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Abstract

Movement of individuals between populations or demes is often restricted, especially
between geographically isolated populations. The structured coalescent provides an ele-
gant theoretical framework for describing how movement between populations shapes the
genealogical history of sampled individuals and thereby structures genetic variation within
and between populations. However, in the presence of recombination an individual may
inherit different regions of their genome from different parents, resulting in a mosaic of gene-
alogical histories across the genome, which can be represented by an Ancestral Recombi-
nation Graph (ARG). In this case, different genomic regions may have different ancestral
histories and so different histories of movement between populations. Recombination there-
fore poses an additional challenge to phylogeographic methods that aim to reconstruct the
movement of individuals from genealogies, although also a potential benefit in that different
loci may contain additional information about movement. Here, we introduce the Structured
Coalescent with Ancestral Recombination (SCAR) model, which builds on recent approxi-
mations to the structured coalescent by incorporating recombination into the ancestry of
sampled individuals. The SCAR model allows us to infer how the migration history of sam-
pled individuals varies across the genome from ARGs, and improves estimation of key pop-
ulation genetic parameters such as population sizes, recombination rates and migration
rates. Using the SCAR model, we explore the potential and limitations of phylogeographic
inference using full ARGs. We then apply the SCAR to lineages of the recombining fungus
Aspergillus flavus sampled across the United States to explore patterns of recombination
and migration across the genome.

Author summary

Phylogeographic methods are widely used to reconstruct the historical movement of indi-
viduals between different populations. When applied to infectious pathogens, these meth-
ods are often used to reconstruct the origin or source of novel pathogen lineages. Most
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existing phylogeographic methods reconstruct movement based on a single phylogenetic
tree, which is assumed to reflect the genetic ancestry of all sampled individuals. However
in populations undergoing recombination, genetic material can be exchanged between
lineages such that individuals may inherit different regions of their genome from different
ancestors. In this case, phylogenetic relationships among individuals can only be captured
by a reticulated network rather than any single tree. Ancestral Recombination Graphs
(ARGs) provide one way of capturing these reticulate relationships and we develop new
models that allow for demographic inference of historical population sizes, recombination
rates and migration rates between subpopulations from ARGs. By accounting for recom-
bination, our models not only allow for accurate demographic inference, but can take full
advantage of the additional information contained in ARGs about how ancestry varies
across genomes to more precisely reconstruct the movement of genetic material between
populations.

Introduction

In the absence of any recombination, populations evolve clonally and the ancestral relation-
ships among all individuals can be captured by a single genealogy or phylogenetic tree [1, 2].
However, in the presence of recombination, individuals can inherit different parts of their
genome from different ancestors, leading to a mosaic of phylogenetic relationships across the
genome that cannot be captured by any single tree. Since many population genetic and phylo-
geographic methods infer demographic parameters (e.g. population sizes, migration rates)
from a phylogeny assumed to reflect the clonal ancestry of sampled individuals, recombination
poses a major challenge to demographic inference.

Rates of recombination vary dramatically from asexual populations that experience no
recombination to sexually outcrossing populations where recombination occurs between paren-
tal genomes every generation [3-5]. How demographic inference methods deal with recombina-
tion largely depends on the assumed rate of recombination. If recombination rates are very low,
individuals will inherit large regions of their genome (i.e. non-recombinant blocks) from the
same set of ancestors. Moreover, recombination will only impact the ancestry of lineages directly
involved in a recombination event while preserving the ancestral relationships among non-
recombinant lineages [2]. In this case, phylogenies can be reconstructed from non-recombinant
regions of the genome or recombining lineages can be identified and removed. At the other
extreme, very high rates of recombination will break apart linkage between loci, such that differ-
ent loci can be treated independently [6]. In this case population genomic methods that treat
each locus as (pseudo-)independent can be used to draw demographic inferences [7].

However, in between these two extremes lie many organisms that undergo intermediate
amounts of recombination, including many important microbial pathogens [8]. For example,
this includes many fungi with mixed mating systems that are predominately clonal but occasion-
ally reproduce sexually and thus recombine [9]. Such intermediate rates of recombination pose
a particular challenge to demographic inference as it may be difficult to identify and accurately
reconstruct phylogenetic relationships from any non-recombinant genomic region. At the same
time, recombination is not frequent enough to breakdown correlations among linked loci, vio-
lating assumptions of independence between loci and simply concatenating alignments may
lead to phylogenetic reconstructions inconsistent with the true ancestry of the sample [10].

Ideally, the differing but correlated patterns of ancestry across the genome would be cap-
tured using ancestral recombination graphs (ARGs) [11]. An ARG describes the complete
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genealogical history of sampled individuals, including local trees representing the genealogy of
sampled individuals over a particular non-recombinant region of the genome and the recom-
bination events connecting lineages across local trees. Although reconstructing full ARGs is
notoriously difficult, recent advances now allow ARGs to be accurately reconstructed for a
modest number of samples (i.e. <100). Notably, ARGweaver [12] allows for full Bayesian
inference of ARGs under the sequential Markov coalescent (SMC) model, an approximation
to the full coalescent with recombination [13]. More recent methods allow for ARGs to be
approximated for much larger datasets as a series of correlated local or marginal trees [7, 14].
These methods however generally do not reconstruct the recombination events required to
explain the topological differences between local trees.

In addition to recombination, population structure can also strongly shape the genealogical
history of a population. The structured coalescent extends basic coalescent models by allowing
lineages to migrate between different subpopulations or demes [15]. While the structured coa-
lescent is most often used to model geographic structure, the theory holds for many different
forms of population structure (e.g. assortative mating within a population) [16]. Under the
structured coalescent, migration rates can be estimated from a genealogy of individuals sam-
pled from different populations [17], and structured coalescent models form the basis of sev-
eral phylogeographic inference frameworks [18-20]. However, population structure also poses
a major challenge to demographic inference under coalescent models because lineages in the
genealogy are no longer exchangeable in the sense that the probability of two lineages coalesc-
ing will depend on their ancestral location or state. Statistical inference under the structured
coalescent therefore requires the ancestral state of lineages to be imputed, and early methods
implemented algorithms to sample ancestral states using Markov chain Monte Carlo (MCMC)
or other sampling-based methods [17]. Because jointly estimating the ancestral locations of all
lineages along with the demographic parameters of interest poses yet another computational
challenge, more recent methods make various approximations to the full structured coalescent
to track the movement of lineages probabilistically, such that the unknown ancestral locations
can be marginalized or integrated over [21-23].

Given that the statistical and computational performance of ARG reconstruction methods
continue to improve at a rapid pace [24, 25], we explore phylogeographic inference where the
ARG is assumed to be known or at least reconstructed accurately. We first develop a new
model we call the Structured Coalescent with Ancestral Recombination (SCAR) to estimate
demographic parameters in the presence of both migration and recombination from a recon-
structed ARG. In essence, the SCAR model extends Hudson’s Coalescent with Recombination
model [6] to include migration by using approximations to the structured coalescent that mar-
ginalize over unknown ancestral states [21-23]. Next, we test the limits of reconstructing
ARGs from genomic sequence data using ARGweaver and then explore how accurately demo-
graphic parameters can be inferred from reconstructed ARGs using the SCAR model. Using
simulated sequence data, we show that parameters such as recombination rates, migration
rates and population sizes can be accurately estimated from ARGs under the SCAR model as
long as the underlying ARG can be accurately reconstructed. We then apply this approach to
the plant fungal pathogen Aspergillus flavus to estimate recombination and migration rates
between natural populations in several US states.

Models and methods
The SCAR model

Description of the SCAR model. Here we incorporate recombination and population
structure simultaneously into the coalescent process. We consider a population divided into g
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Fig 1. An ancestral recombination graph. In this example, an ARG was simulated for five individuals sampled in two subpopulations (0 and 1) using
msprime [26]. Two recombination events happen, dividing the genome into three segments each with their own local tree. The first and second local
tree have the same topology, because after the recombination event (indicated by nodes 10 and 11) the two parent lineages coalesce with one another
(indicated by the grey arrow) at a hidden coalescent event (indicated by node 12), which would not normally be observed in the local trees. The second
and the third local tree are topologically discordant due to a recombination event (indicated by nodes 7 and 8).

https://doi.org/10.1371/journal.pcbi.1010422.9001

different demes or (sub)populations. Each population k is composed of Ny haploid individuals
which reproduce each generation to generate a random number of offspring (i.e. a Wright-
Fisher population). Two lineages can exchange genetic material through recombination, in
which case their children may inherit genetic material from both parents. Lastly, we allow indi-
viduals to transition or migrate between populations.

Three different types of events can therefore occur in the ancestry of sampled lineages
under this model: coalescent events, recombination events and migration events (see Fig 1).
We begin by considering the rate at which each one of these events will occur among lineages
in the genealogy.

Coalescent events: As under the standard coalescent for a Wright-Fisher population [27,
28], the probability of two lineages finding their most recent common ancestor in a given gen-
eration is inversely proportional to the population size. Pairs of lineages in population k will
therefore coalesce at rate A, = le per generation. For now, we will assume lineages in different
populations cannot coalesce, although this assumption can be relaxed (see for example Volz
[21]). The total coalescent rate among all pairs of lineages in population k is (“2’() A where ay is
the number of lineages in k. For now we will also assume the ancestral location of lineages is
known.
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Recombination events: As in earlier models for the coalescent with recombination, each
lineage in the tree undergoes a recombination event at rate r per site along a genome of length
L [6, 26, 29]. However, because two parents contribute genetic material to a child lineage at a
recombination event, not all of the genetic material each parent lineage carries will be ancestral
to the sample [6]. We therefore need to track which sites in a lineage’s genome are ancestral or
non-ancestral to the sample to determine whether or not a recombination event will impact
the genealogy of the sample.

Following Kuhner et al. [29], we use the term eligible links to refer to sites that are eligible to
undergo recombination because they separate two or more sites destined to contribute genetic
material to the sample. While recombination events in regions of non-ancestral material will
generally have no effect on the genealogy of sampled individuals, ancestral material may be
separated by regions of trapped non-ancestral material [30] (S1 Fig), and recombination events
occurring within trapped non-ancestral material may also impact the genealogy of the sample
by splitting ancestral material to the left and right of the breakpoint onto different parental
genomes. If we define [,,,;, as the leftmost position and r,,,,, as the rightmost position in the
genome with genetic material ancestral to the sample, the number of eligible links B; carried by
each lineage i is therefore determined by the number of sites within the half-closed interval
[(Lnins Tmax) [26]. The total rate at which lineage i recombines is therefore rB;. We can then com-
pute the total recombination rate among lineages in population kasr ", B,.

