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A B S T R A C T

Correlated velocity models (CVMs) have proven themselves to be effective tools for describing a wide range of
solute transport behaviors in heterogeneous porous media. In particular, spatial Markov models (SMMs) are a
class of CVMs where subsequent Lagrangian velocities along transport trajectories depend only on the current
velocity, and not on past history. Such models provide a powerful tool for modeling transport in terms of a
limited number of flow properties, such as the Eulerian point distribution of (flow) velocities, tortuosity, and
the spatial scale of persistence of velocities. However, to date, all SMM modeling frameworks and applications
have assumed that the underlying flow is steady-state. In this work, we extend SMMs to the case of time-
varying flows. We propose, compare, and validate alternative numerical implementations, and we determine
conditions for validity and efficiency based on standard physical quantities used to describe flow and transport
at the Darcy scale. The models require additional information relative to a steady-state velocity SMM and we
discuss the conditions under which this extra burden is warranted. We also provide clear, deterministic tests
for the validity of the transient SMM, termed the ‘‘slow variation’’ and ‘‘fast propagation’’ criteria, which offer
clear guidance on when transient, upscaled models are reasonable to employ. Our work forms the basis of a
new framework allowing for the application of efficient upscaled models of transport to realistic transient flow
conditions.
1. Introduction

The general aim of upscaled models of solute transport in porous
media is to capture the impacts of inhomogeneities without explicitly
representing the mechanisms that drive transport and/or their spa-
tiotemporal variability (Sund et al., 2019; Dentz et al., 2020). The
philosophy behind upscaled methods revolves around the notion that
the computational and data-support burdens imposed by distributed
models incur significant computational costs and lend sufficient uncer-
tainty to predictions such that distributed models are not necessarily
practical in every circumstance. A reduced-complexity strategy can be
advantageous in many such cases. One of the promising upscaled trans-
port frameworks is that of the continuous time random walk (CTRW),
where the transition times between steps are modeled as a random vari-
able (Scher and Lax, 1973; Scher and Montroll, 1975; Berkowitz et al.,
2006). The model for the spatial increments and associated transition
times distinguishes different flavors of CTRWs. A contemporary group
of methods that have demonstrated broad applicability are correlated
velocity models (CVMs), which in particular employ a fixed-length
spatial step discretization.
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In the conceptual model behind a CVM, travel times between adja-
cent steps in a CTRW are not independent and identically distributed
events, due to correlations in the velocity field. Consider a Lagrangian
particle moving through a natural system whose velocity is sampled at
fixed spatial increments along its streamline. Natural media are often
characterized by well-defined characteristic lengths, such as the mean
lengths of hydrofacies (Carle and Fogg, 1996; Weissmann et al., 1999;
Lee et al., 2007), and this means that a Lagrangian particle moving
quickly along a preferential flow path is more likely to continue moving
quickly than it is to abruptly slow down, though both options are
possibilities. As the distance between sample locations increases, the
Lagrangian (i.e., particle trajectory) velocity correlations decay propor-
tionate to the spatial scales of the geological formations (Sherman et al.,
2020), and the transitions eventually become uncorrelated. Models of
the transition time to complete the ‘‘next’’ step in the random walk can
leverage these correlations by conditioning the transition time based on
the most recent step. This is precisely what is done in a Spatial Markov
Model (SMM) (Le Borgne et al., 2008a,b; Dentz et al., 2016), where
transitions are conditioned on the ‘‘previous’’ step only. An SMM can
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be parameterized in terms of a small number of properties with clear
physical meaning, such as Eulerian velocity statistics, tortuosity, and
spatial correlation lengths of Lagrangian velocities, which are related
to the characteristic spatial scales of the hydrogeology (Le Borgne et al.,
2008c; Dentz et al., 2016; Aquino and Le Borgne, 2021). Although
SMMs are Markovian in terms of the number of steps taken by a
particle, and therefore in space due to the fixed spatial increments,
the resulting temporal dynamics may ultimately be non-Markovian as a
result of broadly-distributed waiting times (Meyer and Tchelepi, 2010;
De Anna et al., 2013; Kang et al., 2014; Holzner et al., 2015; Meyer
and Saggini, 2016). The flexibility of the SMM allows complex transport
phenomena to be modeled within its framework, resulting in significant
conceptual and computational simplifications when compared to other
CTRWs that otherwise require explicit modeling of nonlocal transport
mechanisms, i.e., arbitrarily far particle jumps or dependency on long-
term trajectory history (Metzler and Klafter, 2004; Berkowitz et al.,
2006; Klages et al., 2008; Meerschaert and Sikorskii, 2012). Appli-
cations of SMMs to date have been diverse with compelling results
obtained across a diverse spectrum of situations (Kang et al., 2011;
Bolster et al., 2014; Sund et al., 2015b,a, 2017; Sherman et al., 2017;
Hakoun et al., 2019; Sherman et al., 2019; Wright et al., 2019; Comolli
et al., 2019; Puyguiraud et al., 2019b,a; Dentz et al., 2020; Puyguiraud
et al., 2021). However, one of the limitations of all SMM applications
to date is that the transitions have been exclusively assumed to be
stationary in both space and time, even in the case of multi-continuum
formulations (Engdahl and Bolster, 2020; Kim and Kang, 2020).

The assumption of spatial stationarity often makes sense in the con-
text of the linkages between SMM transitions and hydrogeologic corre-
lations, and many studies have shown that stationary upscaled models
are effective in certain heterogeneous media (Puyguiraud et al., 2019a;
Hakoun et al., 2019). Allowing for spatial non-stationarities is not a
particularly difficult issue to address, at least conceptually, because one
could simply apply a different correlation model at different positions
along the path of a Lagrangian particle (Aquino and Le Borgne, 2021).
These correlation changes could be defined to coincide with known
changes in the hydrogeology, so the only implementation barrier is
developing different models of correlations for the different regions and
deciding on the cutoffs for each. To do so may be time-consuming and
require additional data, but it is not technically challenging, nor is it
beyond the capabilities of current SMM frameworks.

The issue of temporal non-stationarities (transience) is significantly
more involved because CVM formulations are based on connections
between geological structure and spatial correlations. All work on
CVMs has employed steady-state velocity fields, and it is unclear if
such correlations between structure and velocity remain when the flow
field varies in time. In reality, flow paths can change significantly due
to transience, especially when flow is driven by spatially-distributed
recharge or in unconfined settings (Engdahl, 2017). Transience can
also impart non-uniqueness when an aggregated transport metric like
a breakthrough curve is used. For example, two particles entering the
same point of a distributed velocity field at two different times could
take two different paths (drastically so in the case of variably-saturated
flows, Engdahl and Bolster, 2020). Similarly, different particles enter-
ing at different locations may ultimately have similar travel times to
reach a fixed monitoring point because of transient changes in the
flow field. These cases, and many more, would immediately invalidate
assumptions of even weak stationarity (i.e., stationarity of increments),
which would seem to deal a crippling blow to the conceptual un-
derpinnings of all the current CVMs. One option to deal with these
issues would be to relegate CVMs to cases of strict stationarity where
transient effects are sufficiently averaged out. However, our perspective
is that doing so would be unnecessarily limiting, because a more careful
inspection of SMMs suggests that they can be adapted to accommo-
date at least some transient velocity fields if some care is taken. At
a minimum, an upscaled representation of these transient processes
2

should (i) be conditional to the ‘‘clock time’’ at which a particle entered a
the flow field, and (ii) somehow account for the temporal changes
in upscaled velocity distributions, correlations, or both. As with any
upscaled model, some simplifying assumptions are necessary, but in
this case we will show that conditions for validity and numerical
efficiency can be posed in terms of the typical physical parameters used
to describe flow and transport in porous media at the Darcy scale.

The central questions addressed in this article are how to generalize
(correlated) CTRWs to the case of transient velocities, and what condi-
tions are necessary for these generalizations to be valid and practical.
The motivation is to preserve the theoretical and computational bene-
fits of SMMs when the underlying flow field is time-dependent. Several
options of varying complexity are evaluated to accomplish this goal,
and we consider their benefits and pitfalls in the context of analytic
and numerically-defined transient velocity fields. We start by reviewing
the basic concepts of the SMM and assessing its limitations regarding
transient flow fields. Three approaches to accommodate transience
are then developed, and we show that two of these are sufficiently
robust for general applications. Specific criteria are developed for the
validity of the transient SMM. The approach requires no further specific
assumptions about the underlying flow field, but we focus here on flow
through porous media at the Darcy (aquifer) scale. We validate our
results against numerical simulations using both analytical and realistic
flow fields where transience is induced by time-varying (periodic)
boundary conditions. In the interest of compactness, the concepts and
examples are demonstrated using a Bernoulli relaxation model for
the Markov velocity process (Dentz et al., 2016), so we close with
a discussion of how the approach can be generalized to other forms
of transient CVMs. Collectively, the results advance the capabilities of
CVMs to include transience and offer clear guidance regarding when
these models would be appropriate and accurate.

