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Abstract
An ∞-cosmos is a setting in which to develop the formal category theory of (∞, 1)-
categories. In this paper, we explore a few atypical examples of ∞-cosmoi whose
objects are 2-categories or bicategories rather than (∞, 1)-categories and compare
the formal category theory that is so-encoded with classical 2-category and bicategory
theory.We hope this work will inform future explorations into formal (∞, 2)-category
theory.

Keywords 2-Category · Bicategory · (∞, 1)-Category · (∞, 2)-Category · Formal
category theory · Isofibration

1 Introduction

In [19], Street introduced the notion of an elementary cosmos, axiomatizing the 2-
categorical “universe” in which categories live as objects. Inspired by this work,
Riehl and Verity developed a corresponding notion of an ∞-cosmos, axiomatizing
the (∞, 2)-categorical “universe” in which (∞, 1)-categories live as objects; see [18]
summarizing a previous series of papers. The objects of an ∞-cosmos are called “∞-
categories”—turning the nickname Lurie popularized in his book [13] into a technical
term—and the morphisms between them are called “∞-functors.” Any ∞-cosmos
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has a quotient 2-category, called the homotopy 2-category, whose objects and 1-cells
are the ∞-categories and ∞-functors in the ∞-cosmos and whose 2-cells then define
“∞-natural transformations” between them.

From the axioms of an ∞-cosmos, Riehl and Verity define the notions of equiv-
alences and adjunctions between its objects—that is, equivalences and adjunctions
between ∞-categories—and limits and colimits of diagrams valued inside an object
of an ∞-cosmos—that is, limits and colimits inside ∞-categories—and prove that
these recover the standard definitions from the (∞, 1)-categorical literature. They then
provide new formal proofs of expected categorical theorems: for instance that right
adjoints between ∞-categories preserve limits inside those ∞-categories. The aim
of this program is to provide a “model-independent” foundation of (∞, 1)-category
theory.

The axioms of an ∞-cosmos are deliberately very minimal. Consequently, in addi-
tion to the expected examples—∞-cosmoi whose objects are (∞, 1)-categories in
some model—there are a variety of “exotic” examples of ∞-cosmoi. In particular,
several models of (∞, 2)-categories or even (∞, n)-categories give rise to ∞-cosmoi
[18, §E.3], including Ara’s n-quasi-categories [1], Rezk’s �n-spaces [17], Barwick’s
n-fold complete Segal spaces [2], andVerity’s n-complicial sets [20]. For each of these
models and for each 0 ≤ n < ∞ (including n = ∞ in the final case), there is an
∞-cosmos in which the “∞-categories” are the (∞, n)-categories in that particular
model. This suggests the tantalizing possibility that it might be possible to develop
(∞, 2)-category theory or (∞, n)-category theory “model-independently” by adapt-
ing ∞-cosmological methods.

Of course, all of the theorems proven about arbitrary ∞-cosmoi apply to every
particular example. Thus, for instance, [18, 2.4.2] proves that right adjoints between
2-quasi-categories preserve limits in 2-quasi-categories. What is not clear, however,
is what exactly the ∞-cosmological definitions of adjunctions between ∞-categories
or limits inside ∞-categories compile out to in the 2-quasi-categories model.

This motivates the present paper. In addition to the∞-cosmoi of (∞, 2)-categories
mentioned above, there are—somewhat curiously—various ∞-cosmoi whose “∞-
categories” are 2-categories or bicategories and whose “∞-functors” and “∞-natural
transformations” define some variety of functor and natural transformation between
them. In §2, we develop two particularly fertile examples: the ∞-cosmos 2-Cat of
2-categories, 2-functors, and 2-natural transformations and the ∞-cosmos Icon of
bicategories, normal pseudofunctors, and icons.

