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ARTICLE INFO ABSTRACT

Keywords: Correlated velocity models (CVMs) have proven themselves to be effective tools for describing a wide range of
Transient spatial Markov models solute transport behaviors in heterogeneous porous media. In particular, spatial Markov models (SMMs) are a
Markovian dynamics class of CVMs where subsequent Lagrangian velocities along transport trajectories depend only on the current

Random walks velocity, and not on past history. Such models provide a powerful tool for modeling transport in terms of a

limited number of flow properties, such as the Eulerian point distribution of (flow) velocities, tortuosity, and
the spatial scale of persistence of velocities. However, to date, all SMM modeling frameworks and applications
have assumed that the underlying flow is steady-state. In this work, we extend SMMs to the case of time-
varying flows. We propose, compare, and validate alternative numerical implementations, and we determine
conditions for validity and efficiency based on standard physical quantities used to describe flow and transport
at the Darcy scale. The models require additional information relative to a steady-state velocity SMM and we
discuss the conditions under which this extra burden is warranted. We also provide clear, deterministic tests
for the validity of the transient SMM, termed the “slow variation” and “fast propagation” criteria, which offer
clear guidance on when transient, upscaled models are reasonable to employ. Our work forms the basis of a
new framework allowing for the application of efficient upscaled models of transport to realistic transient flow

conditions.
1. Introduction In the conceptual model behind a CVM, travel times between adja-
cent steps in a CTRW are not independent and identically distributed
The general aim of upscaled models of solute transport in porous events, due to correlations in the velocity field. Consider a Lagrangian
media is to capture the impacts of inhomogeneities without explicitly particle moving through a natural system whose velocity is sampled at
representing the mechanisms that drive transport and/or their spa- fixed spatial increments along its streamline. Natural media are often
tiotemporal variability (Sund et al., 2019; Dentz et al., 2020). The characterized by well-defined characteristic lengths, such as the mean

philosophy behind upscaled methods revolves around the notion that lengths of hydrofacies (Carle and Fogg, 1996; Weissmann et al., 1999;
the computational and data-support burdens imposed by distributed

models incur significant computational costs and lend sufficient uncer-
tainty to predictions such that distributed models are not necessarily
practical in every circumstance. A reduced-complexity strategy can be
advantageous in many such cases. One of the promising upscaled trans-
port frameworks is that of the continuous time random walk (CTRW),
where the transition times between steps are modeled as a random vari-
able (Scher and Lax, 1973; Scher and Montroll, 1975; Berkowitz et al.,
2006). The model for the spatial increments and associated transition
times distinguishes different flavors of CTRWs. A contemporary group
of methods that have demonstrated broad applicability are correlated
velocity models (CVMs), which in particular employ a fixed-length ~ Model (SMM) (Le Borgne et al., 2008a,b; Dentz et al., 2016), where
spatial step discretization. transitions are conditioned on the “previous” step only. An SMM can

Lee et al., 2007), and this means that a Lagrangian particle moving
quickly along a preferential flow path is more likely to continue moving
quickly than it is to abruptly slow down, though both options are
possibilities. As the distance between sample locations increases, the
Lagrangian (i.e., particle trajectory) velocity correlations decay propor-
tionate to the spatial scales of the geological formations (Sherman et al.,
2020), and the transitions eventually become uncorrelated. Models of
the transition time to complete the “next” step in the random walk can
leverage these correlations by conditioning the transition time based on
the most recent step. This is precisely what is done in a Spatial Markov
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be parameterized in terms of a small number of properties with clear
physical meaning, such as Eulerian velocity statistics, tortuosity, and
spatial correlation lengths of Lagrangian velocities, which are related
to the characteristic spatial scales of the hydrogeology (Le Borgne et al.,
2008c; Dentz et al., 2016; Aquino and Le Borgne, 2021). Although
SMMs are Markovian in terms of the number of steps taken by a
particle, and therefore in space due to the fixed spatial increments,
the resulting temporal dynamics may ultimately be non-Markovian as a
result of broadly-distributed waiting times (Meyer and Tchelepi, 2010;
De Anna et al., 2013; Kang et al., 2014; Holzner et al., 2015; Meyer
and Saggini, 2016). The flexibility of the SMM allows complex transport
phenomena to be modeled within its framework, resulting in significant
conceptual and computational simplifications when compared to other
CTRWs that otherwise require explicit modeling of nonlocal transport
mechanisms, i.e., arbitrarily far particle jumps or dependency on long-
term trajectory history (Metzler and Klafter, 2004; Berkowitz et al.,
2006; Klages et al., 2008; Meerschaert and Sikorskii, 2012). Appli-
cations of SMMs to date have been diverse with compelling results
obtained across a diverse spectrum of situations (Kang et al., 2011;
Bolster et al., 2014; Sund et al., 2015b,a, 2017; Sherman et al., 2017;
Hakoun et al., 2019; Sherman et al., 2019; Wright et al., 2019; Comolli
et al., 2019; Puyguiraud et al., 2019b,a; Dentz et al., 2020; Puyguiraud
et al., 2021). However, one of the limitations of all SMM applications
to date is that the transitions have been exclusively assumed to be
stationary in both space and time, even in the case of multi-continuum
formulations (Engdahl and Bolster, 2020; Kim and Kang, 2020).

The assumption of spatial stationarity often makes sense in the con-
text of the linkages between SMM transitions and hydrogeologic corre-
lations, and many studies have shown that stationary upscaled models
are effective in certain heterogeneous media (Puyguiraud et al., 2019a;
Hakoun et al., 2019). Allowing for spatial non-stationarities is not a
particularly difficult issue to address, at least conceptually, because one
could simply apply a different correlation model at different positions
along the path of a Lagrangian particle (Aquino and Le Borgne, 2021).
These correlation changes could be defined to coincide with known
changes in the hydrogeology, so the only implementation barrier is
developing different models of correlations for the different regions and
deciding on the cutoffs for each. To do so may be time-consuming and
require additional data, but it is not technically challenging, nor is it
beyond the capabilities of current SMM frameworks.

The issue of temporal non-stationarities (transience) is significantly
more involved because CVM formulations are based on connections
between geological structure and spatial correlations. All work on
CVMs has employed steady-state velocity fields, and it is unclear if
such correlations between structure and velocity remain when the flow
field varies in time. In reality, flow paths can change significantly due
to transience, especially when flow is driven by spatially-distributed
recharge or in unconfined settings (Engdahl, 2017). Transience can
also impart non-uniqueness when an aggregated transport metric like
a breakthrough curve is used. For example, two particles entering the
same point of a distributed velocity field at two different times could
take two different paths (drastically so in the case of variably-saturated
flows, Engdahl and Bolster, 2020). Similarly, different particles enter-
ing at different locations may ultimately have similar travel times to
reach a fixed monitoring point because of transient changes in the
flow field. These cases, and many more, would immediately invalidate
assumptions of even weak stationarity (i.e., stationarity of increments),
which would seem to deal a crippling blow to the conceptual un-
derpinnings of all the current CVMs. One option to deal with these
issues would be to relegate CVMs to cases of strict stationarity where
transient effects are sufficiently averaged out. However, our perspective
is that doing so would be unnecessarily limiting, because a more careful
inspection of SMMs suggests that they can be adapted to accommo-
date at least some transient velocity fields if some care is taken. At
a minimum, an upscaled representation of these transient processes
should (i) be conditional to the “clock time” at which a particle entered
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the flow field, and (ii) somehow account for the temporal changes
in upscaled velocity distributions, correlations, or both. As with any
upscaled model, some simplifying assumptions are necessary, but in
this case we will show that conditions for validity and numerical
efficiency can be posed in terms of the typical physical parameters used
to describe flow and transport in porous media at the Darcy scale.