2. Spatial-Markov model

SMMs are one of many CVMs that conceptualize (advective) trans-
port in terms of Lagrangian particle trajectories, whereby a solute mass
is discretized onto the particles (Sherman et al., 2020). Trajectories are
usually modeled as a succession of steps of fixed length 𝛥𝑠 along the
streamlines of a flow and each step has a constant velocity, but the
velocities may change as the particle completes successive steps. The
basic concept is that the transition time (i.e., the step length divided by
the velocity) distribution accounts for the heterogeneity in a flow field
without explicitly modeling it, such that transport follows a stochastic-
convective ensemble along streamlines. The step length corresponds to
a choice of discretization of Lagrangian particle trajectories and the
description converges to a continuum process in the limit of small 𝛥𝑠 →
0 (i.e., becomes independent of the discretization when it is sufficiently
fine, as is expected of a properly-discretized model). Particle positions
after 𝑘 steps along a streamline (particle path) are denoted 𝑋𝑘 with the
corresponding times 𝑇𝑘 to complete the 𝑘th step obey the stochastic
recursion relations (Dentz et al., 2016)

𝑋𝑘+1 = 𝑋𝑘 +
𝛥𝑠
𝜒

, 𝑇𝑘+1 = 𝑇𝑘 +
𝛥𝑠
𝑉𝑘

, (1)

where 𝑉𝑘 is the velocity magnitude during the 𝑘th step, which is con-
stant throughout the step. Typically, the tortuosity 𝜒 is approximated
by the average tortuosity, which is computed as the average of the
Eulerian velocity magnitude divided by the average of its projection
along the mean flow direction (Koponen et al., 1996),

𝜒 = 𝑣
⟨𝒗 ⋅ 𝒙̂⟩

. (2)

Here, 𝒗 is the Eulerian velocity vector, 𝒙̂ is the unit vector along
the mean flow direction, and ⟨⋅⟩ denotes the average over space. The
numerator represents the average of the Eulerian velocity magnitude,
𝑣 = ⟨|𝒗|⟩, so that 𝜒 ⩾ 1. The initial time and position for each particle
re often taken as 𝑇 = 0 and 𝑋 = 0, respectively (though nonzero
0 0
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positions and times are permissible), and the initial velocities 𝑉0 are
istributed according to the initial condition at this time.

The key ingredient of a spatial-Markov model is that the velocities
𝑘, seen as a function of 𝑘, form a Markov chain. The Markov property
eans that the probability of the next step having velocity 𝑉𝑘+1 is

onditional only on the most recent step’s velocity 𝑉𝑘, and not on
ast history through earlier velocities. Under strict stationarity of the
nderlying flow field, the corresponding transition probabilities, given
he current velocity, are constant in both space and time. Discretizing
elocities into classes, such that class 𝑖 comprises velocities between
𝑖 and 𝑏𝑖+1 and has width 𝛥𝑣𝑖 = 𝑏𝑖+1 − 𝑏𝑖, the midpoint velocity 𝑣𝑖 =
(𝑏𝑖+1 + 𝑏𝑖)∕2 is associated with class 𝑖. The velocity process is then
characterized by the probabilities 𝑟𝑖𝑗 of transitioning to class 𝑖 given
that the current velocity is in class 𝑗.

In order for the velocities to correspond to a spatial-Markov process,
the probability of transitioning to a different class must be proportional
to the step length 𝛥𝑠, so that, for a given velocity, the spatial rate of
transition (transition probability per unit distance) is constant and the
transition probability decays exponentially with the step length (Van
Kampen, 1992). The overall persistence of velocities is characterized
by the correlation length 𝓁𝑐 of velocity magnitudes along streamlines,
which at the Darcy scale is typically of the same order as the scale of
spatial variability of permeability (Hakoun et al., 2019). Thus, taking
into account that ∑

𝑖 𝑟𝑖𝑗 = 1 for all classes 𝑗 to conserve probability
(a transition from any given velocity class 𝑗 must end at some velocity
class 𝑖), we write, for a small spatial step 𝛥𝑠 compared to the correlation
length 𝓁𝑐 (Aquino and Le Borgne, 2021),

𝑟𝑖𝑗 =
𝛥𝑠
𝓁𝑐

𝛽𝑖𝑗 (1 − 𝛿𝑖𝑗 ) +
[

1 − 𝛥𝑠
𝓁𝑐

(1 − 𝛽𝑖𝑖)
]

𝛿𝑖𝑗 , (3)

where the dimensionless 𝛽𝑖𝑗 encode the velocity-dependence of the
transition probabilities and 𝛿𝑖𝑗 is a Kronecker delta. Thus, the term
proportional to (1−𝛿𝑖𝑗 ) denotes the probability of changing to a different
velocity class, whereas the term proportional to 𝛿𝑖𝑗 denotes the proba-
bility of remaining in the same velocity class. As shown in Aquino and
Le Borgne (2021), the corresponding dynamics result in a well-defined
spatial-Markov process in the continuum limit of fine step discretization
𝛥𝑠 → 0, so long as the velocity class discretization associated with a
given 𝛥𝑠 is chosen such that the time increments 𝛥𝑠∕𝑣𝑖 → 0 for all
classes 𝑖 as 𝛥𝑠 → 0.

The full transition matrix of an SMM is an 𝑁 ×𝑁 matrix, where 𝑁
is the number of velocity bins. This can be difficult to parameterize
in practice, so we shall instead adopt an analytical model based on
a discretized Bernoulli relaxation process for the velocities (Dentz
et al., 2016; Sherman et al., 2020; Aquino and Le Borgne, 2021).
We expect this approach to provide good results for quantities such
as breakthrough curves at distances larger than a few correlation
lengths (Puyguiraud et al., 2019a; Hakoun et al., 2019). Under this
process, particle velocities persist on the scale of the correlation length
𝓁𝑐 . When a particle changes to a different velocity class in a given step,
the probability of the new velocity being in class 𝑖 is independent of
the current velocity class 𝑗, and it is given by a prescribed equilibrium
probability 𝑝∞𝑖 . In this sense, the Bernoulli process may be seen as
the simplest Markov process that relaxes to a prescribed equilibrium
distribution over a given characteristic scale. This also provides a direct
link to SMM paramaterizations based on Gaussian Copulas (Massoudieh
and Dentz, 2020). Assuming that the probability of transition per unit
length is constant and equal to 1∕𝓁𝑐 implies that the probability of
persistence is exponential (Van Kampen, 1992; Feller, 2008), and the
transition probabilities are given by (Dentz et al., 2016)

𝑟𝑖𝑗 = 𝑒−𝛥𝑠∕𝓁𝑐 𝛿𝑖𝑗 +
(

1 − 𝑒−𝛥𝑠∕𝓁𝑐
)

𝑝∞𝑖 . (4)

Expanding in Taylor series for small 𝛥𝑠∕𝓁𝑐 ≪ 1 and comparing to
Eq. (3), we obtain

𝛽𝑖𝑗 = 𝑝∞𝑖 , (5)
3

independent of the current velocity class 𝑗 as expected.
The probability 𝑝∞𝑖 must be defined in terms of flow properties
in order for the Bernoulli process to relax to the correct velocity
distribution for a given transport problem. To this end, we introduce
the Eulerian velocity probability density function (PDF) 𝑝𝐸 , defined
such that 𝑝𝐸 (𝑣) 𝑑𝑣 is the probability of finding a velocity in the in-
finitesimal vicinity 𝑑𝑣 of 𝑣 at a uniformly-randomly chosen spatial
location. In other words, the Eulerian velocity PDF represents the point
velocity statistics of the underlying flow field, in terms of the spatial
probability of occurrence. Note that the Eulerian mean velocity, which
was introduced above as a spatial average, can also be computed from
the Eulerian velocity PDF as 𝑣 = ∫ ∞

0 𝑑𝑣 𝑣𝑝𝐸 (𝑣). The equilibrium distri-
bution of the Bernoulli process represents the distribution of velocities
measured at a given downstream distance far from injection. Under
the assumptions of flow incompressibility and ergodicity (i.e. velocity
statistics sampled in time along a sufficiently long trajectory are the
same as across the spatial domain), the corresponding equilibrium
velocity PDF, called the s-Lagrangian velocity PDF in some works, is
the flux-weighted Eulerian PDF (Dentz et al., 2016; Puyguiraud et al.,
2019a),

𝑝𝐹 (𝑣) =
𝑣𝑝𝐸 (𝑣)

𝑣
. (6)

In the discretized description, 𝑝∞𝑖 is the probability associated with the
discretized velocity class 𝑖,

𝑝∞𝑖 = ∫

𝑏𝑖+1

𝑏𝑖
𝑑𝑣 𝑝𝐹 (𝑣) ≈ 𝛥𝑣𝑖𝑝𝐹 (𝑣𝑖), (7)

where the approximation holds for small velocity classes, 𝛥𝑣𝑖∕𝑣 ≪ 1.
The Bernoulli process is thus fully parameterized given knowledge of
the Lagrangian (i.e., along streamlines) correlation length 𝓁𝑐 and the
Eulerian velocity PDF 𝑝𝐸 (𝑣).

. Non-stationary spatial-Markov model

Consider now how to generalize the previous description to situ-
tions where the underlying flow field depends on time. Specifically,
e seek a spatial-Markov model that is (statistically) non-stationary

n time, in order to reflect transience (i.e., time dependence) of the
nderlying flow field. In a real, distributed transport system, the lo-
al velocity of a Lagrangian particle depends on position and time,
hich change along particle trajectories; the particle transport paths
ay be changing as time passes and thus may not coincide with
aths along instantaneous flow streamlines. A robust upscaled rep-
esentation of general transport dynamics is hopeless, because this
cenario implies that in general the position and transition time changes
annot be decoupled. This means that an SMM is not applicable un-
ess some simplifying assumptions are made. Otherwise, the required
hree-dimensional random walk may have complexity comparable to a
istributed model, defeating the purpose of upscaled modeling.

Conceptually, particle velocities in the upscaled model could be
onsidered to change according to two mechanisms that represent the
hanges in a physical transport system: (i) As in the classical SMM, a
article moves according to the local velocity and then samples a new
elocity at a different, nearby point in space; and (ii) The local velocity
t a particle’s position changes due to the time-dependent nature of the
low. In general, these two processes cannot be fully decoupled since
hey could be happening simultaneously, but under certain conditions
n upscaled description remains possible. A critical evaluation reveals
wo criteria under which an SMM should remain valid and practical:
a) Slow (temporal) variation of velocities, and (b) Fast (spatial) prop-
gation of velocity changes. Slow variation means that the temporal
hange in the flow distribution throughout the medium is sufficiently
low that many spatial transitions typically occur before appreciable
hanges in the local velocities. Fast propagation means that when
ubstantial changes in the velocity field do occur, they act quickly
hroughout the spatial domain compared to transport processes, so
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that all changes in the velocity PDF can be safely approximated as
synchronous, or instantaneous, throughout the domain. The latter has
been a common assumption in many studies of transient transport
behaviors (see Engdahl et al., 2016), suggesting it could also be adopted
for SMM applications.

