Journal of Computational Science Education

Volume 12, Issue 3

Infusing Fundamental Competencies of Computational

Science to the General Undergraduate Curriculum

Ana C. Gonzalez-Rios
University of Puerto Rico - Mayaglez
anacarmen.gonzalez@upr.edu

ABSTRACT

The growing need for a workforce that can analyze, model, and
interpret real-world data strongly points to the importance of
imparting fundamental concepts of computational and data science
to the current student generation regardless of their intended
majors. This paper describes the experiences in developing and
implementing a course in computation, modeling, and simulation.
The main goal of the course was to infuse fundamental
competencies of computational science to the undergraduate
curriculum. The course also aimed at making students aware that
modeling and simulation have become an essential part of the
research and development process in the sciences, social sciences,
and engineering. The course was targeted to students of all majors.

Keywords
Computational science, Flipped classroom, Computational and data
science literacy, General education, Python, Curriculum
development

1. INTRODUCTION

Computational science (CS) is an interdisciplinary field that can be
defined as the intersection of the domain area of the problem of
interest, computer science, and mathematics. It requires
mathematical modeling capability and the skills for its efficient
implementation using computing techniques. CS allows us to build
models, visualize phenomena, and conduct experiments difficult or
impossible in the laboratory. So, it plays a critical role in the future
of the scientific discovery process and engineering design
[11,8,12].

It is important to reach not only the undergraduate curriculum in
science, technology, engineering, and mathematics (STEM). All
undergraduate students should be exposed to the fundamentals of
CS. Hence, students can be better equipped to apply CS techniques
in their fields and to better understand society and their
environment [8, 12].

All students, independent of their area of study, should have access
to a course that will help them develop fundamental CS
competencies. After reviewing the curriculum at a public Minority
Serving Institution, it was observed that the courses that address the
topics of modeling, simulation, and data science have multiple
advanced pre-requisites, so it is hard for many students to take those

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported publication of the
Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/12/3/3

December 2021

courses. Sometimes students who do have the pre-requisites cannot
fit the courses in their curricula. It was also noted that these courses
are offered randomly depending on enrollment and professor
availability.

With the main goal of infusing fundamental concepts of
computational science into the undergraduate general education
curriculum; we proposed, developed, and implemented a new
elective course with only college algebra as a pre-requisite.

All undergraduate students could benefit from this course including
students who planned on participating in undergraduate research.
Pre-service teachers were also an important target so that they
would be better able to integrate CS in their K—12 courses.
Computer science students had the opportunity to see how
programming skills can be applied to science, social sciences, and
engineering. The course could provide a panoramic view of the
field and act as a catalyst to continue with more advanced courses.

This paper describes the set of basic learning outcomes upon which
the course content rested, course description, course objectives,
resources developed, and overall format of the course.
Observations on students’ perception of the course are also
discussed.

2. COURSE LEARNING OBJECTIVES

The primary goal of the course was to introduce basic concepts of
computational science to a diverse student body. The aim was not
to produce experts in computational science but to provide the tools
and skills that can benefit the personal and professional lives of
individuals and allow them to better collaborate with computational
scientists. With this mindset and the fact that the course would only
require college algebra, we proceeded to determine the learning
outcomes of the course. The learning outcomes represented the
framework for the course content.

The computational science educational competencies that guided
the course design derived from the work developed as part of a
project at the Ohio Supercomputer Center sponsored by the
National Science Foundation [17]. The competencies were created
by the participating faculty and then reviewed by a business
advisory committee [9].

The group identified seven competency areas shown in Table 1. As
shown in Figure 1, each area was further subdivided to describe the
level of the skills and knowledge necessary to master the
competencies [17].

Consistent with [11, 7, 9], we believed that an introduction to
computational science must equip learners with a basic
understanding and an integration of both modeling and computer
programming principles. Learners should be provided with
experiences on how to translate the relationships within a system
being modeled into a set of mathematical functions that accurately
portray the behavior of that system and then translate the

ISSN 2153-4136 27

mathematics into computer code that correctly simulates those

Volume 12, Issue 3

relationships.

