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Pulling simulation predicts mixing free energy for
binary mixtures

Wezi D. Mkandawire and Scott T. Milner *

Predicting the mixing free energy of mixing for binary mixtures using simulations is challenging. We

present a novel molecular dynamics (MD) simulation method to extract the chemical potential m(X) for

mixtures of species A and B. Each molecule of species A and B is placed in equal and opposite

harmonic potentials �(1/2)Uex(x) centered at the middle of the simulation box, resulting in a nonuniform

mole fraction profile X(z) in which A is concentrated at the center, and B at the periphery. Combining

these, we obtain Uex(X), the exchange chemical potential required to induce a given deviation of the

mole fraction from its average. Simulation results for Uex(X) can be fitted to simple free energy models

to extract the interaction parameter w for binary mixtures. To illustrate our method, we investigate

benzene–pyridine mixtures, which provide a good example of regular solution behavior, using both

TraPPE united-atom and OPLS all-atom potentials, both of which have been validated for pure fluid

properties. w values obtained with the new method are consistent with values from other recent

simulation methods. However, the TraPPE-UA results differ substantially from the w obtained from VLE

experimental data, while the OPLS-AA results are in reasonable agreement with experiment, highlighting

the importance of accurate potentials in correctly representing mixture behavior.

1 Introduction

Predicting the mixing free energy of binary mixtures enables
the prediction of phase behavior, which is a fundamental task
and challenge for physical chemists and chemical engineers.
Within the context of regular solution theory, non-ideal contribu-
tions to the mixing free energy are often quantified by an effective
interaction parameter w. Intuitively, w represents the cost of
placing two unlike species in a mixture next to each other,
reflecting net unfavorable interactions between them.1 As w
increases, the species have an increased propensity to demix.

Intuitively, we expect local interactions between species in a
mixture to depend sensitively on chemical details, so atomistic
simulations would appear to be well suited for investigating
mixing free energies. However, molecular dynamics (MD) simu-
lations only give direct access to quantities that depend on
coordinates, so that measuring the entropy or free energy
requires special techniques.

Many attempts have been made to calculate mixing free
energies. One approach determines the mixing free energy
from the difference in the thermodynamic work to take a
species from vacuum into pure and mixed systems.2–4 However,
it takes a very large amount of work to remove a molecule from
solution into vacuum, so values computed in this way inevitably

involve subtraction of two large values to obtain a small result,
with consequent large uncertainties. Versions of this approach
that measure chemical potential by attempting to insert mole-
cules into dense fluids also face challenges of poor statistics,
because the chemical potential depends exponentially on the
extremely low probability of successful insertion.

Perego et al. have recently improved upon the insertion
method, using metadynamics to enhance concentration fluc-
tuations to increase the extremely low success rate for insertion,
for a Lennard-Jones fluid.5 However, this approach will be
increasingly challenging for atomistic simulations of larger mole-
cules, for which the bare insertion probabilities are progressively
smaller.

Another commonly used approach to obtain chemical
potentials is provided by the Kirkwood–Buff equations,6 which
relate derivatives of chemical potentials with respect to con-
centrations to volume integrals of pair correlation functions
(Kirkwood–Buff integrals). However, this approach is challenging,
in that (1) very large simulation systems are required to obtain the
pair correlation functions out to large distances such that the KB
integrals converge; and (2) multiple simulations at different
concentrations plus numerical integrations are required to obtain
chemical potentials versus concentration, which then can be
integrated once more to obtain excess free energies.7–9

Quite recently, Heidari et al. developed a sophisticated
method for measuring excess chemical potentials from atomistic
simulation.10 The method describes molecules with atomistic
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interactions in a subregion, and as ideal gas elsewhere, with a
position-dependent crossover between Hamiltonians. Molecules
equilibrate by diffusing across the system; single-molecule exter-
nal potentials are applied in the ideal gas region, and adjusted to
enforce constant density across the system. The potentials then
have the interpretation of excess chemical potential. This method
avoids thermodynamic integration, but requires elaborate custom
coding not available in standard simulation platforms, and
provides the chemical potential at only one value of concentration
per simulation.

