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Abstract—This paper presents a hierarchical
infrastructure-based control algorithm to manage
mainstream traffic flow on freeways. At the upper level,
a distributed Extremum-Seeking control approach is
employed to determine the optimal density of vehicles in a
congested cell. The local objective function is defined such
that the average flow within the target cell is maximized
to resolve the congestion, and the flow difference with its
upstream cell is minimized to prevent back-propagating
the congestion. At the lower level, a distributed Filtered
Feedback Linearization controller is used to update the
suggested velocity communicated to the vehicles so that
the desired density determined by the upper level can be
achieved in each cell. We adopted the METANET model to
describe the aggregated dynamics of the traffic network.
We tested the performance of these controllers via a
MATLAB-VISSIM COM interface. The results demonstrate
that the designed distributed controllers can achieve
the desired closed-loop performance despite unknown
disturbances in an uncertain large-scale traffic network.

Index Terms— Distributed Extremum Seeking,
Distributed Filtered Feedback Linearization, Traffic Control.

I. INTRODUCTION

The average American driver lost 36 hours (almost a week
of work) due to traffic congestion in 2021 [1]. While building
additional infrastructure may not be practically sustainable,
various infrastructure-based and vehicle-based traffic control
strategies have been developed to reduce the congestion [2].

The infrastructure-based algorithms, using the macroscopic
models of a traffic network, focus on improving the aggregated
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traffic behavior (such as overall traffic flow) [3]. Infrastructure-
based controllers include ramp-metering, variable speed limit
(VSL) control, and lane management [4]. The main chal-
lenges associated with the design of infrastructure-based traffic
controllers are due to (i) uncertainty and nonlinearity of the
traffic system macroscopic dynamics and (ii) significant com-
putational load of centralized macro-level controllers [5]. For
instance, METNAET traffic model [6] describes the traffic dy-
namics in terms of the density and average velocity of the ve-
hicles within a traffic network. However, the model parameters
of the METANET model are state-dependent and, thus, hard to
characterize. Furthermore, the optimal operating density of a
congested cell with an unknown downstream bottleneck is not
known perfectly. To address these issues, different algorithms,
including model-free based control algorithms, have been
investigated [7]. In [8], Extremum Seeking (ES) control is
employed for traffic congestion control with a downstream
bottleneck. In this study, an unknown flow-density relationship
is considered at the bottleneck area, and the optimum density
of the upstream cell is determined to mitigate the congestion.
Moreover, they assumed the traffic flow to be the control input;
however, direct traffic flow control is not practical. To address
this issue, a set-point tracking controller shall be integrated
into the design of an ES-based controller [9]. An example of
a set-point tracking controller that has been widely used for
traffic control is the Feedback Linearization (FL) approach.
The advantage of this method is its strength in addressing
the challenges caused by the non-linearity in the macroscopic
dynamics [10]. However, the main drawback of FL is that it
requires model information. Because the traffic dynamics con-
tain uncertainties associated with the unmodeled dynamics of
a traffic system, which can intrinsically be state- and control-
dependent, making it impractical to get the required model
information for the FL controller. This paper addresses this
shortcoming by introducing the Distributed Filtered Feedback
Linearization (D-FFL) approach. D-FFL is a high-parameter-
stabilizing control technique that addresses both command
following and disturbance rejection for Multi-Input-Multi-
Output (MIMO) nonlinear systems where the equilibrium of
the zero dynamics is locally asymptotically stable [11]. D-FFL
is mathematically equivalent to low-pass filtering, a standard
feedback linearization controller. However, unlike the standard
FL, the controller only requires limited model information,
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specifically, knowledge of the vector relative degree and the
dynamic-inversion matrix. As a result, d-FFL makes the £,
of the command following error arbitrarily small despite the
presence of unknown disturbances [12].

This paper presents a distributed hierarchical control frame-
work to leverage the advantages of both ES and FFL con-
trollers, with ES at the upper level and FFL at the lower
level. We discretize a freeway into multiple cells. We adopt the
METNAET model [6] to describe the macroscopic dynamics
of each cell. At the upper level, we employ a distributed ES
algorithm to find the optimal density of the congested cell to
maximize the average flow of the target cell and minimize
its flow difference with the upstream cell. Furthermore, we
use distributed FFL controller to ensure each cell reaches
its desired density by controlling the average velocity of the
vehicles within the cell and its upstream cell. The contributions
of this paper can be summarized as follows:

o Designing a scalable hierarchical infrastructure-based
traffic controller (D-ES-FFL) that requires only limited
traffic model information and is robust to an unknown
disturbance in the traffic system.

o Establishing a MATLAB-VISSIM COM interface that
allows closed-loop control of a simulated traffic scenario
in PTV-VISSIM and validating the effectiveness of the
distributed ES-FFL control approach using this interface.