In §3, we review the basic formal theory of∞-categories in an∞-cosmos, recalling
the ∞-cosmological definitions of equivalences between ∞-categories, adjunctions
between∞-categories, terminal objects in an∞-category, and limits in an∞-category.
In §4 and 5, we explore each of the∞-cosmoi 2-Cat and Icon in turn and describe the
varieties of formal 2-category theory and bicategory theory they encode. We conclude
in §6 with a proposal for further study.
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2 ∞-Cosmoi of 2-Categories and Bicategories

The informal definition of an ∞-cosmos states that it is an “(∞, 2)-category with
(∞, 2)-categorical limits”—under a particularly strict interpretation of these terms.
The first axiom requires that an ∞-cosmos is a simplicially-enriched category whose
hom-spaces are quasi-categories; since quasi-categories are a model of (∞, 1)-
categories, thismakes an∞-cosmos into an (∞, 2)-category. To define theweak limits
via strict limits, the next axiom equips an ∞-cosmos with a specified class of maps
called “isofibrations,” which are closed under various constructions; see [18, 1.2.1].
The final axiom demands that the ∞-cosmos possesses certain simplicially-enriched
limits: a terminal object, pullbacks of isofibrations, limits of towers of isofibrations, and
simplicial cotensors. It follows that an ∞-cosmos possesses all simplicially-enriched
limits whose weights are “flexible.”1

Any simplicially enriched category has a quotient 2-category with the same objects,
defined by passing to the homotopy category of each hom-space [18, 1.4.1]. In this
way, an ∞-cosmos has as quotient 2-category of “∞-categories,” “∞-functors,” and
“∞-natural transformations” called the homotopy 2-category of the ∞-cosmos. One
of the closure properties of the class of isofibrations in an ∞-cosmos implies that they
also define isofibrations in the homotopy 2-category, where here the term is meant in
a standard 2-categorical sense we now recall:

Definition 2.1 A 1-cell F : A → B in a 2-category defines an isofibration just when
it possesses the lifting property for invertible 2-cells depicted below:

X A X A

B B.

A

B

F

A

L

∃∼=⇓α

F
∼=⇓β = (2.2)

Equivalently, the isofibrations in a 2-category can be characterized as “representably-
defined isofibrations.” A 1-cell F : A → B is an isofibration just when, for any object
X , the induced functor between the hom-categories is an isofibration of categories,
with the right lifting property

1 Hom(X ,A)

I Hom(X ,B)

A

F

β

α ∈ Cat

against the inclusion of either endpoint of the free-living isomorphism I.

By [18, E.1.6], any 2-category with sufficient limits defines an∞-cosmos in which
the hom-spaces are defined by taking nerves of the hom-categories and the isofibrations

1 As noted in [18, 6.2.7], the term “flexible weighted limits” is a bit of a misnomer: they are more precisely
analogous to the PIE-limits [16] in 2-category theory than the flexible ones, since splittings of idempotents
are not required.
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may be taken to be the isofibrations of Definition 2.1. It follows that the homotopy
2-category is isomorphic to the original 2-category.

The only subtlety, discussed in more detail [18, E.1.6], is in unpacking the meaning
of the phrase “sufficient limits.” Morally, a 2-category defines an ∞-cosmos just
when that 2-category admits PIE-limits: products, inserters, and equifiers. However,
this moral condition is not quite sufficient: in addition, the 2-category is required
to admit 2-pullbacks and inverse 2-limits of towers of these maps, not merely the
corresponding bilimits that can be constructed as PIE-limits [16].

Example 2.3 The 2-category Cat of ordinary categories, functors, and natural trans-
formations is an ∞-cosmos in which the isofibrations are the isofibrations between
categories, those functors that have the right lifting property with respect to 1 ↪→ I

[18, 1.2.11].

Remark 2.4 A 2-category might also be made into an ∞-cosmos with a smaller class
of specified isofibrations, provided they satisfy the closure properties of [18, 1.2.1(ii)].
A natural choice for this alternative class would be the normal isofibrations, which
are isofibrations admitting chosen lifts that are natural in X and defined in such a way
that the lifts of identity 2-cells are identities. In Cat, however, all isofibrations are
normal isofibrations, and consequently these two classes frequently coincide.

In all of the ∞-cosmoi we will consider in this paper, the ∞-cosmos class of
isofibrations coincides with the 2-categorical class of isofibrations, a situation we will
summarize by writing that the “isofibrations are the isofibrations.”