In our group, we have recently developed methods using
‘‘morphing’’ simulations to get the mixing free energy.11–14 In
this approach, one species in a mixture is transformed or
‘‘morphed’’ into another species, by progressively varying force
field parameters. A parameter l quantifies the progress along
the morphing path. By integrating the change in average energy
with respect to l, the thermodynamic work is calculated to
morph one species into another. From the difference between
the thermodynamic work to morph one species to another in a
mixed system versus a pure system, the excess mixing free energy
can be computed. This approach works well for idealized bead-
spring model blends; however, it is limited in its application to
atomistic simulations of real molecules, because of the difficulty
in morphing between structurally dissimilar molecules.

In another recent approach, which we call ‘‘mutual ghosting’’,
the thermodynamic work to separate species A and B in a mixture
can be computed by progressively weakening the A–B attractions
to induce phase separation, and integrating the change in system
energy along the path.15 Once phase separation is induced
between the two species, the interfacial tension between the
coexisting pure phases is measured by standard techniques. The
mixing free energy is then the work to induce the phase-separated
state, minus the free energy of the resulting interface.

This method does not require species to be structurally
similar. However, it is somewhat involved; multiple simulations
are required to morph the system to the phase separated state, and
accurately simulating the interfacial tension between the separated
species can require long equilibration. Finally, the method
computes the entire mixing free energy (including the ideal-gas
contribution), not just the excess. So for near-ideal systems such as
miscible polymer blends, measuring the mixing free energy accu-
rately enough to infer the w parameter can be challenging.

In this work, we develop a new simulation method to calculate
the mixing free energy versus concentration for A–B binary
mixtures. Equal and opposite harmonic potentials �(1/2)Uex(z)
centered at the middle of the simulation box are applied to every
molecule of the two species, so that one species is pulled towards
the center while the other is pushed towards the periphery,
inducing a nonuniform mole fraction profile X(z). (We emphasize
that the potentials must be applied to every molecule individually,
not simply to the center of mass of each species.)

Fig. 1 shows a snapshot (made using VMD16) of such a
simulation for an equimolar mixture of benzene and pyridine,
in which the pyridine molecules are each pulled towards the
center (in the horizontal direction in the image) and the
benzene pushed towards the boundaries.

In essence, we are imposing an external contribution Uex(z)
to the exchange chemical potential. The system responds by
rearranging the molecules, such that the local chemical
potential versus mole fraction cancels the imposed external
potential, and restores equilibrium throughout the system. By
combining the imposed exchange potential Uex(z) with the
measured mole fraction X(z) we obtain Uex(X), the external
potential required to shift the mole fraction to X from its
average value. In this way, we effectively measure the exchange
chemical potential versus mole fraction. Numerically integrating
this exchange chemical potential would give the mixing free
energy, without assuming any particular model.

Our approach is related in spirit to work of Mehrotra et al.,
who applied a constant gravitational field in a Monte Carlo
simulation of a Lennard-Jones liquid.17 The linear gravitational
potential induces a nonuniform concentration profile, which
shifts the local chemical potential to cancel the applied field,
from which the chemical potential versus concentration can be
inferred. This approach could in principle be generalized to a
two-component mixture, by applying a constant gravitational
field to only one component. However, this would only work in
a system with a bottom wall, which would induce undesirable
surface ordering artifacts, particularly for linear or plate-like
molecules, such as oligomers, polymers, or polyaromatics.

In this paper, to interpret the results of our molecular pulling
simulations, we compare the resulting behavior of Uex(X) to
predictions of a model free energy function. For regular solutions
of small molecules, the natural choice is a Margules model, in

Fig. 1 Equimolar benzene–pyridine mixture, in which pyridine (shown in a)
is pulled towards the center, and benzene (shown in b) is pushed towards
the periphery.
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which non-ideal mixing effects are parameterized in terms of
binary interactions between mole fractions. For a binary mixture,
this model contains a single w parameter, which can be fit to the
observed Uex(X) behavior. If the resulting fit is uniformly good
throughout the range of mole fractions explored, the choice of
model is phenomenologically justified a posteriori.

More generally, fitting the excess free energy of a binary
mixture may require an interaction parameter w(X) that
depends on mole fraction in some arbitrary fashion. Because
our method can determine Uex(X) over a wide range of mole
fractions with a single simulation, it is well adapted to test for
mole–fraction dependence of w, and to fit such dependence
when necessary.