The outline of this paper is as follows. Section II presents

the basics of the homogeneous METNAET model for describ-
ing the macroscopic dynamics of a freeway traffic system.
Section III discusses the design of the hierarchical control
approach to achieve the desired traffic behavior. Section IV
presents the simulation results, which show the effectiveness
of the D-ES-FFL control approach for managing a freeway
traffic system. Finally, Section V consists of this research’s
conclusions and future directions.

Il. MACROSCOPIC DYNAMICS OF A FREEWAY

Consider a freeway traffic network, as shown in Fig. 1,
wherein the road is discretized into multiple cells. We char-
acterize cell, €;, where i € {1,2,---,n}, by the density of
vehicles (p;), space mean speed of vehicles (v;) within the
cell, and the total average flow rate (g;) of the cell. We adopt
a METANET model wherein the traffic states are the density
and average velocity of vehicles in a cell to determine the
macroscopic dynamics of the freeway network. Specifically,
the dynamics of cell C; are described by

1

pi(t) = m((hfl(t) = qi(t) +di (1))
1

(1) = —(Ui(t) - vi(t))+

Ti

(1a)

1 €i pip1(t) — pi(t)
TR (Ui_l(t) - v,-(t)) - E—;i(t) -
(1b)
ai(t) = pi(t)vi(t), o)

where d; ,(t) is a disturbance (e.g., uncontrolled traffic de-
mand including the off-ramps and on-ramps), \; is the number
of the lanes in each cell, and L; is the length of each cell.
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Fig. 1: Schematic of a traffic network.

Here, U;(t) = (1 — B8;(t))Vi(t) is considered the suggested
velocity for the vehic(lzes in the traffic network, where V;(t) =
VFFeXp Laml (pp—(ct)> | is the steady-state velocity-density
relationship in the Macroscopic Fundamental Diagram (MFD)
[13]. vpr is the free-flow velocity, and p. is the critical density
of a cell. Also, am i, K4, 7; and, ; are state-dependent model
parameters for each cell. For the sake of simplicity, the model
parameters are considered equal throughout the whole traffic
network.

In this paper, we define 0 < f;(¢t) < 1 as the control
command adjusting the suggested velocity to the vehicles. In
particular, when f3;(t) = 0, the system is not controlled, and
the macroscopic dynamics of the system follow the velocity-
density steady-state behavior, which can be determined from
the MFD. On the other hand, 3;(¢) = 1 indicates that the
controller is commanding the vehicles to stop.

The dynamics of a whole freeway traffic network consisting
of n cells can be expressed as

#(t) = f(z(t)) + G(z(t))u(t) + D(t) (2a)
y(t) = Cx(t), (2b)
where t > 0; z(t) = [p1(t) -+ pault) vi(t) - - v (1)]T €

R?" is the state vector, y(t) = [ps(t),- -+, pm(t)]T € RM—s+1
where s > 2 and m < n is the output vector,
u(t) = [Bs—1(t) -+ Bm(t)]T € R™=5F2 is the control input
vector, f(x(t)) = [p1(t) -+ pu(t) 01(t) -+ U ()]T € R*"
where o;(t) = L (Vi(t) —vi(t) +%[vi(t) (vi,l(t)—vi(t)) _

gw} . Ga(t) =

T pi(t)+k [O](mfs+2><n) [O](mfs+2><572)
T

[G](m—s+2><m—s+2) [0](m—s+2><n—m):| where
G = diag{-1Vi_y,..—1V,} and, D(t) =
[D1(t) -+ Da,(t)]T € R?" is the unknown-and-unmeasured
disturbance. The size of the control input vector u(t) is larger
because the control command is constrained (0 < B(t) < 1).
Therefore, to control the density of the vehicle in cell C;, two
control commands (two suggested velocities) shall be used
(see the controllability matrix derived in [14]). These two
control commands are the suggested velocity of the upstream
cell ;1 and the suggested velocity of the target cell C;. By
reducing the suggested velocity of the upstream cell, C;_1,
the inflow to cell C; can be reduced. Also, by reducing the
suggested velocity of the cell, C;, the outflow of cell C;
can be reduced. Adjusting these two control commands, the
density in cell C; can be increased or decreased.

