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AbstractÐ This paper presents a hierarchical
infrastructure-based control algorithm to manage
mainstream traffic flow on freeways. At the upper level,
a distributed Extremum-Seeking control approach is
employed to determine the optimal density of vehicles in a
congested cell. The local objective function is defined such
that the average flow within the target cell is maximized
to resolve the congestion, and the flow difference with its
upstream cell is minimized to prevent back-propagating
the congestion. At the lower level, a distributed Filtered
Feedback Linearization controller is used to update the
suggested velocity communicated to the vehicles so that
the desired density determined by the upper level can be
achieved in each cell. We adopted the METANET model to
describe the aggregated dynamics of the traffic network.
We tested the performance of these controllers via a
MATLAB-VISSIM COM interface. The results demonstrate
that the designed distributed controllers can achieve
the desired closed-loop performance despite unknown
disturbances in an uncertain large-scale traffic network.

Index TermsÐ Distributed Extremum Seeking,
Distributed Filtered Feedback Linearization, Traffic Control.

I. INTRODUCTION

The average American driver lost 36 hours (almost a week

of work) due to traffic congestion in 2021 [1]. While building

additional infrastructure may not be practically sustainable,

various infrastructure-based and vehicle-based traffic control

strategies have been developed to reduce the congestion [2].

The infrastructure-based algorithms, using the macroscopic

models of a traffic network, focus on improving the aggregated
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traffic behavior (such as overall traffic flow) [3]. Infrastructure-

based controllers include ramp-metering, variable speed limit

(VSL) control, and lane management [4]. The main chal-

lenges associated with the design of infrastructure-based traffic

controllers are due to (i) uncertainty and nonlinearity of the

traffic system macroscopic dynamics and (ii) significant com-

putational load of centralized macro-level controllers [5]. For

instance, METNAET traffic model [6] describes the traffic dy-

namics in terms of the density and average velocity of the ve-

hicles within a traffic network. However, the model parameters

of the METANET model are state-dependent and, thus, hard to

characterize. Furthermore, the optimal operating density of a

congested cell with an unknown downstream bottleneck is not

known perfectly. To address these issues, different algorithms,

including model-free based control algorithms, have been

investigated [7]. In [8], Extremum Seeking (ES) control is

employed for traffic congestion control with a downstream

bottleneck. In this study, an unknown flow-density relationship

is considered at the bottleneck area, and the optimum density

of the upstream cell is determined to mitigate the congestion.

Moreover, they assumed the traffic flow to be the control input;

however, direct traffic flow control is not practical. To address

this issue, a set-point tracking controller shall be integrated

into the design of an ES-based controller [9]. An example of

a set-point tracking controller that has been widely used for

traffic control is the Feedback Linearization (FL) approach.

The advantage of this method is its strength in addressing

the challenges caused by the non-linearity in the macroscopic

dynamics [10]. However, the main drawback of FL is that it

requires model information. Because the traffic dynamics con-

tain uncertainties associated with the unmodeled dynamics of

a traffic system, which can intrinsically be state- and control-

dependent, making it impractical to get the required model

information for the FL controller. This paper addresses this

shortcoming by introducing the Distributed Filtered Feedback

Linearization (D-FFL) approach. D-FFL is a high-parameter-

stabilizing control technique that addresses both command

following and disturbance rejection for Multi-Input-Multi-

Output (MIMO) nonlinear systems where the equilibrium of

the zero dynamics is locally asymptotically stable [11]. D-FFL

is mathematically equivalent to low-pass filtering, a standard

feedback linearization controller. However, unlike the standard

FL, the controller only requires limited model information,
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specifically, knowledge of the vector relative degree and the

dynamic-inversion matrix. As a result, d-FFL makes the L∞

of the command following error arbitrarily small despite the

presence of unknown disturbances [12].