The status of w parameter values so obtained is analogous to
values from neutron scattering experiments on polymer blends
fitted to the random-phase approximation (RPA), which describes
concentration fluctuations in miscible blends. Indeed, our
method may be regarded as the response function analog of such
measurements; instead of observing thermally driven concen-
tration fluctuations, we apply an external potential to induce a
concentration response. In simulations, this method is more
convenient than watching fluctuations, because we control the
shape of the external potential, and measure the time-averaged
response over a long simulation for improved signal-to-noise.

To illustrate our new method, we investigate an equimolar
mixture of benzene and pyridine, which serves as a good
example of regular solutions, since the molecules roughly the
same size and shape.18 The large dipole of pyridine (2.26 Debye)
leads to significant non-ideal mixing, as pyridine dipoles inter-
act with each other, but not with nonpolar benzene. Moreover,
vapor–liquid equilibrium (VLE) data for benzene and pyridine
mixtures is available,19 from which an experimental w parameter
can be calculated, by fitting model free energy predictions of
vapor pressure and vapor-phase composition to experiment.

2 Mixing free energy

For mixtures of molecules of similar size and shape like
benzene and pyridine, the mixing free energy is reasonably
modeled by regular solution theory:

bDG ¼
X
i

Xi logXi þ
X
ij

wijXiXj þ b
X
i

XiUi (1)

In eqn (1), the first term represents ideal mixing, the second
models non-ideal contributions in terms of binary interactions
between constituent mole fractions, and the final term includes
the effect of external potentials we apply to the different species.
For a truly ideal solution, in which the two species are physically
identical and only distinguished by labels, the second terms
vanish (ideal solutions are experimentally well approximated by
mixtures of deuterated and non-deuterated species).

In writing eqn (1), we have neglected any square-gradient
contributions to the local free energy. Of course, we are applying
potentials U(z) to our simulation that vary substantially over
distances of 10 nm or so. As described in detail below, we take
pains both to minimize gradient effects, and to check that

gradient contributions to the local chemical potential are small.
Briefly, we use an oblong simulation box, twice as long in the z
direction along which U(z) varies as in the transverse dimensions.
Next, we check that simulations performed in longer and shorter
boxes give consistent results for the concentration profile when
harmonic potentials of the same amplitude are applied in
each case.

Finally, we check that simulations applied to truly ideal
mixtures (labeled and unlabeled benzene) are consistent with
predictions of ideal solution theory (i.e., eqn (1) with w = 0) and no
gradient terms. We expect square-gradient contributions to the
chemical potential even in ideal mixtures, with a characteristic
length scale of the molecule itself. These reflect the increased
thermodynamic cost of spatially rapid variations in the concen-
tration, even of physically identical species.

To predict the nonuniform concentration profile resulting
from application of potentials Ui(z) to component i, we minimize
the Gibbs free energy subject to the constraint that the mole

fractions sum to unity
P
i

Xi ¼ 1

� �
; using the method of

Lagrange multipliers. Minimization with respect to X1 and X2

leads to

0 ¼ logX1 þ wX2 þ bU1 � a

0 ¼ logX2 þ wX1 þ bU2 � a
(2)

in which a is the Lagrange multiplier conjugate to the sum of the
mole fractions.

Corresponding to our simulations in which we pull on the
two species with equal and opposite harmonic potentials, we
write U1 = U and U2 = �U, and take X1 = X and X2 = 1 � X;
subtracting the two equations gives

�bUexðXÞ ¼ log
X

1� X

� �
þ wð1� 2XÞ (3)

Here Uex(z) = 2U(z) is the exchange potential, i.e., the energy
change on transforming the species of a molecule at z. Eqn (3)
predicts the shape of Uex(X), with w as an adjustable parameter.

This result evidently respects the symmetry of the regular
solution free energy model, with respect to interchange of the
two species. In eqn (3), the result is unchanged if we exchange X
with 1 � X and Uex(X) with �Uex(X); physically, this corresponds
to exchanging the labels on the two species.

