](OTf)₂ (2, 55%), and [Co(H₂qp1)](OTf)₂ (3, 76%). Although we have been unable thus far to structurally characterize the complexes, we

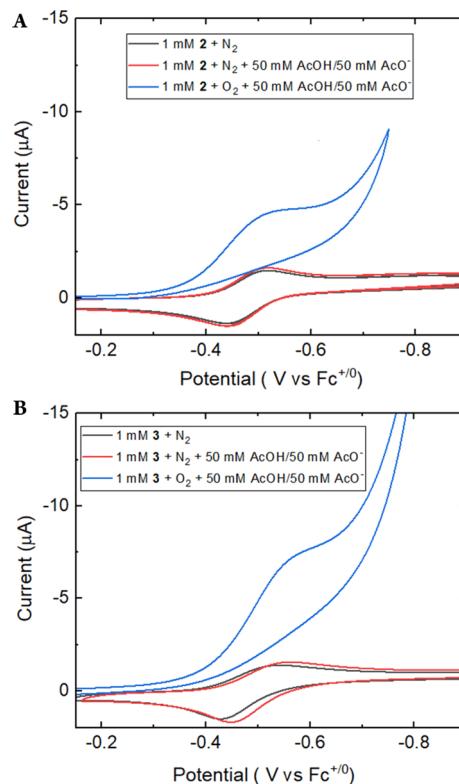
Received: August 5, 2022

confirmed their identities and purities by elemental analysis, with coordination of the ligands being corroborated by mass spectrometry (MS). Solid-state magnetic susceptibility measurements indicate that each complex contains high-spin Co(II).²⁹

Cyclic voltammetry (CV) analysis of **1**, **2**, and **3** in MeCN under N₂ reveals that the three cobalt complexes each have a quasi-reversible feature at approximately −0.45 vs Fc^{+/0} (Table 1, Figures S11–S13). Given the similarities of these

Table 1. Summary of Electrochemical Data for **1, **2**, and **3**^a**

complex	$E_{1/2}$ for Co(III/II) (V vs Fc ^{+/0})	additional redox events (V vs Fc ^{+/0})
1	−0.41	N.A.
2	−0.47	N.A.
3	−0.49	0.61(E_{pa}), 0.55, 0.07 (E_{pc})


^aAll data were acquired in MeCN under N₂ with 100 mM [Bu₄N][PF₆] as a supporting electrolyte and a 25 mV/s scan rate.

potentials, we assign these to Co(III/II) redox events. The presence of a phenolic group on the ligand shifts the potential slightly more negative. Complex **3** has additional redox events: a single 2e[−] oxidation wave at 0.61 V and what appears to be two 1e[−] reduction features at 0.55 and 0.07 V, respectively (Figure S13). The Co(III/II) redox features for **2** and **3** do not significantly shift in the presence of either AcOH or acetate buffer. The Co(III/II) redox event in **1**, however, shifts by −0.28 V (Figure S11), suggesting a change in the coordination environment of the metal center.

When the electrochemistry is performed in the presence of 100 mM acetate buffer (50 mM AcOH/50 mM NaOAc) and O₂ in MeCN, the reversibility is lost, and the current markedly increases around the Co(III/II) potential for **2** and **3** (Figure 1, Figure S14) but not **1**. The results indicate that **2** and **3** are both able to bind to O₂ and act as electrocatalysts. We were unable to observe a current increase for **1** beyond the overlapping O₂ reduction by the glassy carbon electrode near the $E_{1/2}$ of the Co(III/II). In nonbuffered solutions containing 50 mM AcOH, we observe a catalytic current for **1** that is too weak to allow for the measurement of accurate kinetic data (Figure S15). A proton donor-dependent voltage response was seen with **2**. At 0 mM AcOH under O₂ saturation, the $E_{p/2}$ is equal to the $E_{1/2}$. Increasing the proton concentration from 0 to 200 mM led to a positive shift of 51 mV, suggesting the protonation and potential stabilization of the intermediate formed from the first reduction.^{6,30} The abilities of **2** and **3** to function at acid concentrations as high as 200 mM are notable; such conditions have deactivated other molecular electrocatalysts for the ORR.⁸ We do observe slightly enhanced currents under O₂ in the absence of acetic acid for both **2** and **3**; we attribute this to the phenolic portions of the ligands acting as proton sources.