Table 1. Competency areas [17].

Simulation and Modeling

Programming and Algorithms

Differential Equations and Discrete Dynamical Systems

Numerical Methods

Optimization

Parallel Programming

~N| N | B W N~

Scientific Visualization

Area 1: Simulation and Modeling [-]

« Explain the role of modeling in science and engineering:[+]
Analyvze modeling and simulation in computational science:[+]
Create a conceptual model:[+]

Examine various mathematical representations of functions:[+]
Analyze issues in accuracy and precision:[+]
Understand discrete and difference-based computer models:[+]
Demonstrate computational programming utilizing a higher level |
Mathematica, other):[+]
Assess computational models:[+]
Verification, Validation, and Accreditation:[+]
Complete a team-based, real-world model project:[+]
« Demonstrate technical communication:|[+]
Area 2: Programming and Algorithms [-]
= Describe the fundamentals of problem solving][+]
Understand and write Pseudo code:[+]
Use subprograms in program design:[+]
‘Write code in a Programming language:|[+]
Use different approaches to data I/O in a program:[-]
o Explain the advantages and disadvantages of file 'O
o Describe the syntax for file IO in your programming language
o Compare binary and ASCII file 'O
o Write code using file 'O and keyboard/monitor IO
« Understanding and use of fundamental programming Algorithms:
« Explain various approaches to Program Design:|[+]
s Paccible Additinng - TTnderctand hacie cancentc af narvallel nraovar

I = E R R

. s .

Figure 1. Subset of competency subdivisions [17].

Table 2. Course learning outcomes.

1. Explain the role of modeling in the sciences and
engineering.

2. Explain the terms of modeling in the sciences and
engineering.

Create a conceptual model.

Write code in a programming language.

Use subprograms in program design.

Understand and write pseudocode.

Describe the fundamentals of problem solving.

Use different approaches to data I/O in a program.

Al E Pl N Bl el e

Understanding and use of fundamental programming
algorithms.

10. Understand discrete and difference-based computer
models.

11. Understand the use of empirical data.

12. Understand the modeling process.

13. Verification and validation.

14. Technical communication.

15. Demonstrate computational programming.

Journal of Computational Science Education

We believed that an introductory course should cover the skills and
knowledge described in the first two areas: simulation and
modeling, programming, and algorithms. The selected learning
outcomes as shown in Table 2 represented what the students would
be able to do at course completion.

Guided by the HPC University [17] competencies, the learning
outcomes as shown in Tables 3a and 3b were further subdivided for
a more detailed description of the skills and knowledge that needed
to be acquired.

Table 3a. Learning outcomes subdivision.

1 Explain the role of modeling in the sciences and
engineering.

a) Describe the importance of modeling to science and
engineering.

b) Describe the history and need for modeling.

¢) Describe the cost effectiveness of modeling.

d) Describe the time-effect of modeling.

2 Explain the terms of modeling in the sciences and
engineering.

a) Define modeling terms.

b) List questions that would check/validate model
results.

¢) Describe future trends and issues in science and
engineering.

d) Identify specific examples of modeling in science.
3 Create a conceptual model.

a) Utilize the modeling process to identify key
parameters of a model.

b) Estimate model outcomes.

¢) Use Python to implement the mathematical
representation of the model.

4 Write code in a programming language.

a) Understand the concept of syntax in a programming
language.

b) Describe the syntax of the programming language
constructs.

¢) Understand the difference between a compiled and
interpreted language.

d) Write and run basic programs in the language of
choice.

¢) Understand how to de-bug code.

f) Understand the numerical limits of various data types
and the implications for numerical accuracy of results.
5 Use subprograms in program design.

a) Describe how logical tasks can be implemented as
subprograms.

b) Explain the control flow when a function is called.
¢) Explain how function output is used.

d) Understand how languages handle passed data into
functions and subprograms, especially one- and two-
dimensional arrays.

6 Understand and write pseudocode.

a) List the basic programming elements of pseudocode.
b) Explain the logic behind an if/then/else statement.
¢) Understand the iterative behavior of loops.

d) Describe the difference between several looping
constructs.

