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Figure 1: The study’s proposed context-aware advisory warning method, CAWA. a) Detection of the NDRT in which the driver
is engaged, b) Selecting the type of modality according to detected activity.

ABSTRACT
In conditionally automated driving, drivers decoupled from driv-
ing while immersed in non-driving-related tasks (NDRTs) could
potentially either miss the system-initiated takeover request (TOR)
or a sudden TOR may startle them. To better prepare drivers for a
safer takeover in an emergency, we propose novel context-aware
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advisory warnings (CAWA) for automated driving to gently inform
drivers. This will help them stay vigilant while engaging in NDRTs.
The key innovation is that CAWA adapts warning modalities ac-
cording to the context of NDRTs. We conducted a user study to
investigate the e�ectiveness of CAWA. The study results show that
CAWAhas statistically signi�cant e�ects on safer takeover behavior,
improved driver situational awareness, less attention demand, and
more positive user feedback, compared with uniformly distributed
speech-based warnings across all NDRTs.

CCS CONCEPTS
• Human-centered computing! Empirical studies in HCI.
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1 INTRODUCTION
The rapid development of autonomous driving technologies promises
a future where drivers can take their hands o� the steering wheels,
foot o� the pedals, and instead engage in non-driving related tasks
(NDRTs) such as reading or using mobile devices. While full self-
driving vehicles are not yet commercially available, we are at the
stage that conditionally automated driving (level 3 of autonomy,
de�ned by the Society of Automotive Engineers (SAE) [9]) provides
various forms of driver assistance, advanced monitoring systems,
and control of the longitudinal and lateral vehicle kinematics on a
sustained basis. Although in conditionally automated driving, dri-
vers do not need to continuously monitor the driving environment,
due to current technology limitations and legal restrictions, the
automated system still needs to relinquish the control back and ask
the human driver to resume the control in case of system failures,
anticipated dangerous situation, or exceeding its operational limit
via a so-called take-over request (TOR) [4, 17].

A growing body of research shows that being immersed in
NDRTs for an extended period of time causes the level of situa-
tion awareness to fall below a comfortable point to safely recover
manual control, mainly in urgent situations [33, 40, 57]. Impor-
tantly, the control transition process and taking control back cause
longer recon�guration of cognitive and motoric states for drivers
to react properly [22, 33]. Thus, human factors researchers argue
while most vehicles are not completely self-driving, safety hurdles
arise in automated vehicles. Recent fatal crashes indicate drivers’
failures to promptly and properly respond to a TOR due to the
loss of situation awareness [6]. Hence, a key challenge is how to
maintain driver readiness for a safe takeover while enabling an
enjoyable user experience of engaging in NDRTs. Most existing
works focus on the design of TORs, such as its timing [14, 62] and
modalities [39, 49, 61]. On the one hand, limitations on current ve-
hicle sensing technologies pose constraints on how early hazardous
road incidents can be detected for initiating TORs. The takeover
time-budget between the TOR initiation and the incident occur-
rence is typically 5-7 seconds [63], which may not be long enough
for drivers immersed in NDRTs to regain situational awareness
and resume manual driving in a timely and safe fashion. On the
other hand, current incorporated unimodal or multimodal TORmay
suddenly inform drivers about an upcoming hazard [63], which
may in fact startle and stress the driver and leaving the driver in a
less capable state to execute a life-saving maneuver.

To address the aforementioned limitations, we propose context-
aware advisory warnings (CAWA) for automated driving to gently

and adaptively inform drivers (see Figure 1), helping them stay
vigilant while engaging in NDRTs. Previous studies on advisory
warnings mainly regard manual driving system settings that alert
drivers prior an upcoming hazard [31, 52]. In contrast, we consider
advisory warnings for automated driving system to let drivers know
that they are entering the incipient phase of error creation. Then,
the key contributions of CAWA are two-fold: (1) CAWA adapts
warning modalities according to the NDRT context in which a
driver is immersed, for reducing the likelihood that a warning will
go unnoticed. (2) CAWA provides gentle warnings in contrast with
sudden and startling TORs. For example, if a driver is playing a
game on her mobile phone and is wearing headphones, CAWA
sends a text message warning to the phone to grab the driver’s
attention, while auditory or visual warnings may be missed.