The central questions addressed in this article are how to generalize
(correlated) CTRW s to the case of transient velocities, and what condi-
tions are necessary for these generalizations to be valid and practical.
The motivation is to preserve the theoretical and computational bene-
fits of SMMs when the underlying flow field is time-dependent. Several
options of varying complexity are evaluated to accomplish this goal,
and we consider their benefits and pitfalls in the context of analytic
and numerically-defined transient velocity fields. We start by reviewing
the basic concepts of the SMM and assessing its limitations regarding
transient flow fields. Three approaches to accommodate transience
are then developed, and we show that two of these are sufficiently
robust for general applications. Specific criteria are developed for the
validity of the transient SMM. The approach requires no further specific
assumptions about the underlying flow field, but we focus here on flow
through porous media at the Darcy (aquifer) scale. We validate our
results against numerical simulations using both analytical and realistic
flow fields where transience is induced by time-varying (periodic)
boundary conditions. In the interest of compactness, the concepts and
examples are demonstrated using a Bernoulli relaxation model for
the Markov velocity process (Dentz et al., 2016), so we close with
a discussion of how the approach can be generalized to other forms
of transient CVMs. Collectively, the results advance the capabilities of
CVMs to include transience and offer clear guidance regarding when
these models would be appropriate and accurate.

2. Spatial-Markov model

SMMs are one of many CVMs that conceptualize (advective) trans-
port in terms of Lagrangian particle trajectories, whereby a solute mass
is discretized onto the particles (Sherman et al., 2020). Trajectories are
usually modeled as a succession of steps of fixed length As along the
streamlines of a flow and each step has a constant velocity, but the
velocities may change as the particle completes successive steps. The
basic concept is that the transition time (i.e., the step length divided by
the velocity) distribution accounts for the heterogeneity in a flow field
without explicitly modeling it, such that transport follows a stochastic-
convective ensemble along streamlines. The step length corresponds to
a choice of discretization of Lagrangian particle trajectories and the
description converges to a continuum process in the limit of small 4s —
0 (i.e., becomes independent of the discretization when it is sufficiently
fine, as is expected of a properly-discretized model). Particle positions
after k steps along a streamline (particle path) are denoted X, with the
corresponding times T) to complete the kth step obey the stochastic
recursion relations (Dentz et al., 2016)

X1 =Xk+§5 Tty =Tk+47z’ (€))
where V), is the velocity magnitude during the kth step, which is con-
stant throughout the step. Typically, the tortuosity y is approximated
by the average tortuosity, which is computed as the average of the
Eulerian velocity magnitude divided by the average of its projection
along the mean flow direction (Koponen et al., 1996),
v

x= wn (2)
Here, v is the Eulerian velocity vector, % is the unit vector along
the mean flow direction, and (-) denotes the average over space. The
numerator represents the average of the Eulerian velocity magnitude,
v = (|v]), so that y > 1. The initial time and position for each particle
are often taken as T, = 0 and X, = 0, respectively (though nonzero
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positions and times are permissible), and the initial velocities V}, are
distributed according to the initial condition at this time.

The key ingredient of a spatial-Markov model is that the velocities
Vi, seen as a function of k, form a Markov chain. The Markov property
means that the probability of the next step having velocity V,,; is
conditional only on the most recent step’s velocity V,, and not on
past history through earlier velocities. Under strict stationarity of the
underlying flow field, the corresponding transition probabilities, given
the current velocity, are constant in both space and time. Discretizing
velocities into classes, such that class i comprises velocities between
b; and b;,; and has width Av; = b;,; — b;, the midpoint velocity v; =
(biy1 + b;)/2 is associated with class i. The velocity process is then
characterized by the probabilities r;; of transitioning to class i given
that the current velocity is in class ;.

In order for the velocities to correspond to a spatial-Markov process,
the probability of transitioning to a different class must be proportional
to the step length 4s, so that, for a given velocity, the spatial rate of
transition (transition probability per unit distance) is constant and the
transition probability decays exponentially with the step length (Van
Kampen, 1992). The overall persistence of velocities is characterized
by the correlation length 7, of velocity magnitudes along streamlines,
which at the Darcy scale is typically of the same order as the scale of
spatial variability of permeability (Hakoun et al., 2019). Thus, taking
into account that ), r;; = 1 for all classes j to conserve probability
(a transition from any given velocity class j must end at some velocity
class i), we write, for a small spatial step As compared to the correlation
length ¢, (Aquino and Le Borgne, 2021),

ry = ?Tjﬂij(l -6+ [1 - %:(1 - ﬂii)] bijs @

where the dimensionless f§;; encode the velocity-dependence of the
transition probabilities and 6;; is a Kronecker delta. Thus, the term
proportional to (1-4;;) denotes the probability of changing to a different
velocity class, whereas the term proportional to §;; denotes the proba-
bility of remaining in the same velocity class. As shown in Aquino and
Le Borgne (2021), the corresponding dynamics result in a well-defined
spatial-Markov process in the continuum limit of fine step discretization
As — 0, so long as the velocity class discretization associated with a
given As is chosen such that the time increments 4s/v; — 0 for all
classes i as 4s — 0.

The full transition matrix of an SMM is an N X N matrix, where N
is the number of velocity bins. This can be difficult to parameterize
in practice, so we shall instead adopt an analytical model based on
a discretized Bernoulli relaxation process for the velocities (Dentz
et al.,, 2016; Sherman et al., 2020; Aquino and Le Borgne, 2021).
We expect this approach to provide good results for quantities such
as breakthrough curves at distances larger than a few correlation
lengths (Puyguiraud et al., 2019a; Hakoun et al., 2019). Under this
process, particle velocities persist on the scale of the correlation length
¢.. When a particle changes to a different velocity class in a given step,
the probability of the new velocity being in class i is independent of
the current velocity class j, and it is given by a prescribed equilibrium
probability p®. In this sense, the Bernoulli process may be seen as
the simplest Markov process that relaxes to a prescribed equilibrium
distribution over a given characteristic scale. This also provides a direct
link to SMM paramaterizations based on Gaussian Copulas (Massoudieh
and Dentz, 2020). Assuming that the probability of transition per unit
length is constant and equal to 1/¢#, implies that the probability of
persistence is exponential (Van Kampen, 1992; Feller, 2008), and the
transition probabilities are given by (Dentz et al., 2016)

= e’AS/ffzS[j +(1- e’As/ff)p;"’. 4

Expanding in Taylor series for small 4s/#. <« 1 and comparing to
Eq. (3), we obtain

Bij = p° %)

independent of the current velocity class j as expected.
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The probability p{® must be defined in terms of flow properties
in order for the Bernoulli process to relax to the correct velocity
distribution for a given transport problem. To this end, we introduce
the Eulerian velocity probability density function (PDF) pg, defined
such that pp(v)dv is the probability of finding a velocity in the in-
finitesimal vicinity dv of v at a uniformly-randomly chosen spatial
location. In other words, the Eulerian velocity PDF represents the point
velocity statistics of the underlying flow field, in terms of the spatial
probability of occurrence. Note that the Eulerian mean velocity, which
was introduced above as a spatial average, can also be computed from
the Eulerian velocity PDF as 0 = [, dvvpg(v). The equilibrium distri-
bution of the Bernoulli process represents the distribution of velocities
measured at a given downstream distance far from injection. Under
the assumptions of flow incompressibility and ergodicity (i.e. velocity
statistics sampled in time along a sufficiently long trajectory are the
same as across the spatial domain), the corresponding equilibrium
velocity PDF, called the s-Lagrangian velocity PDF in some works, is
the flux-weighted Eulerian PDF (Dentz et al., 2016; Puyguiraud et al.,
2019a),
prte) = 222, ©)
In the discretized description, p{° is the probability associated with the
discretized velocity class i,

bi+1
p° =/ dvpp(v) = Av;pp(v;), @
where the approximation holds for small velocity classes, 4v;/v < 1.
The Bernoulli process is thus fully parameterized given knowledge of
the Lagrangian (i.e., along streamlines) correlation length #, and the
Eulerian velocity PDF pg(v).

3. Non-stationary spatial-Markov model

Consider now how to generalize the previous description to situ-
ations where the underlying flow field depends on time. Specifically,
we seek a spatial-Markov model that is (statistically) non-stationary
in time, in order to reflect transience (i.e., time dependence) of the
underlying flow field. In a real, distributed transport system, the lo-
cal velocity of a Lagrangian particle depends on position and time,
which change along particle trajectories; the particle transport paths
may be changing as time passes and thus may not coincide with
paths along instantaneous flow streamlines. A robust upscaled rep-
resentation of general transport dynamics is hopeless, because this
scenario implies that in general the position and transition time changes
cannot be decoupled. This means that an SMM is not applicable un-
less some simplifying assumptions are made. Otherwise, the required
three-dimensional random walk may have complexity comparable to a
distributed model, defeating the purpose of upscaled modeling.