This paper presents a distributed hierarchical control frame-

work to leverage the advantages of both ES and FFL con-

trollers, with ES at the upper level and FFL at the lower

level. We discretize a freeway into multiple cells. We adopt the

METNAET model [6] to describe the macroscopic dynamics

of each cell. At the upper level, we employ a distributed ES

algorithm to find the optimal density of the congested cell to

maximize the average flow of the target cell and minimize

its flow difference with the upstream cell. Furthermore, we

use distributed FFL controller to ensure each cell reaches

its desired density by controlling the average velocity of the

vehicles within the cell and its upstream cell. The contributions

of this paper can be summarized as follows:

• Designing a scalable hierarchical infrastructure-based

traffic controller (D-ES-FFL) that requires only limited

traffic model information and is robust to an unknown

disturbance in the traffic system.

• Establishing a MATLAB-VISSIM COM interface that

allows closed-loop control of a simulated traffic scenario

in PTV-VISSIM and validating the effectiveness of the

distributed ES-FFL control approach using this interface.

The outline of this paper is as follows. Section II presents

the basics of the homogeneous METNAET model for describ-

ing the macroscopic dynamics of a freeway traffic system.

Section III discusses the design of the hierarchical control

approach to achieve the desired traffic behavior. Section IV

presents the simulation results, which show the effectiveness

of the D-ES-FFL control approach for managing a freeway

traffic system. Finally, Section V consists of this research’s

conclusions and future directions.

II. MACROSCOPIC DYNAMICS OF A FREEWAY

Consider a freeway traffic network, as shown in Fig. 1,

wherein the road is discretized into multiple cells. We char-

acterize cell, Ci, where i ∈ {1, 2, · · · , n}, by the density of

vehicles (ρi), space mean speed of vehicles (vi) within the

cell, and the total average flow rate (qi) of the cell. We adopt

a METANET model wherein the traffic states are the density

and average velocity of vehicles in a cell to determine the

macroscopic dynamics of the freeway network. Specifically,

the dynamics of cell Ci are described by

ρ̇i(t) =
1

Liλi

(qi−1(t)− qi(t) + di,ρ(t)) (1a)

v̇i(t) =
1

τi

(

Ui(t)− vi(t)
)

+

1

Li

[

vi(t)
(

vi−1(t)− vi(t)
)

−
εi
τi

ρi+1(t)− ρi(t)

ρi(t) + κi

]

(1b)

qi(t) = ρi(t)vi(t), (1c)

where di,ρ(t) is a disturbance (e.g., uncontrolled traffic de-

mand including the off-ramps and on-ramps), λi is the number

of the lanes in each cell, and Li is the length of each cell.

Fig. 1: Schematic of a traffic network.

Here, Ui(t) = (1 − βi(t))Vi(t) is considered the suggested

velocity for the vehicles in the traffic network, where Vi(t) =

vFFexp
[

−1
am,i

(

ρi(t)
ρc

)am,i
]

is the steady-state velocity-density

relationship in the Macroscopic Fundamental Diagram (MFD)

[13]. vFF is the free-flow velocity, and ρc is the critical density

of a cell. Also, am,i, κi, τi and, εi are state-dependent model

parameters for each cell. For the sake of simplicity, the model

parameters are considered equal throughout the whole traffic

network.

In this paper, we define 0 ≤ βi(t) ≤ 1 as the control

command adjusting the suggested velocity to the vehicles. In

particular, when βi(t) = 0, the system is not controlled, and

the macroscopic dynamics of the system follow the velocity-

density steady-state behavior, which can be determined from

the MFD. On the other hand, βi(t) = 1 indicates that the

controller is commanding the vehicles to stop.