In this study each participant experienced two driving scenar-
ios, CAWA and baseline. In the CAWA trial, advisory warnings
were issued depending on the context of NDRTs (e.g., text message
warning when the driver is playing a game on her mobile phone,
visual warning when the driver is having a conversation) (see Fig-
ure 1). In the baseline, however, auditory warnings were given
uniformly for all NDRTs. We compared CAWA with auditory warn-
ing as these are omnidirectional and have already widely applied
by auto-manufacturers. The user study demonstrated promising
results. Compared with the baseline, CAWA has statistically signi�-
cant e�ects on safer takeover behavior, improved driver situational
awareness, less attention demand for workload, and more positive
driver perceptions.

To the best of our knowledge, this is the �rst study on context-
aware advisory warnings for automated driving. We believe that
our work has the potential to provoke future HCI research on inte-
grating advisory warnings into the design of automated vehicles,
taking a step toward improving the safety and user experience of
automated driving.

2 RELATEDWORK
Takeover performance can be explained by both reaction time and
post takeover control [34, 40]. Despite many factors have been
identi�ed contributing to better reaction time and takeover control
such as tra�c density [19] and driver cognitive state [48, 56] or
emotion [51], the impact of time budget (“lead time”) [15] and TOR
modality [7] have been widely studied by researchers. For example,
studies show that additional second of time budget lead to increase
of reaction time by on average 0.27second [34, 63]. If drivers are
given more time to gain su�cient situation awareness, they could
prepare for the upcoming transition of control. Gold et al. [17] has
shown that shorter takeover times lead to faster responses butworse
maneuvers. On the other hand, a study by Merat et al. [35] suggests
20-40second of time budget for a safe takeover to fully stabilised
the vehicle after reclaiming control. As supplying such time budget
may not be technologically feasible at the moment, researchers are
required to study alternative approaches to enable drivers gaining
enough situation awareness as a function of available time [30].

To improve takeover time and quality, many warning modalities
have been studied such as audio [46], visual [23], vibrotactile [4] and
combination of these warning modalities [3]. Prior studies explored
priming drivers before asking them to resume vehicle control. In the
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study by van der Heiden [55], participants received audio warnings
20 seconds prior to TORs, which caused them to disengage from
the NDRT earlier and look at the road more closely. In another
study [20], participants received visual warnings indicating the
remaining driving time or distance until a TOR would be issued.
Compared with these existing works, our study employed a richer
set of warning modalities including speech-based cues, visual head-
up-displays, text messages, and vibrotactile cues.

Previous research has extensively studied di�erent modalities
for in-vehicle alerts, in particular TORs. One of the most prevalent
modalities is auditory cues, which can be divided into two cate-
gories: nonspeech- and speech-based. Compared with nonspeech-
based auditory tones, speech-based messages o�er more informa-
tion and are more favorable to drivers [59]. Various representations
of visual cues have been designed and utilized, such as a head-
up-display [16], augment reality [28], and LED lights [8]. Studies
also found that vibrotactile and haptic cues can e�ectively alert
drivers [10, 36, 53]. Recent e�orts have been increasingly focusing
on multi-modal alerts where multiple modalities are triggered si-
multaneously [4, 44, 50]. While multi-modal alerts were found to be
more e�ective (e.g., leading to shorter takeover reaction time), they
were perceived as more urgent and annoying [45]. Our study takes
a di�erent approach from these existing works by incorporating
advisory warnings instead of TORs. Moreover, in order to avoid
prevalence alert fatigue, CAWA chooses a proper advisory warning
from multiple modalities according to the context of NDRTs, rather
than triggering all modalities simultaneously.

3 METHOD
In this section, we describe the experimental setup, design and
procedure. The study protocol was approved by the Institutional
Review Board at University of Virginia (#IRB-SBS 4701).

3.1 Participants
We recruited a total of 20 participants (14 males; 6 females) with
the age range of 18-32 years old (mean= 22.65years; SD= 4.01years).
All eligible participants had normal or corrected-to-normal vision,
as well as a valid driver’s license (mean= 2.8 years, SD = 3.1 years).
None of the participants had previous experience with automated
driving or prior knowledge about the user study. We used 19 partic-
ipants’ data for the result analysis, excluding one participant due
to largely missing biometric data.

