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Abstract

Models of insulin secretory vesicles from pancreatic beta cells have been created using the
CellPACK suite of tools to research, curate, construct, and visualize the current state of
knowledge. The model integrates experimental information from proteomics, structural biology,
cryoelectron microscopy, and X-ray tomography, and is used to generate models of mature and
immature vesicles. A new method was developed to generate a confidence score that
reconciles inconsistencies between three available proteomes using expert annotations of
cellular localization. The models are used to simulate soft X-ray tomograms, allowing
quantification of features that are observed in experimental tomograms, and in turn, allowing

interpretation of X-ray tomograms at the molecular level.
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INTRODUCTION

Structural modeling of entire cells is a new frontier actively being addressed by the structural
biology community. Given the magnitude and complexity of this challenge, it is essential to take
an integrative approach, bringing together data from multiple experimental modalities that
address multiple levels of temporal and spatial scale. Already, this approach has generated
detailed atomic models of complex enveloped viruses, entire bacterial cells, and cellular

organelles, as reviewed in: (Im et al. 2016; Feig and Sugita 2019; Goodsell et al. 2020).

A recent perspective (Singla et al. 2018) identified several characteristics that are needed for an
effective integrative mesoscale structural model. The model needs to be complete over multiple
levels of scale, from atomic details to overall ultrastructure. The model needs to couple a variety
of representations in order to integrate different modalities of structural, biochemical,
physiological, and bioinformatic knowledge. Also, as a key part of the process of integration, the
uncertainty of each parameter defining the model needs to be quantified and made accessible
in analysis and visualization of the model. Finally, the model must capture aspects of the

heterogeneity of the system, allowing it to be both descriptive and predictive.

As part of the Pancreatic Beta-Cell Consortium (PBCC, pbcconsortium.org), we are developing
methods to generate mesoscale models of functional regions of the pancreatic beta cell based
on diverse experimental data from the PBCC and the larger research community. As our first
proof of concept, we have chosen to model one of the defining characteristics of this cell, the
insulin secretory granule (ISG). This is a particularly amenable initial target, given the
abundance of available information, its manageable size and complexity, and its functional
connection to disease states of the cell. With this report, we present an entire pipeline from data

curation to model generation, and present potential applications that are facilitated by this



quantitative approach to mesoscale cellular biology. We also show preliminary work to simulate
soft X-ray tomograms of vesicles. Soft X-ray tomography is an attractive experimental technique
for imaging whole cells, since the experiment is performed in “near-native” conditions with no
fixatives or freezing (McDermott et al. 2009) and is being actively applied to pancreatic beta
cells in the PBCC (White et al. 2020; Loconte et al. 2022). We are exploring the use of
integrative modeling to provide molecule-level interpretation of features in these tomograms,

which typically have a resolution of 50-60 nm.

State of Knowledge for the Insulin Secretory Granule

Given its central role in the regulated delivery of insulin, there is abundant information available
for ISG structure and function. We relied on several excellent reviews to provide general
synthesis of current knowledge (Suckale and Solimena 2010; Germanos et al. 2021). In the
generally-accepted view, immature ISGs have a single membrane and are filled with proinsulin
and other proteins, which then mature under the action of several specific proteases. Insulin
then crystallizes into a single crystal that fills most of the interior. A complex interaction with the
cytoskeleton mediates storage and delivery of ISGs to the cell surface, and fusion results in
dissolution of the insulin crystal and release into the blood. In the current work, we are limiting

our modeling effort to just the ISG membrane and interior, in immature and mature forms.

However, there is still much uncertainty about basic information such as the ISG proteome
components, concentrations, and interactions, as described in more detail below. Several
proteomes are available that show discrepancies that must be reconciled. Even basic numbers
such as the number of insulin molecules per vesicle show wide ranges, for example, from 200
thousand (Suckale and Solimena 2010) to one million (Eliasson et al. 2008). Much of the work
presented in this paper is seeking to resolve this uncertainty to generate molecular models of

the entire organelle that are consistent with the current state of knowledge (Figure 1A).