2.1 2-Categories, 2-Functors, and 2-Natural Transformations

Our first example might be thought of as an ∞-cosmos for strict 2-category theory:

Proposition 2.5 The2-category2-Catof 2-categories, 2-functors, and2-natural trans-
formations defines an ∞-cosmos in which the isofibrations are the isofibrations.

Note a 2-functor is an isofibration in 2-Cat just when its underlying functor is an
isofibration in Cat.

Proof This 2-category, like any 2-category with limits and colimits, admits a “trivial
model structure” due toLack. In thismodel structure, the fibrations are the isofibrations
and the weak equivalences are the equivalences, as defined internally to the 2-category
of 2-categories [8, 3.3] (see Definitions 2.1 and 3.1). All objects are fibrant and cofi-
brant. Moreover, this model structure is enriched over the “folk” or “canonical” model
structure on categories [8, 2.1]. Thus we can apply [18, E.1.4] using the adjunction

Cat sSet

N

⊥
ho

to obtain an∞-cosmos of 2-categories, in which the isofibrations are the isofibrations.

�
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Remark 2.6 The ∞-cosmos 2-Cat is cartesian closed as an ∞-cosmos. It satisfies
the additional axiom of [18, 1.2.23], which in this context amounts to the following
observations:

(i) The 2-category BA of 2-functors, 2-natural transformations, and modifications
defines a right 2-adjoint to the cartesian product.

(ii) Exponentiation preserves isofibrations.

2.2 Bicategories, Normal Pseudofunctors, and Icons

The strict 2-functors are just one variety of homomorphisms between 2-categories or
bicategories. Arguably more natural are the pseudofunctors, which preserve composi-
tion and identities up to coherent isomorphism, or the normal pseudofunctors, which
preserve identities strictly and composition up to coherent isomorphism. Lack proves
that either class of functors defines the 1-cells of a 2-category whose 2-cells are the
icons, the identity-component oplax natural transformations [11, 3.1].

Definition 2.7 For normal pseudofunctors F,G : A → B satisfying Fx = Gx for all
objects x ∈ A, an icon α : F ⇒ G is given by the data of a natural transformation

A(x, y) B(Fx, Fy)

F

G

⇓αx,y

for all x, y ∈ A satisfying two axioms:

(i) The component of αx,x at idx ∈ A(x, x) is the identity 2-cell on F(idx ) = idFx =
idGx = G(idx ).

(ii) For all x, y, z ∈ A,

A(y, z) × A(x, y) A(x, z) A(y, z) × A(x, y) A(x, z)

B(Fy, Fz) × B(Fx, Fy) B(Fx, Fz) B(Fy, Fz) × B(Fx, Fy) B(Fx, Fz)

◦

F×F G×G ∼=⇒αy,z×αx,y⇒ G = F×F

◦

∼=⇒ F Gαx,z⇒

◦ ◦

where the unlabelled isomorphisms are the coherences of the normal pseudofunc-
tors F and G.

There are two independent choices we might make in defining a 2-category with
PIE-limits whose 2-cells are icons. We can take the objects to be the 2-categories or
the bicategories, and we can take the 1-cells to be the pseudofunctors or the normal
pseudofunctors. In fact, all four possibilities are biequivalent [12]. However, while we
can prove that either 2-category of bicategories defines an∞-cosmos, the 2-categories
of 2-categories appear not to, as discussed in Remark 2.9.

Proposition 2.8 The 2-category Icon of bicategories, normal pseudofunctors, and
icons defines an ∞-cosmos, in which the isofibrations are the isofibrations.
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Note a normal pseudofunctor is an isofibration in Icon just when all of the induced
functors between hom-categories are isofibrations in Cat. Since all isofibrations in
Cat are normal isofibrations, the same is true in Icon, a fact that we will make use of
in the proof.