3.2 Experimental Apparatus
Driving simulator. The study was conducted in a �xed-based driving
simulator from SimXperience (Stage 5 Full Motion Racing simu-
lator, Figure 2). The setup consists of a 55-inch display (1280 ×
720 pixel resolution) placed within a horizontal �eld-of-view and
approximately 63-inch away from the driving seat, a racing car
seat, a Logitech G29 steering wheel, and sport pedals. No gearshift
was required and participants could switch between automated
and manual driving modes by pressing a designated button on
steering wheel (see Figure 2 for details). An Apple iPad Pro with
a 9.7-inch display was mounted on the right side of the driving
seat for watching movies. Tablet was mounted in common height
of the infotainment systems in a landscape format. A 2.0 channel

Figure 2: The driving simulator setup for the user study.

sound bar speaker was placed behind the driver seat for the audi-
tory warnings. The virtual driving environment was created using
CARLA [13], an open-source driving simulation environment built
on top of the Unreal Engine. The vehicle was programmed to sim-
ulate an SAE Level 3 automation, which handled the longitudinal
and lateral vehicle kinematics, and responded to tra�c elements.

Biometrics. In this study, we collected drivers’ psychophysiolog-
ical, vehicle-related metrics, workload, and perceived safety. We
used a Shimmer3+ wearable device to measure the driver’s heart
rate (PPG) and galvanic skin response (GSR) signals with a sam-
pling rate of 256 Hz. Heart rate variability (the time elapsed between
two successive R-waves) from PPG and maximum and mean pha-
sic components were calculated as the objective metrics re�ecting
cognitive load variation and stress, respectively.

Face and activity cameras. We installed one high resolution cam-
era (NexiGo N930E 1080p webcam with ring light) above the steer-
ing wheel to monitor the driver’s eye and head movements. Since
CAWA required real-time detection of gaze behavior, we employed
state-of-the art pupil and iris localization models [42, 60] and mod-
i�ed it to �t our needs by integrating deep pictorial gaze estima-
tion [1, 41]. Thus, we were able to reliably estimate position and
direction of gaze in real-time. Figure 3 shows an example of the
face video examined to capture drivers’ eye movements and gaze
directions. These videos helped to monitor and to identify when a
driver detected a threat or when took her eyes o� the driving scene.
Furthermore, a high resolution camera (Logitech Ultra HD 1080p)
was used to extract participant’s driving and engagement activities.
Finally, we developed multiple APIs to forward all stream of data
to iMotions biometric platform for the real-time aggregation and
synchronization.

3.3 Experimental Design
We used a within-subject design with driver’s cognitive load, and
the modality of advisory warnings as independent variables (see
Section 3.4). The cognitive load was manipulated via the di�culty of
the NDRTs (low: watching movie; mid: reading and having an infor-
mal conversation; high: playing 2048 game) (see Table1). These four
activities were selected as the common activities drivers will most
likely engage with in L3 [29, 38]. Based on prior literature [24, 44],
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Figure 3: Examples of estimated eye region landmarks around the iris and eyelid edges along with gaze direction while per-
forming NDRTs and after a takeover control. a) four main landmarks of eyes and pupil detection, b) gaze direction while
looking at the phone, c) gaze direction while reading a book, d) looking at the road after takeover control resumption.

four takeover events were designed in urban areas with typical
roadway features (see Figure 4). The di�culty of the scenarios was
designed to be approximately the same. Each participant executed
two sessions (CAWA and baseline) and the order of sessions was
counterbalanced across participants. Per session, the participant
experienced 16 possible takeover events (4 TORs per NDRT). In or-
der to avoid predictably and over-trusting of the automated system,
we randomly assigned 4 more TORs in each trial to be false alarms,
where no hazardous incident was actually detected but a TOR was
issued. Although participants interacted with all NDRTs, the given
advisory warnings were di�erent in each session. In the CAWA
session, the modality of advisory warnings adapted to the context
of NDRTs, whereas in baseline, all advisory warnings across di�er-
ent NDRTs use the same auditory modality. In both experimental
sessions, the simulated vehicle was equipped with SAE Level 3 au-
tomation which could issue TORs (350 Hz acoustic tone with 75 ms
duration) to ask the driver to resume the control once it detected
an unfamiliar situation out of its capabilities. In the manual driving
mode, participants could control the vehicle via the steering wheel
and pedals (see details in Sec. 3.5).

Figure 4: Examples of the TOR four takeover situations,
adapted from [24, 44]. a) Fallen trees. b) Working zone. c)
Police set up roadblocks. d) Breakdown cars.

