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Abstract Aliasing refers to the phenomenon that high
frequency signals degenerate into completely different

ones after sampling. It arises as a problem in the con-
text of deep learning as downsampling layers are widely
adopted in deep architectures to reduce parameters and

computation. The standard solution is to apply a low-
pass filter (e.g., Gaussian blur) before downsampling
[76]. However, it can be suboptimal to apply the same
filter across the entire content, as the frequency of fea-

ture maps can vary across both spatial locations and
feature channels. To tackle this, we propose an adap-
tive content-aware low-pass filtering layer, which pre-

dicts separate filter weights for each spatial location and
channel group of the input feature maps. We investi-
gate the effectiveness and generalization of the proposed

method across multiple tasks, including image classifi-
cation, semantic segmentation, instance segmentation,
video instance segmentation, and image-to-image trans-
lation. Both qualitative and quantitative results demon-

strate that our approach effectively adapts to the differ-
ent feature frequencies to avoid aliasing while preserv-
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ing useful information for recognition. Code is available
at https://maureenzou.github.io/ddac/.
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1 Introduction

Deep neural networks have led to impressive break-
throughs in visual recognition, speech recognition, and
natural language processing. On certain benchmarks

such as ImageNet and SQuAD, they can even achieve
“human-level” performance [46,21,60,51]. However,
common mistakes that these networks make are often
quite unhuman like. For example, a tiny shift in the

input image can lead to drastic changes in the out-
put prediction of convolutional neural networks (Con-
vNets) [55,2,60]. This phenomenon was demonstrated
to be in part due to aliasing when downsampling in
ConvNets [76].

Aliasing refers to the phenomenon that high fre-
quency information in a signal is distorted during sub-
sampling [17]. The Nyquist theorem states that the
sampling rate must be at least twice the highest fre-
quency of the signal in order to prevent aliasing. With-
out proper anti-aliasing techniques, a subsampled sig-
nal can look completely different compared to its input.
Below is a toy example demonstrating this problem on
1D signals:

001100110011
k=2, stride=2−−−−−−−−−→

maxpool
010101 (1)

011001100110
k=2, stride=2−−−−−−−−−→

maxpool
111111 (2)
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(a) Input (b) 4xDown (c) Gaussian + 4xDown (d) Adaptive + 4x Down

Fig. 1 Toy example demonstrating the effect of adaptive filtering for anti-aliasing. (a) Input image. (b) Result of
direct downsampling. (c) Result of downsampling after applying a single Gaussian filter tuned to match the frequency of the
noise. (d) Result of downsampling after applying spatially-adaptive Gaussian filters (stronger blurring for background noise
and weaker for edges).1

Here k is the kernel size (1×2). Because of aliasing,
a one position shift in the original signal leads to a
completely different sampled signal (bottom) compared
to the original sampled one (top). As downsampling
layers in ConvNets are critical for reducing parameters
and inducing invariance in the learned representations,

the aliasing issue accompanying these layers will likely
result in a performance drop as well as undesired shift
variance in the output if not handled carefully.

To tackle this, Zhang [76] proposed to insert a Gaus-
sian blur layer before each downsampling module in

ConvNets. Though simple and effective to a certain
degree, we argue that the design choice of applying a
universal Gaussian filter is not optimal – as signal fre-

quencies in a natural image (or feature map) generally
vary throughout spatial locations and channels, differ-
ent blurring filters are needed in order to satisfy the

Nyquist theorem to avoid aliasing. For example, the im-
age in Fig. 1 (a) contains high frequency impulse noise
in the background and relatively lower frequency edges
in the foreground. Directly applying a downsampling
operation produces discontinuous edges and distorted
impulse noise shown in (b) due to aliasing. By apply-
ing a Gaussian filter before downsampling, we can avoid
aliasing as shown in (c). However, as the high frequency
impulse noise needs to be blurred more compared to the
lower frequency edges, when using a single Gaussian
filter tuned for the impulse noise, the edges are over-
blurred leading to significant information loss. To solve

1 We generate the background impulse noise using a
Bernoulli distribution (with P = 0.5) per pixel location with
a normal distribution determining the impulse noise magni-
tude. We then overlay the foreground image over the back-
ground noise. For (c), the fixed filter value is generated by

g(x, y) = 1
2πσ2 e

−(x2+y2)/2σ2

, where σ is the standard de-
viation of the Gaussian filter, and (x, y) is the index of the
filter location with (0, 0) as the filter center. For (d), the filter
“strength” is varied by σ as well as the kernel size.

this issue, what we need is to apply different Gaussian
filters to the foreground and background separately, so
that we can avoid aliasing while preserving useful in-
formation, as in (d).

With the above observation, we propose a content-

aware anti-aliasing module, which adaptively predicts
low-pass filter weights for different spatial locations.
Furthermore, as different feature channels can also

have different frequencies (e.g., certain channels cap-
ture edges, others capture color blobs), we also pre-
dict different filters for different channels. In this way,
our proposed module adaptively blurs the input con-

tent to avoid aliasing while preserving useful informa-
tion for downstream tasks. To summarize, our contri-
butions are:

– We propose a novel adaptive and architecture inde-

pendent low-pass filtering layer in ConvNets for anti-
aliasing.

– We propose novel evaluation metrics, which measure

shift consistency for semantic and instance segmen-
tation tasks; i.e., a method’s robustness to aliasing
effects caused by shifts in the input.