Proof The 2-category of bicategories, normal pseudofunctors, and icons is the 2-
category of strict algebras, pseudo morphisms, and algebra 2-cells for a flexible 2-
monad [14] on the 2-category of reflexive Cat-graphs [3, §3.3]. As such it admits
all flexible limits. By [4, A.1], this 2-category then also admits 2-pullbacks of normal
isofibrations, and by a similar argument, limits of towers of normal isofibrations. Since
the isofibrations and the normal isofibrations coincide, this is the closure property we
desire. Thus, Icon defines an∞-cosmos inwhich the isofibrations are the isofibrations.


�
The 2-category of bicategories, pseudofunctors, and icons also defines an ∞-cos-

mos for a similar reason; in this case the flexible 2-monad is on the category of
Cat-graphs. We prefer to work with normal pseudofunctors as their data is easier to
enumerate. For instance, a normal pseudofunctor b : 1 → B is just given by the data
of an object b ∈ B, while a pseudofunctor b : 1 → B is given by an object b ∈ B, an
endoequivalence i : b → b, and an invertible 2-cell β : idb ∼= i satisfying a coherence
condition.

Remark 2.9 The full subcategory of 2-categories, normal pseudofunctors, and icons is
nearly an∞-cosmos. One can directly verify that this 2-category has PIE-limits inher-
ited from Icon. However, the 2-pullback of a normal isofibration is a bicategory, rather
than a 2-category—unless that normal isofibration happens to be discrete, meaning
that each invertible 2-cell has a unique lift. The fact that the 2-category of 2-categories,
normal pseudofunctors, and icons admits 2-pullbacks of discrete isofibrations suggests
an alternate potential ∞-cosmos structure where the isofibrations are taken to be the
discrete isofibrations. Alas, when a 2-category C admits non-identity invertible 2-cells,
the unique functor C → 1 is not a discrete isofibration. So this class violates one of
the closure axioms required of an ∞-cosmos in [18, 1.2.1(ii)].

2.3 Non-examples

Many examples of∞-cosmoi arise as full subcategories of fibrant objects in a suitably-
enriched model category with all objects cofibrant in which case the isofibrations
taken to be the fibrations between fibrant objects. This was the strategy employed in
the proof of Proposition 2.5. Such ∞-cosmoi are well-behaved in the sense that the
equivalences between ∞-categories, as captured by Definition 3.1, are precisely the
weak equivalences in the model structure [18, 1.2.13, 1.4.7]. This suggests that we
might productively consider model categories of 2-categories or bicategories.

In [9, 10], Lack describes a pair of Quillen equivalent model structures on the
categories of 2-categories and 2-functors and bicategories and strict functors, respec-
tively. These are attractive settings within which to consider the homotopy theory of
2-categories or bicategories. In each case, all objects are fibrant, and the weak equiv-
alences are the biequivalences that respectively define 2-functors or pseudofunctors.
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Unfortunately, in order to extract an interesting ∞-cosmos structure from either of
these model categories we must find a compatible enrichment. By [9, §7], the model
structure for 2-categories is not cartesian monoidal, though it does define a monoidal
model category with respect to the Gray tensor product. We are not aware of a strong
monoidal Quillen adjunction relating this monoidal model category to the Joyal model
structure on simplicial sets, and thus are unable to convert this into the required quasi-
categorical enrichment by applying [18, E.1.3]. The model structure for bicategories
fails to be cartesian monoidal for similar reasons.

3 Formal Category Theory in an∞-Cosmos

For the reader’s convenience, we recall the following definitions from [18, Chapter
2], which develop the basic formal category theory of “∞-categories,” the objects in
an ∞-cosmos. The context for the following definitions is the homotopy 2-category
of∞-categories,∞-functors, and∞-natural transformations. Here it suffices to work
in any 2-category that has a 2-terminal object 1 and is either cartesian closed or is
cotensored over 1-categories.2 A useful exercise for the reader is to verify that each
of the definitions appearing below specializes to the standard categorical notions in
the case of Example 2.3, where the ∞-cosmos is the 2-category Cat, of ordinary
categories, functors, and natural transformations.

Equivalences and adjunctions between∞-categories are defined using the standard
2-categorical definitions.