Conceptually, particle velocities in the upscaled model could be
considered to change according to two mechanisms that represent the
changes in a physical transport system: (i) As in the classical SMM, a
particle moves according to the local velocity and then samples a new
velocity at a different, nearby point in space; and (ii) The local velocity
at a particle’s position changes due to the time-dependent nature of the
flow. In general, these two processes cannot be fully decoupled since
they could be happening simultaneously, but under certain conditions
an upscaled description remains possible. A critical evaluation reveals
two criteria under which an SMM should remain valid and practical:
(a) Slow (temporal) variation of velocities, and (b) Fast (spatial) prop-
agation of velocity changes. Slow variation means that the temporal
change in the flow distribution throughout the medium is sufficiently
slow that many spatial transitions typically occur before appreciable
changes in the local velocities. Fast propagation means that when
substantial changes in the velocity field do occur, they act quickly
throughout the spatial domain compared to transport processes, so
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that all changes in the velocity PDF can be safely approximated as
synchronous, or instantaneous, throughout the domain. The latter has
been a common assumption in many studies of transient transport
behaviors (see Engdahl et al., 2016), suggesting it could also be adopted
for SMM applications.

Even under these assumptions, the Eulerian velocity PDF represent-
ing spatial flow statistics still needs to be updated over time to reflect
the transient changes. The remainder of this section is concerned with
how, and how often, to do so, and the assumptions associated with
these decisions. In particular, the underlying Eulerian velocity PDF
must be considered as transient in all of the specific cases analyzed
below. The most practical approaches to achieving this consist in
adopting parameterized PDFs where some or all of the parameters
can be made functions of time. This important issue will be revisited
in Section 5. For now, we merely posit that the transient Eulerian
velocity PDF pj(v;1), describing point velocity statistics at each time 7,
is known, and we discuss three different candidates for implementing
a discretized transient SMM.

3.1. Naive explicit

The simplest version of a transient SMM is one where the ve-
locity PDF is updated only at steps where velocity transitions occur.
This “Naive explicit” (NEX) scheme is still described by the recursion
relations (1). The key difference is that the transition probabilities
r;;(t) now depend on the current “clock time” of the random walker
through the coefficients B;;(1), see Eq. (3). At each transition, the
Eulerian velocity PDF is updated to py(v;T,), and the corresponding
transition probabilities r;(T}) are calculated before determining the
new velocity. Note that in the specific case of a Bernoulli random walk,
particle velocities only change with a probability given by exp(—4s/¢,),
independent of the current velocity, but otherwise remain the same as
in the previous step (see Eq. (4)); thus, in this case, the velocity PDF
is only updated to accommodate transient changes when a Bernoulli-
model change in velocity would occur. Thus, for a Bernoulli random
walk, transience in-between transitions is effectively ignored.

The simplicity of this approach is appealing, but it suffers from
significant limitations because it makes no attempt to identify when
it is actually necessary to account for transient changes. As we will
see, this means that it does not converge to the same solution as the
more involved discretization schemes proposed below in the continuum
limit of fine discretization 4s — 0. When the flow field changes very
slowly (in the sense of the slow-variation criterion developed in detail
in what follows), the NEX model may provide sufficient accuracy in
practice, but if the timescales of transience impart fluctuations faster
than the travel times, which should occur often at low velocities,
significant errors will accumulate because important transient changes
are ignored. The necessary conditions for this NEX model to provide
a realistic approximation may not be practical in many real-world
situations. We nonetheless include it here for its conceptual simplicity
and to highlight the role of the more subtle procedures developed for
the following, more involved discretization schemes.

3.2. Turning point explicit

The problem with the primitive NEX model is that it is entirely
oblivious to the rate at which the flow field changes. If the flow field
changes quickly, many velocity updates are necessary in, potentially, a
short time compared to standard SMM velocity transitions, especially
for particles moving at low velocities. Thus, our goal is to find an
approach where the time and number of velocity PDF updates are
dictated by the magnitude of the temporal changes in the velocity
PDF. Before continuing, recall that particle velocities in a transient
SMM may change due to two mechanisms: (i) As before, a particle
moves according to the local velocity, and samples a new velocity at a
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different, nearby point in space; and (ii) The local velocity at a particle’s
position changes due to the time-dependent nature of the flow.

In the context of a transient field, mechanism (i) requires a rule
to determine the transition probabilities r;;(#) for times ¢ over each
time range between velocity changes. In turn, mechanism (ii) requires
a rule to determine velocity transitions due directly to the change in the
underlying flow field. First, we determine the time range characterizing
appreciable velocity changes. Knowledge of the time-dependent Eule-
rian PDF pg(v;1), as a function of velocity v for each time 7, implies
knowledge of the mean Eulerian velocity as a function of time,

(1) = /00 dvpg(v;Hv. 8)
0

Over a given time interval, which we call a variation window 4¢,,
the difference in the average particle displacement associated with the
change in mean velocity can be quantified through

As, = |v(t + 4t,) — v(1)|4¢,,. 9

The quantity 4s, may be interpreted as the approximate error in the av-
erage particle displacement that would arise from not taking the mean
velocity variability into account. The error in the usual discretized
spatial-Markov description, associated with mechanism (i), is on the
order of the discretization step length As. Thus, in order to obtain an
error of the same order associated with discretizing mechanism (ii),
we choose 4z, such that 4s, = ads, where a < 1 is a free parameter
controlling the maximum step size under transience, and as such the
magnitude of allowable errors. Note that this will in general correspond
to a time-dependent variation window 4z,(f).

For given values of a and 4s, Eq. (9) can be solved numerically
for At,. The procedure leads to a series of turning points T, ;, where
variation of the Eulerian flow field is to be taken into account; for
this reason, we call this approach the “Turning Point Explicit” (TPE)
method. Specifically, we have
TV,k’Jrl = Tu,k’ + Atv,k” TU,O = TO =0, 10)

v

where 4t,,, = At,(T,,) is the variation window associated with the
last turning point. Note that many transition times 7, associated with
mechanism-(i) transitions are expected to occur between two turning
points when the slow-variation condition (a) is met, as discussed in
more detail below. A straightforward numerical procedure to determine
the variation windows and associated turning points is described in
Appendix A.

We now formalize mechanism (i). Starting at the time T,/ of the
last flow-variation transition, determine the next variation window
4t, . Then, employ Eq. (3) for the transition probabilities r;;(1) =
7ij(Tppr)s together with the transition coefficients B = BTy,
which depend on the choice of spatial-Markov process. The transition
probabilities remain constant throughout the variation window. Next,
update particle positions and times according to Eq. (1). However,
when during some step k a particle’s time would exceed the next
turning point time T, s, associated velocity variation (Eq. (10)), the
new time and position are determined according to

T — T
X1 = Xy + Ve ———,

Tir1 = Toprrs an
in order to account for the partial completion of the step. Note that the
remainder of the last transition distance and duration are discarded.
Having determined that the next Markovian velocity transition has not
occurred by time T, ;, we know the velocity remains constant and
equal to V), during the partial step. The turning point corresponding to
the next Markovian change in velocity can simply be recomputed in the
next iteration without further assumptions due to the lack of memory
of Markov processes (see, e.g., Van Kampen, 1992). The algorithm for
mechanism (i) is illustrated in Fig. 1. This procedure is to be applied
to all particles, followed by mechanism (ii), described below, and then
repeated. Note that the NEX scheme proceeds similarly regarding the
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Fig. 1. Illustration of the algorithm for mechanism (i), representing spatial-Markov transitions. As explained in detail in the text, starting at time 7,, = T, and position X, the
variation window 4t is first computed based on mean flow velocity variability. The Markov transition times As/V; associated with steps of length As/y are then computed, until
the turning point time T,, =T, + 4t,, is reached. The portion of the last step corresponding to times exceeding T, , represented by the dashed lines, is discarded, leading to the
solid blue trajectory. Mechanism (ii) is then employed to find the new velocity at the new turning point, the Markov transition probabilities are updated according to the transient

Eulerian PDF evaluated at T, ;, and the algorithm is repeated.

turning point times 7 and positions X, but does not require explicit
variation windows. Rather, the position increments are always 4s/y,
and the underlying transition probabilities are updated only when a
velocity transition to a different class occurs.