In this work, we gathered, curated, and integrated current information and used it to build
idealized models of an ISG in cytoplasm. A manual literature search identified the 29 most
widely-reported ISG protein components. These 29 were then used to train a method for scoring
proteins from three proteomes, identifying 14 additional proteins that have evidence for
association with the ISG but were missed in the manual search. In addition, 13 proteins not
included in the proteomes, but with experimental data supporting localization in the ISG, were
identified by a manual literature search. Structures for these 56 proteins were identified or
modeled (Figure 1B), and were then used to build 3D models of idealized immature and mature
ISGs. Finally, X-ray tomograms were simulated from the models and used to classify features in

experimental tomograms of pancreatic beta cells.

METHODS

Confidence Scores for Proteomics Data

Results from three proteomes were reconciled using a simple scoring function that combines
the proteomics statistics and location annotations into a confidence value. In brief, high scores
are assigned to proteins found in multiple proteomes, that have annotations related to secretory
vesicles, and that interact with proteins that also have annotations related to secretory vesicles.
The set of 29 manually-curated proteins (Suppl. Table 1) were assigned as true positives, and
remaining proteins from the three proteomes were assigned as trial negatives. Then, for each

”

location annotation (loc = “nucleus”, “cytoplasm”, etc), a location score (LocScore(loc)) was

evaluated:

TPR(loc) = P(loc) / Prot true positive rate
P(loc) number of true positives with a particular location annotation
Piot total number of true positives



FPR(loc) = N(loc) / Niot false positive rate
N(loc) number of false positives with a particular location annotation
Niot total number of negatives

LocScore(loc)=[ TPR(loc) - FPR(loc) ]/ [ TPR(loc) + FPR(loc) ]

A similar score, IntLocScore(intloc), was calculated for the location of proteins that have been
annotated as interacting with the protein of interest. This is based on the assumption that
interacting proteins will be found in the same compartment. The confidence of a protein is

calculated by:

confidence = Nproteome/3. + Wioc * 2. LocScore(loc) + Wintoc* 2. IntLocScore(intloc)

where the sum is performed over all of the location annotations for the particular protein and

Noroteome IS the number of proteomes that include the protein.

A parameter sweep of the two weights was performed, yielding values of Wi,c=12. and Wintoc=1.
for the best ROC value over the entire data set. The entire set of proteins was then rescored
based on these weights, and the scores were used for ranking the set. Given the small size of
the set, cross-validation studies were not performed, so we expect that the resulting high scores

of the true positives will be due to bias from use as the training set.

Location annotations were found by programmatically querying UniProt (uniprot.org) with gene
names from each protein and rat taxid 10116 to get the UniProt entry with the highest
annotation score, and extract location annotations listed under “Keywords - Cellular

component”. We then programmatically queried the UniProt, StringDB, Biogrid, and Intact



databases to get a list of proteins that interact with the protein being evaluated, and extracted
location annotations for these in the same way. This process was repeated for human taxid
9096 and mouse taxid 10090. Annotations and fractions of positives and negatives for the

training set are included in Suppl. Table 2.

Protein Structures and Concentrations

To estimate relative concentrations within each proteomic study, “Mascot Protein Score” values
were used for proteome 1 (Brunner et al. 2007), “score” values from proteome 2 (Hickey et al.
2009), and “Intensity HiC12mC13” values for proteome 3 (Schvartz, Brunner, et al. 2012).
These values were divided by the length of the protein and then by the sum of all values to
create a “Normalized Spectral Abundance Factor” (NSAF) for each entry, which indicates
roughly the molar fraction for each protein detected in the sample. Each protein’s NSAF was
then multiplied by its molecular weight and normalized again to determine its mass fraction.
Proteins that were identified by manual curation but not observed in the proteomics studies
were assigned arbitrarily low concentration values. Finally, the total mass fraction of non-insulin
proteins was scaled to give a total mass fraction of 0.2, with insulin the crystal accounting for the

remaining 0.8 mass fraction (Hutton 1989).