Migration events: Lineages migrate between populations k and [ at rate ¥y, in forwards
time. The total rate at which all lineages in population k migrate to another population is there-

fore a, Zlq#k Vi

As in other coalescent models, the time to the next event of each type is exponentially dis-
tributed according to the rate of each event type. Furthermore, we assume the coalescent,
recombination and migration processes are independent conditional upon the number of line-
ages gy, in each population state. That is, while events may change the number of lineages in
each state, the different events do not influence the probability of the other events occurring
over time intervals in which ay is constant. The three processes are therefore independent,
competing processes where the time to the next event is exponentially distributed according to
the total rate Q at which events of any type occur:

Q= i ((‘;") A+ riBi + akiykl> . (1)

£k

The likelihood of an ARG under the structured coalescent with known ancestral
states. We now consider how to compute the likelihood of a fully known ancestral recombi-
nation graph G, where all events in the graph are observed including the source and destina-
tion of each migration event such that the ancestral location of all lineages is known at any
point in time. Going backwards in time, at a coalescent event two lineages in state k merge
into a single parent and the total number of lineages g in the ARG in state k decreases by one.
At arecombination event, a lineage divides into two parent lineages and a; increases by one.
We seek to compute the likelihood L(G|0) of G under the SCAR model given a set of demo-
graphic parameters 0 = {A, r, 7}, allowing for likelihood-based inference of these parameters
from an ARG.

For an ARG with e, coalescent events, e, recombination events, and e,, migration events,
there will be a total of e = e, + e, + ¢, events in the graph. The ARG can be divided into e tree
intervals, within which the total number of lineages in the ARG (and in each population)
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remains the same. We will let a; be the number of lineages present in the tree during the s-th
tree interval. We denote the waiting time between each event as At = t, — t,_;.

In order to track which lineages are involved in particular events, let /i(s) be a function that
returns the lineage(s) involved in a particular event s. We then use the notation wy,,) and vy
to refer to the state of the lineages involved in event s, which is either a migration event from
subpopulation wy,) to vy,), a coalescent event in population vy or a recombination event
involving lineage h(s). Assuming exponentially distributed waiting times between events, the
coalescent likelihood has the general form:

M)
(2)

e 1 [ /e q %
et = TTje( 3| (%) a3 3
i=1
The exponential term gives the probability that in the sth time interval with duration Af, no

s=1 k=1 I#k

(0 T+ 5;7%(5) + 52/3;1(5))]

S
em ywh(s) Vh(s

coalescent, recombination or migration event occurs in any population. The remaining term is
the point probability density of the event that terminates the interval. We use the indicator var-
iables 5;, 5; and 5; to indicate whether the event terminating interval s is a coalescent, migra-
tion or recombination event, respectively; where &, is 1 when the corresponding event type

terminates the interval and 0 otherwise.

The likelihood of an ARG with unknown ancestral states. Because we typically do not
observe the ancestral location or state of lineages, they must either be jointly inferred along
with the other model parameters or integrated (marginalized) out when computing the likeli-
hood of the ARG. Here, we use the approximation first proposed by Volz [21] to track the
ancestral state of lineages probabilistically, and then marginalize over ancestral states using
these lineage state probabilities.

With unknown ancestral states, the rate at which a pair of lineages i and j coalesce now
depends on the probability that both lineages are in the same population at time ¢ in the past:

x’ij(t) _ il’ik(?\lpkjk(t) ’

k

(3)

where pji and pj; are the probabilities that lineage i and lineage j are in state k, respectively.
How these lineage state probabilities are computed is explained further below in Tracking line-
age state probabilities.

The total rate at which all lineages a coalesce can then be computed by summing over all
pairs of lineages:

BRI @

i j#i k

However, repeatedly summing over all possible pairs of lineages can become computation-
ally burdensome, especially as the number of lineages grows large. To avoid this, we can
approximate the number of lineages in each state using the lineage state probabilities:

) =3 palt). )
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We then approximate the total rate at which pairs of lineages coalesce in state k as:

Ay(t) = max {o,—&k(t)(&gt) = 1)} Nik (6)

We then compute the total recombination rate in state k as:
Ri(t) = TZBipik(t)' (7)
i=1
The total likelihood of the ARG when integrating over ancestral states then becomes:

£@) -1 [exp <—Z[Ak<a> T RA@)]Aa) (B, + 5z,rBh<s)>] (8)

s=1 k=1

Note that while the migration rates do not directly enter into likelihood function they influ-
ence the lineage state probabilities p that in turn determine A, and R;.

The rates Ax(t;) and Ry(t;) are assumed to be piecewise constant between events in (8). If
the waiting times Af, between events are long such that these rates change significantly over a
time interval, we can increase the numerical accuracy of the likelihood calculation by dividing
each time interval s into x, shorter sub-intervals:

@0 =] [ﬁ [exp (—iwm n Rk<tsfz>1Ats.Z>

s=1 | z=1 k=1

: (5;7‘%) + 52, rBh(s))‘| ) )

where Af, , is the length of sub-interval z between times ¢, , and ¢, ,;.

Tracking lineage state probabilities. Going backwards in time, a lineage currently resid-
ing in population k will migrate to population / at rate yy. Assuming the probability of a line-
age residing in a population is independent of the location of all other lineages, the migration
process along each lineage can be modeled as a continuous time Markov process on a discrete
state space [21]. We can then use a system of differential equations to track how the probability
of a lineage residing in each state changes backwards through time:

d 1
Epik = Z(Pilykl = Pa¥n)- (10)
1

Given a vector of initial lineage state probabilities p;(0) at time zero, we can analytically
solve (10) above for p;(t) at some time ¢ further in the past:

pi(t) = exp¥p;(0), (11)

where the matrix Q is that transition rate matrix derived from y:

- Zk Vi1 Y12 T Yigq
Y21 = Ye2 7" Yoq
Q pr—
yq.l yq,? T Zk yk,q

As originally shown in [23], these equations are approximate because they assume all line-
ages evolve independently such that the probability of one lineage residing in a population is
completely independent. In contrast, under the exact structured coalescent model, lineages
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states may be correlated because the observation that two lineages have or have not coalesced
can be informative about their location. For example, two or more lineages are unlikely to
reside in the same population over long periods of time and not coalesce if Ny is small in popu-
lation k, such that the observation that the lineages have not coalesced increases the probability
of these lineages being in different populations. The bias introduced by ignoring the non-inde-
pendence of lineages is most extreme when: 1) migration rates are low relative to coalescent
rates and 2) either coalescent or sampling fractions are highly asymmetric between popula-
tions [23]. In these cases, a more accurate approximation to the structured coalescent exists
but computing lineages state requires solving a high-dimensional system of differential equa-
tions. We therefore continue to assume independence among lineages but note that this more
complex approximation can be substituted when necessary.

Statistical inference under the SCAR model

We use a Bayesian MCMC approach to infer the posterior distribution of demographic param-
eters. In particular, we use a Metropolis-Hastings algorithm to sample from the joint posterior
distribution of parameters given a fixed ARG G:

P(0]9) o< L(G|0)p(0), (12)

where the likelihood £(G|0) is computed as in (8) and p(0) is the prior distribution on the
demographic parameters. In simulation experiments, we chose a uniform distribution for p(6)
such that our estimates are minimally influenced by the prior but use informative priors when
performing inference from real data.

ARG reconstruction using ARGweaver

We use ARGweaver [12] to reconstruct ARGs from sampled genomic sequence data. ARG-
weaver uses the SMC approximation of McVean and Cardin [13] to compute the likelihood of
an ARG evolving under the coalescent with recombination. In the model assumed by ARG-
weaver, exactly one recombination event is assumed to occur at each recombination break-
point. A recombination event may not necessarily alter the topology of two neighboring trees
in the ARG because a recombination event may only alter the time at which two lineages coa-
lesce, but recombination events that affect neither the topology nor coalescent times are
ignored. Coalescent events are further constrained to occur at discrete time points. The coales-
cent likelihood of the ARG is then combined with the likelihood of the sequence data evolving
along each local tree in the ARG to compute the joint likelihood of the sequence data and
ARG. ARGweaver then employs a Bayesian MCMC approach to sample ARGs from the corre-
sponding posterior distribution. To obtain a single, representative ARG, we choose the ARG
from the posterior sample with either the maximum joint likelihood, maximum (sequence)
likelihood, or from the final MCMC iteration.

To facilitate computing the likelihood of ARGs under the SCAR model, we convert the
ARG obtained from ARGweaver to the tskit tree sequence format [26]. The tskit tree sequence
format provides a concise encoding of an ARG as a series of correlated local trees correspond-
ing to the genealogy of the sample over different genomic regions [26, 31]. The tree sequence
format also facilitates computing the likelihood of the ARG under the SCAR model. We can
simply perform a post-order traversal through the ARG by iterating over each node, comput-
ing the likelihood of the event at the node, updating the edges (i.e. lineages) present in the
ARG after the event, and computing the likelihood of no event occurring between nodes as in
Eq (8). Code for converting ARGs into tskit tree sequence format and computing the likeli-
hood of the ARG is available at https://github.com/sunnyfangfangguo/SCAR_project_repo.
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Simulation study

We simulated ARGs along with genomic sequence data to test the accuracy of ARG recon-
struction using ARGweaver and the statistical performance of inference under the SCAR
model before applying the method to real data. Simulated ARGs (tree sequences) were gener-
ated by msprime [26]. To test the accuracy of ARGweaver in reconstructing ARGs, sequence
alignments for each local tree in an ARG were generated with a HKY substitution model [32]
with the transition/transversion ratio x = 2.75 using Pyvolve [33]. Our simulations are similar
to those of [12], which assumed a fixed effective population size N, = 100, genome length

L =10,000, and recombination rate per site per generation r = 2.5¢ — 06, and varied the muta-
tion-to-recombination rate ratio y/r from 1 to 2048. 100 simulations were conducted for each
ulr ratio.

