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Abstract—User privacy can be compromised by matching user
data traces to records of their previous behavior. The matching of
the statistical characteristics of traces to prior user behavior has
been widely studied. However, an adversary can also identify a
user deterministically by searching data traces for a pattern that
is unique to that user. Our goal is to thwart such an adversary
by applying small artificial distortions to data traces such that
each potentially identifying pattern is shared by a large number
of users. Importantly, in contrast to statistical approaches, we
develop data-independent algorithms that require no assumptions
on the model by which the traces are generated. By relating the
problem to a set of combinatorial questions on sequence construc-
tion, we are able to provide provable guarantees for our proposed
constructions. We also introduce data-dependent approaches for
the same problem. The proposed obfuscation methods are eval-
uated on synthetic data traces and on the Reality Mining Data
set to demonstrate the performance of the proposed algorithms
relative to alternatives.

Index Terms—Anonymization, information-theoretic privacy,
Internet of Things (IoT), obfuscation, privacy-preserving mech-
anism (PPM), statistical matching, superstring.

I. INTRODUCTION

HE PROMINENCE of the Internet of Things (IoT)

has raised security and privacy concerns. The problem
considered here addresses several important scenarios: fin-
gerprinting webpages visited by users through anonymous
communication systems [2], [3], linking communicating par-
ties on messaging applications [4], and inferring the activities
of the users of IoT devices [5], [6]. While the setting is general,
we motivate the problem from the consideration of user-data
driven (UDD) services in IoT applications: data submitted by
users is analyzed to improve service in applications, such as
health care, smart homes, and connected vehicles. But privacy
and security threats are a major obstacle to the wide adoption
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of IoT applications [7], [8], [9], [10], [11]. Often anonymiza-
tion and obfuscation mechanisms are proposed to improve
privacy at the cost of user utility. Anonymization techniques
frequently change the pseudonym of users [2], [12], [13], [14],
[15], [16], whereas obfuscation techniques add noise to users’
data samples [17], [18], [19], [20], [21], [22], [23].

Privacy can be compromised by linking the characteris-
tics of a target sequence of activities to previously observed
user behavior. To provide privacy guarantees in the pres-
ence of such potential sequence matching, a stochastic model
for the users’ data (e.g., Markov chains) has been generally
assumed [24], [25], [26], [27], [28], [29], and privacy attacks
that match the statistical characteristics of the target sequence
to those of past sequences of the user are considered. These
previous approaches have two limitations: 1) many privacy
attacks are based on simple “pattern matching” for identifica-
tion [14], classification [30], [31], or prediction [32], where
the adversary (algorithm) looks (deterministically) for a spe-
cific ordered sequence of values in the user’s data and 2) as
privacy-protection mechanism (PPM) designers, we may not
know the underlying statistical model for users’ data. In par-
ticular, Takbiri ef al. [22] have shown that modeling errors can
destroy privacy guarantees.

We consider the following important question: Can we
thwart privacy attacks that de-anonymize users by finding spe-
cific identifying patterns in their data, even if we do not know
what patterns the adversary might be exploiting, and can we do
so without assuming a certain model (or collection of models)
for users’ data? Our privacy metric and the resulting obfusca-
tion approach are based on the following idea: noise should be
added in a way that the obfuscated user data sequences are
likely to have a large number of common patterns. This means
that for any user and for any potential pattern that the adver-
sary might obtain for that user, there will be a large number
of other users with the same data pattern in their obfuscated
sequences. By focusing on this common type of privacy attack
(pattern matching), the PPM is able to eliminate the need for
making specific assumptions about the users’ data model.

To achieve privacy guarantees, we first introduce a data-
independent obfuscation (DIO) approach, which means that
sequence obfuscation can be performed without knowledge of
the actual data values in a user’s sequence. A DIO mecha-
nism can be even deployed on the traffic of oblivious users,
e.g., it can be run on an IoT gateway/router to apply obfusca-
tions on transit IoT traffic. Such data independence would be
of value in various applications where the upcoming events
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are not known a priori, for instance in website fingerprint-
ing [2], [3] and flow correlation [33] applications where
obfuscations need to be applied on live (nonbuffered) network
packets. Our approach relies on the concept of superstrings,
which contain every possible pattern of length less than or
equal to the pattern length / (repeated symbols are allowed
in each contiguous substring). This in turn happens to be
related to a rich area in combinatorics [34], [35], [36], [37].
Since the DIO approach does not take advantage of the data
values which appear in users’ previous obfuscated sequence,
its performance (fraction of users having the same pattern)
would be largely decided by the obfuscation sequence noise.
After introducing and characterizing our DIO approach, we
introduce data-dependent obfuscation (DDO) approaches for
comparison; data-dependent approaches are able to look at
the values in the users’ data sequences and base their obfus-
cation on such information. A DDO mechanism should be
used in scenarios where the data generator (e.g., IoT devices,
or users) are helping with the application of the obfuscation
mechanism (i.e., by integrating the obfuscation software into
their system). Such data dependence would be possible in
applications where the whole vector of user data is known
to the obfuscation party at the obfuscation time, for instance
image processing applications [38], [39], [40]. The DDO tech-
niques are able to utilize the statistics regarding patterns in
the previous obfuscated sequence, which means they could
potentially have better performance than the data-independent
approach, as illustrated in numerical results of Section VIIIL
However, the DDO requires much more information than
the data-independent approaches and hence has more time
complexity overhead, as illustrated in complexity analysis in
Section VIL

But designing such defenses to thwart pattern matching
attacks is a challenging problem: we do not usually know
what identifying patterns will be appearing in users’ data
sequences, hence motivating the challenging goal of provid-
ing a systematic defense mechanism which is able to ensure
that all of the patterns appear in a large number of users’ data
sequences. As will be observed from our analysis, the mathe-
matical modeling of the proposed algorithm and its achievable
privacy performance is also a challenging task.

The contributions of our paper are listed.

1) We propose a formal framework for defending against
pattern matching attacks when there is no statistical
model for the user data (Section III).

2) We present a DIO approach based on superstrings and
by lower bounding its performance for two different
types of superstrings, prove that it yields a nonzero
fraction of user sequences that contain a potentially
identifying pattern (Section IV).

3) We develop DDO approaches for our pattern matching
framework (Section VI).

4) We validate the developed approaches and state-of-the-
art alternatives on both synthetic data and the Reality
Mining data set to demonstrate their utility and compare
their performance (Section VIII).

Finally, we present the conclusions that can be drawn from

our study in Section IX.
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II. RELATED WORK

IoT devices provide important services but they have
multiple potential privacy issues: 1) enabling unauthorized
access and misuse of personal information [10], [41]; 2) facil-
itating attacks on other systems [7], [8]; and 3) creating
personal privacy and safety problems [42], [43], [44].

In recent years, anonymization techniques have been stud-
ied, which conceal the mapping between users’ identity and
data by periodically changing the mapping to prevent statisti-
cal inference attacks. The k-anonymity protection approach
is proposed in [45] and [46], which guarantees that the
information for any person contained in the released version
of the data cannot be distinguished from at least kK — 1 indi-
viduals. In [47], [48], and [49], k-anonymity is adopted for
enhancing the privacy of moving objects. However, finding
optimal k-anonymization (by generalization) is NP-hard and
those methods’ performances are affected by their prior knowl-
edge about users’ data sequences; moreover, few work focuses
on protecting privacy of objects which could be potentially
identified by adversaries based on their moving pattern (or
subsequence) as their quasi-identifier (QID). Besides, there
is little work which systematically designs defense mecha-
nisms against pattern matching attacks and mathematically
models the obfuscation process and its achievable provable
privacy. In our work, we propose privacy-protecting algo-
rithms for preventing users’ profiles being identified by linking
their identifying patterns. We provide an obfuscation solution
(data-independent) which is able to create plenty of unique
patterns for a large number of users without sacrificing sig-
nificant utility. We categorize the relevant existing works for
privacy-protecting mechanisms into the following types, which
might potentially reduce the risk of being identified by pat-
tern matching: 1) generalization [45], [50], [51], [52], [53],
[54]; 2) subsampling [55], [56], [57], [58]; and 3) obfusca-
tion [22], [59], [60], [61]. The generalization-based method
prevents data sequences being identified by reducing the res-
olution at which data is reported. For instance, ZIP codes
can be generalized by dropping the least significant (right-
most) digit at each generalization step [45], [50], [51]. Due to
the degrading of the data point resolution, the generalization
method can potentially increase the probability that users share
a given potentially identifying sequence. The data subsampling
technique, which reduces the sampling frequency, might poten-
tially lower the identification risks by avoiding the presence
of identifying subsets of the data points [55], [56], [57], [58].
Obfuscation techniques increase data privacy by adding noises
to the data sequences, such as uniform noise [22], [60].

