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Abstract 

Models of insulin secretory vesicles from pancreatic beta cells have been created using the 

CellPACK suite of tools to research, curate, construct, and visualize the current state of 

knowledge. The model integrates experimental information from proteomics, structural biology, 

cryoelectron microscopy, and X-ray tomography, and is used to generate models of mature and 

immature vesicles. A new method was developed to generate a confidence score that 

reconciles inconsistencies between three available proteomes using expert annotations of 

cellular localization. The models are used to simulate soft X-ray tomograms, allowing 

quantification of features that are observed in experimental tomograms, and in turn, allowing 

interpretation of X-ray tomograms at the molecular level. 
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INTRODUCTION 

Structural modeling of entire cells is a new frontier actively being addressed by the structural 

biology community. Given the magnitude and complexity of this challenge, it is essential to take 

an integrative approach, bringing together data from multiple experimental modalities that 

address multiple levels of temporal and spatial scale. Already, this approach has generated 

detailed atomic models of complex enveloped viruses, entire bacterial cells, and cellular 

organelles, as reviewed in: (Im et al. 2016; Feig and Sugita 2019; Goodsell et al. 2020). 

 

A recent perspective (Singla et al. 2018) identified several characteristics that are needed for an 

effective integrative mesoscale structural model. The model needs to be complete over multiple 

levels of scale, from atomic details to overall ultrastructure. The model needs to couple a variety 

of representations in order to integrate different modalities of structural, biochemical, 

physiological, and bioinformatic knowledge. Also, as a key part of the process of integration, the 

uncertainty of each parameter defining the model needs to be quantified and made accessible 

in analysis and visualization of the model. Finally, the model must capture aspects of the 

heterogeneity of the system, allowing it to be both descriptive and predictive. 

 

As part of the Pancreatic Beta-Cell Consortium (PBCC, pbcconsortium.org), we are developing 

methods to generate mesoscale models of functional regions of the pancreatic beta cell based 

on diverse experimental data from the PBCC and the larger research community. As our first 

proof of concept, we have chosen to model one of the defining characteristics of this cell, the 

insulin secretory granule (ISG). This is a particularly amenable initial target, given the 

abundance of available information, its manageable size and complexity, and its functional 

connection to disease states of the cell. With this report, we present an entire pipeline from data 

curation to model generation, and present potential applications that are facilitated by this 
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quantitative approach to mesoscale cellular biology. We also show preliminary work to simulate 

soft X-ray tomograms of vesicles. Soft X-ray tomography is an attractive experimental technique 

for imaging whole cells, since the experiment is performed in “near-native” conditions with no 

fixatives or freezing (McDermott et al. 2009) and is being actively applied to pancreatic beta 

cells in the PBCC (White et al. 2020; Loconte et al. 2022). We are exploring the use of 

integrative modeling to provide molecule-level interpretation of features in these tomograms, 

which typically have a resolution of 50-60 nm. 

 

State of Knowledge for the Insulin Secretory Granule 

Given its central role in the regulated delivery of insulin, there is abundant information available 

for ISG structure and function. We relied on several excellent reviews to provide general 

synthesis of current knowledge (Suckale and Solimena 2010; Germanos et al. 2021). In the 

generally-accepted view, immature ISGs have a single membrane and are filled with proinsulin 

and other proteins, which then mature under the action of several specific proteases. Insulin 

then crystallizes into a single crystal that fills most of the interior. A complex interaction with the 

cytoskeleton mediates storage and delivery of ISGs to the cell surface, and fusion results in 

dissolution of the insulin crystal and release into the blood. In the current work, we are limiting 

our modeling effort to just the ISG membrane and interior, in immature and mature forms. 

 

However, there is still much uncertainty about basic information such as the ISG proteome 

components, concentrations, and interactions, as described in more detail below. Several 

proteomes are available that show discrepancies that must be reconciled. Even basic numbers 

such as the number of insulin molecules per vesicle show wide ranges, for example, from 200 

thousand (Suckale and Solimena 2010) to one million (Eliasson et al. 2008). Much of the work 

presented in this paper is seeking to resolve this uncertainty to generate molecular models of 

the entire organelle that are consistent with the current state of knowledge (Figure 1A).  
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In this work, we gathered, curated, and integrated current information and used it to build 

idealized models of an ISG in cytoplasm. A manual literature search identified the 29 most 

widely-reported ISG protein components. These 29 were then used to train a method for scoring 

proteins from three proteomes, identifying 14 additional proteins that have evidence for 

association with the ISG but were missed in the manual search. In addition, 13 proteins not 

included in the proteomes, but with experimental data supporting localization in the ISG, were 

identified by a manual literature search. Structures for these 56 proteins were identified or 

modeled (Figure 1B), and were then used to build 3D models of idealized immature and mature 

ISGs. Finally, X-ray tomograms were simulated from the models and used to classify features in 

experimental tomograms of pancreatic beta cells. 