The dynamics of a whole freeway traffic network consisting

of n cells can be expressed as

ẋ(t) = f(x(t)) +G(x(t))u(t) +D(t) (2a)

y(t) = Cx(t), (2b)

where t ≥ 0; x(t) = [ρ1(t) · · · ρn(t) v1(t) · · · vn(t)]
T ∈

R
2n is the state vector, y(t) = [ρs(t), · · · , ρm(t)]T ∈ R

m−s+1

where s ≥ 2 and m ≤ n is the output vector,

u(t) = [βs−1(t) · · · βm(t)]T ∈ R
m−s+2 is the control input

vector, f(x(t)) = [ρ̇1(t) · · · ρ̇n(t) v̂1(t) · · · v̂n(t)]
T ∈ R

2n

where v̂i(t) =
1
τ

(

Vi(t)−vi(t)
)

+ 1
L

[

vi(t)
(

vi−1(t)−vi(t)
)

−

ε
τ

ρi+1(t)−ρi(t)
ρi(t)+κ

]

, G(x(t)) =
[

[0](m−s+2×n) [0](m−s+2×s−2)

[Ĝ](m−s+2×m−s+2) [0](m−s+2×n−m)

]T

where

Ĝ = diag{− 1
τ
Vs−1, ...,−

1
τ
Vm} and, D(t) =

[D1(t) · · · D2n(t)]
T ∈ R

2n is the unknown-and-unmeasured

disturbance. The size of the control input vector u(t) is larger

because the control command is constrained (0 ≤ β(t) ≤ 1).

Therefore, to control the density of the vehicle in cell Ci, two

control commands (two suggested velocities) shall be used

(see the controllability matrix derived in [14]). These two

control commands are the suggested velocity of the upstream

cell Ci−1 and the suggested velocity of the target cell Ci. By

reducing the suggested velocity of the upstream cell, Ci−1,

the inflow to cell Ci can be reduced. Also, by reducing the

suggested velocity of the cell, Ci, the outflow of cell Ci

can be reduced. Adjusting these two control commands, the

density in cell Ci can be increased or decreased.

III. HIERARCHICAL INFRASTRUCTURE-BASED

CONTROLLER DESIGN

This section focuses on the design of a distributed hierar-

chical macroscopic traffic management controller to improve
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Fig. 2: Schematic of the whole traffic network with n cells

consisting of the local hierarchical controller.

the performance of a homogeneous traffic network in terms of

mobility, as shown in Fig. 2. The controller has a two-level

structure with a D-ES controller at the upper level (shown in

blue gradient color) and a D-FFL controller at the lower level

(shown in green gradient color).

A. Lower-level Controller: D-FFL

At the lower level of the proposed hierarchical traffic control

framework, we propose to employ a D-FFL controller to

update the suggested velocity communicated to the vehicles so

that the desired densities (determined by the D-ES in Section

III.B) can be achieved. D-FFL relies on knowledge of the

relative degree and the dynamic inversion matrix [12]. For a

cell Ci, the relative degree (q̄) from ui and ui−1 to yi is 2. The

D-FFL control design is based on the following assumptions.

Assumption 1: The disturbance D(t) is continuous and (q̄−
1)-times differentiable.

Assumption 2: The reference model input ρd(t) is bounded

and q̄-times differentiable.

Let us define the local reference model ÿm+α1ẏm+α0ym =
ρ̈d+ζ1ρ̇

d+ζ0ρ
d, where ρd is the desired density of the target

cell determined by the upper-level controller, and α0, α1, ζ0, ζ1
are constants. Also, let us define e(t) = y(t) − ym(t) as the

error term and the square root of the average power of the

density error as Pe =
[

1
t1−t0

∫ t1

t0
eT(τ)e(τ)dτ

]
1
2

. The control

objective is to design a control input u that asymptotically

stabilizes the closed-loop system and makes Pe arbitrarily

small.To this end, the ideal FL control input is given by [11]

ud(x,ΦD,Φr) =

−M−†
u (MuM

−†
u )−1

(

ν(x,ΦD,Φr) + Ψ(x,ΦD)
)

, (3)

where Φr = [ρd ρ̇d ρ̈d]T, ΦD = [D Ḋ]T, Ψ(x,ΦD) =
C ∂f

∂x
(f(x) + D) + CḊ, and ν(x,ΦD,Φr) = ρ̈d + ζ1ρ̇

d +
ζ0ρ

d − α1ẏm − α0ym. Additionally, M−†
u is the pseudo

inverse of the dynamic inversion matrix Mu. Moreover, Mu =
C ∂f(x(t))

∂x
G(x(t)) and for the traffic system defined in (2), we

have

Mu =





ρs−1Vs−1 −ρsVs 0 ··· 0
0 ρsVs −ρs+1Vs+1 ··· 0

...
...