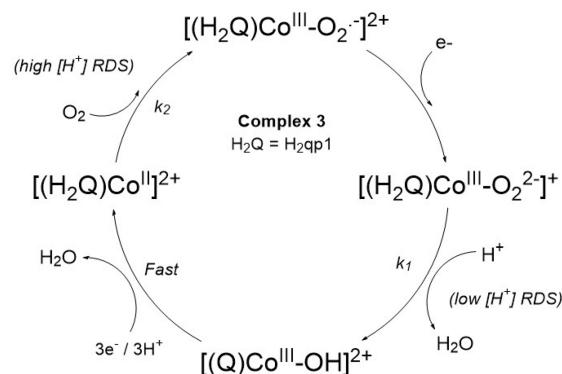
The turnover frequencies (TOFs) for both catalysts were determined using scan rate-independent CV data to estimate k_{obs} from the i_c/i_p ratio and the n_{cat} determined from RRDE studies (*vide infra*), where i_c is the plateau catalytic current and i_p is the peak current for **2** or **3** under N₂ (eq 1).³¹ k_{obs} was estimated to be the maximum TOF.

$$\frac{i_c}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RTk_{obs}}{F\nu}} \quad (1)$$

Figure 1. Electrocatalytic dioxygen reduction by **2** and **3** in MeCN. (A) CV of **2** under N₂ and O₂ with and without 100 mM acetate buffer (50 mM AcOH/50 mM NaOAc). (B) CV of **3** under N₂ and O₂ with and without 100 mM acetate buffer. All potentials are vs Fc^{+/0}.

With 6.3 mM O₂³² and 400 mM acetate buffer (200 mM AcOH/200 mM NaOAc), the TOFs for O₂ reduction are 0.16 s^{−1} for **2** and 0.154 s^{−1} for **3**. These TOF values are weighted averages of the observed rate constants for the reactions that reduce O₂ to H₂O and H₂O₂. Attempts to corroborate these values with foot-of-the-wave analysis failed, suggesting that the first chemical step in the mechanism is not rate-determining. The effective overpotentials for the catalysts were determined through well-established methodology and measurements in buffered systems containing acetate buffer.⁵ For **2** and **3**, the effective overpotentials for reduction to H₂O were 310 and 333 mV, respectively.

Electrocatalysis with **2** and **3** was investigated as a function of [AcOH], [O₂], and [Co], where [Co] is the concentration of **2** or **3** (Figures S16–S28). In the case of **3**, k_{obs} is linearly dependent on [AcOH], [O₂], and [Co]. When [AcOH] exceeds 50 mM, k_{obs} becomes independent of acid concentration, with a limiting value of $k_{obs} = 0.33$ s^{−1} (Figure S24). This observation indicates two rate-limiting regimes. A linear fit to the [AcOH]-dependent region yields a slope of 8.1 M^{−1} s^{−1} and an intercept of 0.052 s^{−1}. This intercept is thus k_{obs} for O₂ reduction by **3** in the absence of external acid. We attribute the residual activity to the acidic −OH groups of the H₂qp1 ligand. The linear dependence of k_{obs} on [O₂] obtained in excess [AcOH] yields a slope of 48 M^{−1} s^{−1}. Multiplying this value by [O₂] (6.3 mM) yields $k_{obs} = 0.30$ s^{−1}, which is identical within error to that found in the acid-independent region for k_{obs} vs [AcOH]. These data indicate two chemical steps. The first is dependent on [AcOH], whereas the second depends on O₂.


With **2**, k_{obs} shows a strong linear dependence on $[\text{AcOH}]$ until it exceeds 100 mM (Figure S17). Above this concentration, k_{obs} appears to approach a limiting value, but unlike what is observed for **3**, a clear limit is never reached. A fit to the linear region yielded a slope of $5.6 \text{ M}^{-1} \text{ s}^{-1}$ for the acid-dependent rate constant and an intercept of 0.047 s^{-1} in the absence of AcOH.