¢) Write pseudocode to solve basic problems.

28 ISSN 2153-4136 December 2021

Journal of Computational Science Education

Table 3b. Learning outcomes subdivision.

Describe the fundamentals of problem solving.

a) Understand top-down thinking and program design.
Discuss breaking up a problem into its component
tasks. Understand how tasks acquire data.

b) Describe how tasks should be ordered.

c) Represent tasks in a flow-chart style format.

Use different approaches to data I/O in a program.

a) Explain the advantages and disadvantages of file I/O.
b) Describe the syntax for file I/O in your programming
language.

¢) Write code using file I/O and keyboard/monitor 1/O.

Understanding and use of fundamental programming
algorithms.

a) Explain an algorithm as an ordered series of solution
steps.

b) Describe an algorithm for a simple programming
problem.

c) Describe what a software library is.

d) Construct difference-based computer models.

10

Understand discrete and difference-based computer
models.

a) Write simple Python programs performing numerical
calculations as needed for modeling and simulation.

b) Implement finite difference modeling equations and
create simulations in Python.

11

Understand the use of empirical data.

a) Visualize empirical data and the fitting function
using Python.

b) Use data science techniques to illustrate data
relevant to social change issues and interpret the
results.

12

Understand the modeling process.

a) Identify different types of models and simulations.
b) Describe iterative development of a model.

c¢) Explain use of models and simulation for hypothesis
testing.

13

Verification and validation.

a) Discuss methods for reviewing models their
verification and validation.

b) Describe the differences between predictions of
model, actual results, and relevance of these differences
to the problem.

¢) Suitability/limits of models.

14

Technical communication.
a) Document the development and implementation of a
model and present it in oral and written form.

Demonstrate computational programming.

a) Describe the computational programming system
environment.

b) Define elementary representations, functions,
matrices and arrays, script files.

c) Explain relational operations, logical operations,
condition statements, loops, debugging programs.
d) Create tabular and visual outputs.

e) Translate the conceptual models to run with this
system and assess the model results.

December 2021

Volume 12, Issue 3

3. COURSE DESCRIPTION, COURSE
OBJECTIVES

Based on the selected learning outcomes, the course description as
stated in the University’s Course Catalog was as follows:

Introduction to the principles of modeling and simulation;
progressive introduction of programming principles and skills
using a high-level programming language; application of
programming skills to the solution of different classes of models.

The course did not require programming experience and the
mathematics pre-requisite was college algebra.

The course objectives were:

1. Provide a background for more advanced modeling
courses.

2. Provide the students with an introduction to modeling
and its importance to current practices in different subject
domains; like science, social sciences, and engineering.

3. Introduce programming principles and apply them to the
solution of different classes of models.

4. Provide an overview of the modeling process and the
terminology associated with modeling and simulation.

5. Study the mathematical representation of different
classes of models.

6. Introduce techniques for fitting a function to an
experimental data set.

7. Provide the opportunity for students to document the
development and implementation of a model and present
it in oral and written from.

4. COURSE ELEMENTS

Tables 4a and 4b show a mapping of the course topics and course
learning outcomes. Each topic was covered as a unit that included
instructional materials, learning activities, and assessments.

Table 4a. Course topics and learning outcome mapping.

Topic Learning
Outcomes
1 | Introduction to modeling; modeling la,b,c,d
concepts and definitions 2a,b,c,d
13¢
12¢
2 | Introduction to the Programming 4a,b,c,d,e
Environment 9¢c
3 | Deterministic Linear Models 3a,b,c
12a,b
4f
4 | Array Mathematics and Python 15a,b
5d
5 | Plotting in Python 11a,b
15d
6 | Problem solving 7a,b,c 9a,b
6a,e
7 | Conditional Statements 6b,15¢
8 | Iteration and Loops 4b,6¢,d,e
9 | Nonlinear and Dynamic Models 10a,b 12a,b
9d

ISSN 2153-4136 29

Volume 12, Issue 3

Table 4b. Course topics and learning outcome mapping.