Even under these assumptions, the Eulerian velocity PDF represent-
ing spatial flow statistics still needs to be updated over time to reflect
the transient changes. The remainder of this section is concerned with
how, and how often, to do so, and the assumptions associated with
these decisions. In particular, the underlying Eulerian velocity PDF
must be considered as transient in all of the specific cases analyzed
below. The most practical approaches to achieving this consist in
adopting parameterized PDFs where some or all of the parameters
can be made functions of time. This important issue will be revisited
in Section 5. For now, we merely posit that the transient Eulerian
velocity PDF 𝑝𝐸 (𝑣; 𝑡), describing point velocity statistics at each time 𝑡,
s known, and we discuss three different candidates for implementing
discretized transient SMM.

.1. Naïve explicit

The simplest version of a transient SMM is one where the ve-
ocity PDF is updated only at steps where velocity transitions occur.
his ‘‘Naïve explicit’’ (NEX) scheme is still described by the recursion
elations (1). The key difference is that the transition probabilities
𝑖𝑗 (𝑡) now depend on the current ‘‘clock time’’ of the random walker
hrough the coefficients 𝛽𝑖𝑗 (𝑡), see Eq. (3). At each transition, the

Eulerian velocity PDF is updated to 𝑝𝐸 (𝑣; 𝑇𝑘), and the corresponding
transition probabilities 𝑟𝑖𝑗 (𝑇𝑘) are calculated before determining the
new velocity. Note that in the specific case of a Bernoulli random walk,
particle velocities only change with a probability given by exp(−𝛥𝑠∕𝓁𝑐 ),
independent of the current velocity, but otherwise remain the same as
in the previous step (see Eq. (4)); thus, in this case, the velocity PDF
is only updated to accommodate transient changes when a Bernoulli-
model change in velocity would occur. Thus, for a Bernoulli random
walk, transience in-between transitions is effectively ignored.

The simplicity of this approach is appealing, but it suffers from
significant limitations because it makes no attempt to identify when
it is actually necessary to account for transient changes. As we will
see, this means that it does not converge to the same solution as the
more involved discretization schemes proposed below in the continuum
limit of fine discretization 𝛥𝑠 → 0. When the flow field changes very
lowly (in the sense of the slow-variation criterion developed in detail
n what follows), the NEX model may provide sufficient accuracy in
ractice, but if the timescales of transience impart fluctuations faster
han the travel times, which should occur often at low velocities,
ignificant errors will accumulate because important transient changes
re ignored. The necessary conditions for this NEX model to provide
realistic approximation may not be practical in many real-world

ituations. We nonetheless include it here for its conceptual simplicity
nd to highlight the role of the more subtle procedures developed for
he following, more involved discretization schemes.

.2. Turning point explicit

The problem with the primitive NEX model is that it is entirely
blivious to the rate at which the flow field changes. If the flow field
hanges quickly, many velocity updates are necessary in, potentially, a
hort time compared to standard SMM velocity transitions, especially
or particles moving at low velocities. Thus, our goal is to find an
pproach where the time and number of velocity PDF updates are
ictated by the magnitude of the temporal changes in the velocity
DF. Before continuing, recall that particle velocities in a transient
MM may change due to two mechanisms: (i) As before, a particle
4

oves according to the local velocity, and samples a new velocity at a
different, nearby point in space; and (ii) The local velocity at a particle’s
position changes due to the time-dependent nature of the flow.

In the context of a transient field, mechanism (i) requires a rule
to determine the transition probabilities 𝑟𝑖𝑗 (𝑡) for times 𝑡 over each
ime range between velocity changes. In turn, mechanism (ii) requires
rule to determine velocity transitions due directly to the change in the
nderlying flow field. First, we determine the time range characterizing
ppreciable velocity changes. Knowledge of the time-dependent Eule-
ian PDF 𝑝𝐸 (𝑣; 𝑡), as a function of velocity 𝑣 for each time 𝑡, implies
nowledge of the mean Eulerian velocity as a function of time,

𝑣(𝑡) = ∫

∞

0
𝑑𝑣 𝑝𝐸 (𝑣; 𝑡)𝑣. (8)

ver a given time interval, which we call a variation window 𝛥𝑡𝑣,
he difference in the average particle displacement associated with the
hange in mean velocity can be quantified through

𝑠𝑣 = |𝑣(𝑡 + 𝛥𝑡𝑣) − 𝑣(𝑡)|𝛥𝑡𝑣. (9)

The quantity 𝛥𝑠𝑣 may be interpreted as the approximate error in the av-
erage particle displacement that would arise from not taking the mean
velocity variability into account. The error in the usual discretized
spatial-Markov description, associated with mechanism (i), is on the
order of the discretization step length 𝛥𝑠. Thus, in order to obtain an
rror of the same order associated with discretizing mechanism (ii),
e choose 𝛥𝑡𝑣 such that 𝛥𝑠𝑣 = 𝑎𝛥𝑠, where 𝑎 ⩽ 1 is a free parameter

ontrolling the maximum step size under transience, and as such the
agnitude of allowable errors. Note that this will in general correspond

o a time-dependent variation window 𝛥𝑡𝑣(𝑡).
For given values of 𝑎 and 𝛥𝑠, Eq. (9) can be solved numerically

or 𝛥𝑡𝑣. The procedure leads to a series of turning points 𝑇𝑣,𝑘′ where
ariation of the Eulerian flow field is to be taken into account; for
his reason, we call this approach the ‘‘Turning Point Explicit’’ (TPE)
ethod. Specifically, we have

𝑣,𝑘′+1 = 𝑇𝑣,𝑘′ + 𝛥𝑡𝑣,𝑘′ , 𝑇𝑣,0 = 𝑇0 = 0, (10)

here 𝛥𝑡𝑣,𝑘′ = 𝛥𝑡𝑣(𝑇𝑣,𝑘′ ) is the variation window associated with the
ast turning point. Note that many transition times 𝑇𝑘 associated with
echanism-(i) transitions are expected to occur between two turning
oints when the slow-variation condition (a) is met, as discussed in
ore detail below. A straightforward numerical procedure to determine

he variation windows and associated turning points is described in
ppendix A.

We now formalize mechanism (i). Starting at the time 𝑇𝑣,𝑘′ of the
ast flow-variation transition, determine the next variation window
𝑡𝑣,𝑘′ . Then, employ Eq. (3) for the transition probabilities 𝑟𝑖𝑗 (𝑡) =
𝑖𝑗 (𝑇𝑣,𝑘′ ), together with the transition coefficients 𝛽𝑖𝑗 (𝑡) = 𝛽𝑖𝑗 (𝑇𝑣,𝑘′ ),
hich depend on the choice of spatial-Markov process. The transition
robabilities remain constant throughout the variation window. Next,
pdate particle positions and times according to Eq. (1). However,
hen during some step 𝑘 a particle’s time would exceed the next

urning point time 𝑇𝑣,𝑘′+1 associated velocity variation (Eq. (10)), the
ew time and position are determined according to

𝑘+1 = 𝑋𝑘 + 𝑉𝑘
𝑇𝑘+1 − 𝑇𝑘

𝜒
, 𝑇𝑘+1 = 𝑇𝑣,𝑘′+1, (11)

in order to account for the partial completion of the step. Note that the
remainder of the last transition distance and duration are discarded.
Having determined that the next Markovian velocity transition has not
occurred by time 𝑇𝑘+1, we know the velocity remains constant and
equal to 𝑉𝑘 during the partial step. The turning point corresponding to
the next Markovian change in velocity can simply be recomputed in the
next iteration without further assumptions due to the lack of memory
of Markov processes (see, e.g., Van Kampen, 1992). The algorithm for
mechanism (i) is illustrated in Fig. 1. This procedure is to be applied
to all particles, followed by mechanism (ii), described below, and then
repeated. Note that the NEX scheme proceeds similarly regarding the
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Fig. 1. Illustration of the algorithm for mechanism (i), representing spatial-Markov transitions. As explained in detail in the text, starting at time 𝑇𝑣,0 = 𝑇0 and position 𝑋0, the
ariation window 𝛥𝑡𝑣,0 is first computed based on mean flow velocity variability. The Markov transition times 𝛥𝑠∕𝑉𝑖 associated with steps of length 𝛥𝑠∕𝜒 are then computed, until
he turning point time 𝑇𝑣,1 = 𝑇𝑣,0 + 𝛥𝑡𝑣,0 is reached. The portion of the last step corresponding to times exceeding 𝑇𝑣,1, represented by the dashed lines, is discarded, leading to the
olid blue trajectory. Mechanism (ii) is then employed to find the new velocity at the new turning point, the Markov transition probabilities are updated according to the transient
ulerian PDF evaluated at 𝑇𝑣,1, and the algorithm is repeated.
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urning point times 𝑇𝑘 and positions 𝑋𝑘, but does not require explicit
ariation windows. Rather, the position increments are always 𝛥𝑠∕𝜒 ,
nd the underlying transition probabilities are updated only when a
elocity transition to a different class occurs.