Absolute copy numbers for proteins were calculated for a generic ISG with a crystal diameter of
200 nm (Zhang et al. 2020). The insulin crystal is based on entry 1trz from the RCSB Protein
Data Bank (rcsb.org). This crystal form has insulin hexamers packed into a rhombohedral H3
lattice, the most common space group observed for hexameric insulin structure determinations.
A value of 1.22 g/cm? for proteins was used (Andersson and Hovméller 1998), with the
asymmetric unit molecular weight obtained from the RCSB PDB structure summary page,
yielding a volume occupancy of 0.686. The second most prevalent space group is a P2 lattice

as exemplified with PDB ID 1ev6, which yields a volume occupancy of 0.584. Manual



exceptions were made for several proteins: IAPP abundance was assigned 1% of insulin
abundance (Caillon et al. 2016); the copy number of vATPase was calculated by averaging
copy numbers of the subunits with appropriate stoichiometry; and the experimental copy
number for carboxypeptidase E from (Schvartz, Brunner, et al. 2012) was omitted from the copy

number calculation because it is ~100 times greater than the other two proteomes.

An initial set of structures was gathered automatically from online databases using
csvcomplete10.0.9

(https://qgithub.com/brettbarbaro/csvcomplete/blob/master/csvcomplete10.0.9.py). The UniProt

RESTful APl was used to retrieve sequences, and N-terminal signal sequences annotated in
UniProt were automatically removed. The resulting sequences were then used to query the
RCSB PDB BLAST-based RESTful API and return the top 10 structure matches in the PDB
database. Subsequent manual curation was required in several cases. Multiple files were
needed to model cytoplasmic and lumen domains of Syt5, Pam, Atp6ap, and Epha, and
transmembrane segments were taken from integrin (PDB ID 2k1a). Similarly, files representing
cytoplasmic and lumen domains of Ptprn and Ptprn2 were combined with transmembrane
segments from receptor tyrosine kinase ErB1 (PDB ID 2m0b). All of the Vamps were modeled
with Vamp-2, as PDB ID 2kog includes the entire protein in a lipid-bound environment. Granins
were treated as coiled-coils based on biophysical studies of chromogranin-A (Mosley et al.
2007). Information was difficult to find for several proteins, resulting in poor or fragmentary

structures for Nucb1, Nucb2, Dnajc2, Stc1, and Nptx1.

As we were completing this project and drafting this manuscript, structures generated by
AlphaFold2 (Jumper et al. 2021) became readily available through UniProt. We reevaluated the
entire structural proteome to determine if these predicted structures added value. In the most

challenging cases, such as the granins, AlphaFold2 provided structures that are largely



unfolded and of low confidence. Predicted structures of Nucb1, Nucb2, Dnajc2, Stc1, and Nptx1
all showed a well-folded core similar to the existing homologous structures found by the
methods above, flanked by long disordered regions of low confidence. These low confidence
regions could reflect intrinsic disorder in these structures or deficiencies in the AlphaFold2
method due to, for example, unmodeled oligomerization. Ultimately, we chose to use one
structure from AlphaFold2, for CD36, which showed a well-folded domain and two membrane-
spanning helices, all consistent with UniProt annotations and existing partial structures. We
envision that AlphaFold2 will become a more integral part of the structural pipeline in future, as
methods are developed to create credible models that incorporate oligomerization, definition of

membrane-spanning regions, and intrinsic disorder.

The cytoplasm was modeled using 50 cytoplasmic proteins with highest abundance in a recent
proteomic study (Beck et al. 2011) (Suppl. Table 3). Relative abundances of these proteins

were normalized to a total concentration of 0.2g/ml (Luby-Phelps 1999).

Model Generation

Models were generated using a modified version of our instant distribution software (Klein et al.
2018), based on cellPACK (Johnson et al. 2015), similarly to the method used for building a full
model of Mycoplasma genitalium cell (Maritan et al. 2022). During the packing process, a
reduced representation of each protein is used, comprised of a list of representative beads or
spheres selected using K-means clustering manually tuned to give a good ratio of number of
beads to coverage of the entire protein. This manual tuning is particularly important for proteins
with high aspect ratios, and is facilitated by the use of the web-based curation tool Mesoscope
(Autin et al. 2020). The beads are used to (i) estimate the space occupied by each protein in a

master grid and (ii) relax overlapping proteins.