 

METHODS 

Confidence Scores for Proteomics Data 

Results from three proteomes were reconciled using a simple scoring function that combines 

the proteomics statistics and location annotations into a confidence value. In brief, high scores 

are assigned to proteins found in multiple proteomes, that have annotations related to secretory 

vesicles, and that interact with proteins that also have annotations related to secretory vesicles. 

The set of 29 manually-curated proteins (Suppl. Table 1) were assigned as true positives, and 

remaining proteins from the three proteomes were assigned as trial negatives. Then, for each 

location annotation (loc = “nucleus”, “cytoplasm”, etc), a location score (LocScore(loc)) was 

evaluated: 

 

TPR(loc) = P(loc) / Ptot true positive rate 

 P(loc)   number of true positives with a particular location annotation 

 Ptot    total number of true positives 
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FPR(loc) = N(loc) / Ntot  false positive rate 

            N(loc)   number of false positives with a particular location annotation 

            Ntot   total number of negatives 

LocScore(loc)=[ TPR(loc) - FPR(loc) ] / [ TPR(loc) + FPR(loc) ] 

 

A similar score, IntLocScore(intloc), was calculated for the location of proteins that have been 

annotated as interacting with the protein of interest. This is based on the assumption that 

interacting proteins will be found in the same compartment. The confidence of a protein is 

calculated by: 

 

confidence = Nproteome/3. + Wloc * ∑ LocScore(loc) + Wintloc* ∑ IntLocScore(intloc) 

 

where the sum is performed over all of the location annotations for the particular protein and 

Nproteome is the number of proteomes that include the protein.  

 

A parameter sweep of the two weights was performed, yielding values of Wloc=12. and Wintloc=1. 

for the best ROC value over the entire data set. The entire set of proteins was then rescored 

based on these weights, and the scores were used for ranking the set. Given the small size of 

the set, cross-validation studies were not performed, so we expect that the resulting high scores 

of the true positives will be due to bias from use as the training set. 

 

Location annotations were found by programmatically querying UniProt (uniprot.org) with gene 

names from each protein and rat taxid 10116 to get the UniProt entry with the highest 

annotation score, and extract location annotations listed under “Keywords - Cellular 

component”. We then programmatically queried the UniProt, StringDB, Biogrid, and Intact 
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databases to get a list of proteins that interact with the protein being evaluated, and extracted 

location annotations for these in the same way. This process was repeated for human taxid 

9096 and mouse taxid 10090. Annotations and fractions of positives and negatives for the 

training set are included in Suppl. Table 2.  

 

Protein Structures and Concentrations 

To estimate relative concentrations within each proteomic study, “Mascot Protein Score” values 

were used for proteome 1 (Brunner et al. 2007), “score” values from proteome 2 (Hickey et al. 

2009), and “Intensity HiC12mC13” values for proteome 3 (Schvartz, Brunner, et al. 2012). 

These values were divided by the length of the protein and then by the sum of all values to 

create a “Normalized Spectral Abundance Factor” (NSAF) for each entry, which indicates 

roughly the molar fraction for each protein detected in the sample. Each protein’s NSAF was 

then multiplied by its molecular weight and normalized again to determine its mass fraction. 

Proteins that were identified by manual curation but not observed in the proteomics studies 

were assigned arbitrarily low concentration values. Finally, the total mass fraction of non-insulin 

proteins was scaled to give a total mass fraction of 0.2, with insulin the crystal accounting for the 

remaining 0.8 mass fraction (Hutton 1989). 

 

Absolute copy numbers for proteins were calculated for a generic ISG with a crystal diameter of 

200 nm (Zhang et al. 2020). The insulin crystal is based on entry 1trz from the RCSB Protein 

Data Bank (rcsb.org). This crystal form has insulin hexamers packed into a rhombohedral H3 

lattice, the most common space group observed for hexameric insulin structure determinations. 