Table 1: CAWAadapts advisorywarningmodalities based on
the context of NDRTs

Non-Driving Related Tasks Warning Modalities
Playing 2048 game on the cellphone Text message
Watching a movie on the tablet Vibrotactile

Reading a book Speech-based
Conversation with the passenger Visual

3.4 Independent Variables
3.4.1 Modalities. Text message. We developed a Python API that
can automatically send a text message containing an advisory warn-
ing of “Please pay ATTENTION!” to the driver’s mobile phone (see
Figure 5(b)). The developed attention warning message was dis-
played at the top of the screen. While drivers are immersed with
playing a game on phone, they may potentially miss the auditory
and visual cues. In such situation, a noti�cation that grabs users’
attention with a quick-to-the-point warning could abruptly direct
their attention to the driving scene.

Vibrotactile.We attached 10 vibrotactile actuators (Tatoko 10mm
⇥ 3mm vibration motor, 3V, 12000rpm) to the driver’s seat as shown
in Figure 5(c), and used an Arduino Uno microcontroller and L9910
motor drivers to drive the vibrotacile actuators. The generated vi-
brotactile feedback pattern involves two 200 ms long vibrations at
maximum amplitude, separated by a 200 ms delay between them.

Speech-based. Previous research has shown that semantics and
emotional tone leads to higher perceived urgency [2, 27, 45]. So, it
is important to consider whether the message is comprehensible
and pleasant for a driver to react upon in a timely manner. We
created a gentle warning message “Please pay attention” with a
female voice and an American accent.

Visual. Head-up-displays are increasingly used for e�ective
visual communication with drivers [12]. We designed the visual
advisory warning as a windshield projected head-up-display shown
in Figure 5(a), which includes a warning sign icon accompanying
the text “Please pay ATTENTION”.

Please note that we implemented a unimodal advisorywarning in
CAWA to be e�ective for each NDRT and to avoid resource sharing
con�icts de�ned by Wickens’ multiple resource theory [58].

78



Enjoy the Ride Consciously with CAWA AutomotiveUI ’22, September 17–20, 2022, Seoul, Republic of Korea

Figure 5: Advisory warning modalities: (a) visual warning from the ego’s vehicle view , (b) text message, (c) vibrotactile.

3.4.2 Non-driving activities. Participants were asked to perform
four NDRTs with three cognitive di�culty levels (i.e. Low: watching
movies; Mid: reading and informal conversation; High: playing a
mentally demanding game) while setting the vehicle in an auto-
mated driving mode. They were also informed that they needed
to take control of the vehicle in case a TOR is issued. Studies have
shown that engaging with a NDRT for more than three minutes
could lead signi�cant decline in situation awareness [11]. Thus, in
this study, each NDRT lasted about 219 seconds (SD=15s) before
the system initiated a TOR. Participants interacted with each NDRT
for about 657 seconds in each block of experiment. Both blocks of
experiment consisted of the following NDRTs:

Watching. We selected two movies in the same Action/Thriller
genre to prevent potential e�ects from one speci�c genre. Partici-
pants were given two Net�ix movies to choose from, "Extraction"
by Sam Hargrave or "Ava" by Tate Taylor.

Reading. "No One Is Too Small to Make a Di�erence" by Greta
Thunberg was selected for the users to read. Participants were also
instructed to read out loud to make sure they are surely reading
the book.

Conversing. The subjects were asked to have a conversation
with the experimenter sitting behind them to simulate conversation
with another passenger regarding everyday topics (e.g., plans for
summer vacation).

Gaming. The participant played a 2048 smartphone game, a
single-player sliding block puzzle game, whose objective is to slide
and combine numbers on a grid with the purpose of achieving a
sum of 2048. This game challenge physical and visual demands for
receiving an emergency alert.

3.5 Procedure
Upon arrival, the participants were briefed about the study. Par-
ticipants then signed an informed consent form and completed a
demographics questionnaire, followed by a 5-minute practice drive
to get familiar with the driving simulator and NDRTs. We �tted the
participant with the Shimmer3+ wearable device and calibrated the
eye-tracker algorithm (which was re-calibrated at the beginning of
each trial). Participants were informed that there was no need to

actively monitor the driving environments or resume the control of
the vehicle unless a TOR was issued. However, they were instructed
to resume the vehicle control as soon as a TOR was issued, then
switch back to the automated driving once the incident had passed
and continue the engagement with a NDRT.