Anonymization is often insufficient because an adver-
sary can track users’ identities by using users’ trajectory
information [12], [14] or specific patterns [15], [62], [63].
Privacy preservation could be challenged by de-anonymization
attacks if some sensitive information is known by an adver-
sary [13], [64], [65]. Hence, obfuscation techniques pro-
tect users’ privacy by introducing perturbations into users’
data sequences to decrease their accuracy [59]. Gruteser
and Grunwald [18] proposed an adaptive algorithm which
adjusts the resolution of location information along spatial
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Fig. 1. Applying obfuscation and anonymization techniques to the users’
data points.

and temporal dimensions. In [19], a comprehensive solution
aimed at preserving location privacy of individuals through
artificial perturbations of location information is presented.
The work of [20] provides efficient distributed protocols for
generating random noise to provide security against mali-
cious participants. In [21], a randomized response method is
proposed which allows interviewees to maintain privacy while
increasing cooperation.

Data protection mechanisms might limit the utility when
data also needs to be shared with an application or the
provider to achieve some utility [9] or a quality of service con-
straint [12]. Theoretical analyses of the privacy-utility tradeoff
(PUT) are provided in [11] and [17]. A key concept of rele-
vance is proposed which strikes a balance between the need
of service providers, requiring a certain level of location accu-
racy, and the need of users, asking to minimize the disclosure
of personal location information [19]. Takbiri ef al. [22], [23]
derived the theoretical bounds on the privacy versus utility
of users when an adversary is trying to perform statistical
analyses on time series to match the series to user identity.

Pattern matching problems have attracted researchers in
recent years, in particular fast pattern matching [62], [63],
database search [66], [67], [68], secure pattern match-
ing [69], [70], [71], and identification [1], [14], [30], [72]
and characterization [73], [74], [75], [76] by using patterns
or subsequences.

IT1I. SYSTEM MODEL, DEFINITIONS, AND METRICS

Consider a system with n users whose identification we seek
to protect. Let X, (k) denote the data of user u at time k. We
assume there are r > 2 possible values for each of the users’
data points in a finite size set R = {0,1,...,r — 1}. Let X,,
be the m x 1 vector containing the data points of user u, and
X be the m x n matrix with the uth column equal to X,

X, = [Xu(1), X (2), ..., X", X =[X1,Xa, ..., X,l.

As shown in Fig. 1, in order to achieve privacy for users, both
anonymization and obfuscation techniques are employed. In
Fig. 1, Z denotes the reported data of the users after applying
the obfuscation, and Y denotes the reported data after apply-
ing the obfuscation and the anonymization, where, with Z, (k)
denoting the obfuscated data of user # at time k and Y,(k)
denoting the obfuscated and anonymized data of user u at
time k, respectively, Z and Y are defined analogously to X.
Next, we provide a formal definition of a patfern. As an
example, a potential pattern could be the sequence of loca-
tions that the user normally visits in a particular order: their
office, the gym, a child’s school. The visited locations might
not necessarily be contiguous in the sequence, but they are
close to each other in time. Hence, we impose two conditions
on a patfern: first, the elements of the pattern sequence must

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 23, 1 DECEMBER 2022

be present in order. Second, consecutive elements of the pat-
tern sequence must appear within distance less than or equal
to h, where the distance between two elements is defined as
the difference between the indices of those elements (h > 1).
The parameter & could have value one for the most restricted
case: the elements of the pattern sequence must appear con-
secutively in users’ sequences. And, A could be infinity for
the unconstrained case: applications which do not consider
distance for detecting a pattern, e.g., traffic analysis.

Definition 1: A pattern is a sequence Q = q(l)q(z) ‘e q(l),
where ¢ € {0,1,...,r— 1) forall i € {1,2,...,1}. A user
u is said to have the pattern Q if

1) The sequence Q is a subsequence (not necessarily of

consecutive elements) of user u’s sequence.
2) Foreachie {1,2,...,1—1}, ¢ and ¢#+1 appear in
user u’s sequence with distance less than or equal to A.

Obfuscation Mechanism: Given the model above and the
definition of e-privacy below, the objective is to design obfus-
cation schemes for the user data sequences that maximize
e-privacy with minimum sequence distortion without know-
ing what pattern the adversary might be exploiting or which
user the adversary might be targeting. For simplicity, we con-
sider the case of sparsely sampled data and thus leave to
future work the enforcement of consistency constraints on the
obfuscated user data sequences, such as a continuity constraint
requiring that adjacent sequence elements have similar values.
The design and characterization of obfuscation mechanisms is
the main topic of the succeeding sections.

Anonymization Mechanism: Anonymization is modeled by
a random permutation IT on the set of n users, U =
{1,2,...,n}. Each user u is anonymized by the pseudonym
function IT(u). Per above, Y is the anonymized version of Z;
thus

Y =Pem(Zi,Z,,..

=[Zn10) Zn-1 -+ Znoi o]
= [Y]1Y2! "-1YJ‘1]

'szﬂ; H)

where Perm(-; IT) is the permutation operation with permuta-
tion function IT. As a result, Y, = Zn_l(“) and Y = Zy-
In practice, our model would arise when anonymization takes
place every m samples. In such a case, it is sufficient to assume
sequences of length m and employ the anonymization once to
conceal the mapping between users and their data sequences.
We assume the anonymization process is in a uniform man-
ner [22], [60], [77], as in previous work, which means each
mapping of the profile anonymization for each user is equally
likely. This is optimal and readily achieved.

Adversary Model: The adversary has access to a sequence
of observations of length m for each user; in other
words, for each u € {1,2,...,n}, the adversary observes
Y (1), Yriw)(2), - - ., Y (m). We also assume the adver-
SE(IRX (has identified a pattern Q, of a specific user v,

qy qu), ...,q,(f), and is trying to identify thel?e%ence of a

user v by finding the sequence with pattern qf, gy, ..., q,(,n.
The adversary knows the obfuscation and the anonymiza-
tion mechanisms; however, they do not know the realization

of the random permutation (IT) and they do not know the
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Fig. 2.  Obfuscation of the data sequence of user u U based on an
(r, l)-superstring.

realization of any randomly generated elements of the obfus-
cation mechanism.

We define e-privacy as follows.

Definition 2: User v with data pattern qgl)qg), ceey q‘(f} has
e-privacy if for any other user u, the probability that user u
has pattern qf,l)qf,z), ceeh qu in their obfuscated data sequence
is at least €.

Loosely speaking, this implies that the adversary cannot
identify user v with probability better than (1/ne). If we
assume e is a constant independent of n, e-privacy is a strong
requirement for privacy—equivalent to ne-anonymity in the
setting of k-anonymity. In contrast, in perfect privacy [16],
[22], [23] it suffices that each user is confused with N®™ users,
where N® — 00 as n — oo. Hence, we will also consider
cases where € is a decreasing function of n so as to consider
less stringent privacy definitions.

IV. PRIVACY GUARANTEE FOR MODEL-FREE PPMs

We present constructions for model-free privacy-protection
mechanisms under the model of Section III and then charac-
terize their performance.

A. Constructions

For any user and for any potential pattern that the adversary
might obtain for that user, we want to ensure there will be a
large number of other users with the same data pattern in their
obfuscated data sequences. First, we define the concept of a
superstring and then our obfuscation mechanism.

Definition 3: A sequence is an (r, [)-superstring if it con-
tains all possible rl length-/ strings (repeated symbols allowed)
on a size-r alphabet-R as its contiguous substrings (cyclic
tail-to-head ligation not allowed).

We define f(r,l]) as the length of the shortest (r,[)-
superstring. A trivial upper bound is f(r,l) < Ir!, as Ir! is
the length of the (r, l)-superstring obtained by concatenating
all possible r substrings. As an example of a superstring,
the sequence 11221 is a (2, 2)-superstring because it con-
tains 11, 12, 21, and 22 as its contiguous subsequences; thus
f2,2)<5<8=1Ir.

Superstring-Based Obfuscation (SBU): Recall that Z, is
the m x 1 vector of the obfuscated version of user u’s data
sequence, and Z is the m x n matrix with uth column Z,

2, =12,(1),Z,Q), ... Zm)]", Z=1[21.2s....,Z,).