. . .
. . .

...
0 ··· 0 ρm−1Vm−1 −ρmVm



 . (4)

Note that Mu is a non-square matrix. It can be shown that

for the closed-loop system in (2)-(3), where D = 0 and u =

ud, the zero dynamics is stable; therefore, the nonlinear closed-

loop system is minimum phase.

The ideal control input ud is not implementable because ud

depends on the measurement of the full state x(t), knowledge

of the uncertain dynamic function f(x(t)), and unknown

disturbances D(t). To address this issue, first, we assume that

the FL control input ud is sufficiently smooth, as stated in

Assumption 3.

Assumption 3: For i ∈ N, ∂
∂x

[ud
i (x,ΦD,Φr)] and

∂
∂ΦD

[ud
i (x,ΦD,Φr)] exist and are continuous.

Then, we generate the implementable control input u by

passing ud through the designed filter. Specifically,

[pσ̄z(p)I + σz(0)M
′
uMu]u = σz(0)M

′
uMuu

d, (5)

where p = d/dt, M ′
u is the transpose of Mu, σz(s) is a

monic polynomial with a degree b ≥ 2 and real coefficients

that are functions of a real parameter z. Thus, σz can be

written as σz = sb + σb−1,zs
b−1 + · · · + σ1,zs + σ0,z

where σ0,z, · · · , σb−1,z ∈ R. The polynomial σz is a design

parameter that must satisfy certain conditions listed in [15].

Combining (3) and (5) the FFL control input is

pσ̄z(p)u = σz(0)M
′
u[ρ̈

d + ζ1ρ̇
d + ζ0ρ

d − ÿ − α1ẏ − α0y].
(6)

The controllers (3) and (6) are mathematically equivalent;

however, unlike the FL control input (3), the FFL input in (6)

does not require knowledge of Ψ(x,ΦD) or the measurement

of D and Ḋ. The FFL control input is designed using the

knowledge about the relative degree, the dynamic inversion

matrix Mu, reference-model parameters α1, α0, ζ1 and ζ0 and

the filter polynomial ϱz , which depends on the real parameter

z.

It should be noted that the arrays of Mu are functions of

measured densities ρj , and Vj for j ∈ {s, · · · ,m}. Here, Vj ,

itself is a function of the free-flow velocity (vFF), which is

a predefined value and parameters am and ρc,j (Please see

Section II.) that may not be necessarily known. To address this

issue, we define M̄u as an upper bound of Mu. In particular,

since vFF is an upper bound of Vj , we define M̄u to be

M̄u =





ρs−1vFF −ρsvFF 0 ··· 0
0 ρsvs+1 −ρs+1vFF ··· 0

...
...

. . .
. . .

...
0 ··· 0 ρm−1vFF −ρmvFF



 . (7)

Therefore, by replacing Mu with M̄u in (6), the FFL

controller does not need to know the exact values of the state-

dependent parameters in the METANET model.

Proposition 1: Consider the minimum phase system de-

scribed by (2)-(6) under assumptions 1-3. For sufficiently large

z value in the filter polynomial ϱz , the closed-loop (2)-(6) is

asymptotically stable. The minimum stabilizing z depends on

the system dynamics and its parameters.

Proof: The proof can be found in [11], [12].

Remark 1: The average power of the performance Pe can

be made arbitrarily small by a sufficiently large choice of z.

In practice, a nominal plant model can be used to determine

a sufficiently large z that achieves stability and a desired level

of performance.
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Fig. 3: Detailed schematic of the hierarchical controller

design for cell i consisting of D-ES and D-FFL.