At the beginning of the drive, the participants were asked to
activate the automated mode and perform a NDRT based on the
experimenter’s instructions, followed by three more NDRTs (see
Table 1). Previous research �nds that participants engaging with a
NDRT for more than 180 seconds could lead to a signi�cant decline
in situation awareness [11]. In this study, immersion to a NDRT
lasted 200 seconds on average (SD=15s) before being interrupted by
a TOR, which was programmed to be triggered automatically about
111 meters (⇡5s) before detection of a dangerous incident. The advi-
sory warnings were also triggered 38-45 seconds (M=40.3s, SD=1.6s)
prior TOR to make drivers vigilant of vehicle’s state. Overall, partic-
ipants engaged with each NDRT per trial for 12-15min. The chosen
time window is twice as long as in previous studies [8, 55] in order
to evaluate CAWA’s impact on driver takeover readiness. At the end
of each trial, the questionnaire on workload (DALI) and perceived
safety and urgency were administered.

After the participant completed all of the driving trials, the ex-
perimenter conducted a semi-structured interview to seek the par-
ticipant’s general feedback about the study. The interview guideline
was prepared following a prior study [54]. The entire study took
about 100-130 minutes, and the participant received a $30 gift card
for completing the study.

3.6 Dependent Variables
To investigate the proposed research questions, we used the follow-
ing objective measurements and subjective feedback as dependent
variables.

RQ1 questions driver takeover behavior. We measured the dri-
ver’s reaction time (i.e., the time di�erence between the TOR initia-
tion and the exact moment of the driver pressing the button on the
steering wheel to resume manual control), and the lateral vehicle
control (i.e., deviation from the lane during the takeover).
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RQ2 asks about driver situational awareness. As gaze behavior
shown to be a reliable indicator of situation awareness [5, 26, 47],
we applied the state-of-the-art computer vision techniques [41, 42]
to estimate the gaze behavior of drivers in real-time. We calculated
two metrics: (i) percentage of drivers looking at the road; and (ii)
�xation duration of when a driver’s eyes are on/o� the road.

RQ3 evaluates driver stress and cognitive workload. We used the
biometric data to calculate metrics including heart rate variability
and the number of GSR signal peaks, showing mental workload
and stress respectively.pNN50 was calculated as the number of
two consecutive intervals (called NN) in which the change in con-
secutive normal sinus intervals exceeds 50 milliseconds divided
by the total number of NN intervals measured. Furthermore, we
report the number GSR peaks from the time of advisory warning
receipt to moment of takeover control. We also asked participants
to complete the Driving Activity Load Index (DALI) [43], which
customizes NASA-TLX for the automotive domain.

RQ4 inquires about driver perceptions. We asked participants
to rate their perceived safety, disruptiveness, and the urgency of
advisory warnings on a 5-point Likert-type scale ranging from 1
(strongly disagree) to 5 (strongly agree), which was adapted from
the rating questionnaire used in the prior study by Iqbal et al. [21].
At the end of the study, we interviewed the participants about their
preferences for the di�erent advisory warnings and solicited their
rationales for the order of preference and usefulness.

4 RESULTS
We analyzed the data collected from the user study for the proposed
research questions. We set the statistical signi�cance level as � =
0.05.

4.1 Quantitative Measurements
4.1.1 E�ects on Driver Takeover Behavior (RQ1). We observed in
the study that participants were able to take over the vehicle control
following TORs with a high success rate. Out of the 456 TORs (19
participants ⇥ 2 trials ⇥ 12 true TORs per trial), only 4 takeovers
were failed (e.g., the driver was playing a game on the mobile phone
and failed to take over in a timely manner, causing the vehicle to
collide with an obstacle). We conducted statistical analysis using
the data of 452 successful takeovers to investigate drivers’ takeover
behavior.

Takeover Quality. We plotted the vehicle trajectories in Fig-
ure 7. It shows substantial variation in control strategies and higher
takeover control after receiving CAWA, as opposed to the baseline,
indicating better takeover quality.

A two-way repeated-measures ANOVA also found statistically
signi�cant e�ects on the lateral vehicle control (F (1, 443) = 13.46,
p < 0.01,�2 = 0.15) by comparing CAWA and the baseline. Post-hoc
showed that the visual warning resulted in lower lateral deviation
compared to all other modalities (p < 0.01). This means that the
drivers who were looking at the road while holding a conversation
had better control of the car as opposed to other modalities.