II1. HIERARCHICAL INFRASTRUCTURE-BASED
CONTROLLER DESIGN

This section focuses on the design of a distributed hierar-
chical macroscopic traffic management controller to improve
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Fig. 2: Schematic of the whole traffic network with n cells
consisting of the local hierarchical controller.

the performance of a homogeneous traffic network in terms of
mobility, as shown in Fig. 2. The controller has a two-level
structure with a D-ES controller at the upper level (shown in
blue gradient color) and a D-FFL controller at the lower level
(shown in green gradient color).

A. Lower-level Controller: D-FFL

At the lower level of the proposed hierarchical traffic control
framework, we propose to employ a D-FFL controller to
update the suggested velocity communicated to the vehicles so
that the desired densities (determined by the D-ES in Section
III.B) can be achieved. D-FFL relies on knowledge of the
relative degree and the dynamic inversion matrix [12]. For a
cell C;, the relative degree (¢) from u; and uw;_; to y; is 2. The
D-FFL control design is based on the following assumptions.

Assumption 1: The disturbance D(t) is continuous and (§—
1)-times differentiable.

Assumption 2: The reference model input p?(#) is bounded
and g-times differentiable.

Let us define the local reference model 4, + 1 Y+ Ym =
P4 ¢ pt + Copd, where pd is the desired density of the target
cell determined by the upper-level controller, and «v, a1, (o, (1
are constants. Also, let us define e(t) = y(t) — ym(t) as the
error term and the square root of the average power of the

density error as P, = |:t1it0 fttol ¢T(r)e(r)dr|”. The control
objective is to design a control input u that asymptotically
stabilizes the closed-loop system and makes P. arbitrarily

small.To this end, the ideal FL control input is given by [11]
ud(xa (I>D7 (I)r) =
_MU_T(MHMU_T)_l(V(‘Tv(PD7(I)r)+\Il(m7CI)D))v (3)

where @, = [p? p¢ pT, &p = [D DI, U(z,®p) =
c%(f(x) + D) + CD, and v(z,®p,®,) = ' + (1p* +
Cop? — a1¥m — QoYm. Additionally, M is the pseudo
inverse of the dynamic inversion matrix M. Moreover, M,, =
C w G(z(t)) and for the traffic system defined in (2), we
have

Ps—1Vs—1 —psVs 0 0
0 psVs —ps+1Vsta 0
M. = : : . . @
0 = 0 Pm—l‘;'m,l —pmVin

Note that M, is a non-square matrix. It can be shown that
for the closed-loop system in (2)-(3), where D = 0 and u =
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ud, the zero dynamics is stable; therefore, the nonlinear closed-
loop system is minimum phase.

The ideal control input u< is not implementable because u
depends on the measurement of the full state x(t), knowledge
of the uncertain dynamic function f(z(¢)), and unknown
disturbances D(t). To address this issue, first, we assume that
the FL control input u? is sufficiently smooth, as stated in
Assumption 3.

Assumption 3: For i € N, Z[uf(z,®p,®,)] and
%[u?(w, ®p, P,)] exist and are continuous.

Then, we generate the implementable control input u by
passing u9 through the designed filter. Specifically,

p7.(p) + 0. (0) M\ M,Ju = 0. (0) M, Muu®,  (5)

d

where p = d/dt, M/ is the transpose of M,, o.(s) is a
monic polynomial with a degree b > 2 and real coefficients
that are functions of a real parameter z. Thus, o, can be
written as o, = s’ + ab_Lzsb*l + 0+ 01,28 + 00,2
where 0g ., -+ ,05-1,. € R. The polynomial o, is a design
parameter that must satisfy certain conditions listed in [15].
Combining (3) and (5) the FFL control input is

po-(p)u = 0. (0)M[5" + C1p* + Cop® — i — gy — agy).-

(6)
The controllers (3) and (6) are mathematically equivalent;
however, unlike the FL control input (3), the FFL input in (6)
does not require knowledge of ¥ (xz, ®p) or the measurement
of D and D. The FFL control input is designed using the
knowledge about the relative degree, the dynamic inversion
matrix M, reference-model parameters aq, g, (1 and (o and
the filter polynomial p,, which depends on the real parameter
z.