– We conduct experiments on image classification (Im-
ageNet), semantic segmentation (PASCAL VOC and
Cityscapes), instance segmentation (MS-COCO),
video instance segmentation (YoutubeVIS), and do-
main generalization (ImageNet to ImageNet VID,
COCO to YoutubeVIS). The results show that our
method outperforms competitive baselines with a
good margin on both accuracy and shift consistency.

– We demonstrate intuitive qualitative results, which
show the interpretability of our module when applied
to different spatial locations and channel groups.

This paper expands upon our previous conference
paper [78] with the following new contributions:
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– We propose a novel consistency metric for video in-
stance segmentation and evaluate the robustness of
our approach to video natural perturbation on the
YoutubeVIS dataset (Section 4.4 and 4.8.2).

– We conduct experiments on the image-to-image
translation task using pix2pixHD [67] as a baseline.
Results in Section 4.5 and 4.8.3 show that our ap-
proach can generate more realistic images both qual-
itatively and quantitatively.

– We identify our adaptive filtering layer as a variant
of the sliding window self-attention in vision trans-
formers (Section 3.4).

– We give more comprehensive related work analysis in
Section 2.

– We discuss some limitations of our approach in Sec-
tion 5.

2 Related Work

Anti-aliasing Aliasing is a well-known problem in sig-

nal processing, and lowpass filters are often designed
according to the Nyquist theorem to counter it [56,
50]. In addition, the phenomenon has been studied un-

der the scope of invariance in pattern recognition [68,
1,7,38]. More recently, it has been shown that alias-
ing also widely exists in deep neural networks and has

non-negligible effect on the network predictions. For
example, Zhang [76] made the observation that net-
work predictions are not consistent to shifting inputs
and pointed out that these phenomena are caused by

aliasing when a feature map is downsampled. Our sub-
sequent work [78] further proposed adaptive filtering
layers in place of the fixed low-pass filtering layers pro-
posed in [76] to better address the shift inconsistency
problem. Recently, several concurrent works have ei-
ther addressed aliasing issues in GANs using a contin-
uous interpretation [30], or target the design of truly

shift-invariant convnets with adaptive polyphase sam-
pling [9]. Anti-aliasing is also highly related to geomet-
ric transformation invariance, which is explored in sev-
eral recent works [77,33,5,54].

Network Robustness Current deep neural networks are
vulnerable to input perturbations without special train-
ing recipes. These perturbations can be malicious such
as adversarial attacks [59,32], or naturally occurring
such as input translation [44,4,73,76], natural pertur-
bations [55], domain gaps [47,36], or out-of-distribution

samples [34,35]. One underlying reason is that networks
tend to pick up superficial patterns instead of learn-
ing truly compositional representations [16], and their
vulnerability to input perturbations can also lead to
prediction inconsistencies. Adversarial defense methods

via novel training pipelines [43,39], losses [29] and ar-
chitectures [70] have been proposed to obtain adversar-
ially robust networks. [44,4] propose new algorithms to
learn more shift-invariant representations. In addition,
data augmentation is an effective way to improve net-
work robustness [75,76,74] and generalization. Finally,
domain generalization methods (e.g., [65,64,26]) have
been proposed to increase a model’s robustness to do-
main differences in the data.

Image Filtering Low-pass filters like box [53] and Gaus-
sian [17] are classic content agnostic smoothing filters;
i.e., their filter weights are fixed regardless of spatial
location and image content. Bilateral [48] and guided
[20] filters are content aware as they can simultane-
ously preserve edge information while removing noise.
Recent works integrate such classic filters into deep net-
works [76,70]. However, directly integrating these mod-
ules into a neural network requires careful tuning of hy-

perparameters subject to the input image (e.g., σs and
σr in bilateral filter or r and ϵ in guided filter). [58,28]
introduced the dynamic filtering layer, whose weights

are predicted by convolution layers conditioned on pre-
computed feature maps. Our method differs from them
in two key aspects: 1) our filter weights vary across both

spatial and channel groups, and 2) we insert our low-
pass filtering layer before every downsampling layer for
anti-aliasing, whereas the dynamic filtering layer is di-
rectly linked to the prediction (last) layer in order to

incorporate motion information for video recognition
tasks. Finally, [66] introduces an adaptive convolution
layer for upsampling, whereas we focus on downsam-

pling with an adaptive low-pass filtering layer.

Applications The application of anti-aliasing covers a
variety of visual recognition tasks, ranging from clas-

sification [13], dense prediction [19,10], video analy-
sis [72] to generation tasks [67]. We find that anti-
aliasing techniques are especially effective for dense
prediction tasks including instance segmentation [19,6]
and semantic segmentation [42,11]. These tasks require
precise modeling of object boundaries, so that pixels
from the same object instance can be correctly grouped
together. Thus, while blurring can help reduce alias-
ing, it can also be harmful to these tasks (e.g., when
the edges are blurred too much or not blurred enough
hence resulting in aliasing). We investigate the effect
of anti-aliasing in these pixel-level tasks, whereas our
closest work, [76], focused mainly on image classifica-

tion. In addition, video insconsistency caused by motion
blur, natural perturbations, etc. has also been widely
observed [55,18,37]. We specifically explore the con-
sistency problem in video instance segmentation [72]
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Fig. 2 Method overview. (Left) For each spatial location and feature channel group in the input X, we predict a k × k
filter w. (Right) We apply the learned filters on X to obtain content aware anti-aliased features. See text for more details.

to demonstrate the effectiveness of our approach. Fi-

nally, generative models also have sampling operations

in their encoder and/or decoder architecture [67,52,49].