10 | Estimating Models from Empirical Data 3a,b,c
8a,b,c
11a,b
15d,e

11 | Stochastic Models 12a,b

12 | Functions in Python Sa,b,c,d

13 | Verification, Validation, and Errors 13a,b,c
12¢

14 | Project implementation, 14a

Students are given in-class time to work in
groups in their final project presentations

4.1 Course Textbook

The textbook selected for the course was Introduction to Modeling
and Simulation with MATLAB® and Python by Steven 1. Gordon
and Brian Guilfoos [11]. The reason for selecting the book was that
its content focuses on meeting the set of basic modeling and
simulation competencies as defined in HPC University [17], and it
uses a just-in-time approach to introduce both programming and
modeling concepts.

4.2 Python Programming Language

Python [15] and the Spyder integrated development environment
[19] were selected as the platform to develop the programming
skills.

Python is a popular general-purpose programming language; it is
Free and Open-Source Software that can be acquired and used at
no cost. It provides powerful tools and libraries like SciPy and
NumPy for scientific computing and Matplotlib and Seaborn for
data visualization. Python has a rich web ecosystem of pedagogical
resources.

5. PEDAGOGICAL MODEL

The course was designed to combine face-to-face interventions
with online, web-enabled strategies, a pedagogical model known as
flipped classroom [6]. The flipped classroom switches the typical
face-to-face lectures and homework elements of a course. Instead
of attending the traditional lecture, students engage with short video
presentations or other multimedia content asynchronously before
the class period [13]. The in-class period is spent in student-
centered learning strategies such as active learning activities like
discussions, assignments, laboratories, and mini projects; allowing
the instructor to spend more time guiding and supporting the
students’ progress [16]. This teaching approach has been
documented to benefit students’ learning outcomes [10, 2, 1].

6. RESOURCES DEVELOPED

The development of all course materials was guided by the course
learning outcomes and by taking into consideration the expected
students’ mathematical background. The created instructional
material consisted of videos (equivalent to a lecture but divided in
segments of 5-to-15 minutes), practice exercises, walkthroughs,
multiple choice questions, and recorded demonstrations. These as
well as the course evaluations were made available through the
course management system, Moodle [14]. The course and
instructional materials were designed following the best practices
for using technology and the theory for the creation of courses [5,
4]. The center of resources for distance education, CREAD [3], at
the author’s institution offered the necessary guidance and support
during the design and development of the instructional materials
and assessments.

30 ISSN 2153-4136

Journal of Computational Science Education

7. COURSE FORMAT

The course met twice a week, Tuesdays and Thursdays, for two
hours each time. New material was made available in cycles of one
week. A new cycle started at the end of the class period on
Thursdays. During the in-class time of the second half of a cycle
(Thursdays), the students took a 15-minute, multiple-choice quiz of
the material on the current cycle. The idea was to provide an
incentive to the students to stay on top of the material.

The students also had to work and submit what was denoted as the
module’s activity (a list of which is provided in Appendix A). The
purpose was to practice and develop the skills introduced in the
module. On occasion, the activity was a mini project in which the
students organized and developed their work to present/share at the
next in-class time. The students were given an outline of what was
expected in the presentation, for example, to include four slides and
the topic to discuss in each slide.

The students were allowed to work by themselves or in groups of
at most three students. They were encouraged to share ideas with
one another. The instructor was always available to answer
questions and give feedback as needed.

A solution was discussed at the end of the period. On occasion, a
student volunteer presented his/her solution to the rest of the class.

During the first half of the cycle (Tuesdays), the students were
expected, but not required, to have studied all the online materials.
At the beginning of the period, the students could ask questions
about the module’s materials. The instructor also delivered a short
lecture, of at most 15 minutes, that covered core concepts and
examples from the videos. This lecture also aimed at focusing and
guiding the students on how to study videos and other online
materials. Students could spend time working on the practice
activities. Practice exercises were similar to what was discussed in
the video. The students were also asked to modify the mathematical
models or code and to comment on the results. On the other hand,
the module’s activity and mini project could be described as an
open-ended problem. The students needed to recognize the
mathematical model and corresponding coding from the videos and
other online materials to develop their solution.