A value of 1.22 g/cm3 for proteins was used (Andersson and Hovmöller 1998), with the 

asymmetric unit molecular weight obtained from the RCSB PDB structure summary page, 

yielding a volume occupancy of 0.686. The second most prevalent space group is a P21 lattice 

as exemplified with PDB ID 1ev6, which yields a volume occupancy of 0.584. Manual 
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exceptions were made for several proteins: IAPP abundance was assigned 1% of insulin 

abundance (Caillon et al. 2016); the copy number of vATPase was calculated by averaging 

copy numbers of the subunits with appropriate stoichiometry; and the experimental copy 

number for carboxypeptidase E from (Schvartz, Brunner, et al. 2012) was omitted from the copy 

number calculation because it is ~100 times greater than the other two proteomes. 

 

An initial set of structures was gathered automatically from online databases using 

csvcomplete10.0.9 

(https://github.com/brettbarbaro/csvcomplete/blob/master/csvcomplete10.0.9.py). The UniProt 

RESTful API was used to retrieve sequences, and N-terminal signal sequences annotated in 

UniProt were automatically removed. The resulting sequences were then used to query the 

RCSB PDB BLAST-based RESTful API and return the top 10 structure matches in the PDB 

database. Subsequent manual curation was required in several cases. Multiple files were 

needed to model cytoplasmic and lumen domains of Syt5, Pam, Atp6ap, and Epha, and 

transmembrane segments were taken from integrin (PDB ID 2k1a). Similarly, files representing 

cytoplasmic and lumen domains of Ptprn and Ptprn2 were combined with transmembrane 

segments from receptor tyrosine kinase ErB1 (PDB ID 2m0b). All of the Vamps were modeled 

with Vamp-2, as PDB ID 2kog includes the entire protein in a lipid-bound environment. Granins 

were treated as coiled-coils based on biophysical studies of chromogranin-A (Mosley et al. 

2007). Information was difficult to find for several proteins, resulting in poor or fragmentary 

structures for Nucb1, Nucb2, Dnajc2, Stc1, and Nptx1. 

 

As we were completing this project and drafting this manuscript, structures generated by 

AlphaFold2 (Jumper et al. 2021) became readily available through UniProt. We reevaluated the 

entire structural proteome to determine if these predicted structures added value. In the most 

challenging cases, such as the granins, AlphaFold2 provided structures that are largely 
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unfolded and of low confidence. Predicted structures of Nucb1, Nucb2, Dnajc2, Stc1, and Nptx1 

all showed a well-folded core similar to the existing homologous structures found by the 

methods above, flanked by long disordered regions of low confidence. These low confidence 

regions could reflect intrinsic disorder in these structures or deficiencies in the AlphaFold2 

method due to, for example, unmodeled oligomerization. Ultimately, we chose to use one 

structure from AlphaFold2, for CD36, which showed a well-folded domain and two membrane-

spanning helices, all consistent with UniProt annotations and existing partial structures. We 

envision that AlphaFold2 will become a more integral part of the structural pipeline in future, as 

methods are developed to create credible models that incorporate oligomerization, definition of 

membrane-spanning regions, and intrinsic disorder. 

 

The cytoplasm was modeled using 50 cytoplasmic proteins with highest abundance in a recent 

proteomic study (Beck et al. 2011) (Suppl. Table 3). Relative abundances of these proteins 

were normalized to a total concentration of 0.2g/ml (Luby-Phelps 1999). 

 

Model Generation 

Models were generated using a modified version of our instant distribution software (Klein et al. 

2018), based on cellPACK (Johnson et al. 2015), similarly to the method used for building a full 

model of Mycoplasma genitalium cell (Maritan et al. 2022). During the packing process, a 

reduced representation of each protein is used, comprised of a list of representative beads or 

spheres selected using K-means clustering manually tuned to give a good ratio of number of 

beads to coverage of the entire protein. This manual tuning is particularly important for proteins 

with high aspect ratios, and is facilitated by the use of the web-based curation tool Mesoscope 

(Autin et al. 2020). The beads are used to (i) estimate the space occupied by each protein in a 

master grid and (ii) relax overlapping proteins. 
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Molecules are distributed by a parallel algorithm that partitions the available space on a grid, 

places molecules, then performs a local relaxation to resolve conflicts. However, the insulin 

granule can consist of up to 2 million beads, so local relaxation couldn’t be applied due to 

limitations in the NVIDIA Flex library to ~1 million beads. Thus, we exported and relaxed the 

model using LAMMPS (Thompson et al. 2022) through Langevin rigid body dynamics. A custom 

approach based on cellPAINT (Gardner et al. 2018, 2021) is used for the membrane proteins. 