Definition 3.1 An equivalence is comprised of:

• a pair of ∞-categories A and B,
• a pair of ∞-functors F : B → A and G : A → B,
• and a pair of invertible ∞-natural transformations β : idB ∼= GF and α : idA ∼=

FG.

Definition 3.2 An adjunction is comprised of:

• a pair of ∞-categories A and B,
• a pair of ∞-functors U : A → B and F : B → A,
• and a pair of∞-natural transformations η : idB ⇒ UF and ε : FU ⇒ idA, called
the unit and counit respectively,

so that the triangle equalities hold:

B B B B B B

A A A A A A.

⇓ε F ⇓η = = ,
F

⇓η ⇓ε
F = = FF

U
U

U U
U

Using the 2-terminal object 1, Definition 3.2 specializes to give notions of an initial
object or a terminal object inside an ∞-category A.

2 In the examples we consider, these cotensors are defined strictly, though a weaker notion of cotensor
would also suffice; see [18, §3.2].
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Definition 3.3 An initial object in A is given by an adjunction as below-left, while a
terminal object in A is given by an adjunction as below-right:

1 A 1 A.

i

⊥
!

,

t

⊥
!

More general limits are defined using the notion of an absolute right lifting dia-
gram, which we now recall. Colimits are defined co-dually using absolute left lifting
diagrams.

Definition 3.4 In a 2-category, an absolute right lifting of a 1-cellG : C → A through
a 1-cell F : B → A is given by a 1-cell R : C → B and a 2-cell

B

C A
⇓ρ

F

G

R

so that any 2-cell as below-left factors uniquely as below-right:

X B X B

C A C A.

⇓χ

B

C F = ∃!⇓ζ

⇓ρ

B

C G

G

R

G

(3.5)

The adjective “absolute” refers to the following stability property, whose proof is
left to the reader:

Lemma 3.6 If

B

C A
⇓ρ

F

G

R

is an absolute right lifting of G through F, then for any C : X → C, (RC, ρC) is an
absolute right lifting of GC through F. 
�

For example, by a pasting diagram chase, which is left to the reader:

Lemma 3.7 A 2-cell ε : FU ⇒ idA defines an absolute right lifting

B

A A
⇓ε

F
U

if and only if it defines the counit of an adjunction F � U. 
�
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For an ∞-category A in an ∞-cosmos and an ordinary category J , the simplicial
cotensor with the nerve of J defines the ∞-category AJ of J -shaped diagrams in
A. In a cartesian closed ∞-cosmos, the exponentials AJ also define an ∞-category
of diagrams, where in this case J is another ∞-category. In either context, restriction
along the unique map ! : J → 1 defines a constant diagram functor � : A → AJ
and we say that A admits all limits of shape J just when this functor admits a right
adjoint:

AJ A.

lim

⊥
�

(3.8)

The counit ε of such an adjunction defines the data of a limit cone, which restricts to
define an absolute right lifting of an individual diagram D : 1 → AJ

A

1 AJ AJ .

⇓ε
�

D

lim

This motivates the following definition.

Definition 3.9 A limit of aJ -shaped diagram D : 1 → AJ is an absolute right lifting
of d through the constant diagram functor � : A → AJ .

A

1 AJ .

⇓λ
�

D




Here 
 ∈ A defines the limit object, while λ : �
 ⇒ D is the limit cone.

It follows from a straightforward pasting diagram chase that right adjoints between
∞-categories preserve limits in ∞-categories [18, 2.4.2].

4 The Formal Theory of 2-Categories, 2-Functors, and 2-Natural
Transformations

Recall from §2, that 2-Cat defines an∞-cosmos whose homotopy 2-category is itself.
When interpreted in the 2-category 2-Cat, Definitions 3.1 and 3.2 spell out familiar
notions of equivalences and adjunctions between 2-categories.