Next, we turn to mechanism (ii), which corresponds to determin-
ng the new velocity at the flow-variation turning point times 𝑇𝑣,𝑘′ .
onsider the transition probabilities of Eq. (3). Under a change in
he flow field, these may change through the correlation length 𝓁𝑐
nd/or through the velocity-dependent coefficients 𝛽𝑖𝑗 . In order to set
p mechanism (ii) in a simple and physically-reasonable manner, we
ssume that the flow structure remains unchanged, maintaining the
orrelation length 𝓁𝑐 and the tortuosity 𝜒 constant, but the Eulerian
elocity PDF may change in time, keeping its functional form but
hanging its mean through a rescaling. As familiar examples, this is the
ase at the pore scale when the underlying velocity field corresponds
o Stokes flow, and at the Darcy scale when the hydraulic conductivity
tructure remains the same but the average head gradient driving the
low is rescaled. Once a transition due to velocity variation happens,
t some transition time which we again name 𝑇𝑘 (now with 𝑘 ⩾ 1) for
onvenience, the local flow velocity at the particle’s position is likely
o have changed appreciably. To take this into account, mechanism (ii)
onsists of rescaling the particle’s previous velocity according to the
hange in mean velocity,

𝑘+1 =
𝑣(𝑇𝑣,𝑘′+1)
𝑣(𝑇𝑣,𝑘′ )

𝑉𝑘, (12)

or the corresponding class velocity in the discretized picture. This
choice corresponds to assuming that the change in the velocity statistics
can be approximated by an overall rescaling of the point velocities,
in line with the assumptions discussed above. This mechanism is ap-
plied to all particles, and the procedures described for mechanisms (i)
and (ii) are then repeated. Note that, at the begin of procedure (i),
the Markov transition probabilities are recomputed according to the
velocity distribution at the new turning point time.

The correlation length and tortuosity are determined by the flow
structure but can change in a given medium with an unchanging
structure, for example due to the formation of preferential flow paths.
While the mechanism (ii) rule can be applied to a case where the flow
structure also varies, its physical significance is more difficult to justify.
A more complex transition rule may be necessary in such cases, which
we do not discuss further here.
5

3.3. Fully-implicit model

So far we have considered one method that only updates transition
probabilities each time a velocity change takes place (and not at turning
points where velocity remains the same), and one that automatically
‘‘detects’’ when updates are needed, which, in the process, may cause
the step sizes to change (i.e., TPE). Another possibility is one where the
spatial step size is chosen and fixed, but transient changes are always
accommodated, no matter how big or small the transient fluctuation(s)
may be. In practice, the concept of a variation window introduced for
TPE subtly implies that, for a given finite step size 𝛥𝑠, the changes
of the velocity PDF during a step are small enough that stochastic
variations compensate for any inaccuracies imposed by the use of a
constant velocity. In other words, the ‘‘true’’ velocity might be slightly
higher/lower over any given step, but the average remains represen-
tative. An alternative interpretation of this nuanced point is that it
assumes that small changes to the probability associated with a given
velocity are insignificant inside an appropriately-sized variation win-
dow. Transposing this argument, one could instead assume that small
changes to a velocity have an insignificant impact on its probability
over the time of the transition, which leads us to the third strategy.

The key assumption for the following approach is that the cumula-
tive probability associated with a particle velocity,

𝑃 (𝑣) = ∫

𝑣

0
𝑑𝑣 𝑝𝐸 (𝑣), (13)

oes not change during a spatial step, or that a particular particle’s
elocity rank on the cumulative density function (CDF) remains con-
tant over any given step. This is similar to the assumption made under
he TPE method, where changes in the underlying flow field were
odeled as a constant rescaling of the velocity PDF due to change in the
ean velocity. For example, at 𝑡 = 0, perhaps 𝑣 = 0.1 has cumulative

probability 𝑃 (𝑣) = 0.8 (20% of velocities above 0.1), but at 𝑡 = 1 the
verall flow increases such that 𝑣 = 0.15 now corresponds to 𝑃 (𝑣) = 0.8
20% of velocities above 0.15); in other words, a particle that begins
oving with 𝑃 (𝑣) = 0.8 holds this rank throughout a step even as the

elocity associated with this rank evolves.
Discretizing velocities in terms of rank, and denoting the velocity of

random walker conditional to a particular probability value (or rank)
s 𝑣𝑝(𝑡), where 𝑝 denotes the associated rank class, we can consider the
rajectory of a particle along the SMM path as an equation of motion
or each step. Since within a transition the particle velocity is allowed
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to change but the rank remains fixed, each step in the 1d random walk
is described by the ordinary differential equation (ODE)
𝑑𝑋𝑝(𝑡)
𝑑𝑡

=
𝑣𝑝(𝑡)
𝜒

, (14)

here 𝑋𝑝(𝑡) is the downstream position, and 𝑣𝑝(𝑡) is a time-dependent
unction that describes the transient velocity as a function of clock time
or a given probability rank class, 𝑝. For a step of known length 𝛥𝑠, this
eparable ODE has the general solution

𝑠 = ∫

𝑇𝑘+1

𝑇𝑘
𝑑𝑡 𝑣𝑝(𝑡), (15)

here 𝛥𝑠 = 𝜒[𝑋𝑝(𝑇𝑘+1) − 𝑋𝑝(𝑇𝑘)] is the imposed displacement along
article paths, 𝑇𝑘 is the clock time at the beginning of the step, and
𝑘+1 is the unknown final time. Thus, particle positions in terms of step
umber 𝑘 remain given by 𝑋𝑘+1 = 𝑋𝑘 + 𝛥𝑠∕𝜒 , but transition times are

determined according to an implicit equation.
Given a function for 𝑣𝑝(𝑡), the left-hand side of (15) is known and

the right-hand side will be a function of 𝑇𝑘+1 only, the unknown time
when the step is finished, to be found via an implicit solution. The
resulting equation will likely be nonlinear, but the solution of (15)
for the final time, 𝑇𝑘+1, gives an exact solution when 𝑣𝑝(𝑡) may be
approximated analytically, subject to the simplifying assumptions. We
term this approach the ‘‘Fully-implicit model’’, since it requires the
solution of an implicit (possibly nonlinear) equation for every particle
in the random walk at every step. Note that this approach is an exact
expression for the travel time when 𝑣𝑝(𝑡) is known analytically, with the
single assumption that the probability associated with the velocities is
constant for the duration of the step. Once a step 𝑘 is completed, a
new probability rank class may be determined analogously to before,
according to the transition probabilities (3) associated with the step
(i.e., via a transition matrix or analytical Markov process). The Eulerian
velocity PDF is made a function of clock time, and the transitions
probabilities are computed according to its form at the beginning of
the step, 𝑝𝐸 (𝑣; 𝑇𝑘), as for the previous methods.

Consider Fig. 1 for the turning points and variation windows of the
TPE scheme. Like the NEX scheme, the fully-implicit method, as well as
the approximations developed below, does not require the computation
of variation windows, and the position increments are always 𝛥𝑠∕𝜒 .
Unlike NEX, however, transient changes are reflected in the transition
probabilities at every step, and not only when velocity changes occur.
Furthermore, as already discussed, velocity variability of a particle
due to the transient changes within a transition can be captured, in
which case the time increments are obtained implicitly via Eq. (15)
rather than given directly by 𝛥𝑠∕𝑉𝑘. The stationary SMM case is easily
recovered by defining, within step 𝑘, 𝑣𝑝(𝑡) = 𝑉𝑝,𝑘, where 𝑉𝑝,𝑘 is constant
within the step. Then, 𝛥𝑠 = 𝑉𝑝,𝑘(𝑇𝑘+1 − 𝑇𝑘), and we conclude that the
transition time is 𝑇𝑘+1 − 𝑇𝑘 = 𝛥𝑠∕𝑉𝑝,𝑘, as expected. Next, consider a
simple example of transience by assuming a linear increase in velocity
over time: 𝑣𝑝(𝑡) = 𝑉𝑝,𝑘 + 𝛼(𝑡 − 𝑇𝑘), where 𝛼 is a constant growth rate.
This gives the quadratic 𝛥𝑠 = 𝛼(𝑇𝑘+1 − 𝑇𝑘)2∕2 + 𝑉𝑝,𝑘(𝑇𝑘+1 − 𝑇𝑘), which
has one real-valued, positive solution for the transit time, 𝑇𝑘+1 − 𝑇𝑘 =
(
√

1 + 2𝛼𝛥𝑠∕𝑉 2
𝑝,𝑘 − 1)𝑉𝑝,𝑘∕𝛼. Note that this reduces to the previous case

hen the growth rate or step size are sufficiently small such that
𝛼𝛥𝑠∕𝑉 2

𝑝,𝑘 ≪ 1. A similar technique can in principle be employed for
ny integrable function that defines 𝑣𝑝(𝑡), but we reiterate that solutions

will likely need to be approximated using a nonlinear solver.

3.3.1. Fully-transient explicit approximation
The fully-implicit scheme has the advantage of accounting for all

the changes in 𝑣𝑝(𝑡) when the latter is known, but it should be evident
that an implicit nonlinear solution for every particle at every step will
be computationally demanding. The most obvious simplification is to
use the velocity from the beginning of the time step in an explicit,
first-order scheme that always updates the PDF for transience, so we
6

abbreviate this Fully-Transient Explicit approximation as FTE.
A single evaluation of the velocity is used for every step, so that
transient changes during the step are strictly ignored. The FTE then
proceeds according to the recursion relations (1), with the velocities 𝑉𝑘
selected according to (3), computed according to an Eulerian velocity
PDF that is a function of clock time, updated as 𝑝𝐸 (𝑣; 𝑇𝑘) at each
article step as before. The advantage of this approach is speed and
implicity but, like the NEX scheme, the cost is that it makes no attempt
o account for transient changes during a spatial step. However, the
elocity associated with each rank is updated at every step, whereas the
EX scheme only accounts for changes in the transition probabilities
hen a transition leads to a change in velocity class, so TPE will naturally
ave advantages from an accuracy standpoint. Note that NEX and FTE
an differ significantly under the Bernoulli relaxation model, because
he probability of remaining in the same velocity class may be signifi-
ant. Unlike the NEX scheme, for which velocity changes occur on the
rder of the correlation length 𝓁𝑐 , FTE accounts for velocity changes
ithin a step length 𝛥𝑠. Thus, the accuracy in capturing the transient

ield increases when the spatial discretization is refined, leading to
ppropriate convergence of FTE. For a given 𝛥𝑠, the accuracy will be
ependent on the nature of the transient signal, and significant errors
hould be expected anytime the velocity changes are large relative to
he magnitude of the transition time and/or spatial steps.