It should be noted that the arrays of M, are functions of
measured densities p;, and V; for j € {s,--- ,m}. Here, V},
itself is a function of the free-flow velocity (vpgr), which is
a predefined value and parameters a,, and p.; (Please see
Section II.) that may not be necessarily known. To address this
issue, we define M, as an upper bound of M,. In particular,
since vpr is an upper bound of V;, we define M, to be

Ps—1VFF —pPsVUFF 0 0
_ 0 PsVs+1 —Ps+1VFF 0
M, = ) ) . ) ) )
0 0 Pm—1VFF —PmVUFF

Therefore, by replacing M, with M, in (6), the FFL
controller does not need to know the exact values of the state-
dependent parameters in the METANET model.

Proposition 1: Consider the minimum phase system de-
scribed by (2)-(6) under assumptions 1-3. For sufficiently large
z value in the filter polynomial g, the closed-loop (2)-(6) is
asymptotically stable. The minimum stabilizing z depends on
the system dynamics and its parameters.

Proof: The proof can be found in [11], [12].

Remark 1: The average power of the performance P, can
be made arbitrarily small by a sufficiently large choice of z.

In practice, a nominal plant model can be used to determine
a sufficiently large z that achieves stability and a desired level
of performance.
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Fig. 3: Detailed schematic of the hierarchical controller
design for cell ¢ consisting of D-ES and D-FFL.

B. Higher-level Controller: D-ES

At the upper-level of the proposed hierarchical traffic con-
trol framework, we use a D-ES controller to determine an
optimal density p¢ within a congested cell C;. The goal is
to maximize the average flow of the target cell to mitigate
the traffic congestion while minimizing its flow difference
with the upstream cell’s flow to prevent back-propagating the
congestion. In particular, for each congested cell, we define
the following optimization problem

max Ji(t) =wi 1 (HQ7 (1) — wiz(1)[Qi(t) = Qia (), ®)

where w; 1(t) and w;2(t) are the weights for each term in
the cost function. In addition, Q;(t) = p;(t)V;(t) and it is
subjected to the lower-level dynamics. Using (2) and (6), the
lower-level dynamics are

Xip, = FrL (X, S(Xww, %)),

where Xpp, = [z wa --- u®=V).

We designed a D-ES controller to solve the optimization
problem in (8). Fig. 3 shows the details of the D-ES controller.
The parameter that is optimized (p¢) is perturbed using a low-
amplitude sinusoidal signal A; sin(Q;t+ ;). The perturbation
frequency (2; must be chosen small enough to ensure that the
lower-level dynamics appear as a static nonlinearity from the
viewpoint of the ES loop [16]. Consider ; = O(w), wi upr =
O(wA) and, w; pr = O(wA) where O is the statistic order,
w and A are small positive constants.

Remark 2: The convergence time of the desired density
estimated by the ES is significantly slower than the response
time of the inner loop, we can assume that the density
reference is constant compared with the inner-loop dynamics.

Although increasing the perturbation frequency in gradient-
based ES increases the convergence rate, the steady-state error
will also increase significantly [16]. In this paper, we selected
the perturbation frequency £2; to be 10 times slower than the
lower-level dynamics. To ensure the stability and convergence
of the D-ES controller, a set of assumptions shall be met [17].

Assumption 4: There exists a smooth function ¢ : R® —
R™—5+1 guch that Fyp, (XLL, S(XLL,pd)) = 0 if and only if
X = £(p?).

Assumption 5: For each p? € R™5*+1 the equilibrium
x = ((p?) of the system Xpp, = Fro(Xiw, §(XiL, p?)) is
locally exponentially stable uniformly in p.

Assumption 6: There exists p* € R™ 5t! such that
2. J(p*) =0 and ;2:7(p*) <0.

Opd

€))
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Fig. 4: 1485 inner highway between Mallard Creek Rd and
Harrisburg Rd, Charlotte, North Carolina. Target cells 2, 5,
6, and 9 that are in the congested phase are highlighted.

In this paper, Assumptions 4 and 5 are met since the D-FFL
controller guarantees the asymptotic stability of the lower-level
dynamics (see Proposition 1). Finally, Assumption 6 is also
met since the cost function in (8) is quadratic based on the
form of the MFD function.