The selectivities of **2** and **3** for H_2O and H_2O_2 differ substantially. The product selectivity was assessed using two different methods: a rotating ring-disk electrode (RRDE, Figures S29–S33) and a colorimetric assay with titanium(IV) oxysulfate, $[\text{Ti}^{\text{IV}}(\text{O})\text{SO}_4]$ (Figures S34–S37). With 50 mM AcOH, **2** favors the production of H_2O_2 from O_2 ; H_2O_2 accounts for $89 \pm 7\%$ of the products as assessed by RRDE ($n_{\text{cat}} = 2.2$) and 62% of the products as assessed by the assay. Although the concentration of AcOH strongly influences the rate of ORR, it does not impact the selectivity. Increasing $[\text{AcOH}]$ to 200 mM results in $83 \pm 5\%$ selectivity for H_2O_2 , as assessed by RRDE. Catalyst **3**, conversely, selectively converts O_2 into H_2O . RRDE again suggests a higher amount of H_2O_2 ($25 \pm 7\%$, $n_{\text{cat}} = 3.5$) than the Ti(IV) assay ($<4\%$). Such discrepancies between these two techniques have been previously noted and typically result when the catalysts can further reduce H_2O_2 .⁶ In the assay, the H_2O_2 remains in proximity with the electrocatalyst, enabling its further reduction to H_2O . In the RRDE measurements, conversely, the H_2O_2 diffuses away from the electrocatalyst before it can get reduced through secondary reactions, weighting the observed selectivity more toward H_2O_2 . CV studies with various concentrations of H_2O_2 confirm that **2** and **3** can indeed further reduce H_2O_2 to H_2O (Figure S38).

To determine the impact of an added electron–proton transfer mediator on the selectivity and rate of the electrocatalyzed ORR, we studied the reactions with 0.5–2.5 mM *para*-hydroquinone present as a cocatalyst. Although accurately determining the TOFs of a catalyst/cocatalyst mixture is challenging,^{19,23} there appears to be a first-order dependence on the quinol concentration for **2**, as evidenced by the enhanced catalytic current around the Co(III/II) redox couple (Figure S39). With 2.5 mM quinol, **2** now favors the production of H_2O , which accounts for $61 \pm 9\%$ and 85% of the products as assessed by RRDE (Figure S40) and the titanium assay (Figure S41), respectively. Catalyst **3** also becomes more active upon the addition of quinol (Figure S41), and its selectivity for H_2O measured by RRDE improves to $89 \pm 6\%$ (Figure S42). As seen by Anson et al., the added quinol cooperatively shuttles electrons and protons to the species on the catalytic cycle, facilitating the complete reduction of O_2 to H_2O .¹⁹

Although compounds **2** and **3** highly resemble each other in most aspects, we believe that the ability of the quinol in **3** to donate two electrons and two protons alters the mechanism for ORR and shifts the product selectivity from H_2O_2 to H_2O . Given that both complexes are present in their reduced Co(II) forms, we believe that an equilibrium with O_2 in the bulk solution produces Co(III)-superoxo complexes that act as the active catalysts (Scheme 2). The reduction of the Co(III)-superoxo complex to a putative Co(III)-peroxy species is the first step. The Co(III)-peroxy then reacts with AcOH with rate constants of $k_1 = 5.6$ and $8.1 \text{ M}^{-1} \text{ s}^{-1}$ for **2** and **3**, respectively. This step is also proposed to be product-determining. For **3**, external protonation coupled with rapid PCET from the quinol group yields H_2O as the major product as well as a Co(III)–

Scheme 2. Proposed Mechanisms for the Electrocatalysis Performed by **3 in the Absence of Additional Quinol**

OH-*para*-quinone species. For **2**, both external and internal protonation of Co(III)-peroxy yields H_2O_2 as the major product as well as a Co(III)-phenolate complex. Subsequent PCET reactions at the electrode surface regenerate the starting Co(II) complexes for both catalysts, with subsequent O_2 coordination regenerating the Co(III)-superoxo complexes in the final step.

The overall mechanism represents an ECEC pathway in which either of the two chemical steps can be rate-limiting depending on the acid concentration.^{33,34} At low $[\text{AcOH}]$, the rate-determining step corresponds to k_1 , but as $[\text{AcOH}]$ increases, the RDS switches to O_2 coordination. Importantly, many reported electrocatalysts for ORR initially enter the catalytic cycle in an oxidized form (i.e., Co(III)). With these catalysts, O_2 coordination typically is the first step after reduction of the catalyst. In the present study, the catalysts instead start in the reduced state, and O_2 coordination occurs as the final step in the catalytic cycle. The regenerated Co(III)-superoxo complex is then reduced at the electrode surface. Further evidence for the order of protonation and O_2 coordination steps comes from the positive shift in $E_{\text{cat}/2}$ with $[\text{AcOH}]$, a result only supported by protonation occurring as the first step (Figure S46).