Next, we turn to mechanism (ii), which corresponds to determin-
ing the new velocity at the flow-variation turning point times T, ;.
Consider the transition probabilities of Eq. (3). Under a change in
the flow field, these may change through the correlation length ¢,
and/or through the velocity-dependent coefficients f;;. In order to set
up mechanism (ii) in a simple and physically-reasonable manner, we
assume that the flow structure remains unchanged, maintaining the
correlation length 7, and the tortuosity y constant, but the Eulerian
velocity PDF may change in time, keeping its functional form but
changing its mean through a rescaling. As familiar examples, this is the
case at the pore scale when the underlying velocity field corresponds
to Stokes flow, and at the Darcy scale when the hydraulic conductivity
structure remains the same but the average head gradient driving the
flow is rescaled. Once a transition due to velocity variation happens,
at some transition time which we again name 7, (now with k > 1) for
convenience, the local flow velocity at the particle’s position is likely
to have changed appreciably. To take this into account, mechanism (ii)
consists of rescaling the particle’s previous velocity according to the
change in mean velocity,

Vi1 = —UfTu’kIH)Vk, 12)

0Ty 40)

or the corresponding class velocity in the discretized picture. This
choice corresponds to assuming that the change in the velocity statistics
can be approximated by an overall rescaling of the point velocities,
in line with the assumptions discussed above. This mechanism is ap-
plied to all particles, and the procedures described for mechanisms (i)
and (ii) are then repeated. Note that, at the begin of procedure (i),
the Markov transition probabilities are recomputed according to the
velocity distribution at the new turning point time.

The correlation length and tortuosity are determined by the flow
structure but can change in a given medium with an unchanging
structure, for example due to the formation of preferential flow paths.
While the mechanism (ii) rule can be applied to a case where the flow
structure also varies, its physical significance is more difficult to justify.
A more complex transition rule may be necessary in such cases, which
we do not discuss further here.

3.3. Fully-implicit model

So far we have considered one method that only updates transition
probabilities each time a velocity change takes place (and not at turning
points where velocity remains the same), and one that automatically
“detects” when updates are needed, which, in the process, may cause
the step sizes to change (i.e., TPE). Another possibility is one where the
spatial step size is chosen and fixed, but transient changes are always
accommodated, no matter how big or small the transient fluctuation(s)
may be. In practice, the concept of a variation window introduced for
TPE subtly implies that, for a given finite step size 4s, the changes
of the velocity PDF during a step are small enough that stochastic
variations compensate for any inaccuracies imposed by the use of a
constant velocity. In other words, the “true” velocity might be slightly
higher/lower over any given step, but the average remains represen-
tative. An alternative interpretation of this nuanced point is that it
assumes that small changes to the probability associated with a given
velocity are insignificant inside an appropriately-sized variation win-
dow. Transposing this argument, one could instead assume that small
changes to a velocity have an insignificant impact on its probability
over the time of the transition, which leads us to the third strategy.

The key assumption for the following approach is that the cumula-
tive probability associated with a particle velocity,

P(U):/ dvpgp(v), (13)
0

does not change during a spatial step, or that a particular particle’s
velocity rank on the cumulative density function (CDF) remains con-
stant over any given step. This is similar to the assumption made under
the TPE method, where changes in the underlying flow field were
modeled as a constant rescaling of the velocity PDF due to change in the
mean velocity. For example, at 1 = 0, perhaps v = 0.1 has cumulative
probability P(v) = 0.8 (20% of velocities above 0.1), but at r = 1 the
overall flow increases such that v = 0.15 now corresponds to P(v) = 0.8
(20% of velocities above 0.15); in other words, a particle that begins
moving with P(v) = 0.8 holds this rank throughout a step even as the
velocity associated with this rank evolves.

Discretizing velocities in terms of rank, and denoting the velocity of
a random walker conditional to a particular probability value (or rank)
as v,(1), where p denotes the associated rank class, we can consider the
trajectory of a particle along the SMM path as an equation of motion
for each step. Since within a transition the particle velocity is allowed



N.B. Engdahl and T. Aquino

to change but the rank remains fixed, each step in the 1d random walk
is described by the ordinary differential equation (ODE)
dX,()  v,0)

dt x as

where X, (7) is the downstream position, and v,(?) is a time-dependent
function that describes the transient velocity as a function of clock time
for a given probability rank class, p. For a step of known length 4s, this
separable ODE has the general solution

Tk+l
As:/ dtv,(®), 5)
T

where 4s = y[X,(Tyyy) — X,(T})] is the imposed displacement along
particle paths, T, is the clock time at the beginning of the step, and
T+ is the unknown final time. Thus, particle positions in terms of step
number k remain given by X, ., = X, + 4s/y, but transition times are
determined according to an implicit equation.

Given a function for v,(0), the left-hand side of (15) is known and
the right-hand side will be a function of T}, only, the unknown time
when the step is finished, to be found via an implicit solution. The
resulting equation will likely be nonlinear, but the solution of (15)
for the final time, Ty, gives an exact solution when v,(t) may be
approximated analytically, subject to the simplifying assumptions. We
term this approach the “Fully-implicit model”, since it requires the
solution of an implicit (possibly nonlinear) equation for every particle
in the random walk at every step. Note that this approach is an exact
expression for the travel time when v,,(?) is known analytically, with the
single assumption that the probability associated with the velocities is
constant for the duration of the step. Once a step k is completed, a
new probability rank class may be determined analogously to before,
according to the transition probabilities (3) associated with the step
(i.e., via a transition matrix or analytical Markov process). The Eulerian
velocity PDF is made a function of clock time, and the transitions
probabilities are computed according to its form at the beginning of
the step, pg(v; T,), as for the previous methods.

Consider Fig. 1 for the turning points and variation windows of the
TPE scheme. Like the NEX scheme, the fully-implicit method, as well as
the approximations developed below, does not require the computation
of variation windows, and the position increments are always 4s/y.
Unlike NEX, however, transient changes are reflected in the transition
probabilities at every step, and not only when velocity changes occur.
Furthermore, as already discussed, velocity variability of a particle
due to the transient changes within a transition can be captured, in
which case the time increments are obtained implicitly via Eq. (15)
rather than given directly by As/V,. The stationary SMM case is easily
recovered by defining, within step &, v,(t) = V, x, where V, , is constant
within the step. Then, 4s = V, (T, — T), and we conclude that the
transition time is Ty, — Ty = 4s/V,, as expected. Next, consider a
simple example of transience by assuming a linear increase in velocity
over time: v,(t) =V, + a(t — T)), where « is a constant growth rate.
This gives the quadratic As = a(Tyy; — T;)/2 + V,; (Tiy; — Ti), which
has one real-valued, positive solution for the transit time, T}, — T, =

(4 :1 + ZaAs/szk — 1)V, x/a. Note that this reduces to the previous case
when the growth rate or step size are sufficiently small such that
2“AS/V,,2k < 1. A similar technique can in principle be employed for

any intelgrable function that defines v, (?), but we reiterate that solutions
will likely need to be approximated using a nonlinear solver.

3.3.1. Fully-transient explicit approximation

The fully-implicit scheme has the advantage of accounting for all
the changes in v,(t) when the latter is known, but it should be evident
that an implicit nonlinear solution for every particle at every step will
be computationally demanding. The most obvious simplification is to
use the velocity from the beginning of the time step in an explicit,
first-order scheme that always updates the PDF for transience, so we
abbreviate this Fully-Transient Explicit approximation as FTE.
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A single evaluation of the velocity is used for every step, so that
transient changes during the step are strictly ignored. The FTE then
proceeds according to the recursion relations (1), with the velocities V),
selected according to (3), computed according to an Eulerian velocity
PDF that is a function of clock time, updated as pg(v;T,) at each
particle step as before. The advantage of this approach is speed and
simplicity but, like the NEX scheme, the cost is that it makes no attempt
to account for transient changes during a spatial step. However, the
velocity associated with each rank is updated at every step, whereas the
NEX scheme only accounts for changes in the transition probabilities
when a transition leads to a change in velocity class, so TPE will naturally
have advantages from an accuracy standpoint. Note that NEX and FTE
can differ significantly under the Bernoulli relaxation model, because
the probability of remaining in the same velocity class may be signifi-
cant. Unlike the NEX scheme, for which velocity changes occur on the
order of the correlation length 7., FTE accounts for velocity changes
within a step length As. Thus, the accuracy in capturing the transient
field increases when the spatial discretization is refined, leading to
appropriate convergence of FTE. For a given 4s, the accuracy will be
dependent on the nature of the transient signal, and significant errors
should be expected anytime the velocity changes are large relative to
the magnitude of the transition time and/or spatial steps.