Thus, we also investigate our approach in this area.

3 Approach

To enable anti-aliasing for ConvNets, we apply the pro-

posed content-aware anti-aliasing module before each

downsampling operation in the network. Inside the

module, we first generate low-pass filters for different

spatial locations and channel groups (Fig. 2 left), and

then apply the predicted filters back onto the input fea-

tures for anti-aliasing (Fig. 2 right).

3.1 Spatial adaptive anti-aliasing.

As frequency components can vary across different spa-

tial locations in an image, we propose to learn different

low-pass filters in a content-aware manner across spa-

tial locations. Specifically, given an input featureX that

needs to be down-sampled, we generate a low-pass filter

wi,j (e.g., a 3 × 3 conv filter) for each spatial location

(i, j) on x. With the predicted low-pass filter wi,j , we

can then apply it to input X:

Yi,j =
∑

p,q∈Ω

wp,q
i,j · Xi+p,j+q, (3)

where Yi,j denotes output features at location (i, j) and

Ω points to the set of locations surrounding (i, j) on

which we apply the predicted smooth filter. In this way,

the network can learn to blur higher frequency content

more than lower frequency content, to reduce undesir-

able aliasing effects while preserving important content

as much as possible.

3.2 Channel-grouped adaptive anti-aliasing.

Different channels of a feature map can capture differ-

ent aspects of the input that vary in frequency (e.g.,

edges, color blobs). Therefore, in addition to predict-

ing different filters for each spatial location, it can also

be desirable to predict different filters for each feature

channel. However, naively predicting a low-pass filter

for each spatial location and channel can be compu-

tationally very expensive. Motivated by the observa-

tion that some channels will capture similar informa-

tion [69], we group the channels into k groups and pre-

dict a single low-pass filter wi,j,g for each group g. Then,

we apply wi,j,g to the input X:

Y g
i,j =

∑
p,q∈Ω

wp,q
i,j,g · Xc

i+p,j+q, (4)

where g is the group index to which channel c belongs.

In this way, channels within a group are learned to be

similar, as shown in Fig. 4.

3.3 Learning to predict filters.

To dynamically generate low-pass filters for each spatial

location and feature channel group, we apply a convo-

lutional block (conv + batchnorm) to the input feature

X ∈ Rn×c×h×w to output w ∈ Rn×g×k2×h×w, where g
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Low

High

Fig. 3 Variance of the learned filter weights across spatial locations. Low variance corresponds to more blur, while
high variance corresponds to less blur. Our model correctly learns to blur high frequency content (e.g., edges) more to prevent
aliasing, and blur low frequency content less to preserve useful information.

Group 1 Group 2 Group 3Input

Fig. 4 Visualization of predicted feature maps within and across groups. The features within each group are more
similar to each other than to those in other groups. Each group captures a different aspect of the image (e.g., edges, color
blobs).

denotes the number of channel groups and each of the

k2 channels corresponds to an element in one of k × k

locations in the filters. For grouping, we group every

c/g consecutive channels, where c is the total number

of channels. Finally, to ensure that the generated filters

are low-pass, we constrain their weights to be positive

and sum to one by passing it through a softmax layer.

3.4 Analyzing the predicted filters.

In this section, we analyze the behavior of our learned

filters. First, we analyze how the filters spatially adapt

to different image content. For this, we compute the

variance of the learned filter weights across different

spatial locations. A k × k average filter with 1/k2 in-

tensity in each element will have zero variance whereas

an identity filter with one in the center and zeros ev-

erywhere else will have high variance. From Fig. 3, one

can clearly see that when the image content has high

frequency information (e.g., elephant background trees,

bird contours), the learned filters’ variance tends to be

smaller; i.e., more blur is needed to prevent aliasing.

Conversely, the filters’ variance is larger when the con-

tent is relatively smoother (e.g., background in bird im-

ages); i.e., less blur is needed to prevent aliasing. In this

way, the learned filters can reduce aliasing during sam-

pling while preserving useful image content as much as

possible.

We next analyze how the filters adapt to different

content across different feature groups. Fig. 4 shows this

effect; e.g., group 1 captures relatively low frequency

information with smooth areas, while group 2 captures

higher frequency information with sharp intensity tran-

sitions. In this way, the learned filters can adapt to

different frequencies across feature channels, while sav-

ing computational costs by learning the same filter per

group.

3.5 Relation with self-attention

Recently, the transformer architecture [63] has emerged

as a state-of-the-art alternative to convolutional net-

works on various vision tasks including classifica-

tion [14], detection [8], and segmentation [71]. To deal

with the transformer’s quadratic complexity to input

length, more efficient architectures such as the Swin-

Transformer [41] and LongFormer [3] have been pro-

posed. Their key idea is to apply both sparse global

and local attention. In this section, we show that our

proposed anti-aliasing module can be interpreted as a

form of sliding window local attention.