The following proposition summarizes the stability and
convergence of the higher-level D-ES controller:

Proposition 2: Consider the closed-loop feedback system
in Fig. 3 under Assumptions 4-6 with the control input (6).
Recall that Remark 2 is in place. There exists o > 0, and
for any w € (0,0) there exists A, A > 0 such that for the
given w and any |A| € (0, A) and A € (0,A) there exists a
neighborhood of the point (z, p*,&,m) = (€(p*), p*,0, J(p*))
such that any solution of the feedback system (2)-(6) from the
neighborhood exponentially converges to an O(w + A + |A|)-
neighborhood of that point. Furthermore, y(t) converges to an
O(w + A + | A|)-neighborhood of J(p*).

Proof: The proof can be found in [16], [17].

IV. SIMULATIONS & RESULTS

To demonstrate the effectiveness of the proposed hierar-
chical framework, we conduct a series of case studies. Fig.
4 is the schematic diagram of the freeway section used in
these case studies. It is a subsection of 1-485 inner highway,
between Mallard Creek Rd and Harrisburg Rd, Charlotte,
North Carolina. This section is approximately 10 miles long,
with 4 lanes with a speed limit of 70 mph. We discretize this
network into 10 cells, as shown in Fig. 4.

We adopt the model parameters of the METANET model
to be ¢ = 38%182, ko= 182t = 55, v = 4, and
am = h(p;), which is the only state-varying model parameter
in this case study. In this research, we used brute-force search
to find out the h(p;) function, which is equal to [11,7,4,1.5]
if the density of the cell is [p; < pe, pe < pi < 1.5p., 1.5p. <
pi < 3pe,3pe < pi < py] respectively. Also, the critical
density of the network is p. = 35 mﬂ‘:ﬁne, the jam density
is pyj = 150#};% and the free-flow velocity is vpp = 70
mph . Furthermore, we select the origin flow as ¢y = 1980
veh/h. We selected these values by running PTV-VISSIM
simulation using [-485 N of Exit 28 (Fig. 4) traffic flow data
reported on Tuesday, 22 December 2020, at peak time between
4:30-5:30 PM and comparing the measured states with the
homogeneous METANET model. The flow disturbances in the
traffic network are modeled as high amplitude low-frequency
sine waves. Finally, the parameter values for each controller
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are listed here: w; 1 = w;2 = 1 for i € 2,5,6,9, A; =
Ai = 1, Qz = 0.0017‘[’%, wi,LpF = 0591, wi,HpF = 0491,
K;,=135and z = 1.

A. Case-study 1:D-ES-FFL Performance

One of the common approaches in large network traffic
control is to use a Proportional-Integral-Derivative (PID) feed-
back regulator for Mainstream Traffic Flow Control (MTFC)
and use the VSL as an actuator [18]. In this case study,
first, we compare the performance of the designed lower-level
controller (D-FFL) with the PID-MTFC. To this end, a set
point, which is typically the critical density value, is selected
for cell 5. The proportional, integral, and derivative gains are
Kp = 11.2,K; = 0.25, and Kp = 0.02, respectively The
gains designed for the PID-MFTC approach were selected
through numerical testing. These gains provide the best closed-
loop command following for our problem. The density of the
target cell 5 in both D-FFL and PID-MTFC scenarios is shown
in Fig. 5. By comparing the results of the designed D-FFL
controller and the PID-MTFC controller, it is found that D-
FFL has a faster settling time. D-FFL is able to control the
target cell to reach the desired density in 4 minutes, while it
takes 9 minutes for PID-MTFC to reach the desired set-point.
It should also be noted that in the proposed hierarchical control
framework, the perturbation frequency of the higher-level
controller (D-ES) depends on the time constant of the lower-
level dynamics (lower-level controller + plant). Therefore, the
overall convergence rate of the D-ES-FFL is faster than the
ES-PID-MTFC controller.

Next, we present a numerical example showing the D-ES-
FFL controller’s effectiveness in mitigating congestion and
preventing back-propagating congestion using the METANET
model. This case study compares two scenarios where there is
no active infrastructure controller in the traffic network versus
when there is an active local D-ES-FFL controller for target
cells in the traffic network. As shown in Fig. 4, the target cells
2, 5, 6, and 9 are on the verge of getting heavily congested
due to the traffic network inflow and unknown downstream
bottleneck.