This mechanism also presents a challenge in that the peak current (i_p) used to calculate i_c/i_p and determine k_{obs} is that of the Co(II) complex under N_2 , rather than the Co(III)-superoxo. Given that we do not know the equilibrium constant for O_2 coordination with Co(II), we cannot know the concentration of Co(III)-superoxo in the bulk solution. We anticipate that this equilibrium is quite small, such that $[\text{Co(II)}] > [\text{Co(III)-superoxo}]$. Consequently, the i_c/i_p values and corresponding k_{obs} values here should be considered lower limits for the true values.

In comparison to other molecular electrocatalysts, **3** stands out for being selective for H_2O at a relatively low overpotential. Cobalt-containing catalysts can perform at lower overpotentials than iron-containing complexes, sometimes as low as 90 mV, but are generally much more selective for H_2O_2 and have lower TOFs.^{5,18,19} Although other catalysts are more selective for H_2O than **3**, these typically have much higher overpotentials exceeding 0.7 V.^{3,6–8,17,31,35,36}

In conclusion, we find that installing a phenol in a neutral pentadentate N-donor ligand can enable a formerly inactive cobalt complex to serve as an effective electrocatalyst for ORR. Slightly changing the phenol into a quinol markedly improves

the selectivity for H_2O over H_2O_2 . The presence of additional, noncovalently bound quinol amplifies these benefits.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.2c08315>.

Discussions of experimental details and ECEC mechanisms for ORR electrocatalysis, figures of mass spectra, IR spectra, ESI MS data, CV curves, plots of cathodic and anodic peak currents, rotating ring disc electrode data, and UV/vis spectra, and tables of observed rate constants for oxygen reduction ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Christian R. Goldsmith – Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States; orcid.org/0000-0001-7293-1267; Email: crgoldsmith@auburn.edu

Authors

Segun V. Obisesan – Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States

Cayla Rose – Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States

Byron H. Farnum – Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States

Complete contact information is available at:

<https://pubs.acs.org/10.1021/jacs.2c08315>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research described here was financially supported by Auburn University and two grants from the National Science Foundation (NSF-CHE-1662875 and NSF-CHE-1954336).