7.1 Examples of Course Materials

Some examples of course materials are presented in Appendix C.
Individuals interested in reviewing additional materials or
resources from other topics are encouraged to contact the author.

8. COURSE EVALUATIONS

Two types of evaluations of the students were offered: those that
required the students’ individual efforts and those that could be
done collaboratively.

The individual evaluations were in the form of timed, multiple-
choice questions quizzes. One 15-minute quiz was offered at the
end of each cycle. Toward the end of the semester, the students took
a 60-minute, multiple-choice exam that covered all the material
discussed to the that point. This type of evaluation assessed
students’ knowledge on terminology and basic concepts.

The collaborative evaluations included the module’s activity, the
mini projects, and the end of semester project.

9. FINAL PROJECT: COMMENTS

As a final evaluation, students were required to develop, document,
and present a project. Keeping in mind that this is a foundational
course, the aim of the project was to provide the means for students

December 2021

Journal of Computational Science Education

consciously to go through all the steps of the modeling process. The
objective of the project was to build and test a model of a system
and use that model to derive insights into the system behavior [11].
The project specifications indicated that the code be written in
Python and that students must use graphs to discuss part of the
results.

Two weeks before the end of the semester, the students had to
submit a project proposal. In the proposal, the students explained
the goals and motivations of the project, why the project was of
interest, and what question(s) they would like to answer or what
problem(s) they were trying to solve.

To help guide in the project topic selection and development,
students were directed to the course textbook where the last chapter
provides a list of project topics and a set of reference materials for
each topic [11]. Other reference materials were available at Shodor
[18]. The students could design, develop, and implement the final
project either in groups or individually. A written report and an oral
presentation were required. A list of project topics is presented in
Appendix B.

10. FINAL DISCUSSION

There have been two offerings of the course, the first during spring
2019 and the second during spring 2020. The first time, it was
offered in the format as described in the paper. The second time,
due to the COVID-19 pandemic, it was offered completely online.
On both occasions, the course was advertised through the
University internal e-mail system.

In spring 2019, 16 students registered to take the course, and only

Volume 12, Issue 3

In the spring 2020 group, there were six students from the Physics
department, one student from the Business faculty, one student
from Mathematics, and the rest of the students from the Computer
Science program. Their answers to why they were taking the course
can be described as follows. The students from the Physics
department were taking the course because it was recommended by
other students who had taken the course or had heard about the
course. According to their comments, these students were looking
for an introductory course in computational science that would
provide experience in implementing solutions using a
programming language rather than focusing on the programming
language itself. The rest of the students were taking the course to
fulfill an elective requirement. They also mentioned being
interested in learning about the programming language Python.

A list of selected questions from the end-of-semester student survey
is shown in Table 6. The answers to the first two questions
enumerate the preferred activities and course concepts most
frequently mentioned. From the answers to the last three questions,
it can be said that by the end of the semester the students preferred
the flipped classroom model to face-to-face. It was often mentioned
that they appreciated the immediate feedback and guidance from
the instructor. The high percentages of affirmative answers to
recommending the course to other students and mentioning in the
resume having taken the course suggest that they valued and
recognized the importance of the skills and concepts acquired
through the course.

Table 6. Selected questions.