3.3.2. Runge-Kutta 3 integration

Additional accuracy for an explicit approximation of the fully-
implicit scheme can be obtained by adding more evaluations of the ve-
locity distribution to create a Runge-Kutta predictor—-corrector scheme.
The velocity rank (cumulative probability) is required to be constant
during each spatial step, since the velocity will be evaluated at multiple
times for the “predictor” steps, but the associated velocity distributions
being evaluated may be any arbitrary transient PDF that is defined
as a function of time. This goes beyond the NEX and FTE schemes
by accounting for transient changes during each step of the SMM, but
avoids solving a nonlinear equation as is typically required for the
fully-implicit scheme.

A good balance of accuracy and numerical cost is provided by the
standard 3rd-order Runge-Kutta (RK3) scheme (Pozrikidis et al., 1998).
For the trajectory of a temporally non-stationary random walker during
step k and for a given rank p, the time at the end of the step, T}, is
computed according to

As
=T, + ———, (16a)
KT 20,(Ty)
" 1
" =T, + 4s — , (16b)
k [Up(l*) vp(Tk)]
as [ 1 4 1
Ty =T, + == 16
ket = Lt g v,(T}) ot u(z**)]’ (16c)

where * and #** are the first and second predictor estimates of the time
to complete the step. As before, the new velocity at the end of each step
k is computed according to the transition probabilities (3) associated
with the step, obtained based on the time-dependent Eulerian PDF
pp(v; T),) updated at the beginning of the step.

We reiterate that the rank (probability) of the velocity is assumed
constant throughout the spatial step but that the value associated with
each predicted transition time can change; note that the assumption
of constant rank is also necessary in other stochastic Runge-Kutta
schemes (Honeycutt, 1992; Engdahl and Aquino, 2018). The three
evaluations of the transient velocity lead to an accuracy of the scheme
scaling as O(4s3); note that this is the accuracy of the estimated transition
time T; ., — T}, and not the overall accuracy of a simulated breakthrough
curve. We found that this RK3 scheme gives accuracy comparable to
a direct, implicit solution of (15), while providing a computationally-
efficient approach (but note that this may not hold when the velocity
changes are not smooth and slowly-varying). As such, the fully-implicit
solution is omitted below for the sake of brevity.
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4. Applicability conditions

The four different explicit methods described above (NEX, TPE,
FTE, and RK3) each have slightly different assumptions and conceptual
models, but some general criteria must be met by the flow field for
these methods to provide reasonable approximations of transport in
a computationally-efficient manner. We posited in Section 3 that a
transient SMM should be valid and efficient under (a) slow variation
of the velocity, and/or (b) fast propagation of transient changes to the
velocity field. Each of these merits some additional discussion in the
context of Darcy-scale flow in aquifers.

4.1. Physical mechanics of the flow

Consider a section of a confined aquifer that has a well defined
mean flow direction along which the head decreases. As long as the
source of any transience is imposed outside the section under consid-
eration (i.e. changes in recharge are applied some distance upstream
of the section in question), we may quantify the impacts of those
changes simply in terms of time-varying heads observed at each end
(longitudinally) of the section and ignore the specific cause(s) of the
transience. The impacts of the head changes at the boundaries on the
velocity distribution within the aquifer depend on the heterogeneity of
the various properties in the domain, but generally what matters is how
much of the field is affected and how quickly.

Consider what happens in the case where a pressure pulse rapidly
propagates through the aquifer. Assuming the hydraulic conductivity
structure of the medium remains unchanged, and no source/sink terms,
changes in flow velocity across the medium are due to variations
in head the reflect the underlying hydraulic conductivity field. The
piezometric head, i, obeys

5,20 _v. kv, a7
ot
where S, [1/L] is the specific storage and K is the hydraulic con-
ductivity tensor [L/T], subject to appropriate boundary and initial
conditions (Charbeneau, 2006). Assuming constant .S (spatial variation
produces an advective-type term), this is a diffusion equation for A,
with the role of the diffusion coefficient played by the hydraulic
diffusivity [L?/T]
K

Dy=o. (18)

s

Hereafter, we assume for simplicity a locally-isotropic K field, so that it
is sufficient to consider the scalar (diagonal) values K and D . The con-
ductivity K can vary spatially, so it is convenient to consider an average
value for Dy that realistically homogenizes spatial heterogeneities,
D7}, which could be computed, e.g., as a geometric (power) mean
over K(x,y,z) (Charbeneau, 2006). The timescale associated with the
propagation of head perturbations across a distance ¢, and associated
flow variations, is then the diffusive timescale 7 = £2 /@2Dy).

Over a given longitudinal length scale of interest, Z, the timescale
associated with (advective) transport can be estimated as 7, = ¢/v. The
fast-propagation condition (b) can now be translated as the requirement
that flow variations must propagate much faster than solute transport,
Ty < 1,4, corresponding to

2D*
¢ < 1 19

We have assumed that the main limiting factor is the propagation along
the longitudinal direction, but a similar criterion could be developed
that includes any propagation speed contributions from the lateral
components.

We take ¢ equal to the length of the domain of interest. In that
case, if condition (19) holds, the perturbation may be assumed to
travel instantaneously across the domain, or that all velocities change
instantly when a head change is applied at the boundaries. For large
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domains, this criterion could be relaxed by estimating # according
to the characteristic size of the solute plume through its longitudinal
dispersion ¢2, such that £ ~ o,. In this case, the perturbation can
be assumed to cross the entire plume instantaneously, but it may be
necessary to delay the change in transition probabilities according to
the time it takes the perturbation to reach the plume.

Finally, note that the Darcy equation itself does not dictate the
velocity and it is assumed that the average local flow velocity is pro-
portional to the local hydraulic conductivity K and the porosity. Since
K typically exhibits much broader variability than specific storage,
low hydraulic diffusivity Dy is commonly associated with low flow
velocities, so that velocity in the lower-D; regions is expected to be
slower than the mean value, and conversely for the higher-D; regions.
Thus, we expect that employing an appropriate average, such as D% , in
Eq. (19) will usually lead to a reasonable estimate of the applicability of
the fast propagation criteria, but factors like connectivity and extreme
degrees of heterogeneity could impact this criterion.

4.2. Slow-variation criterion

As long as the velocity changes propagate across the domain suffi-
ciently fast, the TPE and RK3 methods will provide good approxima-
tions of the transient PDF. However, it is advantageous from a com-
putational standpoint if Eulerian velocities across the domain change
sufficiently slowly in time that many transitions occur within a varia-
tion window 4¢,. In order to estimate 4z, in terms of the variability in
the mean velocity, consider the limit of small 4s, under which 4z, is
expected to be small. Then, Taylor expansion of Eq. (9) yields
dv
dt
and, solving for 4t,,

ads
At ~ . 21
v V |dv/dt| (21)

Note that the Taylor expansion leading to this result is inaccurate
near local temporal extrema of the mean velocity, where |dv/dt| =
0, which is why we employ the more robust numerical procedure
described in Appendix A to compute 47,. However, this approximation
provides a useful estimate of the role of flow variability. The number
of mechanism (i) transitions within 4z, is of order v4t,/As, which we
wish to be large. We thus obtain for the slow-variation condition (a):

As, ~ AP, (20)

do| _ &’
dt As
In particular, for the spatial-Markov description to adequately resolve
transport, we need 4s < 7, and we must have a < 1. Thus, the minimal
requirement for condition (a) to be met may be expressed as

(22)

=2
U

dv
dt . (23)
This is a time-dependent criterion, and the procedure may remain
practical even if it does not hold for certain times. If this constraint

holds, Eq. (22) may be used to choose

a0
75 /di] <As<?,, 24
in order to ensure the method is both accurate and efficient. In practice,
As can be chosen as the minimum of given multiples of the left and right
terms in the inequality, e.g., 4s = min{SEz/(|dE/dt|), ¢./10}. Note also
that As may be chosen adaptively, according to the temporal variation
of the mean velocity, or constant according to a specific value such as
the maximum or average of 7 /1dv/dt| over the times of interest.
Combining the slow-variation condition, Eq. (23), and the fast-
propagation condition, Eq. (19), we obtain

_ 2Dy
R < 7 (25)

v

14

c
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Fig. 2. Comparison of the transient SMM models to a steady-state (SS) approximation for different magnitudes and periods of transient velocity changes. Small fluctuations with long
periods may not require transient corrections, but it should be clear that as the frequency and magnitude of transient deviations increase the transient models depart significantly
from the SS curve. Note also that three of the methods (TPE, FTE, RK3) generally agree with each other, whereas NEX is only reasonable under low-magnitude transience (small

.