.3.2. Runge–Kutta 3 integration
Additional accuracy for an explicit approximation of the fully-

mplicit scheme can be obtained by adding more evaluations of the ve-
ocity distribution to create a Runge–Kutta predictor–corrector scheme.
he velocity rank (cumulative probability) is required to be constant
uring each spatial step, since the velocity will be evaluated at multiple
imes for the ‘‘predictor’’ steps, but the associated velocity distributions
eing evaluated may be any arbitrary transient PDF that is defined
s a function of time. This goes beyond the NEX and FTE schemes
y accounting for transient changes during each step of the SMM, but
voids solving a nonlinear equation as is typically required for the
ully-implicit scheme.

A good balance of accuracy and numerical cost is provided by the
tandard 3rd-order Runge–Kutta (RK3) scheme (Pozrikidis et al., 1998).
or the trajectory of a temporally non-stationary random walker during
tep 𝑘 and for a given rank 𝑝, the time at the end of the step, 𝑇𝑘+1, is
omputed according to

𝑡∗ = 𝑇𝑘 +
𝛥𝑠

2𝑣𝑝(𝑇𝑘)
, (16a)

𝑡∗∗ = 𝑇𝑘 + 𝛥𝑠
[

2
𝑣𝑝(𝑡∗)

− 1
𝑣𝑝(𝑇𝑘)

]

, (16b)

𝑇𝑘+1 = 𝑇𝑘 +
𝛥𝑠
6

[

1
𝑣𝑝(𝑇𝑘)

+ 4
𝑣(𝑡∗)

+ 1
𝑣(𝑡∗∗)

]

, (16c)

where 𝑡∗ and 𝑡∗∗ are the first and second predictor estimates of the time
to complete the step. As before, the new velocity at the end of each step
𝑘 is computed according to the transition probabilities (3) associated
with the step, obtained based on the time-dependent Eulerian PDF
𝑝𝐸 (𝑣; 𝑇𝑘) updated at the beginning of the step.

We reiterate that the rank (probability) of the velocity is assumed
constant throughout the spatial step but that the value associated with
each predicted transition time can change; note that the assumption
of constant rank is also necessary in other stochastic Runge–Kutta
schemes (Honeycutt, 1992; Engdahl and Aquino, 2018). The three
evaluations of the transient velocity lead to an accuracy of the scheme
scaling as (𝛥𝑠3); note that this is the accuracy of the estimated transition
time 𝑇𝑘+1−𝑇𝑘, and not the overall accuracy of a simulated breakthrough
curve. We found that this RK3 scheme gives accuracy comparable to
a direct, implicit solution of (15), while providing a computationally-
efficient approach (but note that this may not hold when the velocity
changes are not smooth and slowly-varying). As such, the fully-implicit
solution is omitted below for the sake of brevity.
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4. Applicability conditions

The four different explicit methods described above (NEX, TPE,
FTE, and RK3) each have slightly different assumptions and conceptual
models, but some general criteria must be met by the flow field for
these methods to provide reasonable approximations of transport in
a computationally-efficient manner. We posited in Section 3 that a
transient SMM should be valid and efficient under (a) slow variation
of the velocity, and/or (b) fast propagation of transient changes to the
velocity field. Each of these merits some additional discussion in the
context of Darcy-scale flow in aquifers.

4.1. Physical mechanics of the flow

Consider a section of a confined aquifer that has a well defined
mean flow direction along which the head decreases. As long as the
source of any transience is imposed outside the section under consid-
eration (i.e. changes in recharge are applied some distance upstream
of the section in question), we may quantify the impacts of those
changes simply in terms of time-varying heads observed at each end
(longitudinally) of the section and ignore the specific cause(s) of the
transience. The impacts of the head changes at the boundaries on the
velocity distribution within the aquifer depend on the heterogeneity of
the various properties in the domain, but generally what matters is how
much of the field is affected and how quickly.

Consider what happens in the case where a pressure pulse rapidly
propagates through the aquifer. Assuming the hydraulic conductivity
structure of the medium remains unchanged, and no source/sink terms,
changes in flow velocity across the medium are due to variations
in head the reflect the underlying hydraulic conductivity field. The
piezometric head, ℎ, obeys

𝑠
𝜕ℎ
𝜕𝑡

= ∇ ⋅𝑲∇ℎ, (17)

where 𝑆𝑠 [1∕𝐿] is the specific storage and 𝑲 is the hydraulic con-
uctivity tensor [𝐿∕𝑇 ], subject to appropriate boundary and initial
onditions (Charbeneau, 2006). Assuming constant 𝑆𝑠 (spatial variation
roduces an advective-type term), this is a diffusion equation for ℎ,
ith the role of the diffusion coefficient played by the hydraulic
iffusivity [𝐿2∕𝑇 ]

𝐻 = 𝑲
𝑆𝑠

. (18)

ereafter, we assume for simplicity a locally-isotropic 𝑲 field, so that it
s sufficient to consider the scalar (diagonal) values 𝐾 and 𝐷𝐻 . The con-
uctivity 𝐾 can vary spatially, so it is convenient to consider an average
alue for 𝐷𝐻 that realistically homogenizes spatial heterogeneities,
∗
𝐻 , which could be computed, e.g., as a geometric (power) mean
ver 𝐾(𝑥, 𝑦, 𝑧) (Charbeneau, 2006). The timescale associated with the
ropagation of head perturbations across a distance 𝓁, and associated
low variations, is then the diffusive timescale 𝜏𝐻 = 𝓁2∕(2𝐷∗

𝐻 ).
Over a given longitudinal length scale of interest, 𝓁, the timescale

ssociated with (advective) transport can be estimated as 𝜏𝐴 = 𝓁∕𝑣. The
fast-propagation condition (b) can now be translated as the requirement
that flow variations must propagate much faster than solute transport,
𝜏𝐻 ≪ 𝜏𝐴, corresponding to

𝓁 ≪
2𝐷∗

𝐻

𝑣
. (19)

e have assumed that the main limiting factor is the propagation along
he longitudinal direction, but a similar criterion could be developed
hat includes any propagation speed contributions from the lateral
omponents.

We take 𝓁 equal to the length of the domain of interest. In that
ase, if condition (19) holds, the perturbation may be assumed to
ravel instantaneously across the domain, or that all velocities change
7

nstantly when a head change is applied at the boundaries. For large
omains, this criterion could be relaxed by estimating 𝓁 according
o the characteristic size of the solute plume through its longitudinal
ispersion 𝜎2𝑥, such that 𝓁 ∼ 𝜎𝑥. In this case, the perturbation can

be assumed to cross the entire plume instantaneously, but it may be
necessary to delay the change in transition probabilities according to
the time it takes the perturbation to reach the plume.

Finally, note that the Darcy equation itself does not dictate the
velocity and it is assumed that the average local flow velocity is pro-
portional to the local hydraulic conductivity 𝐾 and the porosity. Since
𝐾 typically exhibits much broader variability than specific storage,
low hydraulic diffusivity 𝐷𝐻 is commonly associated with low flow
velocities, so that velocity in the lower-𝐷𝐻 regions is expected to be
slower than the mean value, and conversely for the higher-𝐷𝐻 regions.
Thus, we expect that employing an appropriate average, such as 𝐷∗

𝐻 , in
Eq. (19) will usually lead to a reasonable estimate of the applicability of
the fast propagation criteria, but factors like connectivity and extreme
degrees of heterogeneity could impact this criterion.

4.2. Slow-variation criterion

As long as the velocity changes propagate across the domain suffi-
ciently fast, the TPE and RK3 methods will provide good approxima-
tions of the transient PDF. However, it is advantageous from a com-
putational standpoint if Eulerian velocities across the domain change
sufficiently slowly in time that many transitions occur within a varia-
tion window 𝛥𝑡𝑣. In order to estimate 𝛥𝑡𝑣 in terms of the variability in
the mean velocity, consider the limit of small 𝛥𝑠, under which 𝛥𝑡𝑣 is
expected to be small. Then, Taylor expansion of Eq. (9) yields

𝛥𝑠𝑣 ≈
|

|

|

|

𝑑𝑣
𝑑𝑡

|

|

|

|

𝛥𝑡2𝑣, (20)

and, solving for 𝛥𝑡𝑣,

𝛥𝑡𝑣 ≈

√

𝑎𝛥𝑠
|𝑑𝑣∕𝑑𝑡|

. (21)

Note that the Taylor expansion leading to this result is inaccurate
near local temporal extrema of the mean velocity, where |𝑑𝑣∕𝑑𝑡| =
0, which is why we employ the more robust numerical procedure
described in Appendix A to compute 𝛥𝑡𝑣. However, this approximation
provides a useful estimate of the role of flow variability. The number
of mechanism (i) transitions within 𝛥𝑡𝑣 is of order 𝑣𝛥𝑡𝑣∕𝛥𝑠, which we

ish to be large. We thus obtain for the slow-variation condition (a):
|

|

|

|

𝑑𝑣
𝑑𝑡

|

|

|

|

≪ 𝑎2𝑣2

𝛥𝑠
. (22)

In particular, for the spatial-Markov description to adequately resolve
transport, we need 𝛥𝑠 ≲ 𝓁𝑐 , and we must have 𝑎 ⩽ 1. Thus, the minimal
requirement for condition (a) to be met may be expressed as
|

|

|

|

𝑑𝑣
𝑑𝑡

|

|

|

|

≪ 𝑣2

𝓁𝑐
. (23)

his is a time-dependent criterion, and the procedure may remain
ractical even if it does not hold for certain times. If this constraint
olds, Eq. (22) may be used to choose

𝑎2𝑣2

|𝑑𝑣∕𝑑𝑡|
< 𝛥𝑠 < 𝓁𝑐 , (24)

in order to ensure the method is both accurate and efficient. In practice,
𝛥𝑠 can be chosen as the minimum of given multiples of the left and right
terms in the inequality, e.g., 𝛥𝑠 = min{5𝑣2∕(|𝑑𝑣∕𝑑𝑡|),𝓁𝑐∕10}. Note also
that 𝛥𝑠 may be chosen adaptively, according to the temporal variation
of the mean velocity, or constant according to a specific value such as
the maximum or average of 𝑣2∕|𝑑𝑣∕𝑑𝑡| over the times of interest.