Reaction Time. A two-way repeated-measures analysis of vari-
ance (ANOVA) analysis found a signi�cant main e�ect of type of
NDRTs (F (3, 443) = 2.39, p < 0.05, �2 = 0.049) and type of advisory
warnings (F (1, 443) = 185.53, p < 0.001, �2 = 0.47) on reaction

time, showing CAWA can lead to a faster reaction time than the
baseline. For types of NDRTs, post-hoc analyses with Bonferroni
revealed that there was a signi�cant di�erence between gaming
on the phone an conversation with the experimenter (p < 0.01)
and between gaming and watching a movie on tablet (p < 0.01),
indicating that conversing with passengers and watching movie
leads to quicker reaction time than gaming (see Figure 6 (ii)).

4.1.2 E�ects on Driver Situational Awareness (RQ2). Figure 8 dis-
plays the percentage of drivers looking at the road from the time
they received the advisory warning to 20 seconds after resuming
vehicle control (i.e., the number of drivers looking at the road at a
given time divides the total number of participants). On average,
87.6% of the drivers look at the road from the time of receiving an
advisory warning, to the time of actual takeover of control, showing
an enhancement on driver’s situation awareness. Shortly after the
TOR, more than 95% of drivers shifted their visual attention to the
screen. However, more participants stayed vigilant in baseline after
taking the vehicle control. Furthermore, analyzing the eye-gaze
vector for investigating the �xation time on/o� the road, shows
the standard deviations across the mean of participants. We ran
ANOVA and found signi�cant main e�ect of type of advisory warn-
ings (F (1, 443) = 39.47, p < 0.05, �2 = 0.23) on the �xation time.
Although conversing resulted in higher time �xation on the road,
there was no signi�cant di�erence was observed between the type
of NDRTs.

4.1.3 E�ects on Driver Stress and Cognitive Workload (RQ3). We
investigated the e�ect of CAWA and baseline on stress (i.e. GSR) and
cognitive load(i.e. heart rate variability(HRV)). The results show
no signi�cant e�ect of NDRT type (F (3, 443) = 0.95, p = 0.42,
�2 = 0.007) and type of advisory warnings (F (1, 443) = 2.23,
p = 0.14, �2 = 0.006) on HRV (i.e., pNN50). Besides, the statis-
tical analysis showed that the number of GSR peaks from the time
of receiving advisory warnings to moment of takeover was sig-
ni�cantly impacted by type of NDRT (F (3, 443) = 0.95, p = 0.42,
�2 = 0.007), no signi�cant e�ect of the type of advisory warn-
ings was found (F (1, 443) = 2.23, p = 0.14, �2 = 0.006). Post-hoc
test with Bonferroni on the number of GSR peaks indicated a sta-
tistically signi�cant di�erence between watching a movie with
conversing (p < 0.05) and reading (p < 0.05).

We also analyzed the participants’ subjective ratings on DALI,
which includes six dimensions of workload as shown in Figure 9a.
ANOVA analysis found signi�cant e�ects on attention demand
(F(2,54)= 3.70,p < 0.05,�2 = 0.12). Post-hoc testing with Bonferroni
on attention demand also indicated a signi�cant di�erence between
CAWA and the baseline (p = 0.029), which means that the attention
required by the baseline was much more demanding than CAWA.
However, no statistically signi�cant e�ects were found in other
workload dimensions.

4.1.4 Driver Perceptions (RQ4). Figure 9b shows the survey results
on drivers’ perceived safety, disruptiveness and urgency of advisory
warnings. The results of safety (F (2, 54) = 0.799, p = 0.377, �2 =
0.021), disruptiveness (F (2, 54) = 0.0.498, p = 0.485R, �2 = 0.014)
and urgency (F (2, 54) = 2.866, p = 0.099, �2 = 0.074), did not show
a signi�cant main e�ect on type of advisory warnings. Even though
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Figure 6: Comparisons between the participants’ takeover reaction time in relation to the type of advisory warning and the
imposed modality. **: p < 0.01, ****:p < 0.0001

Figure 7: Lateral trajectories of vehicle after TORs.

more participants rated CAWA to be safer with higher urgency
than the baseline, yet they found it more disruptive.