Given the spatial mean o(r) of the underlying flow field as a function
of time, this result represents the conditions for practical applicability
(accuracy and efficiency) of the transient spatial-Markov model, in
terms of the velocity correlation length #,, the longitudinal scale of
interest #, and the (average) hydraulic diffusivity D7,.

5. Examples and cross-comparison

Existing analytical models for transport under transient velocities
assume spatially-uniform flow fields (see Engdahl et al., 2016), and
there are no closed-form analytical solutions for the transient, het-
erogeneous velocity fields that would lead to correlated transport.
Accordingly, this section provides cross-comparison of the different
transient SMM models under varying degrees of transience. We first
compare the behavior of the four methods using a simplified analytical
flow field, before moving on to numerical validation against direct
simulations based on numerically-computed, spatially-heterogeneous
velocity fields. We exclusively consider the Bernoulli process SMM
hereafter. Recall that the Bernoulli SMM admits a minimal parameter-
ization in terms of the Eulerian velocity PDF and a velocity correlation
length, providing a simple and parsimonious model. Nonetheless, any
SMM transition mechanisms could be employed with minor modifica-
tions involving only the model’s parameterization (see Sherman et al.,
2020). Under the present choice, the coefficients f;;(#), which fully
characterize the transition probabilities r; 10) through Eq. (3), are ob-
tained from the Eulerian PDF of point velocity magnitude statistics at a
given time through Eq. (7). To further simplify the demonstrations, we

also adopt a gamma PDF of Eulerian velocities with various prescribed
time-dependent mean velocities v(z),

ov 19 o-0v/50
o(t) O

where I'(-) is the gamma function. This type of PDF combines low-
velocity power-law behavior (with scaling v?~!, & > 0) with an ex-
ponential cutoff at high velocities. These features control long-term
tailing of the resulting transit time distributions due to retention in low
velocity zones as well as mean transit times, which in turn control key
transport features such as mean plume displacement and longitudinal
dispersion (Dentz et al., 2016; Aquino and Le Borgne, 2021). The
gamma PDF has been employed to model Eulerian velocity PDFs in
porous media both at the pore and the Darcy scales (Holzner et al.,
2015; Dentz et al., 2016; Alim et al., 2017; Aquino and Le Borgne,
2021). The corresponding flux-weighted Eulerian (or s-Lagrangian)
PDF, Eq. (6), is again gamma,

pp(vst) = [ (26)

ov 12 e—0v/t0)

0| snrey @27

pr(vst) = [
with the same exponential cutoff and a low-velocity dependency « v”.
Alternative parameterizations of the gamma PDF, along with fitting
procedures, are discussed in Appendix B.

5.1. Analytically-defined velocities

The analytical cross-validation exercise assumes that i) a gamma
distribution of velocities exists within the domain, and ii) the Eulerian
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mean velocity is described by a periodic function of the form
2x(t+1
() = v, [1+nsin<M>], (28)
T

where v, [L/T]is a long-term mean velocity, 5 [—] scales the magnitude
of the velocity fluctuation (subject to 0 < n < 1 so velocities remain
positive), « [T] is the period of the transient cycle, and 1, [T] is a
temporal shift. The corresponding transient gamma distribution for the
SMM is then given by (27).

The example problem is defined by a domain length L = 100 [L],
tortuosity y = 1 for simplicity, velocity correlation length ¢, = 10
[L], gamma PDF exponent § = 5, long-term average velocity v, =
0.04 [L/T], and temporal shift 7, = 0. The four approaches (NEX,
TPE, FTE, and RK3) are assessed under different = and # combinations
(Fig. 2), and then at different discretizations to demonstrate conver-
gence (Fig. 3). Any number of parameter combinations could be used,
but our goal is to demonstrate how transience impacts the model
relative to a steady-state approximation. In each case, we provide
comparison to a stationary SMM, which is obtained by setting v(r) = v,
and n = 0. We choose 4s = 1, so a random walker crosses a velocity
correlation length in #,/As = 10 steps and the full domain in L/As =
100 steps. We use 5000 random walkers; higher particle numbers did
not have a significant impact on the results since we focus on mean
behaviors, not on capturing tailing. The (cumulative) breakthrough
curves (BTCs) at the downstream domain boundary for different param-
eter combinations of low/high magnitude () and small/large period
(z) of transience are shown in Fig. 2, with specific values shown in
each panel. The time scales of transience were defined in terms of
the average velocity (v,) and domain length (L), corresponding to the
typical time for a particle to cross the domain. In all of these plots, the
FTE curve is under the RK3 curve at this scale, and both are usually
close to the TPE curve. Only the NEX and SS (steady-state) curves are
visibly distinct from the other transient models at all times.

An observation that can be made from Fig. 2 is that there are some
cases where TPE differs from RK3. The reason for this is the parameter
As, = ads in the TPE model; a value of a must be specified, which
controls the magnitude of the “allowable” errors. Fig. 2 used a = 0.5,
and this can be reduced to increase accuracy, at the cost of requiring
more steps. Given sufficiently small a, and thus 4s,, the TPE and RK3
results are essentially identical if the spatial discretization 4s/#, is also
sufficiently small. This is shown via a convergence analysis in Fig. 3
with a = 0.1, where TPE, FTE, and RK3 all exhibit nearly identical mean
travel times as 4s/¢, is decreased (i.e., the number of steps needed to
cross a correlation length is increased, so that all relevant structure in
the flow field is resolved). Similar behaviors can be found for any fixed
level of the BTC, but we only show convergence of the median arrival
time for brevity.

5.2. Spatially-heterogeneous flow field

Our final example considers flow in a 2d, heterogeneous flow field
subjected to transient boundary conditions. Here we simulate transport
explicitly using fully-resolved Lagrangian random walk particle track-
ing (RWPT), and then compare the result to the proposed, upscaled,
transient SMM schemes.

The flow domain was defined to have a length L = 100 along the
mean flow direction [L] and an aspect ratio of 2 : 1 (length to width).
The hydraulic conductivity tensor was locally isotropic, and the scalar
conductivity K in the domain was a log-normal multi-Gaussian random
field with major and minor correlation length scales of 4; = 10 [L] and
A, = 6 [L], a geometric mean of K, = 0.2 [L/T1], and unit variance of the
log-K field. The specific storage and porosity were taken to be spatially
constant and given by S, = 1.0x 1073 [1/L] and ¢ = 0.3. A longitudinal
spreading scenario was created by assigning zero-flux boundaries at the
extents of the minor axes and Dirichlet boundaries at the ends of the
major axes. The transient head changes were applied at the upstream
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Fig. 3. Convergence test of the proposed methods. As 4s is decreased, all but the NEX
scheme approach the same mean behavior showing that they are solving the same
system. TPE, FTE, and RK3 all converge to the same result for sufficiently refined
discretizations, though they have different computational costs and assumptions.

boundary according to a periodic sine function that varied the gradient
across the domain from 2% to 4% with a period of © = 4000 [T].
This fluctuation and parameter definitions satisfy the fast propagation
and slow variation criteria, and are also representative of the kinds of
fluctuations one can expect in real, undeveloped aquifers (McCallum
and Shanafield, 2016; Engdahl, 2017).