Given feature map X with dimension h × w × d,

a sliding window local attention will apply local self-

attention within each k × k feature patch window. It

can be represented by the following equation:
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(a)

crop1

Image

crop2

(b)

(c)

det

det (d)

(e)

(f)
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seg (g)

Fig. 5 Our new consistency metrics. (b,c,d): mean Average Instance Segmentation Consistency (mAISC). (e,f,g): mean
Average Semantic Segmentation Consistency (mASSC). Both metrics first crop two patches from the input image (a) and
then perform detection/segmentation (det/seg) on its content (b,c,e,f). Then, the overlapping part from the two patches are
selected out (d,g) for evaluating the consistency score.

accuracy consistency generalization
methods Filter Size Top-1 Abs Top-5 Abs Delta Abs Delta Abs Delta
ResNet-101 [22] - 77.7 93.8 - 90.6 - 67.6 -

LPF [76]
3 x 3 78.4 94.1 + 0.7 91.6 + 1.0 68.8 +1.2
5 x 5 77.7 93.9 + 0.0 91.8 + 1.2 67.0 - 0.6

Ours
3 x 3 79.0 94.4 + 1.3 91.8 + 1.2 69.9 +2.3
5 x 5 78.6 94.3 + 0.9 92.2 + 1.6 69.1 +1.5

Table 1 Image classification accuracy, consistency on ImageNet [13], and domain generalization results Ima-
geNet → ImageNet VID [13]. We compare to strong ResNet-101 [22] and LPF (low-pass filter) [76] baselines. Our method
shows consistent improvement in accuracy, consistency, and generalization.

Attention(xc) = softmax(
ϕq(xc)ϕk(x)

T

√
d

)ϕv(x) (5)

where x is the feature patch with size k × k × d, xc

is the center point of the feature patch x, and ϕ rep-

resents linear projection. The self-attention layer will

first compute the cross similarity between xc to each

feature point in x (k2 total), apply a softmax to nor-

malize the similarity values to sum to one, and finally,

use the resulting weights to compute a weighted sum
over the projected values (ϕv(x)) of the k2 points.

In the above equation, we can consider replacing the

linear projections (ϕq(·) and ϕk(·)) and the dot prod-

uct between them, with a conv layer to compute the

summing weights:

Attention(xc) = softmax(conv(x))ϕi(x) (6)

where ϕi is identity projection. This equation exactly

represents our proposed anti-aliasing module.

In both cases (Eqns. 5 and 6), the output is a

weighted sum of its input value tensor, and demon-

strates that our approach can be viewed as a form of

sliding window self-attention.

4 Experiments

We first introduce our experimental settings and pro-

pose consistency metrics for image classification, in-

stance segmentation, and semantic segmentation. We

compare to strong baselines including ResNet [22],

Deeplab v3+ [11], Mask R-CNN on large scale datasets

including ImageNet, ImageNet VID [13], MS COCO

[40], PASCAL VOC [15] and Cityscapes [12]. We also

conduct ablation studies on our design choices includ-

ing number of groups, parameter counts, as well as fil-

ter types. Finally, we present qualitative results demon-

strating the interpretability of our anti-aliasing module.

4.1 Image Classification

Experimental settings We evaluate on

ILSVRC2012 [13], which contains 1.2M training

and 50K validation images for 1000 object classes. We

use input image size of 224 × 224, SGD solver with

initial learning rate 0.1, momentum 0.9, and weight

decay 1e-4. Full training schedule is 90 epochs with 5

epoch linear scaling warm up. Learning rate is reduced

by 10x every 30 epochs. We train on 4 GPUs, with

batch size 128 and batch accumulation of 2. For fair

comparison, we use the same set of hyperparameters

and training schedule for both ResNet-101, LPF [76]

baselines as well as our method. The number of groups

is set to 8 according to our ablation study. We extend

the code base introduced in [76].

Consistency metric We use the consistency metric de-

fined in [76], which measures how often the model out-

puts the same top-1 class given two different shifts on

the same test image:
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Mask Box
method mAP Delta mAISC Delta mAP Delta mAISC Delta
Mask R-CNN [19] 36.1 - 62.9 - 40.1 - 65.1 -
LPF [76] 36.8 + 0.7 66.0 + 4.1 40.9 + 0.8 68.8 + 3.7
Ours 37.2 + 1.1 67.0 + 5.1 41.4 + 1.3 69.8 + 4.7

Table 2 Instance segmentation results on MS COCO. We compare to Mask R-CNN [19] and LPF [76]. Our
approach consistently improves over the baselines on both mask and box detection accuracy. Our model performs especially
well on shift consistency, with a 5.1 and 4.7 point improvement over Mask R-CNN on mAISC mask and box, respectively.

PASCAL VOC Cityscapes
method mIOU Delta mASSC Delta mIOU Delta mASSC Delta
Deeplab v3+ [11] 78.5 - 95.5±0.11 - 78.5 - 96.0±0.10 -
LPF [76] 79.4 + 0.9 95.9±0.07 + 0.4 78.9 + 0.4 96.1±0.05 + 0.1
Ours 80.3 + 1.8 96.0±0.13 + 0.5 79.5 + 1.0 96.3±0.07 + 0.3

Table 3 Semantic segmentation on PASCAL VOC 2012 [15] and Cityscapes [12]. We compare to Deeplab
v3+ [11] and LPF [76]. Our approach leads to a large improvement in accuracy on PASCAL VOC and Cityscapes (1.8
point and 1.0 point, respectively). Under the mASSC consistency metric, our approach also shows improvement upon the two
baselines. The results are averaged over three runs.

Consist = EX,h1,w1,h2,w2 I{F (Xh1,w1) = F (Xh2,w2)}
(7)

where E and I denote expectation and indicator func-
tion (outputs 1/0 with true/false inputs). X is the input

image, h1, w1 (height/width) and h2, w2 parameterize
the shifts and F (·) denotes the predicted top-1 class.