4.2 Qualitative Measurements
4.2.1 Preferences and Challenges. For the qualitative evaluation,
the details of the interviews for each subject were recorded ver-
batim. We transcribed the audio recordings from the post-session
semi-structured interviews into text and arranged the texts accord-
ing to the condition. Then, based on the participants’ statements on
each condition describing their observation, we compared the simi-
larities and di�erences. Overall, seventeen participants rated the
CAWA as more gentle than baseline warnings. Two participants per-
ceived baseline as more gentle mainly due to the “shocking” of the
Vibrotactile modality. CAWA was referred to as “safer” alternative
by �fteen participants.

They described a feeling of a need for learning why they re-
ceived the warnings in order to adapt to the situation. However,
four participants found CAWA “disruptive”, “too pressuring”, and
“urgent”. Although they stated that only a beep is “not enough” or
there is “not enough information”, they still preferred being less
disturbed and let continuing engagement in NDRTs.

4.2.2 Types of Modalities. Participants were asked to express their
perception about pros and cons of each implemented type of warn-
ing modalities, and their preferences were varied. Participants’
preferences of the most suitable types of warning modality for in-
creasing situation awareness and takeover readiness were ranked
as Text messages (N = 7), speech-based (N = 6) and Vibrotactile (N =
4), Visual (N = 1). Only one participant mentioned that he doesn’t
need any warnings at all. Four participants expressed the main
reasons for preferring the vibrotactile modality over the others was
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Figure 8: Results on the percentage of drivers looking at
the road.TOR: issue of TOR; Takeover: the longest time of
takeover

as “it directly connected to my body and waked me up” and they
preferred feeling the cues rather than being interrupted via visual
or auditory alarms (P15). For example, a participant stated “... I guess
if you are in the car and your have your music up really loud and
watching TV really loud then vibrotactile warnings would be really
helpful”. However, �ve participants did not favor the vibrotactile
modality found it di�cult to know where their attention should be
directed to, for example, P2 stated - “it did not vibrate anywhere I
need to pay attention or I was close to accident. I don’t know in which
condition did it vibrate or what I should do”.

Seven subject found the text messages noti�cation “very useful”,
“creative”, “attention-grabbing” while engaging with the games on
the cellphone. For example, P5 stated - “The game was the hardest.
With the game I was using my hands and my eyes, and then when
the computer says takeover, I need to redirect my eyes to the screen,
and put down the phone and then hit the button, with the book I
can quickly put it down, and then put it back”. However, �ve of
participants who opposing the text messages mentioned two main
reasons. They found it “disruptive” as it could block the other urgent
text noti�cations during everyday life. In addition, it was expressed
by one that the workload that they need to not only pay attention
but also read the text message.

Participants had mixed feelings over the Speech-based modality,
as they perceived it asmost interruptive and “jarring” of the four, yet
e�ective; Six participants valued it as “it stands out from everything
else, and immediately brought me back. Contrarily, over half of
participants perceived the speech-based modality as “robotic”.

Three participants favored the Visual modality, as the most “prac-
tical” type of warning. These participants backed their choice as
it required "less attention" and it was found "less annoying". For
instance, P15 stated that Visuals is "easy to understand compared
to the text messages that I still need to read the words." Three par-
ticipants opposed visual warnings as it potentially “occluded the
vision of the situation” (P1, P5, P7) and could be “distracting” (P7).
For example, P5 commented - “it can blend into the background”.

5 DISCUSSION
This study aimed to investigate the e�ects of context-aware advi-
sory warnings on takeover readiness and performance. In order
to do so, we proposed a novel context-aware advisory warning
system (CAWA). CAWA adapts its warning modalities based on
the context a driver is immersed in. In contrast to pre-alert sys-
tems [55] that startle and stress the driver to take an immediate
action, advisory warnings are non-assertive. Although a large body
of literature has investigated the in�uence of various warnings on
takeover time [15, 30, 44] and quality [14, 57], to the best of our
knowledge, it is the �rst study to employ multiple modalities for
“advising” drivers of automated vehicles to pay attention to the
driving scene and to be more conscious of the automated driving
status, speci�cally via text messages.

5.1 Takeover Behavior
Takeover reaction times and quality were measured and analyzed to
compare di�erences due to perceived CAWA and auditory warning.
In line with previous studies that found auditory warning leads
to signi�cantly higher reaction time [15, 45], we observed signif-
icantly higher reaction times with baseline as opposed to CAWA.
Further, the results showed that conversing yielded the lowest reac-
tion time, but the results may re�ect the fact that the conversation
with the experimenter did not need shifting visual attention. The
most cognitively and visually demanding task, playing 2048 game,
showed higher reaction time. Although the react times were varied,
CAWA helped drivers to resume the control faster. The range of
reaction time obtained in our study slightly di�er from previous
studies [15, 63], showing that participants were somewhat pre-
pared to take the control or anticipated a takeover after receiving
an advisory warning. Despite the research of [18] indicating that
the complexity of NDRTs is not a signi�cant variable for reaction
time, our experiment’s �ndings indicated that takeover time was
signi�cantly impacted by physical and cognitive loads needed for
performing NDRTs.