The basic procedure is shown in Fig. 2. For each
user, we independently and randomly generate an (r,/)-
superstring from the superstring solution set described
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below. We denote the generated (r,l)-superstring as a, =
{a,(1),a,(2), ..., au(Ls)}, where L, is the length of the gen-
erated superstring. The parameter popr is the probability that
we will change a given data sample. Thus, for each data point
of each user, we independently generate a Bernoulli random
variable W, (k) with parameter pope. As shown in Fig. 2, the
obfuscated version of the data sample of user u at time k can
then be written as follows:

Xu(k),
au(}.)s

if Wu(k) =0

Zulk) = I if Wu(k) =1

where j = Zi*:l W,(k'), and a,(j) is the jth element
of the (r,[)-superstring used for the obfuscation. If the
length of the generated (r, [)-superstring is not sufficient (i.e.,
> w—1 Wu(k') > L), we choose another superstring at random
to continue.

Independent and Identically Distributed (i.i.d.) Obfuscation:
In [22], [60], and [78] a uniform i.i.d. obfuscation mechanism
is used. For each user, an i.i.d. sequence of random variables
by, = {b,(1), b,(2), ..., } uniformly distributed on the alpha-
bet R=1{0,1,...,r— 1} is generated. These values are used
to obfuscate the sequence X, (k): for each data point of each
user, we independently generate a Bernoulli random variable
W, (k) with parameter p,¢. The obfuscated version of the data
sample of user « at time k can be written as follows:

Xu(k),
bu(j),

if Wu(k) =0

Zu(k) = I if W) =1

where j = Zi’:l W,(k). The i.i.d. obfuscation will
be a benchmark for comparison of our superstring-based
approaches.

B. Analysis

Without loss of generality, consider e-privacy for user 1 with
pattern sequence qgl)q?), .. .,q(l"). The pattern length / and
the maximum distance h between the appearance of pattern
elements are assumed to be known and treated as constants,
but we hasten to note that this defends against an attacker
employing a pattern with a length less than or equal to / and
maximum distance greater than or equal to .

We assume a worst-case scenario: user 1 has a pattern
unique to their data set that can be exploited for identifica-
tion. We start with the upper bound [r* for the length of an
(r, )-superstring. We will prove that such a superstring guar-
antees that at least a certain fraction € of users will have the
same pattern as user 1 after employing the obfuscation mech-
anism. Later, we will improve this result by introducing the
De Bruijn sequence to shorten the superstring.

Definition 4: Let B, be the event that the obfuscated
sequence Z, has user 1’s identifying pattern due to obfus-
cation by an (r, [)-superstring with length Ir' obtained by
concatenating all possible r substrings.

Theorem 1: The probability of B,, denoted by P(B,), is
lower bounded by a constant that does not depend on n as
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superstring for obfuscation, the pattern is equally likely to be
in any of the rl substrings of length /; hence

Fig. 3. Notation for the proof of Theorem 1 in the obfuscation of the trace of user u U.
P(B.)
R (| 2
- (l—(l—pobf)) E 1—exp _S_QGP
- r[ 2 obf |+
a=0
(D

where

[
s fora:(],],...,r!—l

Gpobt

Proof: The notation employed here within the procedure
of obfuscation for user u € U is shown in Fig. 3. Note that
our generated superstring can have more than one copy of
each pattern, but we pessimistically focus on one copy of our
desired pattern. We denote L, ; as the index of the first element
of the pattern of the superstring of user u, such that a, (L, 1) =

1 2

qﬁ )sﬂu(Lu‘l +1) = qﬁ ). ay(Lyy +1—1) = qin, and
correspondingly, M, , is the index of the data point Xu(Mf:)l)
that is obfuscated to qga (M;(:)l <m), fori=1,2,...,1

G=m—h(l-1),38

rle_

ZH(M‘(:)]) =ay(Lu1 +i—1) = qg’), forany u e U. (2)

The sequences X, and Z, can be assumed to be infinitely
long with the adversary only seeing the first m elements of
Z,. Therefore, a sufficient condition for B, (according to
Definition 1) is &, (1) ., where

E: M) <m—hi-1)=G ©)

where DY) = M(’T]) M(*) are the distances between

. u,1
qE‘H) and q(l’ in user u’s obfuscated sequence Z,, for i =
1,2,...,1—1. Note that we have defined &, and ¥, so as to

make them independent. Thus, we have
P(B.) = P(E)P(Fu).- )

The probability of event &, is the probability of L, ; suc-
cesses in M Bernoulli trials, where each trial has probability
of success pgps. Since each user employs a randomly chosen

1
PLyi=al+1)=~, a=01,....F/' =1 (6)
r
Thus, by employing the Law of Total Probability, we have
|
]P’(Su) = Z ]P‘(at least Ly 1 success in G trials|L, ; = al + l)
a=0
-P(Lu,l =al+ 1)
1 r—1
=17 Z P(at least ol + 1 success in G trials)
a=0
-1
= ! 1 — P(less th I+1 in G trials)]
=7 Z[ — P(less than e/ 4 1 success in G trials)].
a=0

Define A, as the event that there exists less than al + 1

successes in G trials. By employing the Chernoff Bound

Gpobf
T

P(Ay) < exp(—%éﬁGpobf), for all ¢ < @)

Now, by using (6) and (7)
min[{rj—]}‘lﬂfﬂ“
P(Su) ==

DY

a=0

1
1- exp(—iaiGpubf). ®)

Note that subevents of 7, : Df,l) < h,...,Dg_l) < h are
independent; thus, the probability of event ¥, is

B — ﬁ[P(DS) < h) - (1 e —pobf)”)
=1

Thus, by (5), (8), and (9), we obtain (1). |
The methodology of Theorem 1 can be applied with (r, [)-
superstrings of shorter length for stronger privacy guarantees.
The following lemma provides a construction for the shortest
(r, )-superstring and evaluates its length.
Lemma I: The length of the shortest (r, [)-superstring is
equal to rl 41— 1; that is, f(r,) = A+i1—1.

(-1)
. O
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Substrings:
32 ————— —

| 81
[t N s B s W i W e
w==p- DeBruijnSequence: 112132233

e et e et
wz —— 1

Alphabet: {1, 2, 3}

Substring length: 2
Add

| Symbol "1" to
{13} ——— | generate {3 1}
@2 ———— |
gsp ——— |

1121322331

Fig. 4. Construction of a shortest (3, 2)-superstring by using a De Bruijn
sezquence B(3, 2). The length of the constructed (3, 2)-superstring is f(3, 2) =
3*+2-1=10.

Proof: We denote by B(r, ) a De Bruijn sequence [79],
[80] of order [ on a size-r alphabet-R. A De Bruijn sequence
is a sequence with length r! in which every possible length-/
substring on R occurs exactly once as a contiguous subse-
quence, given that the last (/ — 1) and the first (/ — 1) letters
of the De Bruijn sequence form a cyclic tail-to-head ligation
for counting the substrings.

We construct a shortest (r, [)-superstring with length (r’ +
[ — 1) from a chosen De Bruijn sequence B(r, [) by repeating
B(r,l)’s front (Il — 1) symbols at the end of the sequence.
We first prove that the constructed sequence is an (r,/)-
superstring. The sequence has the first [ ——1)] substrings
because it contains a full De Bruijn sequence B(r,!l) in its
first r! symbols. In addition, since the left (/— 1) substrings in
B(r, I) are counted by tracking from the last (/— 1) letters and
the first (I — 1) letters as mentioned, the left (/ — 1) substrings
also appear in the constructed superstring in a noncyclic way,
since the De Bruijn sequence’s front (/ — 1) symbols have
been copied to its end (one example shown in Fig. 4). Thus,
the constructed sequence contains all possible r substrings,
and hence, by Definition 3, it is a valid (r, [)-superstring.

Next, we prove that the constructed sequence gives the
shortest solution for an (r, [)-superstring. Each of the dis-
tinct substrings on the size-r alphabet-R must start at
a different position in the sequence, because substrings
starting at the same position are not distinct. Therefore,
an (r, l)-superstring must have at least (rl +1 -1
symbols. |

The solution for the shortest (r,[)-superstring is
nonunique in general for r > 2 since we can con-
struct our (r, [)-superstring by taking any De Bruijn
sequence B(r, [).

Shortest-Length Superstring-Based Obfuscation (SL-SBU):
For each user we randomly (uniformly) choose a shortest-
length superstring (as described above) and employ it
for obfuscation. As noted earlier, if we reach the end
of a superstring, another one is chosen uniformly at
random.

Definition 5: Let B, be the event that the obfuscated
sequence Z, has user 1’s identifying pattern due to obfuscation
by the shortest (r, [)-superstring with length f(r, [).

Theorem 2: The privacy performance when the shortest
(r, )-superstring is employed is given by
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P(8,)
. (1 —qa —Pobf)h)a_” min{(r'—1),| Gpovr | }

7 >

a=0

8;2
1—exp —TGpobf

(10)

where

G=m—h(l—1),8, =1— , fora=0,1,...,// —1.