Molecules are distributed by a parallel algorithm that partitions the available space on a grid,
places molecules, then performs a local relaxation to resolve conflicts. However, the insulin
granule can consist of up to 2 million beads, so local relaxation couldn’t be applied due to
limitations in the NVIDIA Flex library to ~1 million beads. Thus, we exported and relaxed the
model using LAMMPS (Thompson et al. 2022) through Langevin rigid body dynamics. A custom
approach based on cellPAINT (Gardner et al. 2018, 2021) is used for the membrane proteins.
Each membrane protein is augmented with two triads of beads on either side of the membrane
that constrain the protein within the membrane during the simulation. All bead interactions used

a soft potential (https://docs.lammps.org/pair_soft.html).

The ultrastructure of the vesicle and boundary of the insulin crystal are defined as primitive
signed distance fields (e.g. soft Boolean operation of spheres) or computed signed distance
fields from a user-defined polygonal mesh (e.g. obtained from segmentation). In the current
work, we used a spherical boundary for the crystal, and insulin was placed procedurally using

the rhombohedral H3 lattice of PDB ID 1trz.

The instant packing method also includes a method for distributing lipids, using an approach
similar to LipidWrapper (Durrant and Amaro 2014). The vesicle membrane is represented by a
spherical signed distance field, polygonized with a dual contour algorithm. The resulting
triangulated surface is then tiled using small patches of lipids cookie-cut from equilibrated flat
lipid bilayers. The operation is run in parallel on the gpu for each triangle giving interactive

performance.

Segmentation of X-ray Tomograms

X-ray tomograms were obtained from the PBCC website (pbcconsortium.isrd.isi.edu). These

datasets have a voxel width of 37.42 nm. Segmentation files were also obtained from the PBCC
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that define the location of the cell boundary, nucleus, endoplasmic reticulum, and ISG locations.

Blob detection was performed with VISFD (github.com/jewettaij/visfd/releases/tag/v0.19.10) in

several steps. First, the position and orientation of the glass tube was identified automatically,
and a mask created to omit areas within 7-10 voxels of the tube from blob detection and
visualization. A mask was created to identify cytoplasmic regions inside the cell, using the PBC
manual segmentation of the cell membrane and nucleus. Additional manual curation removed
small features that were disconnected from the bulk of the cell. Blob detection was then
performed on the maps, and blobs that overlap and blobs with weak scores were discarded.
The threshold for discarding weak blobs was obtained by tuning the threshold for each map
individually, choosing threshold values that correctly classify a test set of 30 manually-chosen
positives and 30 manually-chosen negative decoys. Finally, analysis of blobs was performed,
including a radial density profile centered on the brightest pixel in the blob, distance from the cell

surface, and classification by brightness.

Simulation of Absorption of X-rays

From (Ekman et al. 2018), image formation in soft X-ray tomography can be approximated as:

I
—In = ~ App,

0

im

where An is a linear projection matrix incorporating the 3D point spread function (PSF) of the
system and p is a discretized vector representation of the Linear Attenuation Coefficient (LAC)
that is calculated from the atomistic model of the vesicle. Values of the Mass Attenuation
Coefficient (MAC, p/p where p is the density) at a given photon energy (here 517 eV) are
typically available for different materials (Henke et al. 1993)
(henke.Ibl.gov/optical_constants/atten2.html), and may be combined using the mixture rule,

which is a mass-fraction-weighted average of the MAC of each component:
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(U/p)voxel = Wprotein (U/p)protein + Wlipid (IJ/p)Iipid + Wwater (IJ/p)water

where Worotein, Wiipia, and Wuater are the mass fraction of the component materials. The voxel
protein LAC pvoxel is then calculated as the mass attenuation coefficient in the voxel (L/p)voxel

times the protein density in the voxel pvoxel (protein weight / voxel volume):

Mvoxel = (U/p)voxel * Pvoxel

MAC values were calculated explicitly using the atomic composition of proteins in each voxel of
the model, again using the mixture rule and the weight fraction of MAC values for each of the
atom types. Lipids were based on DOPC (C4oHsoNOgP), with MAC value of 9264.835/cm and a
volume of 1150.0 A® per lipid (Greenwood et al. 2006), and a value of 1114.279/cm was used

for water.