In order to quantify ARG reconstruction accuracy, normalized Robinson-Foulds (RF) dis-
tances [34, 35] between corresponding simulated local trees and inferred local trees for each
genome region were calculated as a metric of local tree accuracy, which varies between 0 and
1. Kendall-Colijn (KC) distances, which in addition to tree topology also consider differences
in branch lengths, were also computed between simulated and inferred local trees [36]. RF dis-
tances and KC distances along the whole chromosome were then calculated as an average dis-
tance over all genome regions. We also compared the true number of recombination events in
the simulations to the number of recombination events inferred by ARGweaver. From S2 Fig,
we can clearly see that the ARG with the maximum iteration included the number of recombi-
nation events closest to the true number, while ARGs with the maximum likelihood consis-
tently overestimated and ARGs with the maximum joint likelihood consistently
underestimated the number of recombination events across all the ratios. Thus, we selected
the ARG with the maximum iteration to show the accuracy of ARGweaver.

In order to test demographic inference under the SCAR model, three simulation experi-
ments were run: we (1) estimate the effective population size, recombination rate and migra-
tion rate directly from the true simulated ARG; (2) jointly estimate the recombination rate and
migration rate from the true ARG; and (3) estimate the effective population size, recombina-
tion rate, and migration rate from ARGs inferred by ARGweaver. When estimating migration
rates between populations, we treat the ancestral location of each lineage as unknown and
track the state of each lineage probabilistically. Again, 100 simulations were run for each simu-
lation experiment. In the first two experiments, for each simulation, the true value of the esti-
mated parameter(s) were drawn from an evenly spaced grid of values, while other parameters
were kept constant. When only estimating the effective population size or recombination rate,
we simulate ARGs without population structure.

Results
Testing the accuracy of ARG inference using ARGweaver

Accuracy of local trees in ARGweaver inferred ARGs. Because our inference methods
ultimately rely on the ability to accurately reconstruct ARGs, we first test the ability of ARG-
weaver to reconstruct ARGs from genomic data simulated under different mutation-to-
recombination rate ratios y/r in order to vary the number of phylogenetically informative sites
(SNPs) between each recombination breakpoint. To evaluate the accuracy of ARGweaver, we
use normalized Robinson-Foulds (RF) distances to quantify the topological differences
between the simulated and reconstructed local trees in the ARG. From Fig 2 we can see that,
with increasing y/r ratios, the median RF distances decrease from 0.819 to 0.037, showing a
clear increase in ARGweaver’s performance to accurately reconstruct the topology of local
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Fig 2. Normalized RF distances between the true (simulated) local trees and the local tree inferred by ARGweaver in the reconstructed ARG under different ratios
of mutation rate / recombination rate. For each simulation, N, is 100, sample size is 50, genome length is 1e04, and recombination rate r is 2.5e-06. Under each ratio, 100
simulations were run.

https:/doi.org/10.1371/journal.pchi.1010422.g002

trees in the ARG. Likewise, Kendall-Colijn (KC) distances, which take into account branch
lengths in addition to tree topology, show a similar trend of improved performance with
increasing p/r ratios (S3 Fig). This trend is likely due to the fact that sequence diversity, and
thus the number of phylogenetically informative sites between each recombination breakpoint,
increases with the y/r ratio (S4 Fig).

Accuracy in the number of inferred recombination events. We compared the number
of recombination events inferred by ARGweaver against the true number known from simula-
tions under 12 different y/r ratios to further test the accuracy of ARGweaver. The number of
recombination events inferred by ARGweaver was significantly and positively correlated with
the true number of recombination events when the y/r ratio > 4, while at lower ratios the cor-
relation is poor indicating it may not be possible to estimate the true number of recombination
events unless the mutation rate is at least several times higher than the recombination rate (Fig
3). As the u/r ratio increases, the correlation generally becomes stronger.
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Testing the SCAR model on simulated ARGs

Statistical performance of estimating N,, recombination rate r, and migration rate M.
Next, we tested how well we are able to estimate effective population sizes N,, recombination
rates 7, and migration rates M from simulated ARGs known without error under the SCAR
model. Fig 4 shows that the SCAR model can accurately estimate all three of these parameters
across a wide range of true values. Table 1 summarizes the performance of our estimates across
simulations in terms of the relative bias, coverage of the 95% credible intervals, and calibration
between true and estimated parameters. We find that migration rate estimates are very accu-
rate when the true migration rates are smaller than 1 per unit time. However, in some simula-
tions the migration rates are overestimated, especially when the true rate was larger than 1,
indicating an inability to precisely estimate high rates likely due to the fact that the likelihood
function becomes very flat across a wide range of higher rates. After testing the SCAR model
on simulations with different sample sizes (S5 Fig), we found that the additional information
provided by increased sampling could provide more accurate and precise migration rate
estimates.

We further tested the performance of the SCAR model when jointly estimating the recom-
bination rate r and migration rate M together. As shown in Fig 5, the SCAR model can
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Table 1. The relative bias, coverage, and calibration of estimating N,, r, M by the SCAR model.

Parameter Relative error Coverage
N, +1.23% 92 in 100 times
r +1.87% 97 in 100 times
M +22.36% 95 in 100 times

Calibration
0.98
0.98
0.85

Except for the parameter being systematically varied, all parameters were fixed at constant values: effective population sizes Ne = 1.0, sample sizes k = 100, genome

length L = 10000, recombination rate r = 0.0, migration rate M = 0. For models with migration, migration rates are assumed to be symmetric between two

subpopulations

https://doi.org/10.1371/journal.pcbi.1010422.t1001
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accurately infer the marginal posterior distribution of each parameter even when the two
parameters are jointly estimated together.

Statistical performance of estimating recombination rates from ARGs inferred by ARG-
weaver. In order to see how ARG reconstruction errors influence our estimates, we estimated
recombination rates using the SCAR model from ARGs reconstructed by ARGweaver rather
than the true simulated ARGs. We also compared to the recombination rates estimated by
ARGweaver, which simply counts recombination events in the reconstructed ARG and divides
by the total branch-length of the ARG to estimate the recombination rate [37]. From Fig 6 we
can see that the accuracy of recombination rates estimated by both SCAR and ARGweaver
improves with increasing u/r ratios. However, when the u/r ratio exceeds 1024, recombination
rates become slightly over-estimated. We suspect that the increased accuracy of recombination
rate estimates at higher y/r ratios is due to increasing phylogenetic information about the local
trees and thus power to distinguish true recombination events from uncertainty in the topol-
ogy of local trees. However, at very large ratios individual sites may become phylogenetically
uninformative due to recurrent or convergent mutations (i.e. saturation effects) and we there-
fore may become overconfident that discordance between local trees is due to recombination
rather than phylogenetic errors.

Finally, we tested the performance of jointly estimating effective population sizes, recombi-
nation and migration rates when the ARG was simulated under a structured two-deme model
but reconstructed assuming a single panmictic population model in ARGweaver. Despite this
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model misspecification, parameter estimation is accurate and generally improves with increas-
ing u/r ratios. However, N, was slightly underestimated and migration rates overestimated
even at very high p/r ratios (56 Fig). These small biases likely result from ARGweaver systemat-
ically under-estimating branch lengths and coalescent times under a misspecified coalescent
model ignoring population structure. However, these results more generally suggest that the
coalescent prior assumed when reconstructing the ARG has very minimal impact on down-
stream demographic inference from the ARG.

Recombination and migration in Aspergillus flavus

It is estimated that over 25% of food crops are contaminated with mycotoxins worldwide [38].
Aspergillus flavus, a pathogen of plants and animals, is a major aflatoxin producer that has a
broad economic impact [39]. A. flavus can infect and contaminate preharvest and postharvest
seed crops with the carcinogenic secondary metabolite aflatoxin [40]. This fungus is predomi-
nantly haploid and homokaryotic [41]. A. flavus was thought to be cosmopolitan and clonal,
until evidence for genetic recombination due to a cryptic sexual state were reported [42] and
later the sexual stage was described [43]. In natural populations, A. flavus undergoes both sex-
ual and asexual reproduction [44, 45]. Previous studies also found extensive recombination in
the ancestral history of the aflatoxin cluster [46, 47], which is a 70-Kb-gene-cluster near chro-
mosome 3’s right telomeric region [40, 48]. Based on multilocus DNA sequence markers in
the aflatoxin cluster (afIM/afIN and aflW/afiX) and three other nuclear loci (mfs, amds, trpC),
this fungus can be delimited into two evolutionary distinct lineages: IB and IC, where IB
includes mainly nonaflatoxigenic isolates while IC includes both toxigenic and atoxigenic
strains [46, 49]. There is evidence that A. flavus has the potential for long-distance dispersal via
conidia [50-52], but movement between geographic locations is poorly characterized.

Given that both recombination and migration shape the evolutionary history of A. flavus,
here we aim to use ARGweaver and our SCAR model to explore the two evolutionary forces
together by reconstructing ARGs, and then estimating the recombination and migration rates.

The genome size of A. flavus is about 37 Mb on eight chromosomes [53], but we focused
our analysis on the migration and recombination history of chromosome 3, which is about 5
Mb. A total of 51 lineage IB strains and 48 lineage IC strains were collected across the United
States, including Arkansas, Indiana, North Carolina, and Texas in 2013 (Table 2) [54]. Sample
metadata is provided in supporting information S1 Table. Single-nucleotide polymorphism
(SNP) genotyping was performed across chromosome 3 with A. oryzae RIB40 as the reference
genome [55]. Because there was limited migration between lineages IB and IC [54], we ana-
lyzed the two lineages separately. No SNPs in the aflatoxin gene cluster were included for IB
because few isolates harbored this gene cluster.

We used ARGweaver to infer ARGs from SNPs spanning most of chromosome 3. Because
ARGweaver requires an estimate of the recombination rate to infer ARGs, we used LDhat ver-
sion 2.2 [56] to estimate Watterson’s theta and the population recombination rate. SNP data

Table 2. Sampling locations and numbers for lineages IB and IC.