Gpobt
Proof: By using (5), we have

P(8,) = P(&,)P(F,) (11)

where the events &, and 7, are defined analogously to the
events &, and ¥, defined in (3) and (4), respectively.

For a given supersitring set generated by a De Bruijn
sequence B(r, [), we note that the index values L, ; are equally
likely over the first 7 indices in the (r, )-superstring cho-
sen by user u, since one (r, [)-superstring can be selected by
uniformly circular shifting B(r, [) by Lemma 1. So we have

1

P(L,=a+1) =, a=0,1,....,/—1. (12)
r
Similarly, by employing a Chernoff Bound and the Law of

Total Probability, we have
min{ (1), Gporel}

/ 1 1 72
P(&,) > 2 ; 1— exp(—E(Sa Gpobf). (13)
In addition, similar to (9), P(¥,) = P(¥.), which, combined
with (11) and (13), leads to (10). |

Lemma 2: The lower bounds achieved by Theorems 1 and 2
are independent of the data sequence X if the data point set
R is known.

Proof: This follows immediately from Theorems 1
and 2. |

Theorems 1 and 2 provide e-privacy for constant € (i.e., €
not decreasing in the number of users n). As noted in
Section III, this is a very strong version of privacy, and hence
weaker forms are also of practical interest. Thus, we consider
cases where € goes to zero, but in a way that each user is
still confused with N users, where N® 5 00 as n — oo.
First, the following lemma readily establishes that there are
infinitely many users with the same pattern as user 1 in such
cases.

Lemma 3: Let N™ be the number of users with the same
pattern as user 1. For any 0 < B < 1, if P(B) =
P(user u has pattern of user 1) > (1/n!=#), then N — oo
with high probability as n — oo. More specifically, as n — oo

B
]P(N(”) > ”7) Sl

Proof: We define the binary random variable C, to denote
whether user u’s obfuscation sequence Z,,, foru =1,2,...,n,
contains user 1’s identifying pattern. C,, = 1 indicates that Z,
contains user 1’s identifying pattern, and C, = 0 otherwise.

N is the total number of users who have the same pattern
as user 1’s identifying pattern; thus N = Y7 _, C,. Recall
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that P(8B;,) = P(user u has pattern of user 1) > (l,z‘nl_ﬁ);
hence

]E[N(")] = "_,E[C,] > n—r = nP. (14)

1
nl-#
On the other hand, by employing the Chernoff bound, we have

P(N® < (1 - HE[N®]) < exp(~LE[N™]).  (15)

Now if we assume § = 0.5, by (14) and (15), we can conclude

(m)
]P(N(") < ﬁ) < ]p(N(n) < M) (16)
2 2
(m)
< exp(—E[N ]) (17
8
nﬁ
< exp(—?) -0 (18)

as n — oo. As a result, as n becomes large, PN® >
(nﬂ /2)) — 1. In other words, the total number of users who
have the same pattern as user 1’s identifying pattern goes to
infinity. |

The following theorem shows that by using the proposed
SL-SBU technique, we can indeed achieve a privacy guaran-
tee against pattern matching attacks while employing a small
obfuscation probability, in fact with popr — 0 as n — oo. As
motivation, note that in many practical scenarios the size of
the alphabet r could be very large and indeed can scale with
n, the number of users. For example, consider a scenario where
the data shows the location of users in an area of interest, such
as a town or a neighborhood within a city. Assuming a cer-
tain level of granularity in the location data, the number of
possible locations r and the number of users n become larger
as the considered area becomes larger. In such scenarios, it
makes sense to write r = r(n) to explicitly denote that r can
change as a function of n.

Below, Theorem 3 provides the solution for determining the
obfuscation probability pops to achieve an infinite number of
users who contain user 1’s identifying pattern.

Theorem 3: For the SL-SBU method, let/ > 1 and h > 1 be
fixed. Choose 0 < 8 < 1, and define d(n) = m(n)n—(1—F/I=1),
If [dmn®1) < r(n) < [dmn®11/D for some 0 < 6 <
(1 — B/l —1), then by choosing pept = by = n~(1=B/I=D+6,
and liminf,_, o mb, = 9, we have

c
P(B) = —=
for some constant ¢ = c(h, I).
Proof: First note that the assumptions b, =
n~(=F/=0D+8 - and liminf, ,.omb, > 9 imply that

m(n) — oo as n — o00. Recall from Theorem 2 that

P(8,)
(i—1y min{(r!—1), Gpop]}

(1= (1 —ponp)™)
= p )

6:2
1 —exp (— % GPobf)

(19)

a=0

where

G=m—h(l—1),8,=1—

L fora=0,1,....7 1.
&
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Note that for any t € R, 1 — v < e~ 7; thus, with t = b,

(1 —bp)t <eth for b, c R. (20)

In addition, for any 0 < v <1, 1 —e Y > (v/2); thus, with
v = bph

_b"}, - bnk

l1—e for 0 < b,h < 1.

21
Now, by (20) and (21), we can conclude
1—(1—by)'>1—eth > %, for 0 < byh < 1.
Note that & is a constant, and b, — 0 as n — o0. As a result
(l —(1- b,,)")"_l N (bnh)"_l l B (E)I_lb{'_l
rl —\ 2 o \2 -

From the statement of the theorem, [d(m)n®1/D < r(n) <
[d(m)n®'10/D for some 0 < 6 < (1 — /1 — 1); thus

(22)

! > d(n)nEij = rir*.aﬂt_'lfzﬁ'f’;J = mb,

as a result
F—1>mb,—1. (23)
Since G =m — h(l — 1) < m, we have
f—1>Gb,—1. (24)
Also
Gbp — 1 = |Gpobs] = |Gbn]. (25)

Thus, by (24) and (25)
Ghby —1 < mjn{(r’ - 1), LGp.,be] < |Gb,).

The above equation can be used to obtain a lower bound for
the second term on the right side of (19)

min{ (r' 1), Gpobr] } )
= 1— exp(—ESEGpohf) ]

>
= mjn{(r’ — 1), LGPoth} +1

a=0
min[rj—],I_Gpth” 1
eXP(——fs’QGPobf)

>

o
a=0 2
LGba) 1
> Gby — ) exp (—ES;EGEJ,,)_ (26)
a=0

Now since G = m — h(l — 1), h and [ are constants, and
by,—0asn— o0

lim inf Gb, = liminf(mb, — h(l — 1)b,,)
n—00

n— 00
= liminfmb, = 9.
n—00
Thus, for large enough n, Gb, > 8. Note that for &« =
0,..., [(Gbn/2)]

8L=1 !
«= " " Gb, 2
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thus, for @ =0, ..., | (Gbn/2)]

]. 7 Gbﬂ
exp —550, Gb, | <exp - < exp(—1). 27)
On the other hand, for a = [(Gb,/2)] +1,..., |Gby]

8 =1—

=0
Gb, —

and as a result, for « = | (Gb,/2)| + 1, ..., |Gb,]

1
exp(—ié‘{?Gbﬂ) <1. (28)
Now by (27) and (28), we conclude:
LGbn]
> EXP(—%Sben) =< (% + 1) exp(—1) + (G;" + 1) x 1
=0
(29)
_ Gby _ 2(1 + exp(—1))
= (l +exp(—1) + EReT— ) (30)
< %(1 +exp(_1y + 20 +e;cp(—1))) G1)
< 0.86Gb,,. (32)

As a result, by (26) and (32), for large enough n

min{ (r'—1),|Gpobr] } 1
= 1— exp(—ESEGpohf) ]

a=0
> 0.14Gb, = 0.1Gb,,.

Since G = m—h(l — 1) < m, where h and [ are constants, and
m — oo, we conclude for large enough n, G(n) = (m(n)/2)

min{(rl—l), | Gpobe] }

2

a=0

Now, by (19), (22), and (33), we conclude that for some
constant ¢ = c(h, [)

[1 - exp(—%S;szobf) ] > 0.05mb,,. (33)

mb},

>c—=2.
r)! 10 — r@n)!

k)‘—‘ b= Gb,

P(8,) = (5

Since r(n)! < dmn? =
n—(=B/I=1)+6

mn—(=B/1=1) 5 pfl and b, =

=) =1
P(B,) > cmb), x mn - - <

[ =15
- n'=h

= =
a1 ]
X n nﬁi—atngt

|

The SL-SBU and i.i.d. obfuscation schemes will be com-
pared extensively via simulation in Section VIII. Here, we
provide an analytical result to both predict the results of that
comparison and provide insight into such.