To generate the final images, the initial calculated volume is embedded in a larger volume the
size of the experimental data. The simulated reconstructions were obtained similar to the
experimental ones: the projection images were distorted by Poisson noise corresponding to the
shot noise of the experiment, and random translations were added to the tomograms to mimic
sub-pixel alignment errors of the image registration (Chen et al. 2022). The reconstruction was

repeated 10 times for each volume and averaged for calculation of the radial profiles.

RESULTS AND DISCUSSION
Combining Proteomic and Annotation Information
We manually curated a proteome based on the current state of knowledge for the system. This

proteome is based largely on a comprehensive review (Suckale and Solimena 2010), followed
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by literature searching to find supporting reports on each molecule. This includes 29 familiar
proteins, including two forms of insulin, granins, enzymes involved in maturation, regulatory
molecules, and a variety of membrane-bound transporters and fusion-related proteins. These 29

proteins are included in Suppl. Table 1 with citations for the studies localizing them to the ISG.

Manual curation, however, is intrinsically limited by the vagaries of literature search methods
and user bias, so we developed a method to identify bona fide ISG proteins from proteomics
data, removing false positives from ISG isolation impurities. Three proteomes were used in the
current study, with a total of 270 proteins, of which eight are observed in all three (two forms of
insulin; converting enzymes Pcsk2 and Cpe; granins ChgA, ChgB and Scg2; nucleobindin-2).
The studies used different protocols for isolation of ISG: proteome 1 used a gradient (Brunner et
al. 2007), proteome 2 added an affinity purification step (Hickey et al. 2009), and proteome 3
used a 3-step gradient purification along with Stable Isotope Labeling with Amino acids in Cell
culture (SILAC) (Schvartz, Brunner, et al. 2012). Proteome 3 identified 668 proteins, but we
included the 140 that were considered “specific to ISGs”, as done in a meta-analysis of all three

studies (Crévecoeur et al. 2015).

The simplest approach to reconcile these differences would be to use the number of proteomic
observations as a weighting factor. However, this has potential problems. For example, the
converting factor Pcsk1, a necessary component of the ISG, showed up in only one study, but
several subunits of mitochondrial ATP synthase, which is most likely a mitochondrial impurity,
showed up in two. We developed a ROC-type scoring method that combines the number of
proteomic observations and expert annotations of the cellular location. The study starts with the
full set of proteins from the three proteomes, and assigns our manually-curated set as true
positives and the rest as trial negatives. We then evaluate each location annotation for its ability

to distinguish between the two. Annotations like “cytoplasmic vesicle” have power to
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discriminate true positives, and “mitochondrion” and “nucleus” are found for trial negatives (see
Suppl. Table 2). A simple scoring function was developed to quantify this discrimination. Finally,
an overall confidence score was developed that combines these location annotation scores with

the number of times each protein is observed in a proteome, as described in Methods.

A manual literature search was then performed for all proteins with confidence > 0.333, as well
as all proteins present in two or more proteomes. As described below, in some cases evidence
for presence in the ISG was found, in other cases evidence was found for presence in other

compartments of the cell, and a few were ambiguous.

VAMPs are necessary for the fusion of vesicles with the membrane. Vamp2, Vamp3 and Vamp8
were included in our curated set. Vamp2 and Vamp3 scored well, but Vamp8, which has been
immunolocalized to the ISG (Zhu et al. 2012), showed a mid-range score of 0.21, due to being
found in only one proteome and having lysosome and endosome localizations. Lamp2 also

showed an intermediate score (0.76), but we could find no evidence for its presence in the ISG.

Rabs and similar membrane-associated proteins play an essential role in regulation of the
vesicle life cycle. Rab37, Rap1a, and Rab3a were all included in the curated list, and showed
high to intermediate scores. Immunolocalization studies were found for Rph3al (Matsunaga et
al. 2016), Rab3c, and Rab3d (lezzi et al. 1999). Rab27a is connected to secretory vesicles in
general (Suckale and Solimena 2010), but no evidence was found for several Rab5 members,
Rab35, or Rhog. Rab1a, Rab2a, and several G-protein subunits were found in two proteomes
but received low scores because of localization, and we could not find evidence for their
presence in the ISG. Two additional proteins, Rac1 and Cdc42, were included based on the
literature search (Wang and Thurmond 2009), although they were not included in any of the