State Samples location Lineage IB Lineage IC
Arkansas Newport Research Station; 35.57°N, 91.26°W 11 17
Indiana Southeast-Purdue Agricultural Center; 39.03°N, 85.53°W 3 13
North Carolina Upper Coastal Plain Research Station; 35.89°N, 77.68"W 11 13
Texas Texas A & M University Farm; 30.55°N, 96.43°W 26 5

https://doi.org/10.1371/journal.pcbi.1010422.1002
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were filtered using a series of different missing data thresholds before running LDhat, and we
estimated the median recombination rate across filtered data sets. The A. flavus mutation rate
was previously estimated as 4.2e-11 per site per mitosis [57], which can be converted to 2.82e-
09 per base per generation. Given this mutation rate, the effective population size N, was calcu-
lated from Watterson’s theta (88.23 and 559.04 for lineages IB and IC, respectively). ARGwea-
ver also needs a maximum time threshold for coalescent events, which was set as the expected
time to the most recent common ancestor based on the sample size and estimated population
sizes. With these parameters, we ran ARGweaver for 20,000 iterations with 1000 iterations as
burn-in. To keep ARGweaver’s run time manageable, we compressed blocks of 5 variable sites
by conditioning the breakpoints between each block in a flexible manner so that no more than
one variant site in the same block was chosen [37]. All the runtime parameters can be found in
the supporting information S2 Table. From the SMC files produced in the iterations, we
choose the ARG with the maximum joint-likelihood as our best estimate of recombination
patterns across chromosome 3.

We used a tanglegram to show the topological changes between neighboring local trees in
the inferred ARG. In a tanglegram, each local tree is drawn, and then auxiliary lines are drawn
to connect matching taxa in neighboring trees. If there is no recombination, the lines connect-
ing matching taxa should be horizontal whereas crossing lines can be used as a visual heuristic
to assess the extent of recombination. We use the python package baltic [58] to display the tan-
glegrams (S7 Fig).

The ARGs reconstructed in ARGweaver were then used to estimate recombination and
migration rates using our SCAR model. For these analyses we used exponential priors (for IB r
~ Exp(1.37e - 09), m;; ~ Exp(0.1); for IC r ~ Exp(2.17e - 10), m;; ~ Exp(0.1)). MCMC
chains were run for 40,000 iterations. Besides estimating these parameters from the recon-
structed ARGs, we also compared the posterior distributions of estimated migration rates
from the consensus tree of all the local trees in the ARG along the whole chromosome using
the SCAR model. Additionally, we compared how the RF distances between pairs of local trees
for different regions of the genome changed based on their genomic distance, which was the
absolute value of coordinates (middle of genome segment location) of the difference between
two trees.

The reconstructed ARGs for chromosome 3 of lineages IB and IC. The u/r ratios were
calculated using Watterson’s 6 and the population recombination rate obtained by LDhat.
For lineage IC, the y/r ratio of the entire chromosome 3 was 13, whereas for lineage IB y/r
was 2.05. Even though the y/r ratio of lineage IB was slightly lower than the lower limit at
which we found ARGweaver could accurately reconstruct ARGs in simulations, we contin-
ued with the analysis in order to explore the limits of ARG-based phylogeographic
inference.

We reconstructed ARGs for chromosome 3 of the A. flavus genome from 51 lineage IB iso-
lates and 48 lineage IC isolates. Overall, the ARGs contained 190 recombination events for
lineage IB and 774 recombination events for lineage IC. To visualize how the topology of local
trees varied across the genome, we plotted tanglegrams for the first 10 local trees in each ARG
for lineage IB (S7A Fig) and lineage IC (S7B Fig), as well as the 12 local trees in the aflatoxin
gene cluster for lineage IC (S7C Fig). Although there was always one recombination event
between each local tree in the ARG reconstructed by ARGweaver, not all recombination events
result in topological discordance between neighboring trees. In the ARG of lineage IB, 92.1%
of recombination events caused topological discordance between local trees whereas the other
7.9% only changed coalescent times. In the ARG of lineage IC, 98.3% of recombination events
resulted in topological discordance while only 1.7% caused changes in coalescent times. The
average RF distance between neighboring local trees for lineages IB and IC was 9.23 and 10.57,
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respectively; and the average normalized RF distance between local trees for IB and IC was
0.094 and 0.115, respectively; whereas the average effect of a single random SPR move on the
IB and IC local trees resulted in an RF distance of 17.93 and 18.19, respectively (S8 Fig). Thus,
while there can be considerable phylogenetic discordance between local trees, recombination
events tend to be more topologically conservative and occur between more closely related line-
ages than would be expected by chance from truly random SPR moves. Moreover, some phylo-
genetic discordance may be due to errors in reconstructing local trees, especially because the
distance between pairs of breakpoints along the chromosome were often relatively small (S9A
Fig), such that many non-recombining segments likely did not have enough segregating sites
to reconstruct local tree accurately. Overall though, we found that the normalized RF distance
between pairs of local trees increased logarithmically with their distance from each other in the
genome (S9B Fig), consistent with discordance being driven by recombination rather than
phylogenetic error over larger genomic distances.

Recombination breakpoints were distributed unevenly across the genome, with the putative
centromeric region containing far fewer recombination events for both lineages (Fig 7A). Fig
7B shows the distribution of recombination times for both lineages. While recombination
events occurred mostly in the recent past for lineage IB, many recombination events occurred
in the much deeper past for lineage IC.

Recombination rates of lineages IB and IC. Using the SCAR model, we estimated the
recombination rate for lineages IB and IC (first column of Fig 8). The recombination rate of
lineage IB was estimated to be 2.28E-09 per site per generation, with a y/r ratio of 1.24. Here
we assume the recombination rate is constant across both lineages and all of chromosome 3.
The recombination rate of lineage IC was estimated to be 1.06E-09 per site per generation,
with a p/r ratio of 2.66. Although fewer recombination events were identified for lineage IB
than lineage IC, lineage IB was estimated to have a higher recombination rate. This counter-
intuitive result can be explained by the fact that lineage IB also has a smaller effective popula-
tion size and thus coalescent times occur in the more recent past, resulting in less time for
recombination events to occur in IB than in IC, consistent with the temporal distribution of
recombination events observed in Fig 7B.

Migration rates of lineages IB and IC between subpopulations. Using the SCAR model,
we estimated the migration rates of lineages IB and IC between subpopulations along with
their recombination rate from their ARGs (Fig 8). Migration rates between subpopulations
were found to vary between 0.05 and 0.2 migrations per generation, suggestive of extensive
movement between populations. Migration rates between subpopulations were similar within
each lineage (Fig 9). However, for lineage IB, the migration rate between subpopulations in
North Carolina and Texas was slightly higher, and the Arkansas subpopulation had the highest
migration rates to other subpopulations overall; for lineage IC, the migration rate between sub-
populations in Indiana and North Carolina was slightly higher, as well as the migration rate
between subpopulations in Texas and North Carolina. Generally, the migration rates of lineage
IC were lower than for lineage IB.

We also compared migration rates estimated from full ARGs against migration rates esti-
mated from a single phylogeny, in this case the consensus tree of each ARG. The posterior dis-
tribution of migration rates inferred from both the full ARG and the consensus tree are
compared in Fig 8 and provided in supporting information S3 Table. Overall, the posterior
distributions of migration rates estimated from the consensus tree diverged little from the
prior distribution, indicating that the consensus trees contained little information about
migration patterns. By contrast, the posterior distributions estimated from the full ARG were
typically peaked with a much greater probability density concentrated around the posterior
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Fig 7. Inferred recombination events in A. flavus chromosome 3 (A) and the frequency of recombination time (generations in the
past)(B), respectively, of lineages IB and IC.

https://doi.org/10.1371/journal.pcbi.1010422.9g007

median relative to the prior distribution. These results suggest that we can obtain much more
information from the full ARG than from any individual consensus tree (or gene tree), owing

to the greater number of ancestral lineages and their associated migration histories in the
ARG.
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https://doi.org/10.1371/journal.pchi.1010422.9008

Discussion

Because population structure and recombination jointly shape the genealogical history of

many organisms, we developed SCAR to extend the structured coalescent to include ancestral

recombination. When used for demographic inference, we showed that SCAR can successfully
estimate effective population sizes, migration rates and recombination rates from recon-
structed ARGs. We then showed that SCAR can recover these parameters accurately both
from the true (simulated) ARGs and from ARGs reconstructed from genomic sequence data
using ARGweaver, although performance declines as the recombination rate approaches the
mutation rate. We also applied the SCAR model to A. flavus genomic data using ARGs
inferred by ARGweaver, demonstrating how these methods can be applied to real world patho-

gens with complex histories of both migration and recombination.

While new methods for ARG reconstruction are being developed at a rapid pace, we chose
ARGweaver as a gold-standard for inference as it reconstructs ARGs by sampling them from

their full posterior distribution up to the approximation introduced by the Sequential Markov

Coalescent [12, 13], which is known to be a very good approximation to the full coalescent
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Fig 9. The migration rates (per generation) estimated for lineages IB (A)and IC (B) between subpopulations in four states. The base layer shapefile
was downloaded from the website of United States Census Bureau https://www2.census.gov/geo/tiger/ TIGER2019/STATE/.

https://doi.org/10.1371/journal.pcbi.1010422.g009

with recombination [59]. Indeed, a recent simulation study found that ARGweaver was sub-
stantially more accurate in estimating coalescent times than other ARG reconstruction meth-
ods [60]. Other, more approximate methods may therefore be faster or allow larger samples
sizes but are unlikely to outperform ARGweaver in terms of accuracy. We therefore used
ARGweaver to explore the limits of reconstructing ARGs and estimating recombination rates
from simulated data. Regardless of method, the number of phylogenetically informative sites
(i.e., SNPs) between recombination breakpoints is likely the ultimate factor limiting accurate
reconstruction of local tree topologies within an ARG and thereby our ability to distinguish
true recombination events from topological discordance introduced by phylogenetic uncer-
tainty. We therefore explored the limits of accurate ARG reconstruction by varying the ratio of
the mutation rate to the recombination rate y/r. We found that at high y/r ratios, ARGweaver
does in fact reconstruct ARGs very accurately. However, our ability to reconstruct local trees
within the ARG rapidly degrades at lower y/r ratios and as expected, our ability to accurately
estimate recombination rates likewise decreases with our ability to accurately reconstruct
ARGs. Our simulations suggest that a u/r ratio of about 4 poses a practical lower limit on our
ability to reconstruct ARGs. While many rapidly evolving viruses and predominately clonal
bacteria exceed this threshold [61, 62], this definitely poses a challenge to accurate ARG recon-
struction for many highly recombining bacteria and eukaryotic organisms. For example, y/r
ratios for fungi have been reported as low as 0.1 in Zymoseptoria triciti [63] and as high as 45.9
for Glomus etunicatum [64]. However, because recombination requires direct physical interac-
tions (e.g. sexual reproduction), recombination rates can vary substantially even between pop-
ulations of the same species based on the frequency at which individuals encounter one
another [4, 5]. This suggests that ARG reconstruction methods will likely need to be applied
on a one-by-one basis to particular data sets rather than being applied or dismissed for broad
classes of organisms.