Theorem 4: Suppose the sequence is [Xq, X5, ...] and the
pattern is Q = [q1, 42, ..., qi]l. We say the pattern occurs!
in the sequence at time index f if X; = q1, Xi41 = q2. ...,
Xi+1—1 = q;. We use Tsp sy to denote the time index where
the pattern first occurs in the SL-SBU obfuscation sequence.
Similarly, we use T;;q4 to denote the time index where the

Here, “the pattern occurs™ is the specific case of Definition 1 when h = 1.
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pattern first occurs in the i.i.d. obfuscation sequence. Then,
the expectation of these times are given by
r+1
E[TsLspul = —
E[T;ial > 7.

Proof: For the SL-SBU obfuscation sequence with length
r+1—1, we can immediately establish the result by the
property of the De Bruijn-based sequences of Theorem 2

E[TsL-sul = 1[l+2+-—-+r’]

A
l+1

2
Now, we consider the i.i.d. obfuscation sequence, and the cor-
responding E[7};q4.]. We say that the pattern Q has an overlap
of length I < [ if

91 =qir+1-92 = qir42,9r = qI-

The largest such /' is called the overlap value of the
sequence Q and shown by /g; thus, for every pattern of length
I, we have 0 < lg < | — 1. Now the arrival times of pat-
tern Q in the i.i.d. sequence [Xj, X2, ...] can be modeled as a
delayed renewal process with an average interarrival time pu.
By Blackwell’s theorem for delayed renewal processes [81],
we have

1
lim P(Renewal at 1) = —.
t—00 )7
Since the sequence is i.i.d., we also have

1
lim P(Renewal at 1) = —.
—00 rf
We conclude p = /. Now, consider two cases: lg = 0 and
lg > 0.1f Ig = 0, then

E[Tiial =p=r.

On the other hand, if Iy > 0, let Q" = [q1, g2, oo qipl- In
this case, let al.o Tj;jq4. (Q') denote the time index where the
pattern Q’ first occurs in the i.i.d. obfuscation sequence. We
have

E[Tiia] = E[T5i4.(Q) ]|+ == .

]

Finally, we note that the i.i.d. obfuscation approach of [22]

can be readily combined with the techniques proposed here to

provide robust privacy simultaneously against both statistical
matching and pattern matching attacks.

V. COMBINATION OF L.1.D. OBFUSCATION AND
SL-SBU OBFUSCATION

In this section, we introduce the concept of perfect privacy
from [22, Th. 2], which provides a strong privacy guarantee
if a statistical model for the data is known. After combining
perfect privacy and our proposed obfuscation method, user 1 is
able to achieve privacy against pattern matching attacks and
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Obfuscation
!
X idd, bees Z ""‘|SL-SBL| Z —| Anom — ¥
Users' : Adversary's
True Data Observation
Fig. 5. Applying two stages of obfuscation and then anonymization to the

users’ data points.

perfect privacy with the total cost given by a modest noise
level provided in Theorem 5.

To this point, we have employed the SL-SBU obfuscation
method to protect users’ data against pattern matching attacks
while the adversary makes no assumptions about the statis-
tical model of users’ data sequences. However, this method
has a drawback: as the number of possible values for each
user’s data points (r(n)) increases, it becomes exponentially
less likely that an identifying pattern of a user is observed
within other users’ data; as a result, a pattern matching attack
would become a serious threat to users’ privacy.

On the other hand, Takbiri ef al. [22] considered a strong
assumption regarding the statistical model of users’ data and
introduced a simple i.i.d. obfuscation method in which the
samples of the data of each user are reported with error with
a certain probability, where that probability itself is generated
randomly for each user. In other words, the obfuscated data is
obtained by passing the users’ data through an r-ary symmetric
channel with a random error probability. Takbiri ef al. [22]
demonstrated that if the amount of noise level is greater than
a critical value, users have perfect privacy against all of the
adversary’s possible attacks. The definition of perfect privacy
is adopted from [16].

Definition 6: User u has perfect privacy at time k if and
only if

lim I(X,(k); Y)=0
n—0o0

where I(X,(k); Y) denotes the mutual information between
the data point of user # at time k and the collection of the
adversary’s observations for all of the users.

Here, we will combine these two methods of obfuscation
in order to benefit from the advantages of both methods
and achieve perfect privacy. Note that combining these two
techniques does not have any cost asymptotically.

As shown in Fig. 5, two stages of obfuscations and one
stage of anonymization are employed to achieve perfect pri-
vacy. Note that the first stage is the same i.i.d. obfuscation
technique given in [22, Th. 2], and the second stage of obfus-
cation is the SL-SBU method introduced previously. Thus,
in Fig. 5, Z,(k) shows the (reported) data point of user u
at time k after applying the first stage of obfuscation with
the noise level equal to a, = Q(n=(1/7~V), and Z,(k) shows
the (reported) data point of user u at time k after applying
the second stage of obfuscation with the noise level equal to
b, = Q(n_(l_ﬁf "_])). Define the noise level of a two-stage
obfuscation scheme with independent obfuscation probabili-
ties a, and b, as Y, = a, + b, — a,b,. We then have the
following result.

Theorem 5: If Z is the obfuscated version of X after two
stages of obfuscation, and Y is the anonymized version of Z,
and
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Fig. 6. DDO: ay(j) is chosen by the DDO algorithm based on the realized
obfuscated sequence so far.
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1) the length of the time series data, m = m(n), is arbitrary;
2) the noise level of the obfuscation method is ¢, =
Q (max{n_(”’_l), n—(l—ﬁﬂ—l)})_
Then, user 1 has:
1) privacy against pattern matching attacks in any case;
2) perfect privacy if the assumptions about the statistical
model of users’ data is accurate.

Proof: First, we show that if the assumptions for the sta-
tistical model of users’ data is accurate, users will have perfect
privacy. We employ a noise level for the first stage of obfus-
cation equal to a, = Q(n_(” ’_1)), and the noise level for the
second stage of obfuscation equal to b, = Q(n_(l_ﬂf "_l)).
Using the definition for the noise level for two-stage obfusca-
tion given before the theorem statement, the noise level of the
combined obfuscation mechanism is

Y = Q(max{ay, by}) = Q(max[n_r_—lf,n_'lﬁg']) (34)

as n — o0o. From [22, Th. 2]: if a, is significantly larger than
(1/n"=1), then all users have perfect privacy independent of
the value of m(n). Now, since ¥, > a,, by employing a noise
value equal to ¥, = Q(max{n—(/7=1_ n—(-F/=D}) a]] users
achieve perfect privacy independent of the value of m(n). In
other words, as n — oo, I(X,(k); Y) = 0.

If the assumption regarding the statistical model of users’
data is accurate or not, Theorem 3 establishes that users would
have privacy against pattern matching attack due to the second
stage of our obfuscation method. |

VI. DATA-DEPENDENT OBFUSCATION

The obfuscation techniques proposed in Section IV are
independent of the user data, as would be appropriate for real-
time operation on nonbuffered data as discussed in Section L.
However, as also discussed in Section I, there are scenarios
such as image processing where the entire data sequence might
be known to the PPM. To exploit such, we employ opportunis-
tic superstring creation, which we refer to as DDO.? The key
point here is to choose obfuscated values a,(j) in an oppor-
tunistic fashion; that is, at each point, the element a,(j) in
the superstring is chosen based on the realized obfuscated
sequence so far, with the goal of choosing a,(j) in a way to
maximize the number of distinct patterns in the obfuscated
sequence of user u. Fig. 6 shows the structure of the DDO
algorithm.

2Note that the sequences developed might not technically be superstrings,
as defined formally in Section IV, but, since the sequences are employed in
a similar fashion to the superstrings of Section IV, we employ the same term
to avoid confusion.
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A. DDO Algorithms to Thwart Pattern Matching Attacks

First, we formulate solutions in a general setting for arbi-
trary pattern length /. Then, we design three examples of DDO
algorithms for specific values of /. Indeed, some practical pat-
tern matching attacks are based on patterns with a small length
for identification or classification [82], [83], and, as validated
in our simulation results later, low-order DDOs can also work
well for larger / than they were designed.

In what follows we drop the subscript # to simplify notation.
Hence, let X(k) be the data point at index k for an arbitrary
user and Z(k) be its obfuscated version.

Definition 7: For a pattern Q of length [, NE(Q) is the total
number of times the pattern Q has been observed as a patitern
(Definition 1) up to and including time k. That is, it is the
number of times the patfern has been observed in

Z(),ZQ2), ..., Z(k).

A pattern distribution Ni for the sequence Z(1), Z(2), ..., Z(k)
is the collection of values N,’;(Q) across all patterns Q of
length 1.

In the special case of [ = 1, N,: (i) is the number of times
the value i has appeared in Z(1), Z(2), ..., Z(k).