proteomes.
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Several proteins were not included in the original curated list, but strong evidence for their
inclusion was found in the subsequent literature search. Peptide-amidating enzyme PAM
(Garmendia et al. 2002), neurosecretory protein Vgf (Stephens et al. 2017), neuronalpentraxin-1
(Schvartz, Couté, et al. 2012), and stanniocalcin-1 (Zaidi et al. 2012) all received high to
intermediate scores. Conversely, several proteins were included in the original list, but scored
poorly. Two nucleobindins, which have been placed in the ISG by immunolocalization (Ramesh
et al. 2015), scored low due to nuclear and ER annotations, in spite of nucleobindin-2 being
found in all three proteomic studies. vATPase has been localized to the ISG (Sun-Wada et al.
2006), but most of the subunits scored poorly, due to their presence in a single proteome and a
variety of conflicting localizations. Macrophage migration inhibitory factor was found in only one

proteome, but has been immunolocalized to the ISG (Waeber et al. 1997).

Several proteins showed high scores, and evocative but non-conclusive evidence was found in
the literature search. Tmem163, a putative zinc transporter (Sharma et al. 2017), and Enpp2
(Gorelik et al. 2017) have connections to type 2 diabetes. Depalmatase Abhd17 (Won et al.
2018), Dnajc5 (Gorenberg and Chandra 2017), and Wnt ligands like Wif1 are involved in the
secretory process (Schinner et al. 2007). These may be candidates for immunolocalization

studies.

A variety of proteins were found in two of the proteomic studies, but appear to be impurities from
other compartments in the cells. These include lysosomal proteins alpha-glucosidase, septin-11,
and cathepsin D; cytoplasmic enzymes ATP-citrate synthase, fructose bisphosphate aldolase A,
and glyceraldehyde-3-phosphate dehydrogenase; a subunit of mitochondrial ATP synthase; and
tubulin and fibronectin. All showed low scores due to the localization annotations and were

culled from the list used for modeling.
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Models of the Insulin Secretory Granule

Idealized models of mature and immature vesicles were created with the final proteome of 56
proteins (Suppl. Table 1), an insulin crystal with diameter 200 nm (Zhang et al. 2020), and
vesicle diameter of 320 nm (Suckale and Solimena 2010). The initial model created with the
interactive method of CellPACKgpu roughly places molecules in the proper compartments, but
has a number of steric contacts, particularly with highly asymmetric molecules such as the
granins. Subsequent optimization with LAMMPS resolves these contacts to create the final
model. Relaxation required between 1 and 2 hours using 30 threads, followed by around ~30
minutes to recompute the position/rotation of the protein instance from the bead coordinates for
each frame of the simulation (CPU AMD Ryzen Threadripper 1950X 16-Core Processor, GPU
NVIDIA Quadro R8000). The final models reveal the ISG as being densely packed with soluble
proteins and with a protein-rich bounding membrane. The full model (idealized mature and
immature granules surrounded by cytoplasmic proteins) consists of 424384 individual proteins

represented by 2343538 beads of radius 17.0 A.

Interpreting Experimental Soft X-ray Tomograms

Figure 2 demonstrates use of this methodology to interpret experimental soft X-ray tomograms.
Tomograms of whole pancreatic beta cells show many easily-distinguishable features with high
LAC values. The ones with the highest LAC values are presumed to be lipid droplets, and the
remainder are insulin secretory vesicles. We address two questions that have been posed with

the experimental work.

First, there has been some question about the contribution of the membrane to the observed
features. We created models and simulated tomograms for vesicles with and without the

membrane (Figure 2) and calculated a 2D radial profile for all four volumes. These show that the
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membrane for these idealized vesicles accounts for 10-20% of the observed X-ray absorbance
in these features. For the full model with lipids, the projected mature blob peak value is
0.538/um for mature and 0.437/um for immature, and the surrounding cytoplasm has an

average value of 0.35/um.