We also observed that CAWA assisted drivers to departure earlier
and helped less deviation from the center of the lane(see Figure 7).
This �nding of vehicle control after receiving TOR is in line with
our expectations based on previous studies [32, 45] showing non-
auditory warnings provides relatively better control of the vehicle.
Our �ndings also suggest that a safer takeover is a composite of
multiple factors (e.g. type of NDRT and its level of complexity, type
of modalities, etc.) and they may have a greater e�ect on readiness
and takeover.

5.2 Situation Awareness
We observed higher rates of monitoring of the road after receiving
CAWA compared to the baseline. More speci�cally, after the vehicle
approached to advisory warning time, 14% more of driver looked
back at the road and stayed more visually attentive. In general,
our results shows that receiving advisory warnings increases 26%
likelihood of looking at the road as opposed to the results reported
in [55].
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Figure 9: The results of the (a) driving activity load index (DALI) questionnaire along with (b) perceived disruptiveness, safety,
and urgency under two CAWA and Baseline conditions.

5.3 User Experience
Concerning the usability aspect of proposed method, the users per-
ceptions towards advisory warnings’ safety and disturbance were
analyzed along with their subjective workload using DALI survey.
Participants’ ratings of their perceived safety, disruptiveness and
urgency, favored CAWA, but did not di�er signi�cantly between the
two conditions. Post-study interviews revealed that users believed
that CAWA could avoid being missed, but it leads to higher annoy-
ance. Even though we extended the timing of advisory warning
suggested by literature to 200s on average, we acknowledge that a
better experimental design with less frequent interruption could
have increased CAWA’s usability. In addition to driver’s perceptions,
only the signi�cant di�erence in the attention demand subscale of
the DALI supported the hypotheses. Despite slightly better score
in visual and auditory demand of CAWA, participants’ subjective
workload rating did not di�er signi�cantly between the conditions.
It is possible that the similar time budget to takeover between the
two conditions was perceived as alike workload. Another possibil-
ity for the absence of signi�cance in the subscales of DALI could
be due to the within-subject design where we only collected one
data point to compare the conditions.

6 LIMITATIONS AND FUTUREWORK
We applied unimodal advisory warning rather than multimodal
modalities. While multimodal modalities were found to improve
reaction time [44] and quality of takeover [37], prior studies re-
ported them as urgent [25] and annoying [45].We utilized unimodal
modalities (1) to avoid resource sharing con�icts according to Wick-
ens’ multiple resource theory [58], (2)to investigate the impact of
non-assertive advisory warnings on takeover behavior. However,
we acknowledge that a more exhaustive picture would have been
available if we combined multiple modalities to urge drivers to pay
attention to the driving scene.

Another limitation is using a driving simulator. While driving
simulator studies are very common due to advantages in creating
standardized situations for experimental control, they come with
limited external validity. Participants may react di�erently in the
lab than they do naturally while driving in the wild. Despite ran-
domizing the time interval for advisory warnings, participant could
still expect to encounter a TOR.

Despite these limitations, this study takes the �rst steps toward
enabling CAWA for automated driving, which can provoke many
exciting future research directions. In this study warnings were
triggered for a �xed period (about 40 seconds) before TORs in the
study. Future work could leverage recent advances in predicting
driver takeover behavior and readiness [40, 62], and develop agent-
based systems to intelligently decide when and how to trigger
warnings based on driver state predictions.

7 CONCLUSION
In this work, we proposed CAWA, a novel method that provides
gentle advisory warnings to improve driver readiness. Furthermore,
CAWA tends to select appropriate modality according to the context
of NDRTs, seeking the balance between (i) avoiding a warning to
go unnoticed like generic warnings and (ii) frequent interruptions
unless situation awareness falls bellow dangerous level for proper
takeover in the case of emergency. Our user study found encour-
aging results proving the applicability of potentially incorporating
CAWA into the design of automated driving vehicles for safer and
smoother transition of control.
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