Definition 8: A DDO algorithm of order [/ is a mapping
from the set of all pattern distributions to the set of probabil-
ity distributions over data point set R = {0, 1, ..., r—1}. This
probability distribution, denoted by Pppg, provides the proba-
bility of obfuscating X(k+1) to the values 0, 1, ..., r—1, given
that we are performing obfuscation on a given data sample.

The simplest DDO algorithm, which we call least-observed
value (LOV), works as follows: to obfuscate X(k+ 1), choose
one of the values not present in Z(1),Z(2),...,Z(k), uni-
formly at random. If all values have been observed, we
obfuscate the data points with a value drawn uniformly at
random from R. To execute the algorithm, we only need to
keep the subset of R containing the values that have not been
observed to this point and choose one of them at random for
obfuscation. Denote Py as the probability that the obfus-
cated sequence has user 1’s identifying pattern after applying
the LOV algorithm. For / =1

r—1 m

Prov = E (m)pﬁbf(l — pob)™* (E) + E (m)Pﬁbf(l — pobr)™ ¥
k=0 k r k=r k

where m is the length of the sequence.

The second DDO algorithm, which we term probabilistic
LOV (PLOV), is in some sense a generalization of the LOV
algorithm that introduces more randomness in the operation.
The intuition behind the obfuscation of PLOV is to give a
higher probability to the values that have appeared less so far.
Specifically, at time k, define

. (NaY
- (42)

where 0 < y is a design parameter. A typical value is y =
(1/10). Now let

gi
4 ==
Zj:l 4q;
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TABLE I
TIME COMPLEXITY AND SPACE COMPLEXITY OF EACH OBFUSCATION
METHOD FOR EACH USER’S DATA SEQUENCE WITH LENGTH m

DIO algorithms iid SL-SBU

time complexity 0O(m) O(m)

space complexity | O(r) owrh

DDO algorithms LoV PLOV MANP

time complexity | O(mlogr) | O(mr) | O(m-max{r,h}-logr)
space complexity o(r) O(r) O(r -max{r,h})

Qmax:max{q“!:{l ]-s"-sr_]}
qmll’l:mn{qlsi:Os]s'?r—l}

and choose

. ( 1 r—1 )
b < min s .
erax_l ]_n?min
For example, we set b = 0.99min((1/[rgmax — 11),

(r —1/[1 — rgmin])) in our experiments. The obfuscation
probabilities are given by

__l—l—b
Ty

—bgi, i=0,1,2,...,r—1

where p; is the conditional probability of obfuscating to i
(Zu(k+ 1) = i), given that we are obfuscating X, (k + 1).

The third DDO algorithm is termed make a new pattern
(MANP), which chooses a value that completes as many pat-
terns as possible with length / that have not been observed to
this point. Specifically, we choose the value / = 2.

Define Py as the total number of distinct patterns of length
[ = 2 observed in the obfuscated sequence until time & [i.e.,
in Z(1),Z(2), ..., Z(k)]. Thus, PB; = 0 and P = 1. Also,
for i € R, define Piy1(i) as the value of Py given that
Z(k+ 1) = i. Given we are obfuscating at time k + 1, choose

Z(k+1) =argmaxPir1(i), iR

These three DDO algorithms (LOV, PLOV, MANP) will be
simulated in the next section.

VII. COMPLEXITY ANALYSIS

The time complexity and space complexity for each obfus-
cation algorithm (DIO and DDO) for each user’s data sequence
with length m are shown in Table I based on the following
assumptions.

1) We assume searching/insertion time complexity for a

specific element in/to a set with size N is O(logN).

2) We assume the sorting algorithm takes O(N log N) time

complexity for an array with size N.
The time complexity for each of the two DIO algorithms is
O(m), since each obfuscates each data point based on the
obfuscation sequence, which takes constant time. For LOV,
it takes O(logr) time to check (search) if the current obfus-
cated data point is (or is not) a member of the letter set
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TABLE II
NUMERICAL EVALUATION OF THE LOWER BOUNDS OF THEOREM 1 (€)
AND THEOREM 2 (E") FOR THE PERCENTAGE OF SEQUENCES THAT
CONTAIN A USER’S IDENTIFYING PATTERN WHEN THE PROPOSED
SBU OBFUSCATION APPROACHES ARE EMPLOYED

m r l h Pobi | lower bound € | lower bound €’
1000 20 3 10 10% 0.15% 0.45%
1000 20 3 8 10% 0.12% 0.35%
1000 20 3 10 15% 0.36% 1.06%
1000 20 3 10 30% 1.07% 3.22%
4000 20 3 10 10% 0.66% 1.98%
10000 20 3 10 10% 1.69% 5.08%
1000 20 2 10 10% 7.12% 14.17%
1000 20 2 8 10% 6.24% 12.41%
1000 20 2 10 15% 13.47% 26.84%
1000 20 2 10 30% 33.57% 67.02%
2000 20 2 10 10% 14.84% 29.60%
4000 20 2 10 10% 30.52% 60.97%

which have been seen before (with worst-case size r). For
MANP, it needs to search in the set of patterns which have
been seen before [with worst-case size O(rz) and search time
O(log ,.2) = O(log r)] for each candidate letter (with r different
choices in the data point set R, O(rlogr) in total). And, it also
takes O(rlog r) for sorting the candidate letters by the order of
their achievable patterns if used for obfuscating at the current
data point. Finally, it takes O(hlog r2) = O(h log r) time com-
plexity for inserting the new pattern list into the set of patterns
previously observed after obfuscation (worst-case size h). For
PLOV, it takes O(r) complexity for each obfuscation operation
due to the summation of the elements of vector § with size r.
For space complexity, the i.i.d., LOV and PLOV methods each
take O(r) space for storing the data point set. For the SL-SBU
method, it takes O(rl) space to store the obfuscation sequence
(De Bruijn sequence) with length r (the number of all possible
patterns); for MANP, it takes O(rz) space for storing the set
of patterns which have been seen before (with worst-case size
r?) and O(hr) space for storing the counting table for each
letter’s contribution to create new patterns (maximum size for
each letter is equal to h, O(hr) in total).

VIII. NUMERICAL RESULTS AND VALIDATION

We evaluate the performance of the proposed SBU meth-
ods and the three DDO algorithms on synthetic i.i.d. data
sequences and on sequences from the Reality Mining data set.
The data points in the i.i.d. data sequence for each user are
drawn independently and identically from the data point set
R. Reality Mining is a data set released by the MIT Media
Laboratory which tracks a group of 106 (anonymized) mobile
phone users [84]. The Reality Mining data set contains traces
of users’ associated cell tower IDs across time. Here, we fur-
ther sample the data traces with sampling interval at least
10 min to avoid significant data point repetition.
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TABLE III
SIMULATION RESULTS FOR THE CASE OF I.1.D. DATA SEQUENCES DRAWN
FROM AN ALPHABET OF SIZE r, WHEN USING AN 1.I.D. SEQUENCE AND
THE SL-SBU SEQUENCE FOR OBFUSCATION: THE FRACTION OF
SEQUENCES WHICH CONTAIN USER 1'S IDENTIFYING PATTERN

(Ir—141,...,r—1,r]) FOR h = 10 AND pogp = 10%
m r I h  pe | fraction (iid.) | fraction (SL-SBU)
100 20 2 10 10% 0.2185 0.7380
104 20 2 10 10% 0.9097 1
10" 20 3 10 10% 0.1176 0.2571
10° 20 3 10 10% 0.6949 0.9598
10° 30 2 10 10% 0.1091 0.5853
10* 30 2 10 10% 0.6624 0.9999
10 30 3 10 10% 0.3042 0.7656
10 30 3 10 10% 0.9712 1
100 40 2 10 10% 0.0666 0.4838
10* 40 2 10 10% 0.4621 0.9983
10° 40 3 10 10% 0.1465 0.6010
100 40 3 10 10% 0.7838 0.9999
10° 50 2 10 10% 0.0462 0.4142
104 50 2 10 10% 0.3301 0.9913
10° 50 3 10 10% 0.0808 0.4937
10 50 3 10 10% 0.5412 0.9994

A. Evaluation for SBU Obfuscation

We consider the numerical evaluation of the achievable
lower bounds, as given in Theorems 1 and 2 (SL-SBU, opti-
mized version), for the fraction of sequences that contain
a potentially identifying pattern of user 1 when using the
proposed SBU obfuscation approach. We use € and €' to
denote these two lower bounds, respectively, and the results
are shown in Table II. Note that these are deterministic numer-
ical evaluations of the bounds in Theorems 1 and 2. Hence, the
results show that the proposed PPMs will result in a nonzero
percentage of the user set U that have any potentially iden-
tifying pattern of user 1 in their obfuscated sequences with
high probability, and we can observe that the SL-SBU obfus-
cation sequence has a higher lower bound than the regular
SBU obfuscation sequence. As expected, increasing the data
sequence length m or the obfuscation noise level popr will
increase the chance of observing the pattern in the obfus-
cated sequences for both methods. The advantage of the
SL-SBU approach over the regular SBU approach becomes
more significant as longer sequences are considered.