Results and analysis As shown in Table 1, our adaptive
anti-aliasing module outperforms the baseline ResNet-
101 without anti-aliasing with a 1.3 point boost (79.0

vs 77.7) in top-1 accuracy on ImageNet classification.
More importantly, when comparing to LPF [76], which
uses a fixed blurring kernel for anti-aliasing, our method

scores 0.6 points higher (79.0 vs 78.4) on top-1 accu-
racy. Furthermore, our method not only achieves better
classification accuracy, it also outputs more consistent
results (+0.2/+0.4 consistency score improvements for
3×3 and 5×5 filter sizes) compared to LPF. These re-
sults reveal that our method preserves more discrimina-
tive information for recognition when blurring feature

maps.

4.2 Domain Generalization

Experimental settings ImageNet VID is a video object
detection dataset, which has 30 classes that overlap
with 284 classes in ImageNet (some classes in Ima-
geNet VID are the super class of ImageNet). It contains
3862/1315 training/validation videos. We randomly se-
lect three frames from each validation video, and eval-
uate Top-1 accuracy on them to measure the general-
ization capability of our model which is pretrained on

ImageNet (i.e. it has never seen any frame in ImageNet

VID). As a video frame may contain multiple objects
in different classes, we count a prediction as correct as
long as it belongs to one of the ground-truth classes.

Results and analysis Table 1 reveals that our method
generalizes better to a different domain compared to
the ResNet-101 baseline (+2.3% points increase in top-

1 accuracy for 3 × 3 filter) and LPF model (+1.1%)
which adopts a fixed blur kernel. We hypothesize that
the better generalization capability comes from the fact

that we learn a representation that is less sensitive to
downsampling (i.e., more robust to shifts). This is par-
ticularly useful for video frames, as they can be thought
of as having natural shift perturbations of the same con-

tent across frames [55].

4.3 Instance Segmentation

Experimental settings In this section, we present re-
sults on MS-COCO for instance segmentation [40]. MS-
COCO contains 330k images, 1.5M object instances and

80 categories. We use Mask R-CNN [19] as our base ar-
chitecture. We adopt the hyperparameter settings from
the implementation of [45]. When measuring consis-
tency, we first resize images to 800× 800 and then take
a crop of 736× 736 as input.

Consistency metric (mAISC) We propose a new mean

Average Instance Segmentation Consistency (mAISC)
metric to measure the shift invariance property of in-
stance segmentation methods. As shown in Fig. 5, given
an input image (a), we randomly select two crops (b)
and (c), and apply an instance segmentation method
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mAVISC
Method α = 0.5 Delta α = 0.6 Delta α = 0.7 Delta α = 0.8 Delta
Mask R-CNN [19] 90.09 - 89.29 - 88.14 - 87.29 -
LPF [76] 90.11 + 0.02 88.96 - 0.33 88.38 + 0.24 87.32 + 0.03
Ours 90.71 + 0.62 89.61 + 0.32 88.79 + 0.65 87.68 + 0.39

Table 4 Video instance segmentation consistency on YoutubeVIS [72]. We evaluate video instance segmentation
consistency for IOU thresholds (α) ranging from 0.5 to 0.8. Our approach consistently increases video consistency with a
good margin (+0.62/+0.32/+0.65/+0.39) for all IOU thresholds, whereas LPF increases it with a relatively smaller margin
(+0.02/+0.32/+0.03) or can even decrease video consistency (-0.33 when α = 0.6).

on them separately. M(b) and M(c) denote the pre-
dicted instances in the overlapping region of image (b)
and (c). To measure consistency, for any given instance
mb in M(b) we find its highest overlapping counter-
part mc in M(c). If the IOU between mb and mc is
larger than a threshold (0.9 in our experiments), we re-
gard mb as a positive (consistent) sample in M(b). (A
sample mc from M(c) can only be considered a coun-
terpart of any instance in M(b) once.) We compute the

final mAISC score as the mean percentage of positive
samples in M(b) over all input image pairs.

Results and analysis We evaluate mAP and mAISC for

both mask and box predictions. As shown in Table 2,
while simply applying a fixed Gaussian low-pass filter
improves mAP by +0.7/+0.8 points for mask/box, our
adaptive content-aware anti-aliasing module is more ef-

fective (further +0.4/+0.5 point improvement over LPF
for mask/box). This demonstrates that it is important
to have different low-pass filters for different spatial

locations and channel groups. More interestingly, by
introducing our adaptive low-pass filters, mAISC in-
creases by a large margin (+5.1/+4.7 for mask/box

over the baseline, and +1.0/+1.0 over LPF). This result
demonstrates that 1) an anti-aliasing module signifi-
cantly improves shift consistency via feature blurring,
and 2) edges (higher frequency) are better preserved

using our method (compared to LPF) during downsam-
pling which are critical for pixel classification tasks.

4.4 Semantic Segmentation

Experimental settings We next evaluate on PASCAL
VOC2012 [15] and Cityscapes [12] semantic segmen-
tation with Deeplab v3+ [11] as the base model. We
extend implementations from [23,24] and [62]. For
Cityscapes, we use syncBN with a batch size of 8. As
for PASCAL VOC, we use a batch size of 16 on two
GPUs without syncBN. We report better performance
compared to the original implementation for DeepLab
v3+ on PASCAL VOC. For Cityscapes, our ResNet-101

backbone outperforms the Inception backbone used in
[10].