Each membrane protein is augmented with two triads of beads on either side of the membrane 

that constrain the protein within the membrane during the simulation. All bead interactions used 

a soft potential (https://docs.lammps.org/pair_soft.html). 

 

The ultrastructure of the vesicle and boundary of the insulin crystal are defined as primitive 

signed distance fields (e.g. soft Boolean operation of spheres) or computed signed distance 

fields from a user-defined polygonal mesh (e.g. obtained from segmentation). In the current 

work, we used a spherical boundary for the crystal, and insulin was placed procedurally using 

the rhombohedral H3 lattice of PDB ID 1trz.  

 

The instant packing method also includes a method for distributing lipids, using an approach 

similar to LipidWrapper (Durrant and Amaro 2014). The vesicle membrane is represented by a 

spherical signed distance field, polygonized with a dual contour algorithm. The resulting 

triangulated surface is then tiled using small patches of lipids cookie-cut from equilibrated flat 

lipid bilayers. The operation is run in parallel on the gpu for each triangle giving interactive 

performance.  

 

Segmentation of X-ray Tomograms 

X-ray tomograms were obtained from the PBCC website (pbcconsortium.isrd.isi.edu). These 

datasets have a voxel width of 37.42 nm. Segmentation files were also obtained from the PBCC 
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that define the location of the cell boundary, nucleus, endoplasmic reticulum, and ISG locations. 

Blob detection was performed with VISFD (github.com/jewettaij/visfd/releases/tag/v0.19.10) in 

several steps. First, the position and orientation of the glass tube was identified automatically, 

and a mask created to omit areas within 7-10 voxels of the tube from blob detection and 

visualization. A mask was created to identify cytoplasmic regions inside the cell, using the PBC 

manual segmentation of the cell membrane and nucleus. Additional manual curation removed 

small features that were disconnected from the bulk of the cell. Blob detection was then 

performed on the maps, and blobs that overlap and blobs with weak scores were discarded. 

The threshold for discarding weak blobs was obtained by tuning the threshold for each map 

individually, choosing threshold values that correctly classify a test set of 30 manually-chosen 

positives and 30 manually-chosen negative decoys. Finally, analysis of blobs was performed, 

including a radial density profile centered on the brightest pixel in the blob, distance from the cell 

surface, and classification by brightness. 

 

Simulation of Absorption of X-rays  

From (Ekman et al. 2018), image formation in soft X-ray tomography can be approximated as: 

 

where Ah is a linear projection matrix incorporating the 3D point spread function (PSF) of the 

system and μ is a discretized vector representation of the Linear Attenuation Coefficient (LAC) 

that is calculated from the atomistic model of the vesicle. Values of the Mass Attenuation 

Coefficient (MAC, μ/ρ where ρ is the density) at a given photon energy (here 517 eV) are 

typically available for different materials (Henke et al. 1993) 

(henke.lbl.gov/optical_constants/atten2.html), and may be combined using the mixture rule, 

which is a mass-fraction-weighted average of the MAC of each component: 
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(μ/ρ)voxel = Wprotein (μ/ρ)protein + Wlipid (μ/ρ)lipid + Wwater (μ/ρ)water 

 

where Wprotein, Wlipid, and Wwater are the mass fraction of the component materials. The voxel 

protein LAC μvoxel is then calculated as the mass attenuation coefficient in the voxel (μ/ρ)voxel 

times the protein density in the voxel ρvoxel (protein weight / voxel volume): 

 

μvoxel = (μ/ρ)voxel * ρvoxel 

 

MAC values were calculated explicitly using the atomic composition of proteins in each voxel of 

the model, again using the mixture rule and the weight fraction of MAC values for each of the 

atom types. Lipids were based on DOPC (C40H80NO8P), with MAC value of 9264.835/cm and a 

volume of 1150.0 Å3 per lipid (Greenwood et al. 2006), and a value of 1114.279/cm was used 

for water.  