The transient groundwater flow equation was solved using 2nd-
order implicit finite differences and the domain was uniformly dis-
cretized into square cells of size Ax = Ay = 1 [L]. A snapshot of the
velocity field, head contours, and streamlines is shown in Fig. 4. The
time step of the transient model was Ar = 1 [T'] and flow and transport
were solved sequentially at each time step using an operator-splitting
scheme. The reference, fully-resolved, RWPT transport simulation used
a flux-weighted initial condition of 10’ particles released at x = 5 and
tracked forward over time to x = 95 (corresponding to a length L =
90 for transport) to avoid any potential boundary impacts. Standard
advective particle tracking methods were used, integrated in time with
a 2nd-order Runge-Kutta scheme.

A gamma distribution was fit to the Eulerian velocity PDF at each
time step of the transient flow simulation to simplify the parameteriza-
tion of the SMM. The error of the fitted to the simulated distribution
was computed to confirm that the simplified model was reasonable.
Root mean squared relative errors of the fitted CDFs were small (~ 0.011
over all times) and the worst linear correlation coefficient across all
fits in time was p = 0.991; this shows the gamma PDF is a good
approximation for this flow field, although it is not exact. Further,
the Eulerian PDF was well described by Eq. (26) with fixed 6 = 4.14,
and the effect of transient changes at the boundary on the transient
mean velocity were modeled well by (28), with v, = 2.06 x 1072
[L/T], n = 0.33, = = 4000 [T], and t, = —7/2. A comparison of the
simulated and fitted transient velocity PDFs for 4 times is shown in
Fig. 5. The time scale of the transient changes, z, was identical to that
of the prescribed head changes, providing more evidence that the fast
propagation assumption is valid in this case. In addition, the average
gradient was 3%, so the n = 0.33 factor represents a fluctuation of
+1%. This value matches the specified range of a 2% to 4% gradient
and shows that the transient velocity model can be inferred from the
transient boundaries.

The correlation length was estimated based on the multi-Gaussian
field as #, = A; = 10 [L]. The upscaled Bernoulli SMM uses As =
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Fig. 4. Heterogeneous, 2d flow field used for the transient model evaluation. White solid lines are contours of the potential field, black lines are the streamlines from the

steady-state simulation, and the colors represent the base-10 logarithm of the velocity magnitude. The hydraulic conductivity field was generated using a hierarchical combination
of transition probability geostatistics and stochastic multi-Gaussian fields.
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for the example flow field for one period of the transient cycle. Root mean squared (RMSE), normalized root mean squared errors (NRMSE), R?, and HD confirm the accuracy
and effectiveness of this functional approximation.

1 [L], corresponding to ¢./4s = 10 and 90 steps to traverse the were used for the SMM and the resulting BTCs for all four proposed
domain of transport, and tortuosity y = 1.12, which was computed transient SMM explicit schemes are shown in Fig. 6a, along with a
directly from the flow field. An ensemble of 5000 random walkers steady-state SMM and the simulated BTC for comparison. The blue
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o5 b. Comparison of TBRW models - PDF

RWPT
TPE
—RK3
2 —SSs
T157¢
2
‘@
C
[}
o 1
0.5+
0 L
0 0.5 1 15 2

Normalized travel time [-]

Fig. 6. Comparison of the BTCs computed from the (fully-resolved) RWPT-based and (upscaled) transient SMM simulations. This example uses a small, but realistic, transient
forcing that might be expected in natural aquifers. The advantage of the transient model is evident in the PDF plot, where the small secondary peak in the RWPT-BTC is captured
by the RK3 scheme but completely missed by the steady-state (SS) approximation. As discussed in detail in the text, better results for the different transient methods can be

obtained by further refining the discretization.

Table 1

Hellinger distance (HD) metric and RMSE for
imations of the simulated BTC. All transient
performance than the steady-state model.

the different SMM approx-
SMM models show better

Model ~ SS NEX TPE FTE RK3
HD 1.01x107"  9.63x1072  7.94x1072  550x1072 552x1072
RMSE 153x1072 120x1072 121x1072 646x10 6.81x107°

bars represent the (distributed, 2d) reference simulation. All data is
binned according to the bars shown for the resolved simulations to
make the comparison clearer; the value of each bar applies at its mid-
point along the horizontal axis. The PDFs for the two best methods
(TPE and RK3) are also shown in Fig. 6b, along with the steady-state
simulation SS and the reference RWPT model; the main difference is
that RK3 captures some of the secondary peak in the falling limb of
the BTC. Note that, for the TPE method, 4s, = ads with a = 1 was
used as for the analytical examples. As before, use of sufficiently small
a and 4s would lead to similar results for TPE and RK3, at the cost of
increased computational expense, but either of these schemes provides
a good upscaled approximation of the simulated BTC.

The similarity of the different SMM approximations to the simu-
lated BTC was assessed using root mean square error (RMSE) and the
Hellinger distance (HD) metric (Hellinger, 1909), both applied to the
PDF of travel times for the upscaled SMM simulations. The HD metric
quantifies the overlap or similarity between the different PDFs, relative
to the RWPT simulation. Values close to zero indicate strong similarity
and values near one indicate high degrees of difference; smaller values
mean better reproduction of the target distribution. Bianchi Janetti
et al. (2020) used the HD metric to assess the performance of a
trajectory-based SMM, demonstrating its utility in assessing SMMs. The
RMSE and HD values are shown in Table 1 and demonstrate quan-
titatively that the transient versions all out-perform the steady-state
SMM. The approximations of the fully-implicit model (see Section 3.3,
FTE and RK3) offer a slight advantage but smaller values of 4s, =
ads (through using smaller values of the free parameter a) would
increase the accuracy of TPE to a similar extent. In any case, all the
transient SMMs are considered overall good approximations. It is worth
noting that the magnitude of the transient changes in this example
are not as severe as some of those seen in Section 5.1, but there are
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clear departures from the steady-state model. This flow field is weakly
heterogeneous due to its low log-K variance, so a higher degree of
heterogeneity and greater contrast in the K field would likely lead
to more significant departures. Whether or not these departures are
significant enough to justify a fully-transient upscaled model leads
directly into our discussion.

6. Discussion and conclusions

The main purpose of this manuscript has been to determine if
transient versions of spatial Markov models can be developed, and in
this we have been successful. The heterogeneous velocity field example
(Fig. 4) with a time-dependent Dirichlet boundary condition verifies
that transient SMM schemes can offer good upscaled approximations of
key quantities such as breakthrough curves. As clearly seen in Fig. 6b,
the proposed RK3 scheme most accurately captured the BTC, in par-
ticular regarding both the maximum and transient-induced secondary
peak. Nonetheless, both the TPE and RK3 methods offer accuracy for
a reasonable increase in computational cost over stationary SMMs, and
both TPE and FTE converge to the same answer as RK3 when the spatial
step is sufficiently refined (see Fig. 3).

However, there is one major concern that cannot be overlooked,
which is not unique to this study. A key question regarding practical
application of any upscaled model is, can the model parameters be
inferred reliably? In this case, the bare-minimum required elements for
the transient SMMs are: i) the correlation length scale for the Bernoulli
relaxation process, ii) a reference Lagrangian velocity distribution, and
(iii) a model for how that distribution changes over time. Each of these
is considered independently in the following paragraphs.

The first item is the model for the SMM transitions. We have
assumed the spatial Markov correlations do not vary over time. There
are strong connections between geological structure and the spatial
correlations (Sherman et al., 2020), and geological structures generally
change on time scales orders of magnitude larger than solute transport,
so modeling the correlations does not represent a unique or undue
burden to the transient random walk. Furthermore, if a full SMM
transition matrix (e.g Engdahl and Bolster, 2020) was used instead of
a Bernoulli relaxation process there are only a few more operational
issues to consider. One is whether the initial and final bins change
simultaneously as the Lagrangian velocity PDF evolves; we see no
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reason they would not evolve jointly, particularly since the model
would become intractable if they did not. Another concern is whether
the bounds on the individual velocity bins should evolve over time.
The development of the fully-implicit scheme (Section 3.3) required
that small changes in velocity cannot significantly impact the velocity
rank, so the extension of this for broader validity is that slow changes
to the velocity field cannot change the ranks of the distribution; this is
merely another way of looking at the slow-variation criterion (23). In
the absence of a strong transient boundary, our view is that a “shock”
to the system would be necessary to invalidate the assumption of stable
velocity ranks, such as abruptly turning on a large pumping well. If this
were the case, the slow variation criterion would clearly be violated,
negating the benefits of application of the upscaled model in the first
place. Aside from these, we see no obvious additional considerations
necessary to adopt a full SMM transition matrix instead of a Bernoulli
relaxation process.