Second, it has been noted that immature vesicles, which do not include the dense crystal of
insulin, may not show enough contrast to be observed in experimental soft X-ray tomograms. As
seen in Figure 2, immature vesicles are less visible in simulated tomograms. When we applied
our VISFD segmentation protocol to these simulated tomograms, only the mature vesicles were
detected with a contour diameter of 184 nm, while the immature vesicles were undetected. This
result indicates that a pool of immature vesicles may not be detected with the VISFD
segmentation protocol in the analysis described below. We also evaluated the need for the
relaxation step in model generation, when these models are used to simulate soft X-ray
tomograms, and as seen in the graph in Figure 2, unrelaxed the full models and unrelaxed
models show very similar radial profiles. In the following larger study, a quick optimization was
performed to ensure that all lumen proteins are inside the membrane, but a full relaxation was

not performed.

We then estimated the size and insulin content of all visible vesicles in an experimental whole-
cell tomogram (cell 766_5, Figure 3A). We segmented the experimental volume with VISFD,
resulting in 1136 features interpreted to be vesicles (Figure 3E). We generated a library of 3456
models to sample potential variations in vesicle and cytoplasmic properties (four hours of
computation). Sixteen vesicle diameters were sampled from 130 nm to 473 nm. For each
vesicle size, six different insulin crystal sizes were sampled and the number of soluble and

membrane proteins was scaled based on the number of insulin molecules in the crystal. Six
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steps of transition between mature and immature vesicles were generated by partitioning this
amount of insulin as mature insulin in a crystal, proinsulin in immature vesicles, and cleaved
insulin monomer in the lumen in transitional forms. Six different concentrations of cytosolic
proteins were also scanned from 0.06-0.2 g/ml. A quick relaxation of 150 iterations was applied
on the gpu to force proteins (in particular, the highly extended granins) inside the vesicles.
Finally, model LAC values were computed for each of these sample vesicles in a 636 nm
bounding box (17*17*17 voxels with voxel size of 37.42 nm), then embedded in a surrounding
volume of size 247*17*247 voxels (Figure 3BC). Each volume was projected and reconstructed
ten times (37 hours of computation), used to calculate an average 2D radial profile, and an R®
score between the experimental profile and the simulated profile was calculated, yielding a
“confidence level” in the assignment. R? scores are calculated for six radial distance points to
focus on the vesicle profile, and for 15 points to include information on the surrounding
cytoplasmic LAC. The simulated profile with the maximum R? score was selected for each of the

1136 features in the experimental tomogram.

We obtained an average R?score of 0.94+/-0.1 across all 1136 experimental blobs, with 83%
with a score > 0.93 and 68% with a score > 0.96. Looking at the steps of transition, 128 blobs
are assigned as immature vesicles, 747 in transitional states, and 261 assigned as mature
vesicles (Figure 3F). This predominance of immature and transitional forms is consistent with
recent cryoelectron tomography studies, which found that the percentage of mature vesicles
ranged from 12% to 32% depending on the location in the cell (Zhang et al. 2020). In addition,
note that this analysis may be missing a pool of immature vesicles that are not visible in the soft
X-ray tomographic experiment, as described above. Several examples are shown in detail in

Figure 4.
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OUTLOOK

The convergence of experimental methodology and computational capability is putting whole-
cell structural modeling within reach. Using this methodology, it is becoming possible to interpret
entire cellular tomograms with integrative molecular models. In Figure 3, an entire X-ray
tomogram has been segmented to identify mature secretory vesicles, and models have been
generated with crystal sizes that match the observed absorption of the vesicle. This model is a
first step toward a quantitative mesoscale interpretation of this cell. For example, in cell 766 5
from the PBCC, the observed features include a total of ~606,000,000 insulin monomers across
the cell, with an average of 533,000 +/- 253,000 per vesicle, and with ~125,000,000 out of the

total in crystal form.