 

To generate the final images, the initial calculated volume is embedded in a larger volume the 

size of the experimental data. The simulated reconstructions were obtained similar to the 

experimental ones: the projection images were distorted by Poisson noise corresponding to the 

shot noise of the experiment, and random translations were added to the tomograms to mimic 

sub-pixel alignment errors of the image registration (Chen et al. 2022). The reconstruction was 

repeated 10 times for each volume and averaged for calculation of the radial profiles.  

 

RESULTS AND DISCUSSION 

Combining Proteomic and Annotation Information 

We manually curated a proteome based on the current state of knowledge for the system. This 

proteome is based largely on a comprehensive review (Suckale and Solimena 2010), followed 
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by literature searching to find supporting reports on each molecule. This includes 29 familiar 

proteins, including two forms of insulin, granins, enzymes involved in maturation, regulatory 

molecules, and a variety of membrane-bound transporters and fusion-related proteins. These 29 

proteins are included in Suppl. Table 1 with citations for the studies localizing them to the ISG.  

 

Manual curation, however, is intrinsically limited by the vagaries of literature search methods 

and user bias, so we developed a method to identify bona fide ISG proteins from proteomics 

data, removing false positives from ISG isolation impurities. Three proteomes were used in the 

current study, with a total of 270 proteins, of which eight are observed in all three (two forms of 

insulin; converting enzymes Pcsk2 and Cpe; granins ChgA, ChgB and Scg2; nucleobindin-2). 

The studies used different protocols for isolation of ISG: proteome 1 used a gradient (Brunner et 

al. 2007), proteome 2 added an affinity purification step (Hickey et al. 2009), and proteome 3 

used a 3-step gradient purification along with Stable Isotope Labeling with Amino acids in Cell 

culture (SILAC) (Schvartz, Brunner, et al. 2012). Proteome 3 identified 668 proteins, but we 

included the 140 that were considered “specific to ISGs”, as done in a meta-analysis of all three 

studies (Crèvecoeur et al. 2015). 

 

The simplest approach to reconcile these differences would be to use the number of proteomic 

observations as a weighting factor. However, this has potential problems. For example, the 

converting factor Pcsk1, a necessary component of the ISG, showed up in only one study, but 

several subunits of mitochondrial ATP synthase, which is most likely a mitochondrial impurity, 

showed up in two. We developed a ROC-type scoring method that combines the number of 

proteomic observations and expert annotations of the cellular location. The study starts with the 

full set of proteins from the three proteomes, and assigns our manually-curated set as true 

positives and the rest as trial negatives. We then evaluate each location annotation for its ability 

to distinguish between the two. Annotations like “cytoplasmic vesicle” have power to 
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discriminate true positives, and “mitochondrion” and “nucleus” are found for trial negatives (see 

Suppl. Table 2). A simple scoring function was developed to quantify this discrimination. Finally, 

an overall confidence score was developed that combines these location annotation scores with 

the number of times each protein is observed in a proteome, as described in Methods. 

 

A manual literature search was then performed for all proteins with confidence > 0.333, as well 

as all proteins present in two or more proteomes. As described below, in some cases evidence 

for presence in the ISG was found, in other cases evidence was found for presence in other 

compartments of the cell, and a few were ambiguous. 

 

VAMPs are necessary for the fusion of vesicles with the membrane. Vamp2, Vamp3 and Vamp8 

were included in our curated set. Vamp2 and Vamp3 scored well, but Vamp8, which has been 

immunolocalized to the ISG (Zhu et al. 2012), showed a mid-range score of 0.21, due to being 

found in only one proteome and having lysosome and endosome localizations. Lamp2 also 

showed an intermediate score (0.76), but we could find no evidence for its presence in the ISG. 

 

Rabs and similar membrane-associated proteins play an essential role in regulation of the 

vesicle life cycle. Rab37, Rap1a, and Rab3a were all included in the curated list, and showed 

high to intermediate scores. Immunolocalization studies were found for Rph3al (Matsunaga et 

al. 2016), Rab3c, and Rab3d (Iezzi et al. 1999). Rab27a is connected to secretory vesicles in 

general (Suckale and Solimena 2010), but no evidence was found for several Rab5 members, 

Rab35, or Rhog. Rab1a, Rab2a, and several G-protein subunits were found in two proteomes 

but received low scores because of localization, and we could not find evidence for their 

presence in the ISG. Two additional proteins, Rac1 and Cdc42, were included based on the 

literature search (Wang and Thurmond 2009), although they were not included in any of the 

proteomes.  
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Several proteins were not included in the original curated list, but strong evidence for their 

inclusion was found in the subsequent literature search. Peptide-amidating enzyme PAM 