Combining the slow-variation condition, Eq. (23), and the fast-
propagation condition, Eq. (19), we obtain
√

𝓁
|

|

𝑑𝑣 |
| ≪ 𝑣 ≪

2𝐷∗
𝐻 . (25)
𝑐 |

|
𝑑𝑡 |

|
𝓁
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Fig. 2. Comparison of the transient SMM models to a steady-state (SS) approximation for different magnitudes and periods of transient velocity changes. Small fluctuations with long
periods may not require transient corrections, but it should be clear that as the frequency and magnitude of transient deviations increase the transient models depart significantly
from the SS curve. Note also that three of the methods (TPE, FTE, RK3) generally agree with each other, whereas NEX is only reasonable under low-magnitude transience (small
𝜂).
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Given the spatial mean 𝑣(𝑡) of the underlying flow field as a function
of time, this result represents the conditions for practical applicability
(accuracy and efficiency) of the transient spatial-Markov model, in
terms of the velocity correlation length 𝓁𝑐 , the longitudinal scale of
interest 𝓁, and the (average) hydraulic diffusivity 𝐷∗

𝐻 .

5. Examples and cross-comparison

Existing analytical models for transport under transient velocities
assume spatially-uniform flow fields (see Engdahl et al., 2016), and
there are no closed-form analytical solutions for the transient, het-
erogeneous velocity fields that would lead to correlated transport.
Accordingly, this section provides cross-comparison of the different
transient SMM models under varying degrees of transience. We first
compare the behavior of the four methods using a simplified analytical
flow field, before moving on to numerical validation against direct
simulations based on numerically-computed, spatially-heterogeneous
velocity fields. We exclusively consider the Bernoulli process SMM
hereafter. Recall that the Bernoulli SMM admits a minimal parameter-
ization in terms of the Eulerian velocity PDF and a velocity correlation
length, providing a simple and parsimonious model. Nonetheless, any
SMM transition mechanisms could be employed with minor modifica-
tions involving only the model’s parameterization (see Sherman et al.,
2020). Under the present choice, the coefficients 𝛽𝑖𝑗 (𝑡), which fully
characterize the transition probabilities 𝑟𝑖𝑗 (𝑡) through Eq. (3), are ob-
tained from the Eulerian PDF of point velocity magnitude statistics at a
8

given time through Eq. (7). To further simplify the demonstrations, we d
also adopt a gamma PDF of Eulerian velocities with various prescribed
time-dependent mean velocities 𝑣(𝑡),

𝐸 (𝑣; 𝑡) =
[

𝜃𝑣
𝑣(𝑡)

]𝜃 𝑒−𝜃𝑣∕𝑣(𝑡)

𝑣𝛤 (𝜃)
, (26)

where 𝛤 (⋅) is the gamma function. This type of PDF combines low-
velocity power-law behavior (with scaling 𝑣𝜃−1, 𝜃 > 0) with an ex-
onential cutoff at high velocities. These features control long-term
ailing of the resulting transit time distributions due to retention in low
elocity zones as well as mean transit times, which in turn control key
ransport features such as mean plume displacement and longitudinal
ispersion (Dentz et al., 2016; Aquino and Le Borgne, 2021). The
amma PDF has been employed to model Eulerian velocity PDFs in
orous media both at the pore and the Darcy scales (Holzner et al.,
015; Dentz et al., 2016; Alim et al., 2017; Aquino and Le Borgne,
021). The corresponding flux-weighted Eulerian (or s-Lagrangian)
DF, Eq. (6), is again gamma,

𝐹 (𝑣; 𝑡) =
[

𝜃𝑣
𝑣(𝑡)

]𝜃 𝑒−𝜃𝑣∕𝑣(𝑡)

𝑣(𝑡)𝛤 (𝜃)
, (27)

ith the same exponential cutoff and a low-velocity dependency ∝ 𝑣𝜃 .
Alternative parameterizations of the gamma PDF, along with fitting
procedures, are discussed in Appendix B.

5.1. Analytically-defined velocities

The analytical cross-validation exercise assumes that i) a gamma
istribution of velocities exists within the domain, and ii) the Eulerian
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mean velocity is described by a periodic function of the form

𝑣(𝑡) = 𝑣0

[

1 + 𝜂 sin
(

2𝜋(𝑡 + 𝑡0)
𝜏

)]

, (28)

where 𝑣0 [𝐿∕𝑇 ] is a long-term mean velocity, 𝜂 [−] scales the magnitude
f the velocity fluctuation (subject to 0 < 𝜂 < 1 so velocities remain
ositive), 𝜏 [𝑇 ] is the period of the transient cycle, and 𝑡0 [𝑇 ] is a
emporal shift. The corresponding transient gamma distribution for the
MM is then given by (27).

The example problem is defined by a domain length 𝐿 = 100 [𝐿],
ortuosity 𝜒 = 1 for simplicity, velocity correlation length 𝓁𝑐 = 10
𝐿], gamma PDF exponent 𝜃 = 5, long-term average velocity 𝑣0 =
.04 [𝐿∕𝑇 ], and temporal shift 𝑡0 = 0. The four approaches (NEX,
PE, FTE, and RK3) are assessed under different 𝜏 and 𝜂 combinations
Fig. 2), and then at different discretizations to demonstrate conver-
ence (Fig. 3). Any number of parameter combinations could be used,
ut our goal is to demonstrate how transience impacts the model
elative to a steady-state approximation. In each case, we provide
omparison to a stationary SMM, which is obtained by setting 𝑣(𝑡) = 𝑣0
nd 𝜂 = 0. We choose 𝛥𝑠 = 1, so a random walker crosses a velocity
orrelation length in 𝓁𝑐∕𝛥𝑠 = 10 steps and the full domain in 𝐿∕𝛥𝑠 =
00 steps. We use 5000 random walkers; higher particle numbers did
ot have a significant impact on the results since we focus on mean
ehaviors, not on capturing tailing. The (cumulative) breakthrough
urves (BTCs) at the downstream domain boundary for different param-
ter combinations of low/high magnitude (𝜂) and small/large period
𝜏) of transience are shown in Fig. 2, with specific values shown in
ach panel. The time scales of transience were defined in terms of
he average velocity (𝑣0) and domain length (𝐿), corresponding to the
ypical time for a particle to cross the domain. In all of these plots, the
TE curve is under the RK3 curve at this scale, and both are usually
lose to the TPE curve. Only the NEX and SS (steady-state) curves are
isibly distinct from the other transient models at all times.

An observation that can be made from Fig. 2 is that there are some
ases where TPE differs from RK3. The reason for this is the parameter
𝑠𝑣 = 𝑎𝛥𝑠 in the TPE model; a value of 𝑎 must be specified, which
ontrols the magnitude of the ‘‘allowable’’ errors. Fig. 2 used 𝑎 = 0.5,
nd this can be reduced to increase accuracy, at the cost of requiring
ore steps. Given sufficiently small 𝑎, and thus 𝛥𝑠𝑣, the TPE and RK3

esults are essentially identical if the spatial discretization 𝛥𝑠∕𝓁𝑐 is also
ufficiently small. This is shown via a convergence analysis in Fig. 3
ith 𝑎 = 0.1, where TPE, FTE, and RK3 all exhibit nearly identical mean

ravel times as 𝛥𝑠∕𝓁𝑐 is decreased (i.e., the number of steps needed to
ross a correlation length is increased, so that all relevant structure in
he flow field is resolved). Similar behaviors can be found for any fixed
evel of the BTC, but we only show convergence of the median arrival
ime for brevity.

.2. Spatially-heterogeneous flow field

Our final example considers flow in a 2d, heterogeneous flow field
ubjected to transient boundary conditions. Here we simulate transport
xplicitly using fully-resolved Lagrangian random walk particle track-
ng (RWPT), and then compare the result to the proposed, upscaled,
ransient SMM schemes.

The flow domain was defined to have a length 𝐿 = 100 along the
ean flow direction [𝐿] and an aspect ratio of 2 ∶ 1 (length to width).
he hydraulic conductivity tensor was locally isotropic, and the scalar
onductivity 𝐾 in the domain was a log-normal multi-Gaussian random
ield with major and minor correlation length scales of 𝜆1 = 10 [𝐿] and
2 = 6 [𝐿], a geometric mean of 𝐾∗ = 0.2 [𝐿∕𝑇 ], and unit variance of the

log-𝐾 field. The specific storage and porosity were taken to be spatially
constant and given by 𝑆𝑠 = 1.0×10−5 [1∕𝐿] and 𝜙 = 0.3. A longitudinal
spreading scenario was created by assigning zero-flux boundaries at the
extents of the minor axes and Dirichlet boundaries at the ends of the
major axes. The transient head changes were applied at the upstream
9

Fig. 3. Convergence test of the proposed methods. As 𝛥𝑠 is decreased, all but the NEX
scheme approach the same mean behavior showing that they are solving the same
system. TPE, FTE, and RK3 all converge to the same result for sufficiently refined
discretizations, though they have different computational costs and assumptions.

boundary according to a periodic sine function that varied the gradient
across the domain from 2% to 4% with a period of 𝜏 = 4000 [𝑇 ].
This fluctuation and parameter definitions satisfy the fast propagation
and slow variation criteria, and are also representative of the kinds of
fluctuations one can expect in real, undeveloped aquifers (McCallum
and Shanafield, 2016; Engdahl, 2017).

The transient groundwater flow equation was solved using 2nd-
order implicit finite differences and the domain was uniformly dis-
cretized into square cells of size 𝛥𝑥 = 𝛥𝑦 = 1 [𝐿]. A snapshot of the
velocity field, head contours, and streamlines is shown in Fig. 4. The
time step of the transient model was 𝛥𝑡 = 1 [𝑇 ] and flow and transport
were solved sequentially at each time step using an operator-splitting
scheme. The reference, fully-resolved, RWPT transport simulation used
a flux-weighted initial condition of 105 particles released at 𝑥 = 5 and
tracked forward over time to 𝑥 = 95 (corresponding to a length 𝐿 =
90 for transport) to avoid any potential boundary impacts. Standard
advective particle tracking methods were used, integrated in time with
a 2nd-order Runge–Kutta scheme.