3 Simulation setup

In our investigations, we simulate two different systems: pure
benzene, and an equimolar mixture of benzene and pyridine,
both at 300 K. Each system consists of 3072 molecules in a 6 �
6 � 12 nm box with periodic boundary conditions in all direc-
tions. The box is twice as long in the z-direction along which the
potential U(z) varies, to minimize the effect of gradient terms on
the local chemical potential, which we neglect in our analysis of
the simulation results. (Below, we describe how we validate this
approximation.)
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Our simulations are run in Gromacs, using the TraPPE
united atom potentials for benzene and pyridine, which have
been validated against pure fluid properties.20–22 The TraPPE
potentials represent benzene and pyridine by six united atoms
(CH or N), plus three additional charge-bearing ‘‘virtual sites’’
near the center of the rings to account for the electrostatic
quadrupole of the p orbitals. Hence 3072 molecules total
27 648 atoms.

The simulations were executed on 16 cores with support
from 1 GPU (half of an NVidia K80), with a 2 fs timestep, 1.4 nm
cutoffs for Lennard-Jones interactions, and particle-mesh
Ewald evaluation of Coulomb interactions. The simulations
run at 80 ns day�1 when no potentials are applied, and at
35 ns day�1 with harmonic potentials acting on all the molecules.

Each system is equilibrated for 4 ns with semi-isotropic
pressure control, such that the simulation box can adjust its
transverse dimensions but not its length along the z direction,
along which the external potentials �U(z) vary. We keep the box
dimension along z fixed so that potentials with the same center
and spring constant can be applied to all systems. The trans-
verse dimensions adjust slightly, from the initially constructed
6 nm down to about 5.94 nm.

From the mean-square displacement versus time, the diffusion
constant of each species was measured as 2.6 nm2 ns�1 for
benzene and 2.5 nm2 ns�1 for pyridine. The 4 ns equilibration
time is sufficient for molecules to diffuse across the entire system.
After equilibration, composition profile data was collected for
200 ns. As a further check on equilibration, we verify that the
density profile for each species from the first and last half of the
run are the same.

To explore ideal and regular solution behavior, we perform
three different pulling simulations. For pure benzene, we pull
half the molecules towards the center, and push the other half
away. This serves as a model ideal solution. For the equimolar
benzene–pyridine mixture we perform two simulations, in
which we (a) pull benzene towards the center and push pyridine
away, and (b) pull pyridine towards the center and push
benzene away. Although they lead to different mole fraction
profiles X(z), these two simulations should be physically equiva-
lent in the resulting profile Uex(X), and thus serve as an additional
check on our method.

Fig. 2 displays results for the time-averaged mole fraction
profiles X(z) for all three pulling simulations, as well as the total
number density profiles for each case. (The coordinate z = 0 is
the left side of the box, and z = 6 is the box center; the left and
right halves of the profiles have been averaged, and the figure
displays the resulting average.)

The mole fraction profiles are evidently smooth and free of
noise, indicating good statistics. The total number density
profiles are nearly flat, indicating that the potentials we have
applied are not so strong as to have significantly altered the
liquid density.

In Fig. 2, the range of mole fractions produced by the
applied potential is substantial, ranging from about 0.15–
0.75 for the ideal solution of benzene in benzene, and from
about 0.1–0.8 for the benzene–pyridine mixture. The spread of

X values determines the range over which we measure the
chemical potential and test the model free energy predictions.

The spread of X is governed by our choice of amplitude for
the harmonic potential Uex(z). By trial and error, we chose the

potential applied to every molecule of each species UA;BðzÞ ¼

�1
2
Kz2 such that the energy difference between the middle and

boundary of the box is
3

2
kT . For a box of length 12 nm in the

z-direction, this gives a spring constant K = 0.2078 kJ mol�1 nm�2.
Correspondingly, the exchange potential Uex(z) varies by 3kT from
the middle to the boundary of the box.

To apply harmonic potentials to each and every molecule in
the system, we make use of shell scripts to write the necessary
pull code options for each molecule to the .mdp (Gromacs MD
parameter) file. They are repetitive, differing only in their
indices, so well adapted to a simple script in which an index
variable in a ‘‘template’’ file is replaced using the Unix utility
sed. Likewise, we must include index groups for each molecule
in the system .ndx (Gromacs index) file, again generated with a
brief shell script.

4 Results

Qualitatively, Fig. 2 shows the expected behavior of regular
versus ideal solutions; for the same strength potentials Uex(z),
the regular solution results (yellow and green), with net repulsive
interactions between species, exhibits a stronger response of the
mole fraction X(z) as compared to the ideal solution (red), with
no repulsive interactions.