(Garmendia et al. 2002), neurosecretory protein Vgf (Stephens et al. 2017), neuronalpentraxin-1 

(Schvartz, Couté, et al. 2012), and stanniocalcin-1 (Zaidi et al. 2012) all received high to 

intermediate scores. Conversely, several proteins were included in the original list, but scored 

poorly. Two nucleobindins, which have been placed in the ISG by immunolocalization (Ramesh 

et al. 2015), scored low due to nuclear and ER annotations, in spite of nucleobindin-2 being 

found in all three proteomic studies. vATPase has been localized to the ISG (Sun-Wada et al. 

2006), but most of the subunits scored poorly, due to their presence in a single proteome and a 

variety of conflicting localizations. Macrophage migration inhibitory factor was found in only one 

proteome, but has been immunolocalized to the ISG (Waeber et al. 1997). 

 

Several proteins showed high scores, and evocative but non-conclusive evidence was found in 

the literature search. Tmem163, a putative zinc transporter (Sharma et al. 2017), and Enpp2 

(Gorelik et al. 2017) have connections to type 2 diabetes. Depalmatase Abhd17 (Won et al. 

2018), Dnajc5 (Gorenberg and Chandra 2017), and Wnt ligands like Wif1 are involved in the 

secretory process (Schinner et al. 2007). These may be candidates for immunolocalization 

studies. 

 

A variety of proteins were found in two of the proteomic studies, but appear to be impurities from 

other compartments in the cells. These include lysosomal proteins alpha-glucosidase, septin-11, 

and cathepsin D; cytoplasmic enzymes ATP-citrate synthase, fructose bisphosphate aldolase A, 

and glyceraldehyde-3-phosphate dehydrogenase; a subunit of mitochondrial ATP synthase; and 

tubulin and fibronectin. All showed low scores due to the localization annotations and were 

culled from the list used for modeling. 
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Models of the Insulin Secretory Granule 

Idealized models of mature and immature vesicles were created with the final proteome of 56 

proteins (Suppl. Table 1), an insulin crystal with diameter 200 nm (Zhang et al. 2020), and 

vesicle diameter of 320 nm (Suckale and Solimena 2010). The initial model created with the 

interactive method of CellPACKgpu roughly places molecules in the proper compartments, but 

has a number of steric contacts, particularly with highly asymmetric molecules such as the 

granins. Subsequent optimization with LAMMPS resolves these contacts to create the final 

model. Relaxation required between 1 and 2 hours using 30 threads, followed by around ~30 

minutes to recompute the position/rotation of the protein instance from the bead coordinates for 

each frame of the simulation (CPU AMD Ryzen Threadripper 1950X 16-Core Processor, GPU 

NVIDIA Quadro R8000). The final models reveal the ISG as being densely packed with soluble 

proteins and with a protein-rich bounding membrane. The full model (idealized mature and 

immature granules surrounded by cytoplasmic proteins) consists of 424384 individual proteins 

represented by 2343538 beads of radius 17.0 Å. 

 

Interpreting Experimental Soft X-ray Tomograms 

Figure 2 demonstrates use of this methodology to interpret experimental soft X-ray tomograms. 

Tomograms of whole pancreatic beta cells show many easily-distinguishable features with high 

LAC values. The ones with the highest LAC values are presumed to be lipid droplets, and the 

remainder are insulin secretory vesicles. We address two questions that have been posed with 

the experimental work. 

 

First, there has been some question about the contribution of the membrane to the observed 

features. We created models and simulated tomograms for vesicles with and without the 

membrane (Figure 2) and calculated a 2D radial profile for all four volumes. These show that the 
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membrane for these idealized vesicles accounts for 10-20% of the observed X-ray absorbance 

in these features. For the full model with lipids, the projected mature blob peak value is 

0.538/µm for mature and 0.437/µm for immature, and the surrounding cytoplasm has an 

average value of 0.35/µm. 