A gamma distribution was fit to the Eulerian velocity PDF at each
time step of the transient flow simulation to simplify the parameteriza-
tion of the SMM. The error of the fitted to the simulated distribution
was computed to confirm that the simplified model was reasonable.
Root mean squared relative errors of the fitted CDFs were small (≈ 0.011
over all times) and the worst linear correlation coefficient across all
fits in time was 𝜌 = 0.991; this shows the gamma PDF is a good
approximation for this flow field, although it is not exact. Further,
the Eulerian PDF was well described by Eq. (26) with fixed 𝜃 = 4.14,
and the effect of transient changes at the boundary on the transient
mean velocity were modeled well by (28), with 𝑣0 = 2.06 × 10−2

[𝐿∕𝑇 ], 𝜂 = 0.33, 𝜏 = 4000 [𝑇 ], and 𝑡0 = −𝜏∕2. A comparison of the
simulated and fitted transient velocity PDFs for 4 times is shown in
Fig. 5. The time scale of the transient changes, 𝜏, was identical to that
of the prescribed head changes, providing more evidence that the fast
propagation assumption is valid in this case. In addition, the average
gradient was 3%, so the 𝜂 = 0.33 factor represents a fluctuation of
±1%. This value matches the specified range of a 2% to 4% gradient
and shows that the transient velocity model can be inferred from the
transient boundaries.

The correlation length was estimated based on the multi-Gaussian
field as 𝓁 = 𝜆 = 10 [𝐿]. The upscaled Bernoulli SMM uses 𝛥𝑠 =
𝑐 1
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Fig. 4. Heterogeneous, 2d flow field used for the transient model evaluation. White solid lines are contours of the potential field, black lines are the streamlines from the
steady-state simulation, and the colors represent the base-10 logarithm of the velocity magnitude. The hydraulic conductivity field was generated using a hierarchical combination
of transition probability geostatistics and stochastic multi-Gaussian fields.
Fig. 5. a. Simulated (bars) and fitted (lines) transient velocity PDFs in the 2d simulation domain for four times spanning the range of the transient cycle. HD denotes the Hellinger
distance. b. Point-wise comparison of the fitted transient gamma distributions in panel (a) versus their simulated values. c. Comparison of the simulated and fitted mean velocity
for the example flow field for one period of the transient cycle. Root mean squared (RMSE), normalized root mean squared errors (NRMSE), 𝑅2, and HD confirm the accuracy
and effectiveness of this functional approximation.
1 [𝐿], corresponding to 𝓁𝑐∕𝛥𝑠 = 10 and 90 steps to traverse the
domain of transport, and tortuosity 𝜒 = 1.12, which was computed
directly from the flow field. An ensemble of 5000 random walkers
10
were used for the SMM and the resulting BTCs for all four proposed
transient SMM explicit schemes are shown in Fig. 6a, along with a
steady-state SMM and the simulated BTC for comparison. The blue
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Fig. 6. Comparison of the BTCs computed from the (fully-resolved) RWPT-based and (upscaled) transient SMM simulations. This example uses a small, but realistic, transient
forcing that might be expected in natural aquifers. The advantage of the transient model is evident in the PDF plot, where the small secondary peak in the RWPT-BTC is captured
by the RK3 scheme but completely missed by the steady-state (SS) approximation. As discussed in detail in the text, better results for the different transient methods can be
obtained by further refining the discretization.
Table 1
Hellinger distance (HD) metric and RMSE for the different SMM approx-
imations of the simulated BTC. All transient SMM models show better
performance than the steady-state model.
Model SS NEX TPE FTE RK3

HD 1.01 × 10−1 9.63 × 10−2 7.94 × 10−2 5.50 × 10−2 5.52 × 10−2

RMSE 1.53 × 10−2 1.20 × 10−2 1.21 × 10−2 6.46 × 10−3 6.81 × 10−3

bars represent the (distributed, 2d) reference simulation. All data is
binned according to the bars shown for the resolved simulations to
make the comparison clearer; the value of each bar applies at its mid-
point along the horizontal axis. The PDFs for the two best methods
(TPE and RK3) are also shown in Fig. 6b, along with the steady-state
simulation SS and the reference RWPT model; the main difference is
that RK3 captures some of the secondary peak in the falling limb of
the BTC. Note that, for the TPE method, 𝛥𝑠𝑣 = 𝑎𝛥𝑠 with 𝑎 = 1 was
used as for the analytical examples. As before, use of sufficiently small
𝑎 and 𝛥𝑠 would lead to similar results for TPE and RK3, at the cost of
increased computational expense, but either of these schemes provides
a good upscaled approximation of the simulated BTC.

The similarity of the different SMM approximations to the simu-
lated BTC was assessed using root mean square error (RMSE) and the
Hellinger distance (HD) metric (Hellinger, 1909), both applied to the
PDF of travel times for the upscaled SMM simulations. The HD metric
quantifies the overlap or similarity between the different PDFs, relative
to the RWPT simulation. Values close to zero indicate strong similarity
and values near one indicate high degrees of difference; smaller values
mean better reproduction of the target distribution. Bianchi Janetti
et al. (2020) used the HD metric to assess the performance of a
trajectory-based SMM, demonstrating its utility in assessing SMMs. The
RMSE and HD values are shown in Table 1 and demonstrate quan-
titatively that the transient versions all out-perform the steady-state
SMM. The approximations of the fully-implicit model (see Section 3.3,
FTE and RK3) offer a slight advantage but smaller values of 𝛥𝑠𝑣 =
𝑎𝛥𝑠 (through using smaller values of the free parameter 𝑎) would
increase the accuracy of TPE to a similar extent. In any case, all the
transient SMMs are considered overall good approximations. It is worth
noting that the magnitude of the transient changes in this example
are not as severe as some of those seen in Section 5.1, but there are
11
clear departures from the steady-state model. This flow field is weakly
heterogeneous due to its low log-K variance, so a higher degree of
heterogeneity and greater contrast in the 𝐾 field would likely lead
to more significant departures. Whether or not these departures are
significant enough to justify a fully-transient upscaled model leads
directly into our discussion.

6. Discussion and conclusions

The main purpose of this manuscript has been to determine if
transient versions of spatial Markov models can be developed, and in
this we have been successful. The heterogeneous velocity field example
(Fig. 4) with a time-dependent Dirichlet boundary condition verifies
that transient SMM schemes can offer good upscaled approximations of
key quantities such as breakthrough curves. As clearly seen in Fig. 6b,
the proposed RK3 scheme most accurately captured the BTC, in par-
ticular regarding both the maximum and transient-induced secondary
peak. Nonetheless, both the TPE and RK3 methods offer accuracy for
a reasonable increase in computational cost over stationary SMMs, and
both TPE and FTE converge to the same answer as RK3 when the spatial
step is sufficiently refined (see Fig. 3).

However, there is one major concern that cannot be overlooked,
which is not unique to this study. A key question regarding practical
application of any upscaled model is, can the model parameters be
inferred reliably? In this case, the bare-minimum required elements for
the transient SMMs are: i) the correlation length scale for the Bernoulli
relaxation process, ii) a reference Lagrangian velocity distribution, and
(iii) a model for how that distribution changes over time. Each of these
is considered independently in the following paragraphs.

The first item is the model for the SMM transitions. We have
assumed the spatial Markov correlations do not vary over time. There
are strong connections between geological structure and the spatial
correlations (Sherman et al., 2020), and geological structures generally
change on time scales orders of magnitude larger than solute transport,
so modeling the correlations does not represent a unique or undue
burden to the transient random walk. Furthermore, if a full SMM
transition matrix (e.g Engdahl and Bolster, 2020) was used instead of
a Bernoulli relaxation process there are only a few more operational
issues to consider. One is whether the initial and final bins change
simultaneously as the Lagrangian velocity PDF evolves; we see no
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reason they would not evolve jointly, particularly since the model
would become intractable if they did not. Another concern is whether
the bounds on the individual velocity bins should evolve over time.
The development of the fully-implicit scheme (Section 3.3) required
that small changes in velocity cannot significantly impact the velocity
rank, so the extension of this for broader validity is that slow changes
to the velocity field cannot change the ranks of the distribution; this is
merely another way of looking at the slow-variation criterion (23). In
the absence of a strong transient boundary, our view is that a ‘‘shock’’
to the system would be necessary to invalidate the assumption of stable
velocity ranks, such as abruptly turning on a large pumping well. If this
were the case, the slow variation criterion would clearly be violated,
negating the benefits of application of the upscaled model in the first
place. Aside from these, we see no obvious additional considerations
necessary to adopt a full SMM transition matrix instead of a Bernoulli
relaxation process.

The second item to consider is how to obtain the reference La-
grangian velocity distribution. This is arguably the most important yet
difficult component to obtain. The best one could be expected to do
is to use a data-driven, geostatistical description of the expected hy-
draulic conductivity field that is subjected to the anticipated boundary
conditions for flow and transport. Evaluating this expected distribution
might require methods like a stochastic Monte-Carlo ensemble, but
each realization would be steady-state and so the ensemble should run
quite fast. From these, the expected behaviors of the reference velocity
distribution can be obtained, or any other threshold value (such as
percentiles) to assess the uncertainty range, and the slow variation and
fast propagation criteria (25) could easily be assessed at the same time.
The resulting velocity distributions could then be used in a transient
SMM in lieu of a large ensemble of transient Monte-Carlo simulations,
which would surely offer large computational savings. We consider
this a reasonable compromise, but it must be noted that uncertainties
in the geostatistical description, including unresolved heterogeneities
or non-stationarities, will propagate into the upscaled model as will
uncertainties in the boundary conditions. It is also possible to estimate
SMM model parameters from breakthrough curves alone (see Sherman
et al., 2017), though doing so in aquifers would be hampered by in-
complete sampling or recovery of a tracer. Estimating the velocity PDF
remains challenging but methods exist by which it can be reasonably
approximated, which is all one should expect when using an upscaled
model.