Proposition 4.1 The following are equivalent and define what it means for a 2-functor
F : B → A between 2-categories to be a 2-equivalence:

(i) F : B → A is an equivalence in 2-Cat.
(ii) F : B → A satisfies the following pair of properties:

(a) F is surjective on objects up to equivalence, and
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(b) the induced functor F : B(x, y) → A(Fx, Fy) is an isomorphism of cate-
gories for all x, y ∈ B. 
�

Proposition 4.2 The following are equivalent and define a 2-adjunction:

(i) A pair of 2-functors F : B → A and U : A → B between 2-categories form an
adjunction F � U in 2-Cat with unit η and counit ε.

(ii) The 2-natural transformations defined by composition with η and ε

A(Fb, a) B(b,Ua)

U (−)·η

∼=
ε·F(−)

define inverse isomorphisms of hom-categories for all a ∈ A and b ∈ B.
We seek analogous characterizations of the terminal objects, absolute right lifting

diagrams, and limits in 2-Cat.

4.1 Terminal Objects

We next observe that the terminal objects in the sense of Definition 3.3 specialize in
2-Cat to the standard categorically-enriched notion of terminal objects.

Proposition 4.3 The following are equivalent and definewhat itmeans for a 2-category
A to admit a 2-terminal object t:

(i) The unique 2-functor ! : A → 1 admits a right adjoint t : 1 → A in 2-Cat.
(ii) For each a ∈ A, there is a unique 1-cell a → t admitting only identity endomor-

phisms.

Proof By Proposition 4.2 the adjunctions in 2-Cat are exactly the 2-adjunctions. There
is a 2-adjunction ! � t if and only if there is an object t ∈ A equipped with a 2-natural
isomorphism of hom-categories

1 ∼= A(a, t)

for all a ∈ A. Thus we see that terminal objects are precisely the 2-terminal objects
from 2-category theory. 
�

4.2 Absolute Right Lifting Diagrams

By Lemma 3.7 applied in the 2-category 2-Cat, a 2-natural transformation ε : FU ⇒
idA defines the counit of an adjunction F � U in 2-Cat if and only if (U , ε) defines
an absolute right lifting of idA through F . In Proposition 4.2, we saw that adjunctions
in 2-Cat are 2-adjunctions, satisfying an enriched version of the classical hom-set
isomorphism. In this section, we will introduce a corresponding notion of enriched
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absolute lifting diagram in 2-Cat, which is is expressible because 2-Cat underlies
a strict 3-category whose 3-cells are the modifications. In Lemma 4.6, we shall see
that the absolute right lifting diagram encoded by the counit of a 2-adjunction defines
an enriched absolute right lifting diagram. However, as Example 4.8 shows, not all
absolute right lifting diagrams in 2-Cat are enriched absolute right lifting diagrams,
unlike the case for adjuntions.

Definition 4.4 For 2-categories A, B, and C; 2-functors F : B → A, G : C → A, and
R : C → B; and a 2-natural transformation ρ : FR ⇒ G as below

B

C A
⇓ρ

F

G

R

we say that (R, ρ) defines an enriched absolute right lifting diagram if for all
2-categories X and 2-functors B : X → B and C : X → C the mapping

BX (B, RC) AX (FB,GC)∼=
ρ·F(−)

defines an isomorphism of categories.
This means that

(i) there is a bijection between 2-natural transformations ζ : B ⇒ RC and χ : FB ⇒
GC implemented by pasting with ρ as in (3.5), and

(ii) the above bijection extends to a bijection between modifications � : ζ � ζ ′ and
� : χ � χ ′.

Lemma 3.6 extends to the enriched setting:

Lemma 4.5 If

B

C A
⇓ρ

F

G

R

is an enrighted absolute right lifting of G through F, then for any C : X → C,
(RC, ρC) is an enriched absolute right lifting of GC through F. 
�

The bijection on objects in Definition 4.4 captures precisely the universal property
of absolute right lifting diagrams in 2-Cat, so enriched absolute right liftings are in
particular absolute right liftings in 2-Cat. In the present context, Lemma 3.7 extends
as follows:

Lemma 4.6 A 2-cell ε : FU ⇒ idA defines the counit of a 2-adjunction if and only if
the pair (U , ε) defines an enriched absolute right lifting diagram.
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Proof For any 2-category X , the 2-functor (−)X : 2-Cat → 2-Cat preserves adjunc-
tions, carrying a 2-adjunction F � U to the 2-adjunction whose corresponding
2-functors are defined by post-composition and post-whiskering:

BX AX .⊥
F∗

U∗

The counit ε∗ : F∗U∗ ⇒ idAX of this 2-adjunction is similarly defined by post-
composition. For each 2-functor A : X → A, the component of ε∗ at A is εA.