The SCAR model tracks the movement of lineages in an ARG between subpopulations by
approximating ancestral state probabilities. Rather than jointly estimating the ancestral states
with the other demographic parameters, we probabilistically track the movement of lineages
and integrate over their unknown states using the approach first developed by Volz [21].
Using this method, we can accurately and quickly estimate migration rates from simulated
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ARGs. However, we found that SCAR overestimates migration events to some extent, espe-
cially when the true migration rates approach one per generation. This bias might be caused
by assuming lineage state probabilities evolve independently across lineages and are indepen-
dent of the coalescent process [21]. However, Miiller et al. [23] showed that the lineage inde-
pendence assumption performs worst when migrations rates are very low relative to coalescent
rates (the opposite of our situation) and when coalescent rates are highly asymmetric between
populations (a situation we do not consider). We therefore think it more likely that, for larger
migration rates, there simply is not enough information to determine the true rate, as the like-
lihood surface remains essentially flat across a wide range of higher values (S10 Fig). Based on
the results of estimating migration rates using different sample sizes, we show that the larger
the sample size, the more accurate estimation becomes, verifying our speculation that biases in
estimating higher migration rates were attributable to a lack of information.

Several earlier approaches likewise aimed to extend the structured coalescent to include
recombination, including LAMARC 2.0 [65], CSD 7, [66], ARGweaver-D [67], and SCoRe
[68]. LAMARC 2.0 can simultaneously estimate migration rates, population growth rates, and
recombination rates [65]. SCAR and LAMARC 2.0 model the recombination process in the
same way [29], but like other early implementations of the structured coalescent [17], it uses
MCMC to sample migration histories, limiting its applicability to larger data sets or data sets
with more than a few sampled populations [69]. ARGweaver-D [67] extends ARGweaver to
allow for demographic inference in structured populations under a user defined model. How-
ever, in ARGweaver-D migration events need to be fully specified in terms of their time,
source, and recipient population; whereas SCAR allows for migration histories to be inferred
from ARGs with no prior knowledge about individual migration events. Finally, SCoRe [68]
can infer migration rates and reassortment patterns for segmented viruses from a phylogenetic
network jointly estimated in BEAST?2 [70]. Conceptually, SCoRe is very similar to SCAR in
that both methods track the movement of lineages probabilistically based on similar approxi-
mations to the structured coalescent, although SCoRe uses more refined approximations to
track lineage movement than what are currently implemented in SCAR. The main difference
between SCAR and SCoRe is that the SCoRe model specifically focuses on reassortment,
where different segments of a viral genome are inherited from different parents, leading to a
block-like haplotype structure where all sites in the same segment necessarily share the same
phylogenetic history. In contrast, SCAR allows for a more general model of recombination
where recombination breakpoints and thus changes in local tree topologies can occur any-
where across the genome, leading to much more complex ARGs. The SCAR model therefore
accommodates varying mechanisms of recombination, such as crossovers and gene conver-
sion, and is thus applicable to a broader range of viral, bacterial, and fungal genomes.

For organisms like A. flavus that recombine frequently relative to their mutation rate, there
may be further challenges to inferring ARGs given a low y/r ratio. Furthermore, the aflatoxin
gene cluster is reported to be a recombination hot spot [46], so the u/r ratios likely vary across
the genome [71], but we assume a constant mutation rate and recombination rate when recon-
structing ARGs. While there are likely regions where recombination rates are lower and we
can accurately reconstruct phylogenetic relationships, this will not be the case across the entire
genome. Despite the inherent variability in ARG reconstruction accuracy across the genome,
our estimates using ARGweaver/SCAR are consistent with those reported in the A. flavus liter-
ature. We found that the ratio of the mutation rate to recombination rate of lineages IB and IC
was 1.24 and 2.66, respectively. In Drott et al. [72], the ratio of mutation rate to recombination
rate in three populations calculated by ClonalframeML vary from 2.26 to 5.41. Even though
our calculations were based on a single chromosome, they were similar in magnitude to
genome-wide estimates for lineage IC. Moreover, we found that the putative centromeric

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010422  August 19, 2022 20/27


https://doi.org/10.1371/journal.pcbi.1010422

PLOS COMPUTATIONAL BIOLOGY Phylogeographic inference using the structured coalescent with ancestral recombination

region of the chromosome contains far fewer recombination events for both lineages IB and
IC, which accords with the knowledge that regions surrounding centromeres are a cold spot of
recombination [4, 73].

While incorporating recombination into phylogeography has typically been viewed as bur-
densome, considering recombination and the full ancestry of sampled genomes through an
ARG allows us to track the ancestral movement of many different genes or genomic regions.
Considering the full ARG rather than just a single phylogeny therefore provides more informa-
tion about demographic parameters and allows us to see how migration histories vary across
the genome. While it has long been appreciated that considering multiple ancestral histories
across the genome can improve demographic inference [8, 74, 75], here we demonstrate that
reconstructing ARGs for A. flavus provides much more information about migration between
populations than does a single (consensus) tree. Indeed, posterior distributions for the A. fla-
vus migration rates inferred from ARGs are concentrated around their posterior median while
the same migration rates inferred from a single tree diverge little from the prior, demonstrat-
ing that it may be possible to estimate migration rates from ARGs even when a single tree con-
tains no information about these parameters.

Using the SCAR model, we can now conduct phylogeographic inference using all the infor-
mation contained within an ARG. In the future, we plan to combine the SCAR model with
more computationally efficient methods for reconstructing ARGs like Espalier [76]. Rather
than assuming a single panmictic population model when reconstructing the ARG, this would
allow for the ARG and demographic parameters to be jointly inferred under a more flexible
class of structured coalescent models. Because there can be considerable uncertainty surround-
ing ARG reconstructions, especially for populations with high recombination rates relative to
mutation rates, we also plan to extend SCAR to marginalize demographic inferences over a set
of sampled ARGs. Together, these advances will allow us to explore how recombination and
migration jointly shape the phylogeographic history of a broad range of pathogens and other
recombining organisms.

Supporting information

S1 Fig. One possible ARG of two samples resulting from the coalescent with recombina-
tion. Time starts at present (bottom) and increases going backward in time (top). The genome
of each lineage is represented by a rectangle with blue filled regions containing material ances-
tral to the sample and unfilled regions non-ancestral material. (A) The first event going back-
ward in time is a recombination event. (B) The second event is another recombination event.
(C) The third event is a coalescent event creating a new sequence, where the ancestral material
is partitioned into two segments with non-ancestral material in between. This non-ancestral
material is trapped between the two segments of ancestral material. (D and E) Coalescent
events merge the ancestral material back onto a single genomic background. This figure was
inspired by the original figure of Wiuf and Hein [30].

(TIF)

S2 Fig. The inferred number of recombination events in ARGs sampled by ARGweaver
with the maximum joint likelihood, maximum likelihood, and maximum iteration as com-
pared to the true simulated numbers under different u/r ratios. In the legend, Max_iter,
Max_Likeli, Max_Joint represents maximum iteration, maximum likelihood, and maximum
joint likelihood, respectively.

(TTF)
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S3 Fig. Scaled Kendall-Colijn (KC) distances between the true (simulated) local trees and
the local tree inferred by ARGweaver in the reconstructed ARG under different ratios of
mutation rate / recombination rate. The lambda value in the KC metric was set at either 0.0,
0.5, and 1.0, where higher lambda values preferentially weight branch length differences over
topological differences. For each simulation, N, is 100, sample size is 50, genome length is
1e04, and recombination rate r is 2.5e-06. Under each ratio, 100 simulations were run.

(TIF)

S4 Fig. Average pairwise genetic diversity pi in sequences simulated under different u/r
ratios.
(TIF)

S5 Fig. Estimating migration rates M with different sample sizes. Estimating migration
rates M between two subpopulations with (A) 20 samples, (B) 50 samples, and (C) 100 sam-
ples. Each black line is x = y. Dots and blue bars represent the median posterior estimates and
the 95% confidence intervals for each simulation.

(TIF)

S6 Fig. Effective population size, recombination rates and migration rates estimated using
SCAR from ARGs inferred by ARGweaver under different p/r ratios. The dashed red lines
are the simulated effective population size, recombination rate and migration rate in all simu-
lations, respectively. For each simulation, genome length is 104, recombination rate r is 2.5e-
06, and each population has two subpopulations, for each subpopulation N, is 50, sample size
is 25, migration rate is 0.015. Because ARGweaver assumes a single panmictic population, we
scaled the effective population sizes N, input into ARGweaver to be equivalent in terms of coa-
lescent rates to that of a structured population with two demes using equation 4.22 in Rice
[77]. Under each ratio, 100 simulations were run.

(TIF)

S7 Fig. ARG of the 51 lineage IB isolates (A), 48 lineage IC isolates (B) and the aflatoxin
gene cluster of lineage IC (C) reconstructed by ARGweaver. The reconstructed ARG is visu-
alized using a tanglegram to show how the topology of local trees varies across chromosome 3.
Each local tree corresponds to one genome region separated from neighboring regions by an
inferred recombination breakpoint. Note only the first 10 of 193 local trees in the ARG of line-
age IB, and only the first 10 of 775 local trees in the ARG of lineage IC are shown. In the ARG
of the aflatoxin gene cluster, there are 12 local trees.