Next, we test the effectiveness of the i.i.d. obfuscation and
SL-SBU obfuscation approaches on synthetic i.i.d. sequences.
We believe the i.i.d. sequences yield the worst-case scenario:
there is no dependency between any two consecutive data
points that would lead to common subsequences of poten-
tially identifying patterns being likely to be shared across

Authonized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2022 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.



GUAN et al.: SUPERSTRING-BASED SEQUENCE OBFUSCATION TO THWART PATTERN MATCHING ATTACKS

TABLE IV
SIMULATION RESULTS FOR THE CASE OF L.1.D. DATA SEQUENCES DRAWN
FROM AN ALPHABET OF SIZE r, WHEN USING AN L.I.D. SEQUENCE AND
THE SL-SBU SEQUENCE FOR OBFUSCATION: THE FRACTION OF
SEQUENCES WHICH CONTAIN USER 1'S IDENTIFYING PATTERN
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TABLE V
SIMULATION RESULTS FOR THE CASE OF I.1.D. DATA SEQUENCES DRAWN
FROM AN ALPHABET OF SIZE r, WHEN USING AN 1.I.D. SEQUENCE AND
THE SL-SBU SEQUENCE FOR OBFUSCATION: THE FRACTION OF
SEQUENCES WHICH CONTAIN USER 1'S IDENTIFYING PATTERN

(r—141,....,r—1,r]) FOR h = 5 AND popr = 10% ([r—14+1,...,r—1,r]) FOR h = 10, popr = 5%
m r I h por | fraction (iid.) | fraction (SL-SBU) m r 1 h  pobs | fraction (iid.) | fraction (SL-SBU)
100 20 2 5 10% 0.1223 0.3733 100 20 2 10 5% 0.0673 0.2203
10* 20 2 5 10% 0.7078 0.9932 104 20 2 10 5% 0.4622 0.9255
0t 20 3 5 10% 0.0370 0.0391 10" 20 3 10 5% 0.0235 0.0259
10° 20 3 5 10% 0.2683 0.2961 10° 20 3 10 5% 0.1502 0.1758
100 30 2 5 10% 0.0607 0.2585 100 30 2 10 5% 0.0358 0.1497
w0t 30 2 5 10% 0.4268 0.9587 10t 30 2 10 5% 0.2454 0.7885
10° 30 3 5 10% 0.0949 0.1194 10 30 3 10 5% 0.0539 0.0758
106 30 3 5 10% 0.5891 0.7174 106 30 3 10 5% 0.3693 0.5194
100 40 2 5 10% 0.0383 0.1976 100 40 2 10 5% 0.0241 0.1147
100 40 2 5 10% 0.2719 0.8846 10" 40 2 10 5% 0.1509 0.6639
10° 40 3 5 10% 0.0438 0.0646 10° 40 3 10 5% 0.0274 0.0444
109 40 3 5 10% 0.3271 0.4724 10 40 3 10 5% 0.1770 0.3148
100 50 2 5 10% 0.0277 0.1616 100 50 2 10 5% 0.0187 0.0930
10 50 2 5 10% 0.1868 0.8020 104 50 2 10 5% 0.1025 0.5736
10° 50 3 5 10% 0.0268 0.0429 10° 50 3 10 3% 0.0184 0.0314
10 50 3 5 10% 0.1840 03170 106 50 3 10 5% 0.1015 0.2150

users. Furthermore, to consider (pessimistically) only patterns
that are inserted via our obfuscation method (eliminating the
possibility that a user trace already has the desired pattern),
we make certain that a data set R with size r has a unique
sequence by assigning user 1 a unique pattern and drawing
other users’ sequences from the subset of the data set with
size (r — I); for instance, if the pattern length is [ = 3, we
insert a pattern [r — 2,r — 1, r] into user 1’s sequence at a
random place for uniqueness. We then follow the obfuscation
procedure from Section III for each iteration and calculate the
results by averaging the fraction of sequences which contain
user 1's identifying pattern (by Definition 1) for all itera-
tions. The validation results for different parameter settings
are shown in Tables III, IV, and V. From the overall results,
we can observe that the SL-SBU obfuscation sequence per-
forms better than the i.i.d. obfuscation sequence, as predicted
by Theorem 4.

B. Evaluation of the Data-Dependent and Data-Independent
Obfuscation Algorithms

Next, we consider the simulation of the proposed
DIO obfuscation methods (SL-SBU and i.i.d. obfuscation
sequences) and the three DDO algorithms (LOV, PLOV, and
MANP) on i.i.d. data sequences and the Reality Mining data
set. Recall the three DDO obfuscation algorithms’ design: the
LOV algorithm chooses the obfuscation value which has not
been observed in the user’s obfuscated sequence before; the

PLOV algorithm selects obfuscating values that have been less
observed in the user’s obfuscated sequence with higher proba-
bility; MANP chooses the obfuscating letter which completes
the most previously unobserved patterns with length / = 2.
Figs. 7 and 8 show the performance comparison of the
obfuscation algorithms on i.i.d. sequences and the Reality
Mining data set, respectively, for the pattern length / = 1. In
this case, the LOV algorithm has the best performance on both
i.i.d. sequences and data set sequences, although all three DDO
algorithms achieve very good performance with limited pgpr.
For the two DIO algorithms, their performance is not affected
by the data sequence’s type since they are data-independent
algorithms. For the DDO algorithms, their performances are
more affected by the types of the data sequence when pgpr is
relatively small. For instance, when pgps is between 0.004 and
0.02, the DDO algorithms’ performances would not be boosted
and stable enough until pgps is large enough (greater than
0.02). The reason behind this is that for the data set sequence,
the letters appearing in the previous obfuscated data points
are not as various as in the ii.d. sequence data. Thus, their
performances are degraded on the data set sequences. For the
two DIO algorithms, the SL-SBU obfuscation’s performance
is better than the i.i.d. obfuscation’s performance for both
i.i.d. sequences and the Reality Mining data set since SL-SBU
employs the optimal obfuscation sequence with shortest length
(De Bruijn sequence): the SL-SBU obfuscation method can
achieve a fraction of nearly 0.90 with p,,y = 0.02, while
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TABLE VI
NUMERICAL RESULTS OF THE SL-SBU OBFUSCATION IN COMPARISON WITH THE EXISTING PRIVACY-PROTECTING MECHANISMS—GENERALIZATION
AND SUBSAMPLING—ON THE REALITY MINING DATA SET: THE AVERAGING FRACTION OF SEQUENCES WHICH CONTAIN EACH USER’S IDENTIFYING
PATTERN. r = 20, m = 1000, [ = 2, h = 10. (a) SL-SBU OBFUSCATION. (b) GENERALIZATION METHOD. (c) SUBSAMPLING METHOD

(@)
Pobl 0.0 0.1 0.2 0.3 04 0.5
fraction | 0.1490 05062 0.7202 0.8811 0.9921  0.9998
(b)
group size 1 2 3 4 5
fraction 0.1429 04580 04974 0.7511 0.7674

(©)

Ts 10 mins 12 mins 14 mins 16 mins 18 mins 20 mins 25 mins 30 mins

fraction | 0.1442 0.1435 0.1429 0.1471 0.1524 0.1530 0.1604 0.1668

TABLE VII

NUMERICAL RESULTS OF THE SL-SBU OBFUSCATION IN COMPARISON WITH THE EXISTING PRIVACY-PROTECTING MECHANISMS—GENERALIZATION
AND SUBSAMPLING—ON THE REALITY MINING DATA SET: THE AVERAGING FRACTION OF SEQUENCES WHICH CONTAIN EACH USER’S IDENTIFYING
PATTERN. r = 20, m = 1000, [ = 3, h = 10. (a) SL-SBU OBFUSCATION. (b) GENERALIZATION METHOD. (c) SUBSAMPLING METHOD

(a)
Pobf 0.0 0.1 0.2 0.3 04 0.5
fraction | 0.0449 01796 0.2812 03555 04135 04780
(b)
group size 1 2 3 4 5
fraction 00456 0.2760 0.3237 06253 0.6568

(©)

Ty 10 mins 12 mins 14 mins 16 mins 18 mins 20 mins 25 mins 30 mins

fraction | 0.0444 0.0455 0.0436 0.0475 0.0507 0.0498 0.0504 0.0537

the i.i.d. obfuscation method achieves a fraction around 0.60
fraction with pope = 0.02.