 

Second, it has been noted that immature vesicles, which do not include the dense crystal of 

insulin, may not show enough contrast to be observed in experimental soft X-ray tomograms. As 

seen in Figure 2, immature vesicles are less visible in simulated tomograms. When we applied 

our VISFD segmentation protocol to these simulated tomograms, only the mature vesicles were 

detected with a contour diameter of 184 nm, while the immature vesicles were undetected. This 

result indicates that a pool of immature vesicles may not be detected with the VISFD 

segmentation protocol in the analysis described below. We also evaluated the need for the 

relaxation step in model generation, when these models are used to simulate soft X-ray 

tomograms, and as seen in the graph in Figure 2, unrelaxed the full models and unrelaxed 

models show very similar radial profiles. In the following larger study, a quick optimization was 

performed to ensure that all lumen proteins are inside the membrane, but a full relaxation was 

not performed. 

 

We then estimated the size and insulin content of all visible vesicles in an experimental whole-

cell tomogram (cell 766_5, Figure 3A). We segmented the experimental volume with VISFD, 

resulting in 1136 features interpreted to be vesicles (Figure 3E). We generated a library of 3456 

models to sample potential variations in vesicle and cytoplasmic properties (four hours of 

computation). Sixteen vesicle diameters were sampled from 130 nm to 473 nm. For each 

vesicle size, six different insulin crystal sizes were sampled and the number of soluble and 

membrane proteins was scaled based on the number of insulin molecules in the crystal. Six 
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steps of transition between mature and immature vesicles were generated by partitioning this 

amount of insulin as mature insulin in a crystal, proinsulin in immature vesicles, and cleaved 

insulin monomer in the lumen in transitional forms. Six different concentrations of cytosolic 

proteins were also scanned from 0.06-0.2 g/ml. A quick relaxation of 150 iterations was applied 

on the gpu to force proteins (in particular, the highly extended granins) inside the vesicles. 

Finally, model LAC values were computed for each of these sample vesicles in a 636 nm 

bounding box (17*17*17 voxels with voxel size of 37.42 nm), then embedded in a surrounding 

volume of size 247*17*247 voxels (Figure 3BC). Each volume was projected and reconstructed 

ten times (37 hours of computation), used to calculate an average 2D radial profile, and an R2 

score between the experimental profile and the simulated profile was calculated, yielding a 

“confidence level” in the assignment. R2
 scores are calculated for six radial distance points to 

focus on the vesicle profile, and for 15 points to include information on the surrounding 

cytoplasmic LAC. The simulated profile with the maximum R2 score was selected for each of the 

1136 features in the experimental tomogram.  

 

We obtained an average R2 score of 0.94+/-0.1 across all 1136 experimental blobs, with 83% 

with a score > 0.93 and 68% with a score > 0.96. Looking at the steps of transition, 128 blobs 

are assigned as immature vesicles, 747 in transitional states, and 261 assigned as mature 

vesicles (Figure 3F). This predominance of immature and transitional forms is consistent with 

recent cryoelectron tomography studies, which found that the percentage of mature vesicles 

ranged from 12% to 32% depending on the location in the cell (Zhang et al. 2020). In addition, 

note that this analysis may be missing a pool of immature vesicles that are not visible in the soft 

X-ray tomographic experiment, as described above. Several examples are shown in detail in 

Figure 4. 
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OUTLOOK 

The convergence of experimental methodology and computational capability is putting whole-

cell structural modeling within reach. Using this methodology, it is becoming possible to interpret 

entire cellular tomograms with integrative molecular models. In Figure 3, an entire X-ray 

tomogram has been segmented to identify mature secretory vesicles, and models have been 

generated with crystal sizes that match the observed absorption of the vesicle. This model is a 

first step toward a quantitative mesoscale interpretation of this cell. For example, in cell 766_5 

from the PBCC, the observed features include a total of ~606,000,000 insulin monomers across 

the cell, with an average of 533,000 +/- 253,000 per vesicle, and with ~125,000,000 out of the 

total in crystal form. 

 

One of the goals of our work on the CellPACK suite is to create tools that will be widely usable, 

however these models are straining the current capabilities of consumer-level computational 

hardware and software. The CellPACK suite heavily leverages advances from the gaming 

community for use of gpu hardware, which underlies the instant packing algorithm used to 

generate initial models (Klein et al. 2018). For the relaxation/optimization steps, the size of 

these models required a move from the interactive methods of Flex to the traditional batch mode 

of LAMMPS. We thus developed an initial simplistic input for LAMMPS that will serve as the 

foundation for more advanced simulation of similar large systems. Finally, visualization before 

and after simulation is provided by cellVIEW (Muzic et al. 2015) within our cellPACK application 

built within Unity. Simulation can be cached and played back directly in our application. Final 

models are saved/exported in different resolution and file format (.bin, .pdb, .cif) to enable 

visualization with other molecular graphics software (e.g. OVITO, VMD, UCSF Chimera, Mol*). 