By Proposition 4.2, this second 2-adjunction induces an isomorphism of categories

BX (B,U A) AX (FB, A)∼=
ε·F(−)

(4.7)

for any 2-functors A : X → A and B : X → B. This isomorphism expresses the
universal property of the enriched absolute right lifting diagram (U , ε).

Conversely, if (U , ε) defines an enriched absolute right lifting, then the 2-natural
map ε · F(−) : BX (B,U A) → AX (FB, A) defines an isomorphism of categories for
A ∈ AX and B ∈ BX . When X = 1, this property asserts that F is left 2-adjoint to
U . The unit of the 2-adjunction F � U may be recovered by taking X = B, B = idB,
and A = F , as the preimage of idF . 
�

However, a 2-natural transformation may define an absolute right lifting diagram
without also defining an enriched absolute right lifting diagram:

Example 4.8 For any 2-category A and a ∈ A, the identity 2-cell

A0,1

1 A
⇓ida Ia

a

defines an absolute right lifting of a : 1 → A through the inclusion of the full sub
1-category I : A0,1 ↪→ A that contains all of the objects and 1-cells but only identity
2-cells. However, if A contains a non-identity 2-cell

x a
f

g

⇓α

with codomain a, then α defines an arrow in the hom-categoryA(I x, a) that does not
lift to A0,1(x, a). Thus this absolute right lifting diagram in 2-Cat is not an enriched
absolute right lifting diagram.

123



752 La Matematica (2022) 1:740–764

4.3 Limits

Since 2-Cat is cartesian closed, a 2-functor D : J → A defines a map D : 1 → AJ .
Inspired by the results of the previous sections, our aim in this section is to compare
the universal property expressed by an absolute right lifting diagram

A

1 AJ
⇓λ

�

D




in 2-Cat with the notion of a 2-limit.

Definition 4.9 A pair (
, λ) defines a 2-limit of the diagram D : J → A just when
the 2-natural transformation

λ · �(−) : A(a, 
) → AJ (�a, D)

defines an isomorphism of hom-categories for every a ∈ A.

Example 4.10 If A admits all J -shaped limits, in the ∞-cosmological sense of the
adjunction � � lim of (3.8), then by Proposition 4.2 this is a 2-adjunction, providing
an isomorphism of hom-categories

AJ (�a, D) A(a, lim D)

lim(−)·η

∼=
ε·�(−)

In particular, for any D ∈ AJ the component (lim D, εD) defines a 2-limit with the
2-natural isomorphism of Definition 4.9 given by adjoint transposition. Thus, whenA
admits all J -shaped limits in the ∞-cosmological sense, these limits are 2-limits.

In the presence of a 2-adjunction � � lim, Lemma 4.6 applies, so the counit of the
2-adjunction � � lim defines an enriched absolute right lifting diagram. By Lemma
4.5, the counit component (lim D, εD) is also an enriched absolute right lifting diagram
and thus in particular satisfies the ∞-cosmological criterion of 3.9.

In fact, the general notion of 2-limit is precisely captured by enriched absolute right
lifting diagrams.

Proposition 4.11 A 2-natural transformation λ : �
 ⇒ D defines a 2-limit if and only
if (
, λ) defines an enriched absolute right lifting of D through �.