The second item to consider is how to obtain the reference La-
grangian velocity distribution. This is arguably the most important yet
difficult component to obtain. The best one could be expected to do
is to use a data-driven, geostatistical description of the expected hy-
draulic conductivity field that is subjected to the anticipated boundary
conditions for flow and transport. Evaluating this expected distribution
might require methods like a stochastic Monte-Carlo ensemble, but
each realization would be steady-state and so the ensemble should run
quite fast. From these, the expected behaviors of the reference velocity
distribution can be obtained, or any other threshold value (such as
percentiles) to assess the uncertainty range, and the slow variation and
fast propagation criteria (25) could easily be assessed at the same time.
The resulting velocity distributions could then be used in a transient
SMM in lieu of a large ensemble of transient Monte-Carlo simulations,
which would surely offer large computational savings. We consider
this a reasonable compromise, but it must be noted that uncertainties
in the geostatistical description, including unresolved heterogeneities
or non-stationarities, will propagate into the upscaled model as will
uncertainties in the boundary conditions. It is also possible to estimate
SMM model parameters from breakthrough curves alone (see Sherman
et al., 2017), though doing so in aquifers would be hampered by in-
complete sampling or recovery of a tracer. Estimating the velocity PDF
remains challenging but methods exist by which it can be reasonably
approximated, which is all one should expect when using an upscaled
model.

The third item is the model for how the reference velocity distri-
bution changes over time. The model for changes is at least “plausibly
obtainable” because of the fast propagation criteria. The key point is
that if (19) is satisfied then the relative changes at the boundaries
of the flow field can be used to approximate the changes in the
velocity PDF. Engdahl (2017) considered a system where combina-
tions of transient Dirichlet boundaries were used at the ends of a
confined, longitudinal domain where transport was simulated using the
fully transient velocity fields. The results showed strong correlation
between the transient forcing and the velocity fluctuations, meaning
that relative changes in the mean can be inferred, hence our definition
of (28). Long-term shifts in the mean may also be accommodated (e.g
Massoudieh, 2013), which can quickly overwhelm higher frequency
impacts on the mean. So, depending on the time scales of transport,
it may be more important to capture long-term trends, which can be
accurately inferred from observation well data, though models would
be needed for forecasting. Some inaccuracies are inevitable, but as long
as the estimated transient signal is representative of a system’s overall
changes, reasonable results can be expected. Our example from Sec-
tion 5.2 illustrates this idea: the fitted model for the velocity transience
was based solely on the transience at the boundaries, and the model
performed well.

Upscaled models should not strive to be perfect reproductions of
transport behaviors, as this would invalidate their purpose of be-
ing large-scale approximations through over-fitting. The goal of the
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transient Spatial Markov models proposed herein is to balance the
complexities of transient velocity fields with the simplicity of upscaled
models using a framework that leverages recent advances in correlated
velocity models. The main point of this discussion is that our definitions
of the slow variation and fast propagation criteria (25) provide all the
necessary evaluation criteria to assess the validity and usefulness of
the proposed models for a given scenario. There is a need for site-
specific data in order to evaluate those criteria, and the decision to use
transient upscaled models likely comes down to the subjective question
of sufficient data abundance: is there enough data to confidently build
the desired model? To this we can offer no new insights because every
case is unique. We can say that the data requirements for transient
SMMs falls between those of steady-state SMMs and spatially explicit,
distributed models. There are benefits to accuracy (Section 5) relative
to the former, and clear advantages of speed relative to the latter, but
ultimately the data dictate which models should be used for a given
purpose.
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Appendix A. Numerical determination of the flow variation win-
dow

In this appendix, we describe a straightforward numerical approach
to obtain the variation window 4r, according to Eq. (9). Note that more
sophisticated root-finding techniques could also be employed.

In order to sequentially determine the 4t,;, associated with each of
the turning point times T, ,/, see Eq. (10), we consider a time resolution
for step k' given by

ASU ads

AI | = = = = .
, O(T,p0)

= (29)
Ul (Tu,k’ )

This resolution represents the time necessary to cross the spatial vari-
ation threshold As, = ads of Eq. (9) at the current mean velocity.
We expect this choice to provide a good compromise between speed
and accuracy, especially when the slow-variation condition (a) is met
(see Section 3), but note that a finer or coarser resolution could be
employed. The variation window 4t/ = n;s At;, is then determined in
terms of the number n,, of time-resolution steps required to exceed the
allowed variation 4s,. Numerically, n,, can be computed as the smallest
integer n such that

[O(T, s + ndty) =0T, ) |ndtys > As,. (30)

In the simplest implementation, the value of the mean velocity over
time is scanned sequentially, at a temporal resolution of At;/, until the
prescribed tolerance As, is exceeded. This procedure is illustrated in
Fig. 7.
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Fig. 7. Illustration of the algorithm to determine the variation windows 4, ,, associated
with temporal variation of the Eulerian mean velocity. The variation windows 4z, =

T, 441 — T, determine the turning point times T, , starting at T,, = T,, at which

flow velocity variations are taken into account. Each 4t,,, is determined so that the
mean velocity variation vy = [0(T, . + 4t,,) = 0(T, ;)| is such that dvy 4t = 4s,,
where 4s, is related to the spatial-Markov step size by a factor a < 1, 4s, = ads.
In order to determine these variation windows numerically, we consider a step-
dependent maximum resolution 4r,, = 4s,/0(T, ), as illustrated for At,;. Then, 4t
is approximated the smallest integer multiple of Az, such that Av, 4t,,, exceeds 4s,.

Appendix B. Parameterization and fitting of the gamma velocity
PDF

The gamma PDF is typically parameterized in terms of a shape
parameter « and a rate parameter &, defined such that
6“ a—1,-&x
mx e s, (31)
where, for a random variable with this distribution, p(x; a, &) dx is the
probability of a value in the infinitesimal vicinity dx of x. This PDF can
be fit to velocity data directly by applying a standard minimum-square
criterion to determine « and é&.

In the present application, where the Eulerian velocities are taken
to be gamma-distributed, it is convenient to choose a parameterization
that emphasizes features that are key to solute transport. The scale
parameter « controls the tailing properties at low velocities, which
control the large-time tailing of transit times and thus the late-time
dispersion behavior (Dentz et al., 2016; Aquino and Le Borgne, 2021).
Thus, we choose to keep § = « as a parameter. On the other hand, the
mean «a/& of the gamma distribution has a clear physical meaning in our
context: it represents the spatial average of the velocity at a given time.
Thus, we parameterize our Eulerian velocity PDF by setting & = a/0(?),
ie.,

pr(x;a,é) =

PE(it) = pr [u;a, _i] , (32)
u(n)
which corresponds to Eq. (26). To fit this form to velocity data at a
given time, we fit a to the low-velocity behavior of the data PDF, and
set 0(t) to the spatial mean of the data.
Alternatively, we could enforce the correct average velocity v(r) =
a/¢ and velocity variance o2 = a/£2, which can be achieved by setting

v c2(’ 620 33)

pe(in) =pr
To fit this form, we would simply set the mean and variance according
to the data.

These three parameterizations are formally equivalent. If the true
Eulerian velocity distribution were gamma, the three fitting procedures
would also be equivalent. However, if the latter are applied to arbitrary
data, they may produce different results, as they focus on constraining
different quantities given the two degrees of freedom (independent
parameters) that characterize a gamma distribution. The first aims
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to provide the “overall best” fit for the PDF itself, while the second
enforces the correct mean velocity and large transit time (low velocity)
tailing, and in turn the third captures mean velocity and velocity
variance exactly.

Appendix C. Implementing the flux-weighted CDF

Flux-weighting of the gamma PDF in Eq. (31) corresponds to multi-
plication by v/, from which we can obtain the associated cumulative
distribution function by integration:

: / et a
ol (@) Jo ’
ya+1,¢v)
=2 e 34
ol (a) 34)
where y(-,-) is the lower incomplete gamma function. Recalling that
& = a/D, we obtain

Pr(v;a,8)

yla+ 1 av/d(1)]

o) (a)
This form of the flux-weighted CDF allows standard, well-known func-
tions to be used to approximate the SMM numerically.

P (v;t) = Prlv,a,a/D(t)] = (35)
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