Consistency metric (mASSC) We propose a new mean
Average Semantic Segmentation Consistency (mASSC)
metric to measure shift consistency for semantic seg-
mentation methods. Similar to mAISC, we take two
random crops (e,f) from the input image (a) in Fig. 5.
We then compute the Semantic Segmentation Consis-
tency between the overlapping regions X and Y of the
two crops:

Consist(X,Y ) = Ei∈[0,h)Ej∈[0,w) I[S(X)i,j = S(Y )i,j ]

(8)

where S(X)i,j and S(Y )i,j denote the predicted class
label of pixel (i, j) in X and Y , and h,w is the height

and width of the overlapping region. We average this
score for all pairs of crops in an image, and average
those scores over all test images to compute the final
mASSC.

Results and analysis As shown in Table 3, our method
improves mIOU by 1.8 and 1.0 points on PASCAL
VOC and Cityscapes compared to the strong baseline

of DeepLab v3+. Furthermore, our method also con-
sistently improves the mASSC score (+0.5 and +0.3
for VOC and Cityscapes) despite the high numbers
achieved by the baseline method (95.5/96.0). Finally, to
measure the variance of our mASSC results, we report
the standard deviation over three runs with different
random seeds.

4.5 Video Consistency

Experimental settings We next validate our method’s
generalization to video data and its robustness to nat-
ural perturbations in video. For this, we perform the
video instance segmentation task on the YoutubeVIS
dataset [72] using the model trained in Section 4.2. We

only evaluate on the 20 overlapping classes between
COCO and YoutubeVIS. Since the validation set of
YoutubeVIS does not have ground-truth annotation for
all frames, we randomly select 260 videos in the training
set to validate video consistency.
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datasets Cityscapes Facades
methods FID ↓ Delta mIoU Delta mAcc Delta PSNR Delta SSIM Delta

pix2pixHD [67] / pix2pix [27] 52.21 - 71.23 - 78.97 - 60.33 - 1.08 -
LPF [76] 52.68 +0.47 67.61 -3.62 75.61 -3.36 61.14 +0.81 1.37 +0.29
Ours [78] 50.21 -2.0 71.99 +0.67 80.23 1.26 61.50 +1.17 1.41 +0.33

Table 5 Image-to-Image translation results. On the Cityscapes dataset, the generated images of LPF have worse perfor-
mance on both image quality and semantic segmentation, while the images generated by our approach tend to be more realistic
(FID) and semantically accurate (mIoU, mAcc). On the Facades dataset, for shifted image pairs, our approach generates more
consistent images compared to the baseline approaches for both pixel (PSNR) and patch (SSIM) metrics.

t

seg

t+1

Fig. 6 Video instance segmentation consistency met-
ric. For any two consecutive frames, if the object is detected
in both frames, we record it as a positive pair.

Consistency metric (mAVISC) To measure an instance

segmentation model’s robustness to natural perturba-

tions in video, we propose a new mean Average Video

Instance Segmentation Consistency (mAVISC) metric.

For each video sequence, for all pairs of consecutive

frames, and for each object that appears in each pair

of frames, we first determine whether the object is de-

tected according to a predetermined IOU threshold. If

so, we record it as a positive pair, as shown in Fig. 6.

Below is the equation for computing mAVISC:

1

NMiQi

N∑
i=1

Mi∑
j=1

Qi∑
t=1

I{I{IOU(GTi,j,t, Pi,j,t) > α} =

I{IOU(GTi,j,t+1, Pi,j,t+1) > α}}

(9)

where N , Mi, Qi is the number of video sequences, ob-

jects in the i’th video, and frames in the i’th video,

respectively. GT represents the ground truth video ob-

ject bounding boxes, P represents the bounding box

predictions, and α is the IOU threshold to determine

whether the ground truth object is detected.

Results Table 4 shows video consistency results on

the YoutubeVIS dataset for Mask R-CNN, Mask R-

CNN with LPF, and Mask R-CNN with our approach

using the proposed mAVISC metric. We evaluate on

IOU thresholds ranging from α = 0.5 to α = 0.8.

(We do not include α = 0.9 because at this very

strict threshold, there are too few correct detections

for any method, making difficult to make reliable con-

clusions.) As shown in Table 4, our approach consis-

tently increases video consistency with a good mar-

gin (+0.62/+0.32/+0.65/+0.39) across all IOU thresh-

olds, where LPF increases with fairly small margin

(+0.02/+0.32/+0.03) or even decreases video consis-

tency (-0.33 when α = 0.6).

4.6 Image-to-Image Translation

Experiment Settings We evaluate image-to-image

translation on the Cityscapes [12] and Facades [61]

datasets using Pix2PixHD [67] and Pix2Pix [27] as

the baseline models, respectively. On Cityscapes,

following [67], we use 2976 images for training and 500

images for evaluation. On Facades, we use a total of

400 images for training and evaluation following [27].

For both Pix2Pix [27] and Pix2PixHD [67], we insert

our module before each downsampling layer and

upsampling layer following [76]. For downsampling, we

simply insert our adaptive module with stride = 2. For

upsampling, we first use nearest neighbor interpolation

to upsample the feature map and then apply our

adaptive filtering layer with stride = 1. We follow all

the training settings from [67,27].