REFERENCES

- (1) Solomon, E. I.; Stahl, S. S. Introduction: Oxygen Reduction and Activation in Catalysis. *Chem. Rev.* **2018**, *118* (5), 2299–2301.
- (2) Machan, C. W. Advances in the Molecular Catalysis of Dioxygen Reduction. *ACS Catal.* **2020**, *10* (4), 2640–2655.
- (3) Hooe, S. L.; Rheingold, A. L.; Machan, C. W. Electrocatalytic Reduction of Dioxygen to Hydrogen Peroxide by a Molecular Manganese Complex with a Bipyridine-Containing Schiff Base Ligand. *J. Am. Chem. Soc.* **2018**, *140* (9), 3232–3241.
- (4) Wang, Y.-H.; Schneider, P. E.; Goldsmith, Z. K.; Mondal, B.; Hammes-Schiffer, S.; Stahl, S. S. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O_2 Reduction with a Mononuclear Cobalt Porphyrin Catalyst. *ACS Cent. Sci.* **2019**, *5* (6), 1024–1034.
- (5) Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. *Chem. Rev.* **2018**, *118* (5), 2340–2391.
- (6) Cook, E. N.; Dickie, D. A.; Machan, C. W. Catalytic Reduction of Dioxygen to Water by a Bioinspired Non-Heme Iron Complex via a 2+2 Mechanism. *J. Am. Chem. Soc.* **2021**, *143* (40), 16411–16418.
- (7) Wang, L.; Gennari, M.; Cantú Reinhard, F. G.; Gutiérrez, J.; Morozan, A.; Philouze, C.; Demeshko, S.; Artero, V.; Meyer, F.; de Visser, S. P.; Duboc, C. A Non-Heme Diiron Complex for (Electro)catalytic Reduction of Dioxygen: Tuning the Selectivity through Electron Delivery. *J. Am. Chem. Soc.* **2019**, *141* (20), 8244–8253.
- (8) Passard, G.; Ullman, A. M.; Brodsky, C. N.; Nocera, D. G. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential. *J. Am. Chem. Soc.* **2016**, *138* (9), 2925–2928.
- (9) Martin, D. J.; Mayer, J. M. Oriented Electrostatic Effects on O_2 and CO_2 Reduction by a Polycationic Iron Porphyrin. *J. Am. Chem. Soc.* **2021**, *143* (30), 11423–11434.
- (10) Brezny, A. C.; Johnson, S. I.; Raugei, S.; Mayer, J. M. Selectivity-Determining Steps in O_2 Reduction Catalyzed by Iron-tetramesitylporphyrin. *J. Am. Chem. Soc.* **2020**, *142* (9), 4108–4113.
- (11) Pegis, M. L.; Martin, D. J.; Wise, C. F.; Brezny, A. C.; Johnson, S. I.; Johnson, L. E.; Kumar, N.; Raugei, S.; Mayer, J. M. Mechanism of Catalytic O_2 Reduction by Iron Tetraphenylporphyrin. *J. Am. Chem. Soc.* **2019**, *141* (20), 8315–8326.
- (12) Rigsby, M. L.; Wasylenko, D. J.; Pegis, M. L.; Mayer, J. M. Medium Effects Are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron–Porphyrin Complexes. *J. Am. Chem. Soc.* **2015**, *137* (13), 4296–4299.
- (13) Wasylenko, D. J.; Rodríguez, C.; Pegis, M. L.; Mayer, J. M. Direct Comparison of Electrochemical and Spectrochemical Kinetics for Catalytic Oxygen Reduction. *J. Am. Chem. Soc.* **2014**, *136* (36), 12544–12547.
- (14) Carver, C. T.; Matson, B. D.; Mayer, J. M. Electrocatalytic Oxygen Reduction by Iron Tetra-arylporphyrins Bearing Pendant Proton Relays. *J. Am. Chem. Soc.* **2012**, *134* (12), 5444–5447.
- (15) Singha, A.; Dey, A. Hydrogen Atom Abstraction by Synthetic Heme Ferric Superoxide and Hydroperoxide species. *Chem. Commun.* **2019**, *55* (39), 5591–5594.
- (16) Brezny, A. C.; Nedzbala, H. S.; Mayer, J. M. Multiple Selectivity-Determining Mechanisms of H_2O_2 Formation in Iron Porphyrin-Catalysed Oxygen Reduction. *Chem. Commun.* **2021**, *57* (10), 1202–1205.
- (17) Pegis, M. L.; McKeown, B. A.; Kumar, N.; Lang, K.; Wasylenko, D. J.; Zhang, X. P.; Raugei, S.; Mayer, J. M. Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions. *ACS Cent. Sci.* **2016**, *2* (11), 850–856.
- (18) Wang, Y.-H.; Pegis, M. L.; Mayer, J. M.; Stahl, S. S. Molecular Cobalt Catalysts for O_2 Reduction: Low-Overpotential Production of H_2O_2 and Comparison with Iron-Based Catalysts. *J. Am. Chem. Soc.* **2017**, *139* (46), 16458–16461.
- (19) Anson, C. W.; Stahl, S. S. Cooperative Electrocatalytic O_2 Reduction Involving Co(salophen) with *p*-Hydroquinone as an Electron–Proton Transfer Mediator. *J. Am. Chem. Soc.* **2017**, *139* (51), 18472–18475.
- (20) Nichols, A. W.; Cook, E. N.; Gan, Y. J.; Miedaner, P. R.; Dressel, J. M.; Dickie, D. A.; Shafaat, H. S.; Machan, C. W. Pendent Relay Enhances H_2O_2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based $\text{Co}-\text{N}_2\text{O}_2$ Complexes. *J. Am. Chem. Soc.* **2021**, *143* (33), 13065–13073.
- (21) Nichols, A. W.; Kuehner, J. S.; Huffman, B. L.; Miedaner, P. R.; Dickie, D. A.; Machan, C. W. Reduction of Dioxygen to Water by a $\text{Co}(\text{N}_2\text{O}_2)$ Complex with a 2,2'-Bipyridine Backbone. *Chem. Commun.* **2021**, *57* (4), 516–519.
- (22) Wang, Y.-H.; Goldsmith, Z. K.; Schneider, P. E.; Anson, C. W.; Gerken, J. B.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S. S. Kinetic and Mechanistic Characterization of Low-Overpotential, H_2O_2 -Selective Reduction of O_2 Catalyzed by N_2O_2 -Ligated Cobalt Complexes. *J. Am. Chem. Soc.* **2018**, *140* (34), 10890–10899.
- (23) Hooe, S. L.; Cook, E. N.; Reid, A. G.; Machan, C. W. Non-Covalent Assembly of Proton Donors and *p*-Benzoyquinone Anions for Co-Electrocatalytic Reduction of Dioxygen. *Chem. Sci.* **2021**, *12* (28), 9733–9741.
- (24) Singha, A.; Mondal, A.; Nayek, A.; Dey, S. G.; Dey, A. Oxygen Reduction by Iron Porphyrins with Covalently Attached Pendent Phenol and Quinol. *J. Am. Chem. Soc.* **2020**, *142* (52), 21810–21828.