In Fig. 6, the states of the target cells 5 and 6 and the
upstream cell 4 are shown for both ”"D-ES-FFL” and “No-
Control” scenarios. As shown, in the No-Control scenario,
the congestion starts back-propagating, and as the density
increases, the congestion gets heavier, and the average velocity

60

— P (FFL)
— P (PID-MTFC
- pd

55

Density (veh/mile/lane)

2 4 6 8 10 12 14 16 18
Time (m)

Fig. 5: Density changes of the target cell 5 using D-FFL
controller (Blue) and PID-MTFC controller (Red).
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of each cell reduces. By activating the local “D-ES-FFL”
controller, estimating the optimal densities of the cell, and
finally tracking the optimal densities, the target cell avoids
jam conditions. According to (8, the local objective function

T Ps (D-LS-HIL)
— P MNo-Contol)

Density (veh/mile/lane)

0w e . w0 w0 1

E "
— UsDESFFL) = Vg 5011 | — Usirsrry — vs s,
— - B4D-ESFFL) —— V4 No-Contral)| |
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— UsmEsErL) = Vg O-ESFIL,
— - BeDESFFL) — Vg (No-Control)
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Control Command ()

o % e e 20 w0 1w o 30

@ W w @ % m
Time (m) Time (m) Time (m)

Fig. 6: States, Suggested velocities (solid green line) and
control commands (dashed-dotted blue line) for cells 4, 5,
and 6 in both scenarios.

of each target cell is trying to maximize the average flow
rate of the cell and minimize its flow difference with the
upstream cell. In Fig. 7, the objective function values for
cells 5 and 6 are shown in both scenarios. Furthermore, the
total average flow of all cells upstream of the bottleneck
(QroT = Z?Zl ;) is shown. Finally, in Fig. 8, a colormap
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Fig. 7: Objective functions of target cells 5 and 6 (sub-plot
a) and the total average flow of all cells upstream of the
bottleneck (sub-plot b).

of the velocity changes in the whole network for the full-
time spectrum is shown in both “No-Control” and “D-ES-FFL”
scenarios.
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Fig. 8: Visualization of the traffic velocity data for the
whole network in “No-Control” and “D-ES-FFL” scenarios.
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B. Case-study 2: D-ES-FFL with PTV-VISSIM

In the second case study, we use a real-world traffic
simulator, PTV Vissim, to show the effectiveness of D-ES-
FFL control in a real-world traffic simulation with real-world
traffic data. For this study, after the completion of each cycle
(duration = 10 minutes), the density of the target cells is
recorded and passed to the MATLAB-Simulink environment
through the COM interface. Next, the local objective function
of the congested cells is calculated and fed to the D-ES
controller. Then, using the estimated optimal densities of D-ES
in the Simulink, the suggested control commands are generated
using the D-FFL controller. These commands are then passed
to the MATLAB code and applied to the VISSIM through the
COM interface to update the speed limit signs in the traffic
network. We considered the same problem as case study 1.
The highway link has ten cells with freeway link behavior
type, and each cell is 1 mile in length. The inflow on the
traffic network was set equal to 1980 veh/h with the stochastic
volume type. The vehicle class of the vehicles in the traffic
network was chosen to be “Car” with the driving behavior of
“Freeway”. To have a distributed traffic control network, we
put the variable speed limit signs every 0.2 mile, so all vehicles
in each cell get the suggested velocities information from the
controller almost simultaneously. Also, in the first 12 minutes
of the simulation, there is no active controller and effective
communication between MATLAB and PTV VISSIM, so the
desired initial conditions are reached. As it is shown in Fig. 9,

Density (veh/mile/lane)

Velocity (mph)

o 30 80 90 120 150 180 % 30 60 90 120 150 180 0 30 60 90 120 150 180
Time (m) Time (m) Time (m)

Fig. 9: States (density and velocity) cells 4, 5 and, 6 are
shown using PTV-VISSIM in both scenarios.

by activating the “D-ES-FFL” controller, the average velocity
in target cells is greater than the “No-Control” scenario while
its density is less congested.

V. CONCLUSIONS & FUTURE WORKS

This paper focuses on modeling and controlling a con-
gested traffic network with multiple bottlenecks. We designed
a hierarchical infrastructure-based controller to mitigate the
traffic network’s congestion despite the unknown disturbances
in the system. At the upper level, a Distributed Extremum
Seeking (D-ES) controller aims to find the optimal operating
densities of the target cell. At the lower level, a Distributed
Filtered Feedback Linearization (D-FFL) controller tracks the
desired density inputs from the higher level by controlling
the suggested velocity of the vehicles in the target cell and its

. . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See hnps://www.ieee.ogl ublications/r)i?hts/index.html for more information.
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 15,2022 at 19:27:30 UT

upstream cell. In the future, we will extend this case study to a
traffic network consisting of multiple classes of vehicles, such
as Human-driven Vehicles (HDVs) and Autonomous Vehicles
(AVs).