On the Cityscapes dataset, we focus on image gen-

eration quality as well as our model’s generalization

capability to the segmentation task. We use mIoU,

mAcc, and FID to evaluate the generated image qual-

ity. For mIoU and mACC, we first run the DeepLab

V3+ semantic segmentation model (trained in Sec-

tion 4.3) on the generated images, following [67]. We

compare the resulting segmentation maps with the

ground truth segmentation maps. For FID, we use the

publicly available codebase at https://github.com/

mseitzer/pytorch-fid to compare the distributions

of the generated image features and the real image

features. On the Facades dataset, we follow [76,30] to

evaluate the shift consistency of the image generation

model. To evaluate the similarity of two shifted images,

we compute both PSNR and SSIM to evaluate both

pixel-wise and patch-wise similarity.
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Fig. 7 Effect of number of groups on top-1 accuracy and consistency. As the group number increases, both Top-1
accuracy and consistency first increase then decrease. The performance saturates with group number 8.

methods top-1 Acc consistency
ResNet 66.5 79.1
Gaussian 66.7 79.8
Image Adaptive 66.7 78.7
Spatial Adaptive 67.7 80.3
Ours 68.0 80.9

Table 6 Filter ablations. Gaussian blur is better than no
blur (ResNet). Learning the blur filter globally (Image Ada.),
spatially (Spatial Ada.), and over channels (Ours) progres-
sively does better.

Results In Table 5, we first compare pix2pixHD [67],

pix2pixHD together with LPF [76], and pix2pixHD
with our approach on the Cityscapes dataset. Overall,
our approach generates more realistic images (e.g., FID
score decreases by 2 points) and has better mIOU and

mAcc scores than both pix2pixHD and LPF. In addi-
tion, we compare pix2pix [27], pix2pix together with
LPF [76], and pix2pix with our approach on the Fa-

cades dataset. The results show that our model is more
consistent on image shift compared to the baseline ap-
proaches.

4.7 Ablation Studies

Experimental settings For efficiency, we perform all ab-
lation studies using ResNet-18 with input image size
112 × 112 and batch size 200 on ImageNet. All other
hyperparameters are identical to those used in Sec. 4.1.

Number of channel groups. We vary the number of
channel groups and study its influence on image classi-
fication accuracy. As shown in Fig. 7, the trend is clear
– increasing the number of groups generally leads to im-
proved top-1 accuracy. This demonstrates the effective-
ness of predicting different filters across channels. How-
ever, there exists a diminishing return in this trend –
the performance saturates when the group number goes
beyond 8. We hypothesize this is caused by overfitting.

Number of parameters. We further compare the effects
of directly increasing the number of parameters in the
base network vs adding more groups in our content-
aware low-pass filters. To increase the number of param-
eters for the base network, we increase the base channel
size in ResNet-18. We find that directly increasing the
number of parameters barely improves top-1 accuracy –
when the number of parameters increases from 12.17M

to 12.90M, top-1 accuracy increases only by 0.1%. Also,
with similar (or less) number of parameters, our method
yields a higher performance gain compared to naively

increasing network capacity (68.0% vs 67.7% top-1 ac-
curacy for 12.60M vs 12.90M parameters). This shows
that our adaptive anti-aliasing method does not gain
performance by simply scaling up its capacity.

Type of filter. In Table 6, we ablate our pixel adaptive
filtering layers with various baseline components. Ap-

plying the same low-pass filter (Gaussian, Image Adap-
tive) across the entire image performs better than the
vanilla ResNet-18 without any anti-aliasing. Here, Im-

age Adaptive refers to the baseline which predicts a
single low-pass filter for the entire image. By adap-
tively learning a spatially variant low-pass filter, per-
formance improves further (Spatial Adaptive). Over-
all, our method achieves the best performance which
demonstrates the benefits of predicting filters that are
both spatially varying and channel adaptive.

Overhead. Finally, with our spatial/channel adaptive
filtering added, the number of parameters increases by
2.9-7.8% for ResNet models (e.g., 4% for R-101, 4.5M
to 4.63M). As for runtime, on a RTX2070 GPU, our
method (R-101 backbone) takes 6.4 ms to forward a
224x224 image whereas a standard ResNet-101 takes
4.3 ms.

Type of Backbone. We compare Top-1 accuracy and

Consistency with two additional backbone networks,
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(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
Fig. 8 Visualization of learned filter weights at each spatial location. We can see that the learned filter weight is
adaptive to different visual content. Specifically, our model tends to “grow” edges so that it is easier for them to be preserved.
For example, the learned filter tends to integrate more information from left to right (see center-left and bottom-left weights
in the second row of this figure) on the vertical tree branch and thus grow it to be thicker. This way, it is easier for the tree
branch contours to be preserved after downsampling.

Image Deeplab v3+ LPF OursGT

Fig. 9 Qualitative results for semantic segmentation on Cityscapes. In the first row, within the yellow box region,
our method clearly distinguishes the road edge compared to Deeplab v3+ and LPF. Similar behavior (better segmented road
contours) is also observed in the second row. This holds for other objects as well – the light pole has better delineation compared
to both baselines in the third row.