B. Higher-level Controller: D-ES

At the upper-level of the proposed hierarchical traffic con-

trol framework, we use a D-ES controller to determine an

optimal density ρd within a congested cell Ci. The goal is

to maximize the average flow of the target cell to mitigate

the traffic congestion while minimizing its flow difference

with the upstream cell’s flow to prevent back-propagating the

congestion. In particular, for each congested cell, we define

the following optimization problem

max
ρi

Ji(t) =wi,1(t)Q
2
i (t)− wi,2(t)[Qi(t)−Qi−1(t)]

2, (8)

where wi,1(t) and wi,2(t) are the weights for each term in

the cost function. In addition, Qi(t) = ρi(t)Vi(t) and it is

subjected to the lower-level dynamics. Using (2) and (6), the

lower-level dynamics are

ẊLL = FLL

(

XLL,G(XLL, ρ
d)
)

, (9)

where XLL = [x u u̇ · · · u(b−1)].
We designed a D-ES controller to solve the optimization

problem in (8). Fig. 3 shows the details of the D-ES controller.

The parameter that is optimized (ρdi ) is perturbed using a low-

amplitude sinusoidal signal Ãi sin(Ωit+ ϕ̃i). The perturbation

frequency Ωi must be chosen small enough to ensure that the

lower-level dynamics appear as a static nonlinearity from the

viewpoint of the ES loop [16]. Consider Ωi = O(ω), ωi,HPF =
O(ω∆) and, ωi,LPF = O(ω∆) where O is the statistic order,

ω and ∆ are small positive constants.

Remark 2: The convergence time of the desired density

estimated by the ES is significantly slower than the response

time of the inner loop, we can assume that the density

reference is constant compared with the inner-loop dynamics.

Although increasing the perturbation frequency in gradient-

based ES increases the convergence rate, the steady-state error

will also increase significantly [16]. In this paper, we selected

the perturbation frequency Ωi to be 10 times slower than the

lower-level dynamics. To ensure the stability and convergence

of the D-ES controller, a set of assumptions shall be met [17].

Assumption 4: There exists a smooth function ℓ : Rn →
R

m−s+1 such that FLL

(

XLL,G(XLL, ρ
d)
)

= 0 if and only if

XLL = ℓ(ρd).
Assumption 5: For each ρd ∈ R

m−s+1, the equilibrium

x = ℓ(ρd) of the system ẊLL = FLL

(

XLL,G(XLL, ρ
d)
)

is

locally exponentially stable uniformly in ρd.

Assumption 6: There exists ρ∗ ∈ R
m−s+1 such that

∂
∂ρd J(ρ

∗) = 0 and ∂2

∂2ρd J(ρ
∗) < 0.

Fig. 4: I485 inner highway between Mallard Creek Rd and

Harrisburg Rd, Charlotte, North Carolina. Target cells 2, 5,

6, and 9 that are in the congested phase are highlighted.

In this paper, Assumptions 4 and 5 are met since the D-FFL

controller guarantees the asymptotic stability of the lower-level

dynamics (see Proposition 1). Finally, Assumption 6 is also

met since the cost function in (8) is quadratic based on the

form of the MFD function.

The following proposition summarizes the stability and

convergence of the higher-level D-ES controller:

Proposition 2: Consider the closed-loop feedback system

in Fig. 3 under Assumptions 4-6 with the control input (6).

Recall that Remark 2 is in place. There exists ω̄ > 0, and

for any ω ∈ (0, ω̄) there exists ∆̄, Ā > 0 such that for the

given ω and any |Ã| ∈ (0, Ā) and ∆ ∈ (0, ∆̄) there exists a

neighborhood of the point (x, ρd, ξ, η) =
(

ℓ(ρ∗), ρ∗, 0, J(ρ∗)
)

such that any solution of the feedback system (2)-(6) from the

neighborhood exponentially converges to an O(ω+∆+ |Ã|)-
neighborhood of that point. Furthermore, y(t) converges to an

O(ω +∆+ |Ã|)-neighborhood of J(ρ∗).
Proof: The proof can be found in [16], [17].