one withdrew due to health conditions. For the spring 2020 cohort, Questions Most frequent answers
Fhere were a total of 13 students. The breakdown by year is shown 1. From the Concept map, linear models plotting with
is Table 5. module activities Python, linear regression, curve fit,
and mini projects, | modeling process.
Table 5. Year breakdown Whichhwere the
- - ones that you
Year Spring 2019 Spring 2020 enjoyed the most?
Freshman 0 0 - - -
2. List three The Traffic Model, calculating prices of
Sophomore 3 5 concepts that you car rentals, compound interest, designing
i remember from an app for the best gas station selection.
Junior 6 7 the course.
Senior 7 1 Affirmative Answers
Spring 2019 Spring 2020
At the beginning of the semes.te.r, the students were asked to write 3. Do you profer 7% N/A
two or three paragraphs describing why they had taken the course. .
Of the spring 2019 group, there was one student from the Physics the flipped model
. vs. the face-to-
Department, one student from the Economics Department, and the face?
rest of the students were from the Computer Science program. Their ace:
answers to why they were taking the course can be described as 4. Would you 100% 90%
follows: the student from the Physics Department mentioned that recommend this
the course would provide an introduction to more advanced courses course to other
in the topic of modeling and simulation and would help develop students?
programming skills. The student from the Economics department
mentioned that, according to the search she had done on necessary 5. Do you think 92% 80%
skills for the modern workforce, this course would help her acquire that you can
some of those competencies. Seven of the students from the beneﬁt f'rom.
Computer Science program mentioned that they had taken the mentioning in your
course to fulfill a required elective and secondly to learn about resume that you
Python. The rest of the students also took the course to fulfill an have taken this
elective requirement and said they were curious about the modeling course?
and simulation topics and felt that learning the skills of problem
solving and Python would be advantageous for their careers.
December 2021 ISSN 2153-4136 31

Volume 12, Issue 3

After offering the course in both the flipped classroom and online
modalities, two final observations are described. First, for the end-
of-semester project, the students had to submit both written and oral
reports. The oral presentation needed to be supported by a
PowerPoint (PPT) presentation. For spring 2019, the oral
presentation was face-to-face. It was noticed that most of the
students for the PPT did a copy and paste of parts of the written
report, tended to read from the PPT, and had problems keeping to
the presentation time limits. For spring 2020, the students formed
virtual groups, and for the oral presentation, they had to submit an
audio recording. This worked well because they were forced to
reflect about their work and organize their thoughts to prepare a
script before recording. Each member of the group had to submit
his/her own audio recording.

Secondly, as a distance course, it was observed that only a few
students made use of the virtual office hours, and the main feedback
they received was from the graded evaluations as opposed to the
immediate feedback obtained from the flipped classroom model.

To conclude, the experience of developing and implementing a
course in computation, modeling, and simulation has been very
gratifying. We believe that such a course provides the means to
facilitate, to a diverse student body, the access to the much-needed
fundamental CS competencies. From the students’ comments, we
believe that they recognize the importance of having knowledge in
modeling and simulation as well as the leading edge it provides in
entering today’s workforce. The students also valued the
pedagogical model that allowed for active learning activities as well
as immediate feedback from the instructor. We are hoping that for
our next cohort we can impact pre-service teachers as well as
provide professional development to K—12 teachers.

11. ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation
funded Grant CyberTraining: CUIL: Computational and Data
Science Literacy Exchange (CSE-1829717). The author would like
to acknowledge the support of Linda Akli from SURA and
Katharine Cahill from OSC and the rest of the C>Exchange team
for providing a five-star space for our curriculum development
discussions.

12. REFERENCES

[1] Netravathi Basavaraj Angadi, Avinash Kavi, Kimi Shetty,
and Nayana Kamalnayan Hashilkar. 2019. Effectiveness of
flipped classroom as a teaching-learning method among
undergraduate medical students — An interventional study.
Journal of Education and Health Promotion, 8, Article 211
(Oct. 2019). DOI: https://doi.org/10.4103/jehp.jehp 163 19

[2] R.Brewer and S. Movahedazarhouligh. 2018. Successful
stories and conflicts: A literature review on the effectiveness
of flipped learning in higher education. Journal of Computer
Assisted Learning 34 (Feb. 2018), 409-416. DOI:
https://doi.org/10.1111/jcal. 12250

[3] Centro de Recursos para la Educacion a Distancia. 2019.
CREAD. Retrieved September 8, 2021 from
https://www.uprm.edu/cread/

[4] Centro de Recursos para la Educacion a Distancia. 2019.
Mejor Practicas. Retrieved June 11, 2021 from
https://www.uprm.edu/cread/mejores10practicas/

[5] José Ferrer. 2017. Diseiio y creacion de materiales
educativos: Guia de la minimo a lo optimo para cursos en
linea (Spanish Edition).