The third item is the model for how the reference velocity distri-
bution changes over time. The model for changes is at least ‘‘plausibly
obtainable’’ because of the fast propagation criteria. The key point is
that if (19) is satisfied then the relative changes at the boundaries
of the flow field can be used to approximate the changes in the
velocity PDF. Engdahl (2017) considered a system where combina-
tions of transient Dirichlet boundaries were used at the ends of a
confined, longitudinal domain where transport was simulated using the
fully transient velocity fields. The results showed strong correlation
between the transient forcing and the velocity fluctuations, meaning
that relative changes in the mean can be inferred, hence our definition
of (28). Long-term shifts in the mean may also be accommodated (e.g
Massoudieh, 2013), which can quickly overwhelm higher frequency
impacts on the mean. So, depending on the time scales of transport,
it may be more important to capture long-term trends, which can be
accurately inferred from observation well data, though models would
be needed for forecasting. Some inaccuracies are inevitable, but as long
as the estimated transient signal is representative of a system’s overall
changes, reasonable results can be expected. Our example from Sec-
tion 5.2 illustrates this idea: the fitted model for the velocity transience
was based solely on the transience at the boundaries, and the model
performed well.

Upscaled models should not strive to be perfect reproductions of
transport behaviors, as this would invalidate their purpose of be-
12

ing large-scale approximations through over-fitting. The goal of the F
transient Spatial Markov models proposed herein is to balance the
complexities of transient velocity fields with the simplicity of upscaled
models using a framework that leverages recent advances in correlated
velocity models. The main point of this discussion is that our definitions
of the slow variation and fast propagation criteria (25) provide all the
necessary evaluation criteria to assess the validity and usefulness of
the proposed models for a given scenario. There is a need for site-
specific data in order to evaluate those criteria, and the decision to use
transient upscaled models likely comes down to the subjective question
of sufficient data abundance: is there enough data to confidently build
the desired model? To this we can offer no new insights because every
case is unique. We can say that the data requirements for transient
SMMs falls between those of steady-state SMMs and spatially explicit,
distributed models. There are benefits to accuracy (Section 5) relative
to the former, and clear advantages of speed relative to the latter, but
ultimately the data dictate which models should be used for a given
purpose.
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ppendix A. Numerical determination of the flow variation win-
ow

In this appendix, we describe a straightforward numerical approach
o obtain the variation window 𝛥𝑡𝑣 according to Eq. (9). Note that more
ophisticated root-finding techniques could also be employed.

In order to sequentially determine the 𝛥𝑡𝑣,𝑘′ associated with each of
he turning point times 𝑇𝑣,𝑘′ , see Eq. (10), we consider a time resolution
or step 𝑘′ given by

𝑡𝑘′ =
𝛥𝑠𝑣

𝑣(𝑇𝑣,𝑘′ )
= 𝑎𝛥𝑠

𝑣(𝑇𝑣,𝑘′ )
. (29)

his resolution represents the time necessary to cross the spatial vari-
tion threshold 𝛥𝑠𝑣 = 𝑎𝛥𝑠 of Eq. (9) at the current mean velocity.
e expect this choice to provide a good compromise between speed

nd accuracy, especially when the slow-variation condition (a) is met
see Section 3), but note that a finer or coarser resolution could be
mployed. The variation window 𝛥𝑡𝑣,𝑘′ = 𝑛𝑘′𝛥𝑡𝑘′ is then determined in
erms of the number 𝑛𝑘′ of time-resolution steps required to exceed the
llowed variation 𝛥𝑠𝑣. Numerically, 𝑛𝑘′ can be computed as the smallest
nteger 𝑛 such that

𝑣(𝑇𝑣,𝑘′ + 𝑛𝛥𝑡𝑘′ ) − 𝑣(𝑇𝑣,𝑘′ )|𝑛𝛥𝑡𝑘′ > 𝛥𝑠𝑣. (30)

n the simplest implementation, the value of the mean velocity over
ime is scanned sequentially, at a temporal resolution of 𝛥𝑡𝑘′ , until the
rescribed tolerance 𝛥𝑠𝑣 is exceeded. This procedure is illustrated in
ig. 7.
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Fig. 7. Illustration of the algorithm to determine the variation windows 𝛥𝑡𝑣,𝑘′ associated
ith temporal variation of the Eulerian mean velocity. The variation windows 𝛥𝑡𝑣,𝑘′ =
𝑣,𝑘′+1 − 𝑇𝑣,𝑘′ determine the turning point times 𝑇𝑣,𝑘′ , starting at 𝑇𝑣,0 = 𝑇0, at which
low velocity variations are taken into account. Each 𝛥𝑡𝑣,𝑘′ is determined so that the
ean velocity variation 𝛥𝑣𝑘′ = |𝑣(𝑇𝑣,𝑘′ + 𝛥𝑡𝑣,𝑘′ ) − 𝑣(𝑇𝑣,𝑘′ )| is such that 𝛥𝑣𝑘′𝛥𝑡𝑣,𝑘′ = 𝛥𝑠𝑣,
here 𝛥𝑠𝑣 is related to the spatial-Markov step size by a factor 𝑎 ⩽ 1, 𝛥𝑠𝑣 = 𝑎𝛥𝑠.

In order to determine these variation windows numerically, we consider a step-
dependent maximum resolution 𝛥𝑡𝑘′ = 𝛥𝑠𝑣∕𝑣(𝑇𝑣,𝑘′ ), as illustrated for 𝛥𝑡𝑣,3. Then, 𝛥𝑡𝑣,𝑘′
s approximated the smallest integer multiple of 𝛥𝑡𝑘′ such that 𝛥𝑣𝑘′𝛥𝑡𝑣,𝑘′ exceeds 𝛥𝑠𝑣.

ppendix B. Parameterization and fitting of the gamma velocity
DF

The gamma PDF is typically parameterized in terms of a shape
arameter 𝛼 and a rate parameter 𝜉, defined such that

𝛤 (𝑥; 𝛼, 𝜉) =
𝜉𝛼

𝛤 (𝛼)
𝑥𝛼−1𝑒−𝜉𝑥, (31)

where, for a random variable with this distribution, 𝑝𝛤 (𝑥; 𝛼, 𝜉) 𝑑𝑥 is the
probability of a value in the infinitesimal vicinity 𝑑𝑥 of 𝑥. This PDF can
be fit to velocity data directly by applying a standard minimum-square
criterion to determine 𝛼 and 𝜉.

In the present application, where the Eulerian velocities are taken
to be gamma-distributed, it is convenient to choose a parameterization
that emphasizes features that are key to solute transport. The scale
parameter 𝛼 controls the tailing properties at low velocities, which
control the large-time tailing of transit times and thus the late-time
dispersion behavior (Dentz et al., 2016; Aquino and Le Borgne, 2021).
Thus, we choose to keep 𝜃 = 𝛼 as a parameter. On the other hand, the
mean 𝛼∕𝜉 of the gamma distribution has a clear physical meaning in our
context: it represents the spatial average of the velocity at a given time.
Thus, we parameterize our Eulerian velocity PDF by setting 𝜉 = 𝛼∕𝑣(𝑡),
.e.,

𝐸 (𝑣; 𝑡) = 𝑝𝛤

[

𝑣; 𝛼, 𝛼
𝑣(𝑡)

]

, (32)

which corresponds to Eq. (26). To fit this form to velocity data at a
given time, we fit 𝛼 to the low-velocity behavior of the data PDF, and
set 𝑣(𝑡) to the spatial mean of the data.

Alternatively, we could enforce the correct average velocity 𝑣(𝑡) =
∕𝜉 and velocity variance 𝜎2𝑣 = 𝛼∕𝜉2, which can be achieved by setting

𝐸 (𝑣; 𝑡) = 𝑝𝛤

[

𝑣;
𝑣2(𝑡)
𝜎2𝑣 (𝑡)

,
𝑣(𝑡)
𝜎2𝑣 (𝑡)

]

. (33)

To fit this form, we would simply set the mean and variance according
to the data.

These three parameterizations are formally equivalent. If the true
Eulerian velocity distribution were gamma, the three fitting procedures
would also be equivalent. However, if the latter are applied to arbitrary
data, they may produce different results, as they focus on constraining
different quantities given the two degrees of freedom (independent
parameters) that characterize a gamma distribution. The first aims
13
to provide the ‘‘overall best’’ fit for the PDF itself, while the second
enforces the correct mean velocity and large transit time (low velocity)
tailing, and in turn the third captures mean velocity and velocity
variance exactly.

Appendix C. Implementing the flux-weighted CDF

Flux-weighting of the gamma PDF in Eq. (31) corresponds to multi-
plication by 𝑣∕𝑣̄, from which we can obtain the associated cumulative
distribution function by integration:

𝑃𝛤 (𝑣; 𝛼, 𝜉) =
1

𝑣̄𝛤 (𝛼) ∫

𝑣

0
(𝜉𝑣′)𝛼𝑒−𝜉𝑣

′
𝑑𝑣′,

=
𝛾(𝛼 + 1, 𝜉𝑣)

𝑣̄𝛤 (𝛼)
, (34)

where 𝛾(⋅, ⋅) is the lower incomplete gamma function. Recalling that
𝜉 = 𝛼∕𝑣̄, we obtain

𝐿(𝑣; 𝑡) = 𝑃𝛤 [𝑣, 𝛼, 𝛼∕𝑣̄(𝑡)] =
𝛾[𝛼 + 1, 𝛼𝑣∕𝑣̄(𝑡)]

𝑣̄(𝑡)𝛤 (𝛼)
. (35)

his form of the flux-weighted CDF allows standard, well-known func-
ions to be used to approximate the SMM numerically.
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