The mole fraction profiles X(z) for pulling benzene from the
mixture (green) and pulling pyridine from the mixture (yellow) are
very similar, which is consistent with a simple regular solution
model in which the two species are symmetric under interchange.

To proceed further with our analysis, we combine the
measured mole fraction profiles X(z) with the imposed
exchange potential Uex(z), to determine the imposed potential
versus mole fraction Uex(X), shown in Fig. 3 for all three cases.

Fig. 2 Pulled species mole fraction X vs. box coordinate (nm); pulled
species is benzene in pure benzene (red), benzene in mixture (green), and
pyridine in mixture (orange).
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(Note that in Fig. 3, we have slightly shifted the applied
potential so that U = 0 at X = 1/2, consistent with the symmetry
of the regular solution model under interchange of species for
an equimolar mixture.)

Consistent with our remarks on the concentration profile in
Fig. 2 and 3 shows that a weaker potential suffices to induce a
given degree of separation in the benzene–pyridine mixture as
compared to pure benzene. Repulsive interactions in the regular
solution confer a tendency to demix, and amplify the response to
the external potential.

In the pure benzene system, a given benzene molecule sees
no difference between a ‘‘pulled’’ benzene and a ‘‘pushed’’
benzene, so its placement in the simulation box is simply
determined by its Boltzmann factor in the potential U(z).
Whereas in the mixture, pyridine molecules prefer to be with
other pyridines, and benzenes with other benzenes; a given
pyridine molecule in the mixture feels the pull from the
potential U(z), as well as an extra ‘‘pull’’ towards other pyridines
likewise gathered towards the potential minimum.

For the ideal mixture of labeled and unlabeled benzene, the
results for Uex(X) are well described by eqn (3) with w = 0
appropriate for an ideal solution, as shown in Fig. 4. The good
agreement of the ideal solution theory without contributions

from gradient terms supports our assumption that with this
size simulation box, gradient terms can be neglected.

The regular solution model we want to use to analyze our
simulation results is symmetric under interchange of species.
This should be a reasonable approximation for benzene and
pyridine, since they have roughly the same shape and size.
We can check whether the simulation results respect that
symmetry, by plotting Uex(X) for a given pulling simulation
together with �Uex(1 � X), which corresponds to exchanging
X with 1 � X and Uex with �Uex, as results from exchanging the
roles of the two species.

Fig. 5 shows the results of this comparison, for (a) the data
in which pyridine is pulled to the center from the mixture, and
(b) the data in which benzene is pulled to the center. In both
cases, the anticipated symmetry is well respected, with tolerably
small deviations.

In similar fashion, we can compare the Uex(X) results for the
two different simulations, in which pyridine or benzene was
pulled to the center of the mixture. If the solution is regular,
then Uex(X) for the case in which pyridine is pulled towards the
center should overlay with �Uex(1 � X) for the case in which
benzene is pulled towards the center. Fig. 6 makes this com-
parison, which again shows our results for benzene–pyridine
mixtures are consistent with this exchange symmetry.

Finally, we fit a value for w to the data from both pulling
simulations on the benzene–pyridine mixture, symmetrized
with respect to species exchange, both within and between
the two data sets. A linear least-squares fit gives w = 0.763 �
0.005. Fig. 7 displays the combined Uex(X) results versus the
regular solution theory prediction, which evidently gives a very
good fit across the entire range of mole fractions explored,
lending support to our choice of the simple free energy model
for this regular solution.

The good fit of regular solution theory to simulation results
throughout the entire mole fraction range is strong evidence
that for this system, a constant w parameter suffices. More
generally, w(X) may be taken to depend on mole fraction X;
indeed, a free energy curve of any shape whatsoever can be
described phenomenologically by such a function.

If the predicted curve Uex(X) with constant w fit well near
X + 1/2 but deviated at the ends of the range, it would suggest
some w(X) would be needed to describe the data. Qualitatively,
if Uex(X) with constant w underpredicted the deviation of X from
1/2 on one end of the data, it would imply w was larger at that
end of the data than near X = 1/2, and so forth. One can
envision deviations corresponding to positive or negative linear
or quadratic dependence of w(X) on X � 1/2, all of which are
phenomenologically found for example in various polymeric
systems. The derivation of eqn (3) could be extended to include
terms resulting from the derivative of w(X). Here at least, such
refinements are unnecessary.