One of the goals of our work on the CellPACK suite is to create tools that will be widely usable,
however these models are straining the current capabilities of consumer-level computational
hardware and software. The CellPACK suite heavily leverages advances from the gaming
community for use of gpu hardware, which underlies the instant packing algorithm used to
generate initial models (Klein et al. 2018). For the relaxation/optimization steps, the size of
these models required a move from the interactive methods of Flex to the traditional batch mode
of LAMMPS. We thus developed an initial simplistic input for LAMMPS that will serve as the
foundation for more advanced simulation of similar large systems. Finally, visualization before
and after simulation is provided by cellVIEW (Muzic et al. 2015) within our cellPACK application
built within Unity. Simulation can be cached and played back directly in our application. Final
models are saved/exported in different resolution and file format (.bin, .pdb, .cif) to enable
visualization with other molecular graphics software (e.g. OVITO, VMD, UCSF Chimera, Mol*).
These files typically include coordinates for each type of protein along with transformation
information for placing all of the instances of the protein into the overall model. However, as of

today only Mol* (Sehnal et al. 2018) is capable of reading and visualizing the full all-atom model
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(Figure 5) and this at a low frame rate using a coarse Gaussian surface representation of the
molecules (for example, visit the GitHub site included below to see Mol* visualization of the
mature and immature vesicles). Other molecular graphics tools were able to load coordinate
files for each type of protein but currently failed to build the many instances of each protein to

visualize the entire model.

Of course, many challenges remain as we move forward in this mesoscale structural view of a
cell. As is always the case with biology, there are numerous unique features for each of the
compartments of the cell, and new methodologies will be needed, for example, to incorporate
complex structural features like intrinsic disorder in nuclear pores, the cytoskeleton and its
interactions with organelles, the dynamic endomembrane system and the proteins that manage
it, and the many structural and functional states of chromatin. With all of this, structural
mesoscale modeling will proceed with a combination of automated methods when possible, and

manual attention when necessary.

Availability
Models and volumes for the mature and immature vesicles are available at

https://qgithub.com/ccsb-scripps/ISG. Links to Mol* visualizations are also available for mature and

immature models at the GitHub site.
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Figure 1. A) Integrative 3D model of a mature insulin secretory granule. One quadrant is clipped
away to show the insulin crystal (turquoise). The long coiled-coil proteins in green are granins,
and the lumen is dominated by many copies of the small beta-peptide left over from the
maturation of insulin. (B) Structural proteomes used to build the models. Cytoplasmic proteins
are at top in red and magenta, vesicle membrane-spanning and membrane-associated proteins
are at center in orange and yellow-green, and vesicle lumen proteins are at bottom in blue-

green.
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Figure 2. Simulation of X-ray tomograms. Mature and immature vesicles are shown in three
states: the full model, a model without lipids, and a rough model generated without the
relaxation step. The small insets are “phantoms”: voxelized representations of the simulated
LAC for each vesicle. These phantoms are embedded in a large volume of cytoplasm and used
to simulate tomograms that reflect the experimental imaging and processing, as shown below

the models and phantoms. Radial density profiles for the six models are shown at bottom.
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Figure 3. Interpretation of an experimental X-ray tomogram. (A) Volume rendering of a slice
through the X-ray tomogram of cell 766_5 from the PBCC. Bright white vertical bands at the
edges are the capillary used to hold the cell. (B) Idealized simulated absorption for this slice
from vesicle models placed at features in the tomogram. (C) Simulated absorption of this slice
mimicking the experimental imaging and processing. Horizontal bands are due to calculation of
the volume in sections. (D) Manual segmentation from the PBCC showing mitochondria
(yellow), nucleus (gray), endoplasmic reticulum (red), and vesicles (blue). (E) VISFD

automatically segments blob-like features as spheres (blue). The manually-segmented nucleus
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is included in gray for context. (F) Interpretation of the automated segmentation with idealized

spherical vesicles, showing the predicted vesicle membrane radius and colored with mature

vesicles in dark red, immature vesicles in white, and transitional forms in pastel shades.
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Figure 4. Interpretation of selected features in the experimental tomogram. Three vesicles are

shown: (A) mature vesicle with radius 236 nm and crystal of 124 nm, and cytoplasmic LAC of

0.34/um, (B) transitional vesicle with radius 202 nm and crystal of 50 nm, and cytoplasmic LAC

of 0.28/um, and (C) immature vesicle with radius 236 nm and cytoplasmic concentration to give

an average LAC of 0.25/um. The vesicle models are shown at center and the match of

experimental (blue curve) and simulated (orange curve) radial density profiles are shown at right

with a central slice through the tomograms.
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Figure 5. |dealized models of (left) mature and (right) immature vesicles viewed interactively in

Mol* using a coarse Gaussian surface and colored by chain.
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