REFERENCES

[1] B. Pishue, “Inrix global traffic scorecard—appendices,” INRIX research,
2021.

[2] M. S. Sheikh and Y. Peng, “A comprehensive review on traffic con-
trol modeling for obtaining sustainable objectives in a freeway traffic
environment,” Journal of Advanced Transportation, vol. 2022, 2022.

[3] M. Johari, M. Keyvan-Ekbatani, L. Leclercq, D. Ngoduy, and H. S.
Mahmassani, “Macroscopic network-level traffic models: Bridging fifty
years of development toward the next era,” Transportation Research Part
C: Emerging Technologies, vol. 131, p. 103334, 2021.

[4] C. Join, H. Abouaissa, and M. Fliess, “Ramp metering: modeling,
simulations and control issues,” in Advances in Distributed Parameter
Systems. Springer, 2022, pp. 227-242.

[5] M. Montanino, J. Monteil, and V. Punzo, “From homogeneous to
heterogeneous traffic flows: Lp string stability under uncertain model
parameters,” Transportation Research Part B: Methodological, vol. 146,
pp. 136-154, 2021.

[6] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middelham,
“Traffic flow modeling of large-scale motorway networks using the
macroscopic modeling tool metanet,” IEEE Transactions on intelligent
transportation systems, vol. 3, no. 4, pp. 282-292, 2002.

[71 Z. Wang, X. Zhou, and J. Wang, “Extremum-seeking-based adaptive
model-free control and its application to automated vehicle path track-
ing,” IEEE/ASME Transactions on Mechatronics, 2022.

[8] H. Yu, J. Auriol, and M. Krstic, “Simultaneous downstream and

upstream output-feedback stabilization of cascaded freeway traffic,”

Automatica, vol. 136, p. 110044, 2022.

F. Tajdari, C. Roncoli, N. Bekiaris-Liberis, and M. Papageorgiou, “Inte-

grated ramp metering and lane-changing feedback control at motorway

bottlenecks,” in 2019 18th European Control Conference (ECC). IEEE,

2019, pp. 3179-3184.

Q. Chen, S. Li, C. An, J. Xia, and W. Rao, “Feedback linearization-

based perimeter controllers for oversaturated regions,” IEEE Intelligent

Transportation Systems Magazine, vol. 14, no. 1, 2022.

J. B. Hoagg and T. Seigler, “Filtered-dynamic-inversion control for

unknown minimum-phase systems with unknown-and-unmeasured dis-

turbances,” International Journal of Control, vol. 86, no. 3, pp. 449—468,

2013.

A. Ghasemi, J. B. Hoagg, and T. Seigler, “Decentralized vibration

and shape control of structures with colocated sensors and actuators,”

Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 3,

p- 031011, 2016.

C. F. Daganzo and N. Geroliminis, “An analytical approximation for

the macroscopic fundamental diagram of urban traffic,” Transportation

Research Part B: Methodological, vol. 42, no. 9, pp. 771-781, 2008.

L. Muifioz, X. Sun, R. Horowitz, and L. Alvarez, “Traffic density

estimation with the cell transmission model,” in Proceedings of the 2003

American Control Conference, 2003., vol. 5. IEEE, 2003, pp. 3750-

3755.

J. B. Hoagg and T. Seigler, “Decentralized filtered dynamic inversion for

uncertain minimum-phase systems,” Automatica, vol. 61, pp. 192-200,

2015.

M. Krsti¢ and H.-H. Wang, “Stability of extremum seeking feedback

for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4, pp.

595-601, 2000.

A. Ghaffari, M. Krsti¢, and S. Seshagiri, “Power optimization for pho-

tovoltaic microconverters using multivariable newton-based extremum

seeking,” IEEE Transactions on Control Systems Technology, vol. 22,

no. 6, pp. 2141-2149, 2014.

R. C. Carlson, I. Papamichail, M. Papageorgiou, and A. Messmer, “Op-

timal mainstream traffic flow control of large-scale motorway networks,”

Transportation Research Part C: Emerging Technologies, vol. 18, no. 2,

pp. 193-212, 2010.

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

rom |IEEE Xplore. Restrictions apply.