4.1 Comparison to simulation and experiment

The interaction parameter w for benzene and pyridine has been
determined experimentally, as well as in recent ‘‘mutual ghosting’’
simulations, which were performed using the same TraPPE

Fig. 3 Imposed exchange potential Uex vs. mole fraction X for benzene
pulled from benzene (red), pyridine pulled from mixture (orange), and
benzene pulled from mixture (green).

Fig. 4 Ideal Uex(X) data (points) compared to Uex(X) prediction for ideal
solution (curve).
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potentials as used in the present work. The w value obtained by
mutual ghosting simulations is 0.79,15 reassuringly close to the
value obtained here by our pulling approach.

We obtain an experimentally derived value for w from vapor–
liquid equilibrium (VLE) data, by comparing the vapor pressure

and vapor mole fraction as a function of liquid mole fraction to
regular solution model predictions, and adjusting w for the best
fit. Fig. 8 displays for benzene–pyridine mixtures the vapor–
liquid equilibrium pressure P and vapor mole fraction data y
versus pyridine liquid mole fraction X.19

Fig. 5 (a) Original (red) and ‘‘exchanged’’ (blue) Uex(X) for pyridine pulled
to the center, and (b) original (orange) and ‘‘exchanged’’ (green) Uex(X) for
benzene pulled to the center, in benzene–pyridine mixtures.

Fig. 6 Original pyridine-pulling (red) and ‘‘exchanged’’ benzene-pulling
(green) Uex(X) data.

Fig. 7 Combined and symmetrized pyridine and benzene Uex(X) data
versus regular solution Uex(X) with w = 0.763.

Fig. 8 (a) Vapor pressure P (kPa) vs. pyridine liquid mole fraction X; (b)
pyridine vapor mole fraction yp vs. pyridine liquid mole fraction X.
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To predict the VLE behavior, we start by writing the gas and
liquid chemical potentials for species i as

mgi ¼ m�i þ kT log
Pi

P0

� �

mli ¼ mpurei þ Dmexcessi

(4)

For the gas (assumed ideal), m�i is the standard chemical
potential, Pi is the partial pressure of component i, and P0 is
the reference pressure of the system. For the liquid, mpure

i is the
chemical potential of a pure liquid of species i, and Dmexcess

i is
the excess chemical potential.

At vapor–liquid equilibrium the liquid and gas phase
chemical potentials are equal, mg

i = ml
i. We can simplify the

equations by introducing the vapor pressure Psat
i of pure

component i. For pure fluids, we have

mpurei ¼ m�i þ kT log
Psat
i

P0

� �
(5)

which relation can be used to eliminate mpurei � m�i in terms of
Psat

i , leading to

Dmexcessi ¼ kT log
Pi

Psat
i

� �
(6)

Eqn (1) is the free energy per particle G/N. Differentiating
with respect to the number of particles Ni of component i gives the
excess chemical potential in terms of the interaction parameter w
and liquid mole fraction X. With subscripts p and b denoting
pyridine and benzene, we find Dmexcess

p and Dmexcess
b from the

excess free energy per particle G(Np,Nb):

Dmexcessp ¼ kT logðXÞ þ wð1� XÞ2

Dmexcessb ¼ kT logð1� XÞ þ wX2
(7)

Combining eqn (6) and (7), we obtain the vapor pressure
P(X) as a function of pyridine liquid mole fraction X:

P(X) = Psat
p Xew(1�X)2

+ Psat
b (1 � X)ewX2

(8)

In eqn (8), the two terms correspond to the pyridine and
benzene partial pressures Pp(X) and Pb(X). Because we regard
the vapor as an ideal gas, the vapor mole fraction of pyridine
yp(X) equals the ratio of the pyridine partial pressure to the total
pressure:

ypðXÞ ¼
PpðXÞ
PðXÞ (9)

Eqn (8) and (9) can be fit to the experimental P(X) and yp(X)
data to find an experimental value of w. To carry out the
comparison and fit of theory to the data, it is useful to focus
on the ratio between the pressure and vapor mole fraction and
their ideal-solution limits, as shown in Fig. 9.