IV. SIMULATIONS & RESULTS

To demonstrate the effectiveness of the proposed hierar-

chical framework, we conduct a series of case studies. Fig.

4 is the schematic diagram of the freeway section used in

these case studies. It is a subsection of I-485 inner highway,

between Mallard Creek Rd and Harrisburg Rd, Charlotte,

North Carolina. This section is approximately 10 miles long,

with 4 lanes with a speed limit of 70 mph. We discretize this

network into 10 cells, as shown in Fig. 4.

We adopt the model parameters of the METANET model

to be ε = 38mile2

h
, κ = 18 veh

mile.h
, τ = 5s, γ = 4, and

am = h(ρi), which is the only state-varying model parameter

in this case study. In this research, we used brute-force search

to find out the h(ρi) function, which is equal to [11, 7, 4, 1.5]

if the density of the cell is [ρi ≤ ρc, ρc < ρi ≤ 1.5ρc, 1.5ρc <
ρi ≤ 3ρc, 3ρc < ρi ≤ ρJ ] respectively. Also, the critical

density of the network is ρc = 35 veh
mile.lane , the jam density

is ρJ = 150 veh
mile.lane and the free-flow velocity is vFF = 70

mph . Furthermore, we select the origin flow as q0 = 1980
veh/h. We selected these values by running PTV-VISSIM

simulation using I-485 N of Exit 28 (Fig. 4) traffic flow data

reported on Tuesday, 22 December 2020, at peak time between

4:30-5:30 PM and comparing the measured states with the

homogeneous METANET model. The flow disturbances in the

traffic network are modeled as high amplitude low-frequency

sine waves. Finally, the parameter values for each controller
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are listed here: wi,1 = wi,2 = 1 for i ∈ 2, 5, 6, 9, Âi =
Ãi = 1, Ωi = 0.001π rad

s
, ωi,LPF = 0.5Ωi, ωi,HPF = 0.4Ωi,

Ki = 1.35 and z = 1.

A. Case-study 1:D-ES-FFL Performance

One of the common approaches in large network traffic

control is to use a Proportional-Integral-Derivative (PID) feed-

back regulator for Mainstream Traffic Flow Control (MTFC)

and use the VSL as an actuator [18]. In this case study,

first, we compare the performance of the designed lower-level

controller (D-FFL) with the PID-MTFC. To this end, a set

point, which is typically the critical density value, is selected

for cell 5. The proportional, integral, and derivative gains are

KP = 11.2,KI = 0.25, and KD = 0.02, respectively The

gains designed for the PID-MFTC approach were selected

through numerical testing. These gains provide the best closed-

loop command following for our problem. The density of the

target cell 5 in both D-FFL and PID-MTFC scenarios is shown

in Fig. 5. By comparing the results of the designed D-FFL

controller and the PID-MTFC controller, it is found that D-

FFL has a faster settling time. D-FFL is able to control the

target cell to reach the desired density in 4 minutes, while it

takes 9 minutes for PID-MTFC to reach the desired set-point.

It should also be noted that in the proposed hierarchical control

framework, the perturbation frequency of the higher-level

controller (D-ES) depends on the time constant of the lower-

level dynamics (lower-level controller + plant). Therefore, the

overall convergence rate of the D-ES-FFL is faster than the

ES-PID-MTFC controller.

Next, we present a numerical example showing the D-ES-

FFL controller’s effectiveness in mitigating congestion and

preventing back-propagating congestion using the METANET

model. This case study compares two scenarios where there is

no active infrastructure controller in the traffic network versus

when there is an active local D-ES-FFL controller for target

cells in the traffic network. As shown in Fig. 4, the target cells

2, 5, 6, and 9 are on the verge of getting heavily congested

due to the traffic network inflow and unknown downstream

bottleneck.