Fig. 9 shows the performance comparison of the obfusca-
tion algorithms on i.i.d. sequences with pattern length [/ = 2.
In this case, for the DDO algorithms, the MANP algo-
rithm has the best performance, then the PLOV algorithm,
while the LOV algorithm has the poorest performance among
them since it does not intend to create patterns with length
[ = 2. For the two DIO algorithms, the SL-SBU obfusca-
tion’s performance is better than that of the i.i.d. obfuscation’s
for both the i.i.d. sequences and the Reality Mining data set.
For the Reality Mining data set validation results, as shown
in Fig. 10, MANP’s performance is poorer on the realistic
data set compared to the i.i.d. sequence due to the sparseness
and repetition of the data points in the real data sequences.
For the two DIO algorithms, their performance is again not
affected by the data sequence’s type. The SL-SBU obfusca-
tion’s performance is better than the i.i.d. obfuscation’s for
both of the i.i.d. sequences and the Reality Mining data set
since the SL-SBU obfuscation sequence intends to create pat-
terns in an optimal way. For instance, the SL-SBU obfuscation
method can achieve a fraction of nearly 0.70 with pgpe = 0.10,

while the i.i.d. obfuscation method achieves a fraction around
0.20 with the same pgpe = 0.10.

Fig. 11(a) and (b) show performances of the obfuscation
algorithms on the i.i.d. sequences and the Reality Mining data
set, respectively, when the pattern length / = 3. Among all
three DDO algorithms, the PLOV has the best performance on
i.i.d. sequences since it is the most robust to pattern length;
the PLOV and the MANP have similar performance on data
set sequences. For the DIO algorithms, the SL-SBU obfusca-
tion has the best performance over all other methods either
on the i.i.d. sequences (for large enough p.ur) or the Reality
Mining sequences, due to its robustness across different data
sequence types, which proves that the SL-SBU obfuscation is
able to deterministically create all patterns without depending
on the obfuscated data points and will eventually create any
pattern if the sequence length is long enough or the obfuscation
probability popr is high enough. In contrast, none of the DDO
algorithms are designed specifically for pattern length above 2,
so their performances would be limited. We can also observe
that all three DDO algorithms have poorer performances on
the Reality Mining data set than the i.i.d. sequences since the
variation of the data points in the data set is limited and hence
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Fig. 7. Performance comparison of DDO methods (LOV, PLOV, MANP) and
DIO methods (SL-SBU and i.i.d. obfuscation sequences) on i.i.d. sequences:
the fraction of sequences which contain user 1°s identifying pattern ([r — [+
1...,r—=1,r]). r=20+11=1,m = 1000, h = 10. (a) pobf = 0.02:0.02:0.1.
(b) pobf = 0.004:0.004:0.02

the data does not provide enough variety for the DDO algo-
rithms to create more unique patterns in comparison with the
i.i.d. sequences.

We compare our proposed SL-SBU-based obfuscation
method with the following existing privacy-protecting tech-
niques: generalization, subsampling, and obfuscation with
uniform noise, as follows.

A generalization-based privacy protecting method is for-
mally employed on data sequences for preventing the private
data (anonymized) being reidentified by linking QIDs with
external information [50], [52], [53], [54]. Since the risk of
users being identified by the QIDs, e.g., movement patterns of
individuals or personal points of interest, will be reduced [85],
generalization is a good benchmark defense method for pat-
tern matching attacks. A generalization process is executed
as: each data point i € R = {0,1,...,r — 1} is replace by
[i/group size|, where the group size is the number of data
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Fig. 8. Performance comparison of DDO methods (LOV, PLOV, MANF)
and DIO methods (SL-SBU and i.i.d. obfuscation sequences) on the Reality
Mining data set: the fraction of sequences which contain user 1’s identifying
pattern ([r—I4+1,...,r—1,r]). r=20+1 [ =1, m = 1000, h = 10. Data
points are sampled with interval at least 10 min. (a) popy = 0.02:0.02:0.1.
(b) pobf = 0.004:0.004:0.02.

points that each group contains (resolution). The total number
of groups will be [r/group size]. Here, we assume all of the
data points in the sequences will be generalized.

The data subsampling technique, which reduces sampling
frequency, might potentially lower the reidentification risks by
avoiding the presence of subsets of the data points [55], [56],
[57]1, [58]. For obstructing pattern matching attacks, remov-
ing data points between the samplings might help create new
patterns (activating some patterns by shortening the distance
of two data points which are originally more widely spaced
than ). The data point sequences are subsampled by the sam-
pling period Ty, which means that the neighboring data points
which appear in the sampled sequence are actually separated
by at least time T5.

We also consider obfuscation with uniform noise (employ-
ing i.i.d. obfuscation sequence), which has been simulated
above.
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Fig. 9. Performance comparison of DDO methods (LOV, PLOV, MANP) and
DIO methods (SL-SBU and i.i.d. obfuscation sequences) on i.i.d. sequences:
the fraction of sequences which contain user 1°s identifying pattern ([r — [+
L...,r=01Lr]). r=20+411=2, m= 1000, h = 10. (a) pobf = 0.1:0.1:0.5.
(b) pobf = 0.02:0.02:0.1.

Since the generalization and subsampling methods are
unable to generate new letters outside the data point set
R, we validate their performances (fraction of users whose
encoded sequence contains the identifying pattern) by aver-
aging the results of generated random identifying patterns
whose element letters are located inside R. As shown by
Tables VI and VII, for the generalization method, the privacy
performance goes up with increasing group size, since increas-
ing the group size boosts the chance of any sequence being
replicated between two users due to the degradatation of the
data resolution. For the subsampling method, increasing the
sampling period T, slightly helps improve the performance,
though it might go down modestly at first due to the data points
lost, and then go up afterwards with a continued reduction of
the sampling rate. The performance of our proposed SL-SBU
method achieves stable and considerable results in compari-
son with the existing methods. For instance, for pattern length
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Fig. 10. Performance comparison of DDO methods (LOV, PLOV, MANF)
and DIO methods (SL-SBU and i.i.d. obfuscation sequences) on the Reality
Mining data set: the fraction of sequences which contain user 1’s identifying
pattern ([r—I+1,...,r—1,r]). r=204+1 1 =2, m = 1000, h = 10.
Data points are sampled with interval at least 10 min. (a) pght = 0.1:0.1:0.5.
(b) pobf = 0.02:0.02:0.1.

[ = 2, the SL-SBU method can achieve around 50% of users
with a pattern when applying the obfuscation with pops = 0.1,
while the generalization method achieves similar result by set-
ting the group size = 3 at the cost of degrading each sample
in the data sequence. The subsampling method has the poor-
est performance, since it does not intend to create patterns as
aggressively as the SL-SBU-based obfuscation method or the
generalization method.

Utility: The relationship between utility and privacy (due to
obfuscation) can vary in different application scenarios. Please
note that our work is a generic study of IoT privacy through
pattern matching, and we do not focus on any particular type
of IoT system. However, as a rough analysis to demonstrate
the PUT, one can assume a linear relationship between the util-
ity cost and pgps, since the ratio of obfuscated data points is a
general measure of the loss of data usefulness [86], [87], [88],
and especially it is obvious when the obfuscating data point is
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Fig. 11. Performance comparison of DDO methods (LOV, PLOV, MANF)
and DIO methods (SL-SBU and i.i.d. obfuscation sequences) on i.i.d.
sequences and Reality Mining sequences (data points are sampled with interval
at least 10 min): the fraction of sequences which contain user 1's identi-
fying pattern ([r — 1+ 1,....,r—1,r]). r = 20+ 1, | = 3, m = 1000,
h = 10. (a) Performance on i.i.d. sequences. (b) Performance on Reality
Mining sequences.

chosen uniformly randomly (even if not, we could still get the
averaging utility cost by taking the expectation of the distor-
tion in terms of each obfuscating data point and find it maps
linearly to ponr). However, in reality, the analysis of utility
needs to be tailored to specific applications [89], and the rela-
tion becomes much more complicated due to many factors
other than the data points, which is beyond the scope of this
article.

IX. CONCLUSION

Various PPMs have been proposed to improve users’ pri-
vacy in UDD services. To thwart pattern-matching attacks, we
present data-independent and data-dependent PPMs that do not
depend on a statistical model of users’ data. In particular, a
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small noise is added to users’ data in a way that the obfuscated
data sequences are likely to have a large number of potential
patterns; thus, for any user and for any potential pattern that
the adversary might have to identify that user, we have shown
that there will be a large number of other users with the same
data pattern in their obfuscated data sequences. We validate
the proposed methods on both synthetic data and the Reality
Mining data set to demonstrate their utility and compare their
performance.
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