The colored curves in Fig. 9 are predictions for different
values of w = 0, 0.05, 0.1, 0.15, 0.2 (respectively red, orange,
yellow, green, blue). Qualitatively, a repulsive interaction
between the two species boosts the vapor pressure, particularly

for intermediate mixtures. Evidently, the VLE data is rather
sensitive to w, and thus a good way to determine its value.

To determine experimental w, we fit simultaneously the
vapor pressure and composition data, both represented as
ratios with respect to the ideal-solution limit. Since the values
in Fig. 9(a) and (b) have appreciably different ranges, minimizing
the sum of square errors for the two sets of ratios would fit the
vapor mole fraction ratio data with its wider range of values at
the expense of the pressure ratio data.

To remedy this, we scale the vapor mole fraction ratio data
such that it has a range comparable to the pressure ratio data.
We achieve this by multiplying each vapor mole fraction ratio
value by the ratio of the standard deviations sP and syp

of the
pressure ratio data and vapor mole fraction ratio data respec-
tively. Having thus rescaled the data sets so that errors in fitting
them are rendered equally important, we minimize the com-
bined square error for the two data sets with respect to the
prediction.

Fig. 9(a) and (b) displays the resulting fit (dashed lines),
corresponding to an interaction parameter of w = 0.210 � 0.004.
This value evidently does not agree with the values obtained by
two different simulation approaches. The simulation methods
both use the TraPPE potentials, and give consistent results.

Fig. 9 (a) Pressure ratio vs. pyridine liquid mole fraction X data (black) and
(b) pyridine vapor mole fraction ratio vs. pyrdine liquid mole fraction X data
(black) with models where w = 0 (red), 0.05 (orange), 0.1 (yellow), 0.15
(green), 0.2 (blue), and 0.21 (purple).
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This suggests both methods are working properly, and that the
discrepancy between simulation and experiment reflects sys-
tematic errors in the TraPPE potentials, which were validated
for pure fluids but not for mixture behavior.

5 All-atom potential results

To explore the sensitivity of results for w to the choice of force
fields, we repeated the pulling simulations for the benzene–
pyridine mixture using another well-validated and widely used
potential, the OPLS-AA (Optimized Potential for Liquid Simula-
tions) all-atom potential.23–25 Like TraPPE-UA, the OPLS-AA
potentials have been validated for a wide range of organic
liquids, by comparing predictions for liquid physical properties
to measured values. (A useful source of such comparisons is the
compendium at virtualchemistry.org.).

In this second set of simulations, we use the same number
of molecules and system dimensions; the same timestep,
temperature, cutoff, and harmonic potential strengths; the
same equilibration procedure and run lengths; in short, every-
thing is the same except the force field. The all-atom system

has slightly more atoms (35238 versus 27648), and a slightly
different density than the UA system (the transverse dimension
grows to 6.044 Å, rather than shrinking to 5.938 Å). The
simulations run at comparable rates on the same hardware
(60 ns day�1 all-atom versus 80 ns day�1 UA without harmonic
potentials, and comparable rates of 35 ns day�1 with potentials
applied).

Just because OPLS is an all-atom potential in which hydro-
gens are explicitly represented, while TraPPE is a united atom
potential in which hydrogens are lumped together with the
atom to which they are bonded, does not mean OPLS necessa-
rily provides a more accurate representation of real molecules
than TraPPE. A united-atom potential can be tuned to faithfully
represent real molecules, and an all-atom potential can be
improperly parameterized and fail miserably.

However, in the present case, it appears that OPLS does
much better than TraPPE in representing the mixture behavior
of benzene and pyridine. This is evident qualitatively in Fig. 10,
which (compared to Fig. 3 for TraPPE) shows a much smaller
deviation of the pulling results for Uex(X) for benzene pulled
from pyridine (green) and vice versa (orange) compared to the
ideal case of benzene pulled from benzene (red).

As for the united-atom pulling results, the all-atom pulling
results respect the exchange symmetries expected for a regular
solution. Likewise, a concentration-independent w parameter
equal to 0.282 � 0.002 gives an excellent fit to the pulling
results, as shown in Fig. 11 (compare Fig. 7 for TraPPE results).

Although not perfect, the pulling value using OPLS poten-
tials is much closer to the experimental result (see Table 1)
highlighting the importance of well-adjusted forcefields that
faithfully represent real molecules in simulations of fluid
mixtures.