32 ISSN 2153-4136

Journal of Computational Science Education

[6] Flipped Learning Network (FLN). 2014. What Is Flipped
Learning? Retrieved September 8, 2021 from
https:/flippedlearning.org/wp-
content/uploads/2016/07/FLIP_handout FNL Web.pdf

[7] Steven I. Gordon. 2010. Creating Computational Science
Programs for the Existing and Future Workforce. In
Proceedings ACM / IEEE SC2010 — International
Conference for High Performance Computing, Networking,
Storage and Analysis SC10, Nov. 13—19, 2010, New Orleans,
LA.

[8] Steven I. Gordon and Katharine Cahill. 2020. The State of
Undergraduate Computational Science Programs. Journal of
Computational Science Education (Apr. 2020), 7-11. DOI:
https://doi.org/10.22369/issn.2153-4136/11/2/2

[9] Steven I. Gordon, Kate Carey, and Ignatios Vakalis. 2008. A
Shared, Interinstitutional Undergraduate Minor Program in
Computational Science., Comput. Sci. Eng., 10, 5 (Aug.
2008), 12—16. DOI: https://doi.org/10.1109/MCSE.2008.127

[10] Steven I. Gordon, James Demmel, Lizanne Destefano, and
Lorna Rivera. 2015. Implementing a Collaborative Online
Course to Extend Access to HPC Skills, Comput. Sci. Eng.
18, 1 (Dec. 2015), 73-79. DOL:
https://doi.org/10.1109/MCSE.2016.6

[11] Steven I. Gordon and Brian Guilfoos. 2017. Introduction to
Modeling and Simulation with MATLAB® and Python (1st.
ed.). Chapman and Hall/CRC. London, UK.

[12] Scott A. Lathrop, Katharine Cahill, Steven 1. Gordon,
Jennifer Houchins, Robert M. Panoff, and Aaron Weeden.
2020. Preparing a Computationally Literate Workforce.
Comput. Sci. Eng. 22, 4 (May 2020), 7-16. DOI:
https://doi.org/10.1109/MCSE.2020.2994763

[13] Michigan State University. What, Why, and How to
Implement a Flipped Classroom Model. Retrieved September
8, 2021 from https://omerad.msu.edu/teaching/teaching-
skills-strategies/27-teaching/162-what-why-and-how-to-
implement-a-flipped-classroom-model

[14] Moodle Pty Ltd. 2021. Moodle: Online Learning with the
World’s Most Popular LMS. Retrieved September 8, 2021
from https://moodle.com/

[15] Python Software Foundation. 2021. Welcome to Python.org.
Retrieved September 14, 2021 from https://www.python.org/

[16] Ashley Radder-Renter. 2020. The Flipped Classroom Model:
What It Is and How It Works. (Sept. 2020). Retrived
September 8, 2021 from https://www.yeseep.org/blog/the-
flipped-classroom-model-what-it-is-and-how-it-works

[17] Shodor. 2011. HPC University: Minor Program in
Computational Science Competency/Topic Overview.
Retrieved June 7, 2021 from
http://hpcuniversity.org/educators/undergradCompetencies/

[18] Shodor. 2021. Shodor: A National Resourse for
Computational Science Education. Retrieved August 26,
2021 from http://www.shodor.org/

[19] Spyder Website Contributors. 2021. Home — Spyder IDE.
Retrieved September 14, 2021 from https://www.spyder-
ide.org/

December 2021

Journal of Computational Science Education

APPENDIX A

List of Module Activities and Mini Projects
1. Watch a video and:

a. Describe how the scientific method and
simulation were mentioned in the video

b. Describe the hypothesis mentioned in the video

c. Describe if experiments are used to confirm or
deny the hypothesis

2. Given an open-ended problem (best gas station option),
design an app, and state:

a. List of assumptions,
mathematical model

concept map,

3. Converting mathematical expressions to Python
expressions

a. Creating and editing Matrices.
b. Using IDE Spyder.
c. Using Numpy arrays.