VGG [57] and DenseNet-121 [25], on the Cifar-10
dataset [31]. For VGG, our approach achieves 94.0 Top-

1 accuracy and 97.2 Consistency, and for DenseNet, our
approach achieves 95.6 Top-1 accuracy and 97.4 Consis-
tency. Similar to the ResNet101 results, our approach
improves Top-1 accuracy with a good margin compared
to the baseline network, which does not have any anti-
aliasing (+0.6 for VGG and +1.7 for DenseNet) as well
as LPF (+0.4 for VGG and +1.1 for DenseNet). Our

method’s consistency is also improved upon the base-
line network (+0.6 for VGG and +0.1 for DenseNet)
although it does not outperform the LPF method (-0.4
for VGG and -0.9 for DenseNet). As Cifar-10 has rela-
tively low resolution (322 pixels) images in comparison
with ImageNet (2242 pixels), there can be a trade-off
between accuracy and consistency. Specifically, we find

that decreasing the content frequency for anti-aliasing
to improve shift consistency may have a side effect on

classification accuracy when the image resolution is al-
ready very low. Thus, the consistency performance may
not be improved as much in comparison with higher
resolution images such as those in ImageNet, as we had
shown in Table 1.

4.8 Qualitative Results

4.8.1 Semantic segmentation.

We show qualitative results for semantic segmentation
in Fig. 9 to demonstrate that our module better pre-
serves edge information. For example, in the first row,
within the yellow box region, our method clearly dis-
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LPF OursMaskRcnn MaskRcnn LPF Ours

t

t+1

t+2

Fig. 10 Qualitative results of video instance segmentation consistency. As shown in the first three columns, our
method produces more consistent instance segmentation of the airplane wing whereas Mask-RCNN and LPF produce more
inconsistent results that fluctuate over frames. In the last three columns, we observe the existence of redundant detections for
both Mask-RCNN and LPF.

LPF OursPix2PixHDMask GT

Fig. 11 Qualitative results for image to image translation on Cityscapes. In the first row, our approach generates
clear boundaries along the roof. In contrast, the other methods produce blurry boundaries. In the second row, our approach
not only produces a clear edge on the car, it also generates a very tiny traffic light (see region inside the red rectangle). The
other two methods fail in this situation. In the last row, our approach clearly identifies the boundary between the wall and
bushes whereas the other two approaches’ produce very blurry and dark generations.

tinguishes the road edge compared to Deeplab v3+
and LPF. Similar behavior (better segmented road con-

tours) is also observed in the second row. This holds for
other objects as well – the light pole has better delin-
eation compared to both baselines in the third row.

4.8.2 Low-pass filter weights.

To further understand our adaptive filtering module,
we visualize the low-pass filter weights for each spatial

location. As shown in Fig. 8, our model tends to “grow”
edges so that it’s easier for them to be preserved. For
example, the learned filter tends to integrate more in-
formation from left to right (see center-left and bottom-
left weights in Fig. 8 in the second row) on the vertical
tree branch and thus grow it to be thicker. This way,

it’s easier for tree branch contours to be preserved after
downsampling.

4.8.3 Video instance segmentation consistency

In addition to image results, we also show qualitative
results on a video dataset. In Section 4.4, we quan-
titatively demonstrated that our method provides ad-
ditional robustness to natural perturbations. Here we
show qualitative results to illustrate its effectiveness.
In Fig. 10, each row represents a different time stamp.
In the left airplane example, we can observe that while
all three methods can detect the airplane’s wing, the
detections of Mask R-CNN [19] and LPF [76] fluctu-
ate over time (e.g. multiple detections on the airplane’s
wing) whereas our detections are quite stable. In the
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right skiing example, both Mask R-CNN and LPF gen-
erate lots of redundant detections compared to our ap-
proach that is likely caused by the aliasing effects of
downsampling.

4.8.4 Image-to-Image translation

Finally, we show qualitative results of applying our
approach to generative models. In Fig. 11, we com-
pare with pix2pixHD [67] and pix2pixHD together
with LPF [76] on image-to-image translation using the
Cityscapes dataset. We find that our adaptive filters are
better at preserving boundaries in image generation. In
the first row, our approach generates clear boundaries
along the roof. In contrast, the other methods produce
blurry boundaries. In the second row, our approach not
only produces a clear edge on the car, it also generates
a very tiny traffic light (see region inside the red rect-
angle). The other two methods fail in this situation. In
the last row, our approach clearly identifies the bound-
ary between the wall and bushes whereas the other two
approaches’ produce very blurry and dark generations.

We attribute this property to the fact that with LPF
or the original conv filters, the filter weights are fixed
at all spatial locations. This means that it will be diffi-

cult for neighbouring in the higher resolution output to
have different values within a small local region. And
this could potentially cause the unclear boundary effect
shown in Fig. 11.

5 Limitations

We have shown in this paper that our approach
is effective for various discriminative and generative

tasks. However, it also has some limitations. First, al-
though both the computation and parameter overhead
is marginal, with our current implementation, GPU

memory overhead is not negligible as it involves the
unfold function in PyTorch which is memory intensive.
Second, we empirically found the optimal group num-
ber of filter weights to be 8 for our tasks. However, it
may not be optimal for other tasks and thus is a hyper-
parameter that needs to be tuned.

6 Conclusion

In this paper, we proposed an adaptive content-aware
low-pass filtering layer, which predicts separate filter
weights for each spatial location and channel group of
the input. We quantitatively demonstrated the effec-
tiveness of the proposed method across multiple tasks
and qualitatively showed that our approach effectively
adapts to the different feature frequencies to avoid alias-

ing while preserving useful information for recognition.
Despite some of the limitations observed in Section 5,

we believe our work can be a promising foundation for
exploring anti-aliasing on other tasks (e.g., video recog-
nition) as well as other forms of input noise.
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