6 Conclusion

We have presented a new ‘‘pulling’’ method to predict the
mixing free energy of binary mixtures using molecular
dynamics (MD) simulations. The method works by applying
equal and opposite harmonic potentials U(z) to every molecule
of both species, to induce a nonuniform mole fraction X(z) in
the system. In essence, the externally applied potentials shift
the local exchange chemical potential; the system responds by
adjusting the local concentrations until equilibrium is restored.

By combining the observed mole fraction profile X(z) with
the imposed exchange potential Uex(z), we can determine the
potential Uex(X) required to shift the mole fraction to a given
degree. The interaction parameter w for a binary mixture can be

Fig. 10 Imposed exchange potential Uex vs. mole fraction X for benzene
pulled from benzene (red), pyridine pulled from mixture (orange), and
benzene pulled from mixture (green), for simulations using OPLS-AA
potentials.

Fig. 11 Combined and symmetrized pyridine and benzene Uex(X) data
versus regular solution Uex(X) with w = 0.282 � 0.002, obtained by fitting
all-atom results.

Table 1 Results for benzene–pyridine w from pulling simulations using
TraPPE-UA potentials, OPLS-AA potentials, and from fitting to vapor–
liquid equilibrium data

Source w

TraPPE-UA 0.763 � 0.005
OPLS-AA 0.282 � 0.002
VLE fit 0.210 � 0.004
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determined by comparing predictions of regular solution the-
ory for Uex(X) to simulation results.

As a first example, we applied the pulling method to binary
mixtures of benzene and pyridine, which are reasonably well
described by regular solution theory, since the molecules are of
similar size and shape, but interact differently because of the
substantial dipole on pyridine.

We can observe how our simulations work qualitatively by
comparing results for an equimolar mixture of labeled and
unlabeled benzene in which the labeled benzene is pulled
towards the center and unlabeled pushed away, with results
for a equimolar mixture of benzene and pyridine, in which
benzene is pulled inwards and pyridine pushed outwards.
The concentration variation induced by the pushing and
pulling is larger for the benzene–pyridine mixture than for
the ideal mixture of labeled and unlabeled benzene. This result
reflects the increased tendency of benzene and pyridine to
demix because of the effective repulsive interactions between
the two species.

Fitting the simulation results for Uex(X) for benzene–pyridine
mixtures using TraPPE UA potentials to regular solution theory
predictions gives w per molecule equal to 0.763 � 0.005. This
value is consistent with w determined using a recently developed
‘‘mutual ghosting’’ method.15 In brief, the mutual ghosting
method computes the mixing free energy by integrating the
thermodynamic work to induce phase separation along a path
on which the attractions between two species are artificially
weakened, and correcting for the interfacial tension of the
resulting interface.

However, both values derived from UA simulations differ
substantially from the experimental value of w equal to 0.210 �
0.004, determined from fitting regular solution theory to VLE
data. We obtain much closer agreement with the pulling
method using OPLS-AA all-atom potentials for benzene–pyri-
dine mixtures, for which we obtain a w value of 0.282 � 0.002.
This suggests that the TraPPE-UA potentials need to be tuned to
better represent benzene–pyridine mixtures.

More broadly, these results highlight the importance of
accurate potentials in simulations of mixtures, for which vali-
dation of the potentials against results for the pure fluids
evidently does not always suffice. Evidently, where VLE or other
data is available to obtain experimental w parameters, the
pulling method can be used to test and refine simulation
potentials to better represent mixtures.

The pulling method is convenient and powerful, in that we
can measure the exchange chemical potential over a range
of species concentration from a single simulation. This is
evidently more convenient than the mutual ghosting method,
which requires a sequence of simulations at different inter-
action strengths, as well as an accurate measurement of the
interfacial tension. Like mutual ghosting, the pulling method
can be applied to chemically realistic systems as well as
idealized bead-spring models, and does not require structural
similarity between mixture components.

With some modifications, we can also employ the pulling
method to investigate mixing free energies in polymer solutions

and polymer–polymer blends. For such systems, Flory–Huggins
theory rather than regular solution theory would be the sim-
plest phenomenological model to use in fitting interaction
parameters to simulation results. Gradient contributions to
the local chemical potential may become important in applying
the pulling method to oligomer blends, because the magnitude
of ideal-mixing and relevant w parameters both become smaller,
so that gradient terms are no longer negligible by comparison.
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