(TIF)

S8 Fig. RF distance between neighboring local trees, and average RF distance calculated
from 20 one-random-SPR trees of lineages IB and IC, respectively.
(TIF)

S9 Fig. The relationship of genome location distance and RF distance of pairs of local
trees, and the histogram of non-recombination segment length (neighboring breakpoints
distance). When calculating the genome location distance, we set the middle location of each
genome region as coordinates, and then the distance is the absolute value of coordinates differ-
ence between two trees.

(TIF)

$10 Fig. The migration rates (per generation) likelihood profile of lineages IB and IC
between subpopulations in four states using the SCAR model.
(TIF)
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S1 Table. A. flavus isolates metadata. A. flavus isolates sampling locations, lineages, and
other information for lineages IB and IC.
(XLSX)

S2 Table. All runtime parameters of ARGweaver. The results of Watterson’s theta and popu-
lation recombination rate calculated by LDhat at different missing threshold levels. The
parameters used when running ARGweaver.

(XLSX)

S3 Table. The posterior distribution of recombination and migration rates estimated from
both the full ARG and the consensus tree.
(XLSX)

Acknowledgments

Thanks to Lenora Kepler for giving useful comments when preparing the manuscript.

Author Contributions

Conceptualization: Ignazio Carbone, David A. Rasmussen.
Formal analysis: Fangfang Guo, David A. Rasmussen.
Funding acquisition: Ignazio Carbone, David A. Rasmussen.
Methodology: Fangfang Guo, David A. Rasmussen.

Project administration: David A. Rasmussen.

Resources: Ignazio Carbone.

Software: Fangfang Guo, David A. Rasmussen.

Supervision: David A. Rasmussen.

Validation: Fangfang Guo.

Visualization: Fangfang Guo.

Writing - original draft: Fangfang Guo, David A. Rasmussen.

Writing - review & editing: Fangfang Guo, Ignazio Carbone, David A. Rasmussen.

References

1. Rosenberg NA, Nordborg M. Genealogical trees, coalescent theory and the analysis of genetic poly-
morphisms. Nat Rev Genet. 2002; 3(5):380-390. https://doi.org/10.1038/nrg795 PMID: 11988763

2. HeinJ, Schierup MH, Wiuf C. Gene genealogies, variation and evolution: A primer in coalescent theory.
Oxford: Oxford University Press; 2005.

3.  Smith JM, Smith NH, O’'Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci USA.1993;
90(10):4384—4388. https://doi.org/10.1073/pnas.90.10.4384 PMID: 8506277

4. Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency
and distribution across eukaryotes: patterns and processes. Phil Trans R Soc B.2017; 372
(1736):20160455. https://doi.org/10.1098/rstb.2016.0455 PMID: 29109219

5. Hasan AR, Ness RW. Recombination Rate Variation and Infrequent Sex Influence Genetic Diversity in
Chlamydomonas reinhardtii. Genome Biol Evol. 2020; 12(4):370-380. https://doi.org/10.1093/gbe/
evaa057 PMID: 32181819

6. Hudson RR. Gene genealogies and coalescence process. Oxford surveys in evolutionary biology.
1990; 7(1):1-44.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010422  August 19, 2022 23/27


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010422.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010422.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010422.s013
https://doi.org/10.1038/nrg795
http://www.ncbi.nlm.nih.gov/pubmed/11988763
https://doi.org/10.1073/pnas.90.10.4384
http://www.ncbi.nlm.nih.gov/pubmed/8506277
https://doi.org/10.1098/rstb.2016.0455
http://www.ncbi.nlm.nih.gov/pubmed/29109219
https://doi.org/10.1093/gbe/evaa057
https://doi.org/10.1093/gbe/evaa057
http://www.ncbi.nlm.nih.gov/pubmed/32181819
https://doi.org/10.1371/journal.pcbi.1010422

PLOS COMPUTATIONAL BIOLOGY Phylogeographic inference using the structured coalescent with ancestral recombination

7. Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation for thousands
of samples. Nat Genet. 2019; 51(9):1321-1329. https://doi.org/10.1038/s41588-019-0484-x PMID:
31477933

8. Goss EM. Genome-enabled analysis of plant-pathogen migration. Annu Rev Phytopathol. 2015;
53:121-135. https://doi.org/10.1146/annurev-phyto-080614-115936 PMID: 25938274

9. Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Phil Trans R Soc B. 2016; 371
(1706):20150540. https://doi.org/10.1098/rstb.2015.0540 PMID: 27619703

10. Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under coa-
lescence. Syst Biol. 2007; 56(1):17-24. https://doi.org/10.1080/10635150601146041 PMID: 17366134

11.  Griffiths RC, Marjoram P. An ancestral recombination graph. In: Progress in population genetics and
human evolution. New York NY USA: Springer; 1997. p. 257-270. https://doi.org/10.1007/978-1-4757-
2609-1_16

12. Rasmussen MD, Hubisz MJ, Gronau |, Siepel A. Genome-wide inference of ancestral recombination
graphs. PLoS Genet. 2014; 10(5):e1004342. https://doi.org/10.1371/journal.pgen.1004342 PMID:
24831947

13. McVean GAT, Cardin NJ. Approximating the coalescent with recombination. Phil Trans R Soc B.2005;
360(1459):1387-1393. https://doi.org/10.1098/rstb.2005.1673 PMID: 16048782

14. KelleherJ, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. Inferring whole-genome histories in
large population datasets. Nat Genet. 2019; 51(9):1330-1338. https://doi.org/10.1038/s41588-019-
0483-y PMID: 31477934

15. Notohara M. The coalescent and the genealogical process in geographically structured population. J
Math Biol. 1990; 29(1):59-75. https://doi.org/10.1007/BF00173909 PMID: 2277236

16. Wakeley J. Coalescent theory: An introduction. Greenwood Village, Colorado: Roberts & Company
Publishers; 2009.

17. Beerli P, Felsenstein J. Maximum likelihood estimation of a migration matrix and effective population
sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA. 2001; 98(8):4563—
4568. https://doi.org/10.1073/pnas.081068098 PMID: 11287657

18. Maio ND, Wu CH, O’Reilly KM, Wilson D. New routes to phylogeography: A Bayesian structured coales-
cent approximation. PLoS Genet. 2015; 11(8):e1005421. https://doi.org/10.1371/journal.pgen.1005421
PMID: 26267488

19. Muller NF, Rasmussen D, Stadler T. MASCOT: parameter and state inference under the marginal struc-
tured coalescent approximation. Bioinformatics. 2018; 34(22):3843-3848. https://doi.org/10.1093/
bioinformatics/bty406 PMID: 29790921

20. Vaughan TG, Kuhnert D, Popinga A, Welch D, Drummond AJ. Efficient Bayesian inference under the
structured coalescent. Bioinformatics. 2014; 30(16):2272-2279. https://doi.org/10.1093/bioinformatics/
btu201 PMID: 24753484

21. Volz EM. Complex population dynamics and the coalescent under neutrality. Genetics. 2012; 190
(1):187-201. https://doi.org/10.1534/genetics.111.134627 PMID: 22042576

22, Rasmussen DA, Volz EM, Koelle K. Phylodynamic inference for structured epidemiological models. PLoS
Comput Biol. 2014; 10(4):e1003570. https://doi.org/10.1371/journal.pcbi.1003570 PMID: 24743590

23. Miller NF, Rasmussen DA, Stadler T. The structured coalescent and its approximations. Mol Biol Evol.
2017; 34(11):2970-2981. https://doi.org/10.1093/molbev/msx186 PMID: 28666382

24. Mahmoudi A, Koskela J, Kelleher J, Chan YB, Balding D. Bayesian inference of ancestral recombina-
tion graphs. PLoS Comput Biol. 2022; 18(3):e1009960. https://doi.org/10.1371/journal.pcbi. 1009960
PMID: 35263345

25. Wohns AW, Wong Y, Jeffery B, Akbari A, Mallick S, Pinhasi R, et al. A unified genealogy of modern and
ancient genomes. Science.2022; 375(6583):eabi8264. https://doi.org/10.1126/science.abi8264 PMID:
35201891

26. Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation and genealogical analysis for
large sample sizes. PLoS Comput Biol. 2016; 12(5):e1004842. https://doi.org/10.1371/journal.pcbi.
1004842 PMID: 27145223

27. Watterson GA. On the number of segregating sites in genetical models without recombination. Theor
Popul Biol. 1975; 7(2):256-276. https://doi.org/10.1016/0040-5809(75)90020-9 PMID: 1145509

28. Kingman JFC. On the genealogy of large populations. J Appl Probab. 1982; 19(A):27—-43. https://doi.
org/10.1017/S0021900200034446

29. Kuhner MK, Yamato J, Felsenstein J. Maximum likelihood estimation of recombination rates from popu-
lation data. Genetics. 2000; 156(3):1393—1401. hitps://doi.org/10.1093/genetics/156.3.1393 PMID:
11063710

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010422  August 19, 2022 24/27


https://doi.org/10.1038/s41588-019-0484-x
http://www.ncbi.nlm.nih.gov/pubmed/31477933
https://doi.org/10.1146/annurev-phyto-080614-115936
http://www.ncbi.nlm.nih.gov/pubmed/25938274
https://doi.org/10.1098/rstb.2015.0540
http://www.ncbi.nlm.nih.gov/pubmed/27619703
https://doi.org/10.1080/10635150601146041
http://www.ncbi.nlm.nih.gov/pubmed/17366134
https://doi.org/10.1007/978-1-4757-2609-1_16
https://doi.org/10.1007/978-1-4757-2609-1_16
https://doi.org/10.1371/journal.pgen.1004342
http://www.ncbi.nlm.nih.gov/pubmed/24831947
https://doi.org/10.1098/rstb.2005.1673
http://www.ncbi.nlm.nih.gov/pubmed/16048782
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1038/s41588-019-0483-y
http://www.ncbi.nlm.nih.gov/pubmed/31477934
https://doi.org/10.1007/BF00173909
http://www.ncbi.nlm.nih.gov/pubmed/2277236
https://doi.org/10.1073/pnas.081068098
http://www.ncbi.nlm.nih.gov/pubmed/11287657
https://doi.org/10.1371/journal.pgen.1005421
http://www.ncbi.nlm.nih.gov/pubmed/26267488
https://doi.org/10.1093/bioinformatics/bty406
https://doi.org/10.1093/bioinformatics/bty406
http://www.ncbi.nlm.nih.gov/pubmed/29790921
https://doi.org/10.1093/bioinformatics/btu201
https://doi.org/10.1093/bioinformatics/btu201
http://www.ncbi.nlm.nih.gov/pubmed/24753484
https://doi.org/10.1534/genetics.111.134627
http://www.ncbi.nlm.nih.gov/pubmed/22042576
https://doi.org/10.1371/journal.pcbi.1003570
http://www.ncbi.nlm.nih.gov/pubmed/24743590
https://doi.org/10.1093/molbev/msx186
http://www.ncbi.nlm.nih.gov/pubmed/28666382
https://doi.org/10.1371/journal.pcbi.1009960
http://www.ncbi.nlm.nih.gov/pubmed/35263345
https://doi.org/10.1126/science.abi8264
http://www.ncbi.nlm.nih.gov/pubmed/35201891
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1371/journal.pcbi.1004842
http://www.ncbi.nlm.nih.gov/pubmed/27145223
https://doi.org/10.1016/0040-5809(75)90020-9
http://www.ncbi.nlm.nih.gov/pubmed/1145509
https://doi.org/10.1017/S0021900200034446
https://doi.org/10.1017/S0021900200034446
https://doi.org/10.1093/genetics/156.3.1393
http://www.ncbi.nlm.nih.gov/pubmed/11063710
https://doi.org/10.1371/journal.pcbi.1010422