These files typically include coordinates for each type of protein along with transformation 

information for placing all of the instances of the protein into the overall model. However, as of 

today only Mol* (Sehnal et al. 2018) is capable of reading and visualizing the full all-atom model 
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(Figure 5) and this at a low frame rate using a coarse Gaussian surface representation of the 

molecules (for example, visit the GitHub site included below to see Mol* visualization of the 

mature and immature vesicles). Other molecular graphics tools were able to load coordinate 

files for each type of protein but currently failed to build the many instances of each protein to 

visualize the entire model. 

 

Of course, many challenges remain as we move forward in this mesoscale structural view of a 

cell. As is always the case with biology, there are numerous unique features for each of the 

compartments of the cell, and new methodologies will be needed, for example, to incorporate 

complex structural features like intrinsic disorder in nuclear pores, the cytoskeleton and its 

interactions with organelles, the dynamic endomembrane system and the proteins that manage 

it, and the many structural and functional states of chromatin. With all of this, structural 

mesoscale modeling will proceed with a combination of automated methods when possible, and 

manual attention when necessary.  

 

Availability 

Models and volumes for the mature and immature vesicles are available at 

https://github.com/ccsb-scripps/ISG. Links to Mol* visualizations are also available for mature and 

immature models at the GitHub site. 
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Figure 1. A) Integrative 3D model of a mature insulin secretory granule. One quadrant is clipped 

away to show the insulin crystal (turquoise). The long coiled-coil proteins in green are granins, 

and the lumen is dominated by many copies of the small beta-peptide left over from the 

maturation of insulin. (B) Structural proteomes used to build the models. Cytoplasmic proteins 

are at top in red and magenta, vesicle membrane-spanning and membrane-associated proteins 

are at center in orange and yellow-green, and vesicle lumen proteins are at bottom in blue-

green. 
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Figure 2. Simulation of X-ray tomograms. Mature and immature vesicles are shown in three 

states: the full model, a model without lipids, and a rough model generated without the 

relaxation step. The small insets are “phantoms”: voxelized representations of the simulated 

LAC for each vesicle. These phantoms are embedded in a large volume of cytoplasm and used 

to simulate tomograms that reflect the experimental imaging and processing, as shown below 

the models and phantoms. Radial density profiles for the six models are shown at bottom. 
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Figure 3. Interpretation of an experimental X-ray tomogram. (A) Volume rendering of a slice 

through the X-ray tomogram of cell 766_5 from the PBCC. Bright white vertical bands at the 

edges are the capillary used to hold the cell. (B) Idealized simulated absorption for this slice 

from vesicle models placed at features in the tomogram. (C) Simulated absorption of this slice 

mimicking the experimental imaging and processing. Horizontal bands are due to calculation of 

the volume in sections. (D) Manual segmentation from the PBCC showing mitochondria 

(yellow), nucleus (gray), endoplasmic reticulum (red), and vesicles (blue). (E) VISFD 

automatically segments blob-like features as spheres (blue). The manually-segmented nucleus 
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is included in gray for context. (F) Interpretation of the automated segmentation with idealized 

spherical vesicles, showing the predicted vesicle membrane radius and colored with mature 

vesicles in dark red, immature vesicles in white, and transitional forms in pastel shades. 

 

 

Figure 4. Interpretation of selected features in the experimental tomogram. Three vesicles are 

shown: (A) mature vesicle with radius 236 nm and crystal of 124 nm, and cytoplasmic LAC of 

0.34/µm, (B) transitional vesicle with radius 202 nm and crystal of 50 nm, and cytoplasmic LAC 

of 0.28/µm, and (C) immature vesicle with radius 236 nm and cytoplasmic concentration to give 

an average LAC of 0.25/µm. The vesicle models are shown at center and the match of 

experimental (blue curve) and simulated (orange curve) radial density profiles are shown at right 

with a central slice through the tomograms. 
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Figure 5. Idealized models of (left) mature and (right) immature vesicles viewed interactively in 

Mol* using a coarse Gaussian surface and colored by chain.  