(25) Mialane, P.; Nivorojkine, A.; Pratviel, G.; Azéma, L.; Slany, M.; Godde, F.; Simaan, A.; Banse, F.; Kargar-Grisel, T.; Bouchoux, G.; Sainton, J.; Horner, O.; Guilhem, J.; Tchertanova, L.; Meunier, B.; Girerd, J.-J. Structures of Fe(II) Complexes with *N,N,N'*-Tris(2-pyridylmethyl)ethane-1,2-diamine Type Ligands. Bleomycin-like DNA Cleavage and Enhancement by an Alkylammonium Substituent on the N' Atom of the Ligand. *Inorg. Chem.* **1999**, *38* (6), 1085–1092.

(26) Yu, M.; Ambrose, S. L.; Whaley, Z. L.; Fan, S.; Gorden, J. D.; Beyers, R. J.; Schwartz, D. D.; Goldsmith, C. R. A Mononuclear Manganese(II) Complex Demonstrates a Strategy to Simultaneously Image and Treat Oxidative Stress. *J. Am. Chem. Soc.* **2014**, *136* (37), 12836–12839.

(27) Senft, L.; Moore, J. L.; Franke, A.; Fisher, K. R.; Scheitler, A.; Zahl, A.; Puchta, R.; Fehn, D.; Ison, S.; Sader, S.; Ivanović-Burmazović, I.; Goldsmith, C. R. Quinol-Containing Ligands Enable High Superoxide Dismutase Activity by Modulating Coordination Number, Charge, Oxidation States and Stability of Manganese Complexes throughout Redox Cycling. *Chem. Sci.* **2021**, *12* (31), 10483–10500.

(28) Ward, M. B.; Scheitler, A.; Yu, M.; Senft, L.; Zillmann, A. S.; Gorden, J. D.; Schwartz, D. D.; Ivanović-Burmazović, I.; Goldsmith, C. R. Superoxide Dismutase Activity Enabled by a Redox-Active Ligand rather than Metal. *Nat. Chem.* **2018**, *10* (12), 1207–1212.

(29) Drago, R. S. *Physical Methods for Chemists*, 2nd ed.; Surfside Scientific Publishers: Gainesville, FL, 1992.

(30) Artero, V.; Savéant, J.-M. Toward the Rational Benchmarking of Homogeneous H₂-Evolving Catalysts. *Energy Environ. Sci.* **2014**, *7* (11), 3808–3814.

(31) Costentin, C.; Savéant, J.-M. Towards an Intelligent Design of Molecular Electrocatalysts. *Nat. Rev. Chem.* **2017**, *1* (11), 0087.

(32) Li, Q.; Batchelor-McAuley, C.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Anomalous Solubility of Oxygen in Acetonitrile/Water Mixture Containing Tetra-*n*-butylammonium Perchlorate Supporting Electrolyte; the Solubility and Diffusion Coefficient of Oxygen in Anhydrous Acetonitrile and Aqueous Mixtures. *J. Electroanal. Chem.* **2013**, *688*, 328–335.

(33) Rountree, E. S.; McCarthy, B. D.; Eisenhart, T. T.; Dempsey, J. L. Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry. *Inorg. Chem.* **2014**, *53* (19), 9983–10002.

(34) Costentin, C.; Savéant, J.-M. Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts. *ChemElectroChem* **2014**, *1* (7), 1226–1236.

(35) Costentin, C.; Robert, M.; Savéant, J.-M. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO₂-to-CO Electrochemical Conversion. *Acc. Chem. Res.* **2015**, *48* (12), 2996–3006.

(36) Wang, Y.-H.; Mondal, B.; Stahl, S. S. Molecular Cobalt Catalysts for O₂ Reduction to H₂O₂: Benchmarking Catalyst Performance via Rate–Overpotential Correlations. *ACS Catal.* **2020**, *10* (20), 12031–12039.