In Fig. 6, the states of the target cells 5 and 6 and the

upstream cell 4 are shown for both ºD-ES-FFLº and ªNo-

Controlº scenarios. As shown, in the No-Control scenario,

the congestion starts back-propagating, and as the density

increases, the congestion gets heavier, and the average velocity

Fig. 5: Density changes of the target cell 5 using D-FFL

controller (Blue) and PID-MTFC controller (Red).

of each cell reduces. By activating the local ªD-ES-FFLº

controller, estimating the optimal densities of the cell, and

finally tracking the optimal densities, the target cell avoids

jam conditions. According to (8, the local objective function

Fig. 6: States, Suggested velocities (solid green line) and

control commands (dashed-dotted blue line) for cells 4, 5,

and 6 in both scenarios.

of each target cell is trying to maximize the average flow

rate of the cell and minimize its flow difference with the

upstream cell. In Fig. 7, the objective function values for

cells 5 and 6 are shown in both scenarios. Furthermore, the

total average flow of all cells upstream of the bottleneck

(QTOT =
∑6

i=1 Qi) is shown. Finally, in Fig. 8, a colormap

Fig. 7: Objective functions of target cells 5 and 6 (sub-plot

a) and the total average flow of all cells upstream of the

bottleneck (sub-plot b).

of the velocity changes in the whole network for the full-

time spectrum is shown in both ªNo-Controlº and ªD-ES-FFLº

scenarios.

Fig. 8: Visualization of the traffic velocity data for the

whole network in ªNo-Controlº and ªD-ES-FFLº scenarios.
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B. Case-study 2: D-ES-FFL with PTV-VISSIM

In the second case study, we use a real-world traffic

simulator, PTV Vissim, to show the effectiveness of D-ES-

FFL control in a real-world traffic simulation with real-world

traffic data. For this study, after the completion of each cycle

(duration = 10 minutes), the density of the target cells is

recorded and passed to the MATLAB-Simulink environment

through the COM interface. Next, the local objective function

of the congested cells is calculated and fed to the D-ES

controller. Then, using the estimated optimal densities of D-ES

in the Simulink, the suggested control commands are generated

using the D-FFL controller. These commands are then passed

to the MATLAB code and applied to the VISSIM through the

COM interface to update the speed limit signs in the traffic

network. We considered the same problem as case study 1.

The highway link has ten cells with freeway link behavior

type, and each cell is 1 mile in length. The inflow on the

traffic network was set equal to 1980 veh/h with the stochastic

volume type. The vehicle class of the vehicles in the traffic

network was chosen to be ªCarº with the driving behavior of

ªFreewayº. To have a distributed traffic control network, we

put the variable speed limit signs every 0.2 mile, so all vehicles

in each cell get the suggested velocities information from the

controller almost simultaneously. Also, in the first 12 minutes

of the simulation, there is no active controller and effective

communication between MATLAB and PTV VISSIM, so the

desired initial conditions are reached. As it is shown in Fig. 9,

Fig. 9: States (density and velocity) cells 4, 5 and, 6 are

shown using PTV-VISSIM in both scenarios.

by activating the ªD-ES-FFLº controller, the average velocity

in target cells is greater than the ªNo-Controlº scenario while

its density is less congested.

V. CONCLUSIONS & FUTURE WORKS

This paper focuses on modeling and controlling a con-

gested traffic network with multiple bottlenecks. We designed

a hierarchical infrastructure-based controller to mitigate the

traffic network’s congestion despite the unknown disturbances

in the system. At the upper level, a Distributed Extremum

Seeking (D-ES) controller aims to find the optimal operating

densities of the target cell. At the lower level, a Distributed

Filtered Feedback Linearization (D-FFL) controller tracks the

desired density inputs from the higher level by controlling

the suggested velocity of the vehicles in the target cell and its

upstream cell. In the future, we will extend this case study to a

traffic network consisting of multiple classes of vehicles, such

as Human-driven Vehicles (HDVs) and Autonomous Vehicles

(AVs).
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