4. Deterministic Linear Models:
Implementing a Traffic Model

Modeling and

5. Arrays Mathematics in Python using NumPy
6. Visualization with Python, storytelling with a dataset

7. Describe an algorithm for the problem of solving the real
roots of a quadratic equation, create a flow chart as part
of the solution, Calculating car rental price

8. Implementing different situations, where repetition
structures are required, implement a guessing game.

9. Practice exercises on population growth, bank account
interest rates, use of visualization to answer what-if
questions.

10. Best fit from empirical data: implementing a model to
predict the weight of a dog at any time during its life.

11. Using a dataset find the coefficients for a linear model
using at least two of the different procedures in Python.

APPENDIX B

List of some of the topics of the final project

1. Finding the fastest route from home to UPRM, using
traffic data and precipitation data

Effect of altitude on projectile moving at fast speeds
Ball Toss

Modeling predator prey population

SIR Model of COVID-19 in the USA

Prey-Predator Model with carrying capacity

A G o

Natural Disaster Model for Future Economic Losses

December 2021

Volume 12, Issue 3

APPENDIX C

Topic 1

Activity 1

Watch the video in the provided link:
https://youtu.be/T9qoU9_tGhA

And answer the following questions:

1. Describe how the scientific method and simulation are
mentioned in this video.

2. What is the hypothesis mentioned in the video?

3. Isitpossible to make experiments to confirm or deny the
hypothesis? Explain.

Activity 2
(based on an Example presented by Daniel Teague of North
Carolina School of Science and Mathematics)

Suppose there is a local radio station that broadcasts the locations
and prices for all the gas stations in your area. The question is,
which should you buy from?

Make a PPT. Imagine you want to make an app for the phone, that
can be used to answer that question. Turn in five PPT slides to
illustrate your ideas.

Slide 1: List the assumptions.

Slide 2: Show the concept map.
Slide 3: Show the mathematical model.
Slides 4 & 5:

Create screens for an app based on your model. The first screen
should request essential information from the user, and the second
should show the app’s response.

Attach your PPT document in the Moodle platform. In addition to
the PPT, each student will also submit a script consisting of the
explanation of your work. It is recommended that you also submit
an audio version of the script.

Topic 2
Sample exercise:
Using IDE Spyder, write code to:

1. Create a NumPy array with values 1, 7, 13, 105 and
determine the size of the memory occupied by the array.

2. Create and print a NumPy array of integers from 30 to 70
in steps of 10.

Convert a list of numeric values into a one-dimensional NumPy
array.

ISSN 2153-4136 33

Volume 12, Issue 3 Journal of Computational Science Education

Topic 5 Topic 7
A figure of what is shown in Moodle If else demo:
Lesson 5: Introduction to Visualization with Python Matplotlib https://youtu.be/F8QwAhOiuq4
En este modulo se provee una introduccion a visualizacion usando Python, TOpic 8
Sample of video (while):

https://youtu.be/a72XiszmKES
Topic 10
Walkthrough: Introduction to Visualization with Python Matplotlib Sample Of VidCOSZ
M https://youtu.be/bsopgK EdBF0
Bkt https://youtu.be/BzvYO13HDuk

View https://youtu.be/619d7FVGEoo

Module5 Activity PracticeExercises
B Video: Import Data
View

MiniProject Stroy Telling
View Make a submission Receive a grade

Lession5Quiz

View Receive a grade

34 ISSN 2153-4136 December 2021

	1. INTRODUCTION
	2. COURSE LEARNING OBJECTIVES
	3. COURSE DESCRIPTION, COURSE OBJECTIVES
	4. COURSE ELEMENTS
	4.1 Course Textbook
	4.2 Python Programming Language

	5. PEDAGOGICAL MODEL
	6. RESOURCES DEVELOPED
	7. COURSE FORMAT
	7.1 Examples of Course Materials

	8. COURSE EVALUATIONS
	9. FINAL PROJECT: COMMENTS
	10. FINAL DISCUSSION
	11. ACKNOWLEDGEMENTS
	12. REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	Topic 1
	Activity 1
	Activity 2

	Topic 2
	Topic 5
	Topic 7
	Topic 8
	Topic 10