PLOS COMPUTATIONAL BIOLOGY Phylogeographic inference using the structured coalescent with ancestral recombination

30. Wiuf C, Hein J. The ancestry of a sample of sequences subject to recombination. Genetics. 1999; 151
(3):1217-1228. https://doi.org/10.1093/genetics/151.3.1217 PMID: 10049937

31. Kelleher J, Thornton KR, Ashander J, Ralph PL. Efficient pedigree recording for fast population genetics
simulation. PLoS Comput Biol. 2018; 14(11):e1006581. https://doi.org/10.1371/journal.pcbi. 1006581
PMID: 30383757

32. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochon-
drial DNA. J Mol Evol. 1985; 22(2):160—174. https://doi.org/10.1007/BF02101694 PMID: 3934395

33. Spielman SJ, Wilke CO. Pyvolve: A flexible Python module for simulating sequences along phyloge-
nies. PLoS One. 2015; 10(9):e0139047. https://doi.org/10.1371/journal.pone.0139047 PMID:
26397960

34. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981; 53(1-2):131-147.
https://doi.org/10.1016/0025-5564(81)90043-2

35. Christensen S, Molloy EK, Vachaspati P, Warnow T. OCTAL: Optimal completion of gene trees in poly-
nomial time. Algorithms Mol Biol. 2018; 13(1):6. https://doi.org/10.1186/s13015-018-0124-5 PMID:
29568323

36. Kendall M, Colijn C. Mapping phylogenetic trees to reveal distinct patterns of evolution. Mol Biol Evol.
2016; 33(10):2735-2743. https://doi.org/10.1093/molbev/msw124 PMID: 27343287

37. Hubisz M, Siepel A. Inference of ancestral recombination graphs using ARGweaver. In:Statistical Popu-
lation Genomics. vol. 2090. New York, NY: Springer US; 2020. p. 231-266. https://doi.org/10.1007/
978-1-0716-0199-0_10 PMID: 31975170

38. Eskola M, Kos G, Elliott CT, HajSlova J, Mayar S, Krska R. Worldwide contamination of food-crops with
mycotoxins: Validity of the widely cited’FAO estimate’ of 25. Crit Rev Food Sci Nutr.2020; 60(16):2773—
2789. https://doi.org/10.1080/10408398.2019.1658570 PMID: 31478403

39. Klich MA. Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol. 2007; 8(6):713-722.
https://doi.org/10.1111/j.1364-3703.2007.00436.x PMID: 20507532

40. Amaike S, Keller NP. Aspergillus flavus. Annu Rev Phytopathol. 2011; 49(1):107—133. https://doi.org/
10.1146/annurev-phyto-072910-095221 PMID: 21513456

41. RunaF, Carbone |, Bhatnagar D, Payne GA. Nuclear heterogeneity in conidial populations of Aspergil-
lus flavus. Fungal Genet Biol. 2015; 84:62—72. https://doi.org/10.1016/j.fgb.2015.09.003 PMID:
26362651

42. Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus
Aspergillus flavus. Proc Natl Acad Sci USA.1998; 95(1):388-393. https://doi.org/10.1073/pnas.95.1.
388 PMID: 9419385

43. Horn BW, Moore GG, Carbone |. Sexual reproduction in Aspergillus flavus. Mycologia. 2009; 101
(3):423-429. https://doi.org/10.3852/09-011 PMID: 19537215

44. Horn BW, Gell RM, Singh R, Sorensen RB, Carbone |. Sexual reproduction in Aspergillus flavus sclero-
tia: Acquisition of novel alleles from soil populations and uniparental mitochondrial inheritance. PloS
One. 2016; 11(1):e0146169. https://doi.org/10.1371/journal.pone.0146169 PMID: 26731416

45. Ojeda-Lopez M, Chen W, Eagle CE, Gutierrez G, Jia WL, Swilaiman SS, et al. Evolution of asexual and
sexual reproduction in the aspergilli. Stud Mycol. 2018; 91:37-59. https://doi.org/10.1016/j.simyco.
2018.10.002 PMID: 30425416

46. Moore GG, Singh R, Horn BW, Carbone I. Recombination and lineage-specific gene loss in the aflatoxin
gene cluster of Asperqgillus flavus. Mol Ecol. 2009; 18(23):4870-4887. https://doi.org/10.1111/j.1365-
294X.2009.04414.x PMID: 19895419

47. Moore GG, Elliott JL, Singh R, Horn BW, Dorner JW, Stone EA, et al. Sexuality generates diversity in
the aflatoxin gene cluster: evidence on a global scale. PLoS Pathog. 2013; 9(8):e1003574. https://doi.
org/10.1371/journal.ppat.1003574 PMID: 24009506

48. Carbone |, Ramirez-Prado JH, Jakobek JL, Horn BW. Gene duplication, modularity and adaptation in
the evolution of the aflatoxin gene cluster. BMC Ecol Evol. 2007; 7(1):111. https://doi.org/10.1186/
1471-2148-7-111 PMID: 17620135

49. Moore GG, Olarte RA, Horn BW, Elliott JL, Singh R, O’Neal CJ, et al. Global population structure and
adaptive evolution of aflatoxin-producing fungi. Ecol Evol. 2017; 7(21):9179-9191. https://doi.org/10.
1002/ece3.3464 PMID: 29152206

50. Wicklow DT, Wilson DM, Nelsen TC. Survival of Aspergillus flavus sclerotia and conidia buried in soil in
llinois or Georgia. Phytopathology. 1993; 83(11):1141-1147. https://doi.org/10.1094/Phyto-83-1141

51. Probst C, Bandyopadhyay R, Price LE, Cotty PJ. Identification of atoxigenic Aspergillus flavus isolates
to reduce aflatoxin contamination of maize in Kenya. Plant Dis. 2011; 95(2):212—218. https://doi.org/10.
1094/PDIS-06-10-0438 PMID: 30743416

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010422  August 19, 2022 25/27


https://doi.org/10.1093/genetics/151.3.1217
http://www.ncbi.nlm.nih.gov/pubmed/10049937
https://doi.org/10.1371/journal.pcbi.1006581
http://www.ncbi.nlm.nih.gov/pubmed/30383757
https://doi.org/10.1007/BF02101694
http://www.ncbi.nlm.nih.gov/pubmed/3934395
https://doi.org/10.1371/journal.pone.0139047
http://www.ncbi.nlm.nih.gov/pubmed/26397960
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1186/s13015-018-0124-5
http://www.ncbi.nlm.nih.gov/pubmed/29568323
https://doi.org/10.1093/molbev/msw124
http://www.ncbi.nlm.nih.gov/pubmed/27343287
https://doi.org/10.1007/978-1-0716-0199-0_10
https://doi.org/10.1007/978-1-0716-0199-0_10
http://www.ncbi.nlm.nih.gov/pubmed/31975170
https://doi.org/10.1080/10408398.2019.1658570
http://www.ncbi.nlm.nih.gov/pubmed/31478403
https://doi.org/10.1111/j.1364-3703.2007.00436.x
http://www.ncbi.nlm.nih.gov/pubmed/20507532
https://doi.org/10.1146/annurev-phyto-072910-095221
https://doi.org/10.1146/annurev-phyto-072910-095221
http://www.ncbi.nlm.nih.gov/pubmed/21513456
https://doi.org/10.1016/j.fgb.2015.09.003
http://www.ncbi.nlm.nih.gov/pubmed/26362651
https://doi.org/10.1073/pnas.95.1.388
https://doi.org/10.1073/pnas.95.1.388
http://www.ncbi.nlm.nih.gov/pubmed/9419385
https://doi.org/10.3852/09-011
http://www.ncbi.nlm.nih.gov/pubmed/19537215
https://doi.org/10.1371/journal.pone.0146169
http://www.ncbi.nlm.nih.gov/pubmed/26731416
https://doi.org/10.1016/j.simyco.2018.10.002
https://doi.org/10.1016/j.simyco.2018.10.002
http://www.ncbi.nlm.nih.gov/pubmed/30425416
https://doi.org/10.1111/j.1365-294X.2009.04414.x
https://doi.org/10.1111/j.1365-294X.2009.04414.x
http://www.ncbi.nlm.nih.gov/pubmed/19895419
https://doi.org/10.1371/journal.ppat.1003574
https://doi.org/10.1371/journal.ppat.1003574
http://www.ncbi.nlm.nih.gov/pubmed/24009506
https://doi.org/10.1186/1471-2148-7-111
https://doi.org/10.1186/1471-2148-7-111
http://www.ncbi.nlm.nih.gov/pubmed/17620135
https://doi.org/10.1002/ece3.3464
https://doi.org/10.1002/ece3.3464
http://www.ncbi.nlm.nih.gov/pubmed/29152206
https://doi.org/10.1094/Phyto-83-1141
https://doi.org/10.1094/PDIS-06-10-0438
https://doi.org/10.1094/PDIS-06-10-0438
http://www.ncbi.nlm.nih.gov/pubmed/30743416
https://doi.org/10.1371/journal.pcbi.1010422

PLOS COMPUTATIONAL BIOLOGY Phylogeographic inference using the structured coalescent with ancestral recombination

52. Ortega-Beltran A, Callicott KA, Cotty PJ. Founder events influence structures of Aspergillus flavus pop-
ulations. Environ Microbiol. 2020; 22(8):3522—-3534. https://doi.org/10.1111/1462-2920.15122 PMID:
32515100

53. Fountain JC, Clevenger JP, Nadon B, Youngblood RC, Korani W, Chang PK, et al. Two new Aspergillus
flavus reference genomes reveal a large insertion potentially contributing to isolate stress tolerance and
aflatoxin production. G3 (Bethesda). 2020; 10(10):3515-3531. https://doi.org/10.1534/9g3.120.401405
PMID: 32817124

54. Molo MS, White JB, Cornish V, Gell RM, Baars O, Singh R, et al. Asymmetrical lineage introgression
and recombination in populations of Aspergillus flavus: implications for biological control. bioR-
xiv:2022.03.12.484001v1[Preprint]. 2022[cited 2022 June 16]. Available from: https://www.biorxiv.org/
content/10.1101/2022.03.12.484001v1.

55. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, et al. Genome sequencing and analysis of
Aspergillus oryzae. Nature. 2005; 438:1157—1161. https://doi.org/10.1038/nature04300 PMID:
16372010

56. McVean G, Awadalla P, Fearnhead P. A coalescent-based method for detecting and estimating recom-
bination from gene sequences. Genetics. 2002; 160(3):1231-1241. https://doi.org/10.1093/genetics/
160.3.1231 PMID: 11901136

57. Alvarez Escribano |, Sasse C, Bok JW, Na H, Amirebrahimi M, Lipzen A, et al. Genome sequencing of
evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy
in non-homologous end-joining mutants. BMC Biol. 2019; 17(1):88. https://doi.org/10.1186/s12915-
019-0702-0 PMID: 31711484

58. Dudas G, Bedford T, Hadfield J. baltic; 2016. Available from: https://bedford.io/projects/baltic/.

59. Wilton PR, Carmi S, Hobolth A. The SMC’ is a highly accurate approximation to the ancestral recombi-
nation graph. Genetics. 2015; 200(1):343-355. https://doi.org/10.1534/genetics.114.173898 PMID:
25786855

60. BrandtDY, Wei X, Deng Y, Vaughn AH, Nielsen R. Evaluation of methods for estimating coalescence
times using ancestral recombination graphs. Genetics. 2022; 221(1):iyac044. https://doi.org/10.1093/
genetics/iyac044

61. Awadalla P. The evolutionary genomics of pathogen recombination. Nat Rev Genet. 2003; 4(1):50-60.
https://doi.org/10.1038/nrg964 PMID: 12509753

62. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J.
2009; 3(2):199-208. https://doi.org/10.1038/ismej.2008.93 PMID: 18830278

63. Stukenbrock EH, Dutheil JY. Fine-Scale recombination maps of fungal plant pathogens reveal dynamic
recombination landscapes and intragenic hotspots. Genetics. 2018; 208(3):1209-1229. https://doi.org/
10.1534/genetics.117.300502 PMID: 29263029

64. den Bakker HC, Vankuren NW, Morton JB, Pawlowska TE. Clonality and recombination in the life his-
tory of an asexual arbuscular mycorrhizal fungus. Mol Biol Evol. 2010; 27(11):2474—2486. https://doi.
org/10.1093/molbev/msq155 PMID: 20566475

65. Kuhner MK. LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bio-
informatics. 2006; 22(6):768—770. https://doi.org/10.1093/bioinformatics/btk051 PMID: 16410317

66. Steinriicken M, Paul JS, Song YS. A sequentially Markov conditional sampling distribution for structured
populations with migration and recombination. Theor Popul Biol. 2013; 87:51-61. https://doi.org/10.
1016/j.tpb.2012.08.004 PMID: 23010245

67. Hubisz MJ, Williams AL, Siepel A. Mapping gene flow between ancient hominins through demography-
aware inference of the ancestral recombination graph. PLoS Genet. 2020; 16(8):e1008895. hitps://doi.
org/10.1371/journal.pgen.1008895 PMID: 32760067

68. Stolz U, Stadler T, Miller NF, Vaughan TG. Joint inference of migration and reassortment patterns for
viruses with segmented genomes. Mol Biol Evol. 2022; 39(1):msab342. https://doi.org/10.1093/molbev/
msab342 PMID: 34893876

69. Kuhner MK. Coalescent genealogy samplers: windows into population history. Trends Ecol Evol. 2009;
24(2):86-93. https://doi.org/10.1016/j.tree.2008.09.007 PMID: 19101058

70. Muller NF, Stolz U, Dudas G, Stadler T, Vaughan TG. Bayesian inference of reassortment networks
reveals fitness benefits of reassortment in human influenza viruses. Proc Natl Acad Sci USA.2020; 117
(29):17104-17111. https://doi.org/10.1073/pnas.1918304117 PMID: 32631984

71.  Gell RM, Horn BW, Carbone |. Genetic map and heritability of Aspergillus flavus. Fungal Genet Biol.
2020; 144:103478. https://doi.org/10.1016/j.fgb.2020.103478 PMID: 33059038

72. Drott MT, Satterlee TR, Skerker JM, Pfannenstiel BT, Glass NL, Keller NP, et al. The Frequency of sex:
Population genomics reveals differences in recombination and population structure of the aflatoxin-pro-
ducing fungus Aspergillus flavus. mBio. 2020; 11(4):963. https://doi.org/10.1128/mBio.00963-20

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010422  August 19, 2022 26/27


https://doi.org/10.1111/1462-2920.15122
http://www.ncbi.nlm.nih.gov/pubmed/32515100
https://doi.org/10.1534/g3.120.401405
http://www.ncbi.nlm.nih.gov/pubmed/32817124
https://www.biorxiv.org/content/10.1101/2022.03.12.484001v1
https://www.biorxiv.org/content/10.1101/2022.03.12.484001v1
https://doi.org/10.1038/nature04300
http://www.ncbi.nlm.nih.gov/pubmed/16372010
https://doi.org/10.1093/genetics/160.3.1231
https://doi.org/10.1093/genetics/160.3.1231
http://www.ncbi.nlm.nih.gov/pubmed/11901136
https://doi.org/10.1186/s12915-019-0702-0
https://doi.org/10.1186/s12915-019-0702-0
http://www.ncbi.nlm.nih.gov/pubmed/31711484
https://bedford.io/projects/baltic/
https://doi.org/10.1534/genetics.114.173898
http://www.ncbi.nlm.nih.gov/pubmed/25786855
https://doi.org/10.1093/genetics/iyac044
https://doi.org/10.1093/genetics/iyac044
https://doi.org/10.1038/nrg964
http://www.ncbi.nlm.nih.gov/pubmed/12509753
https://doi.org/10.1038/ismej.2008.93
http://www.ncbi.nlm.nih.gov/pubmed/18830278
https://doi.org/10.1534/genetics.117.300502
https://doi.org/10.1534/genetics.117.300502
http://www.ncbi.nlm.nih.gov/pubmed/29263029
https://doi.org/10.1093/molbev/msq155
https://doi.org/10.1093/molbev/msq155
http://www.ncbi.nlm.nih.gov/pubmed/20566475
https://doi.org/10.1093/bioinformatics/btk051
http://www.ncbi.nlm.nih.gov/pubmed/16410317
https://doi.org/10.1016/j.tpb.2012.08.004
https://doi.org/10.1016/j.tpb.2012.08.004
http://www.ncbi.nlm.nih.gov/pubmed/23010245
https://doi.org/10.1371/journal.pgen.1008895
https://doi.org/10.1371/journal.pgen.1008895
http://www.ncbi.nlm.nih.gov/pubmed/32760067
https://doi.org/10.1093/molbev/msab342
https://doi.org/10.1093/molbev/msab342
http://www.ncbi.nlm.nih.gov/pubmed/34893876
https://doi.org/10.1016/j.tree.2008.09.007
http://www.ncbi.nlm.nih.gov/pubmed/19101058
https://doi.org/10.1073/pnas.1918304117
http://www.ncbi.nlm.nih.gov/pubmed/32631984
https://doi.org/10.1016/j.fgb.2020.103478
http://www.ncbi.nlm.nih.gov/pubmed/33059038
https://doi.org/10.1128/mBio.00963-20
https://doi.org/10.1371/journal.pcbi.1010422

PLOS COMPUTATIONAL BIOLOGY Phylogeographic inference using the structured coalescent with ancestral recombination

73. Choo KH. Why is the centromere so cold? Genome Res. 1998; 8(2):81-82. https://doi.org/10.1101/gr.
8.2.81 PMID: 9477334

74. Wakeley J, Hey J. Estimating ancestral population parameters. Genetics. 1997; 145(3):847—-855.
https://doi.org/10.1093/genetics/145.3.847 PMID: 9055093

75. Hare MP. Prospects for nuclear gene phylogeography. Trends Ecol Evol. 2001; 16(12):700-706.
https://doi.org/10.1016/S0169-5347(01)02326-6

76. Rasmussen DA, Guo F. Espalier: Efficient tree reconciliation and ARG reconstruction using maximum
agreement forests. bioRxiv:2022.01.17.476639v2[Preprint].2022[cited 2022 June 16]. Available from:
https://www.biorxiv.org/content/10.1101/2022.01.17.476639v2.

77. Rice SH. Evolutionary theory: Mathematical and conceptual foundations. Sunderland, Massachusetts
U.S.A.: Sinauer Associates, Inc.Publishers; 2018.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010422  August 19, 2022 27/27


https://doi.org/10.1101/gr.8.2.81
https://doi.org/10.1101/gr.8.2.81
http://www.ncbi.nlm.nih.gov/pubmed/9477334
https://doi.org/10.1093/genetics/145.3.847
http://www.ncbi.nlm.nih.gov/pubmed/9055093
https://doi.org/10.1016/S0169-5347(01)02326-6
https://www.biorxiv.org/content/10.1101/2022.01.17.476639v2
https://doi.org/10.1371/journal.pcbi.1010422