Proof When X = 1, the universal property of an enriched absolute right lifting (
, λ)

specializes to the universal property of a 2-limit λ : �
 ⇒ D. It remains to show that
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the universal property of a 2-limit defines an enriched absolute right lifting. To that
end, we first establish a bijection between 2-cells of the form

X A X A

1 AJ 1 AJ .

⇓χ

A

! � =
∃!⇓ζ

⇓λ

A

! �

D




D

Given a 2-natural transformation χ : �A ⇒ D! and x ∈ X we define a 1-cell
ζx : Ax → 
 in A to be the unique 1-cell corresponding to χx : �Ax → D under the
isomorphism

A(Ax, 
) AJ (�Ax, D).∼=
λ·�(−)

(4.12)

Since χ and the isomorphism (4.12) are 2-natural, these components ζx assemble into
a 2-natural transformation ζ : A ⇒ 
!. Since a 2-natural transformation is determined
by its components, ζ is clearly the unique factorization of χ through λ.

We now use the fact that 4.12) is a 2-natural isomorphism of categories, rather than
a natural isomorphism of sets, to extend this bijective correspondence to modifications
� : ζ � ζ ′ and� : χ � χ ′ where χ = λ! ·�ζ and χ ′ = λ! ·�ζ ′. The component of a
modification � : χ � χ ′ at x ∈ X is given by a 2-cell �x : χx ⇒ χ ′

x inAJ , defining
an arrow in the right-hand hom-category of (4.12). Thus we define�x : ζx ⇒ ζ ′

x to be
the corresponding arrow in the left-hand hom-category. The final task is to show that
these 2-cells assemble into a modification � : ζ � ζ ′, which is again a consequence
of the 2-naturality of (4.12) in x ∈ X and the fact that � defines a modification. 
�

However, if (
, λ) defines a mere absolute right lifting diagram in 2-Cat rather than
an enriched absolute right lifting diagram, this data defines an unenriched limit but
not necessarily an enriched limit, as we now illustrate.

Example 4.13 Consider the 2-category A depicted below:

a p b






⇓α

r

r

⇓β

with three objects and two non-identity arrows, each of which admits a non-identity
endomorphism. The object p defines the product of a and b but this product is not a
2-product, since the 1-cell idp does not admit any endomorphisms.

We claim, however, that

A

1 A × A
⇓(
,r)

�

(a,b)

p

123



754 La Matematica (2022) 1:740–764

is an absolute right lifting diagram in 2-Cat. To see this, first observe that there is a
unique functor A : X → A admitting a 2-natural transformation

X A

1 A × A.

A

! ⇓χ �

(a,b)

The component of χ at x ∈ X is given by a pair of 1-cells in A from Ax to a and to
b, and such 1-cells only exist if Ax = p. Since p admits no endomorphic 1-cells or
2-cells, this tells us that the 2-functor A is necessarily constant at p, in which case the
only 2-natural transformation χ is constant at the pair of 1-cells (
, r). So the universal
property of the absolute right lifting diagram need only be checked in a single case,
for which we have the unique factorization:

X A X A

1 A × A 1 A × A.

⇓(
,r)

p!

! � =
∃!⇓id

⇓(
,r)

p!

! �

(a,b)

p

(a,b)

This example suggests that the ∞-cosmos 2-Cat is insufficiently enriched to dis-
tinguish between 1-categorical and 2-categorical limits in those 2-categories that have
unenriched limits of certain diagram shapes that fail to satisfy the 2-categorical uni-
versal property of Definition 4.9.

Remark 4.14 A second proof that Definition 3.9 does not specialize to the notion of 2-
limit in 2-Cat can be found by appealing to results in the literature. In any ∞-cosmos,
[18, 4.3.2] proves that a limit (
, λ) of a diagram D : 1 → AJ may be characterized
as a terminal object in the ∞-category HomAJ (�, D) defined by the pullback

HomAJ (�, D) (AJ )2

1 × A AJ × AJ .

�
(cod,dom)

D×�

In the ∞-cosmos 2-Cat, this is the “strict slice 2-category” considered by clingman
and Moser [6, 2.7]. While they show that any 2-limit defines a 2-terminal object in the
2-category HomAJ (�, D), they prove that 2-terminal objects need not necessarily
define 2-limits [6, 2.11–12] by providing a counterexample that, like our Example
4.13, is a 1-limit but not a 2-limit. Further counterexamples [6, 3.9–10] show that
2-terminal objects in pseudo- or lax-versions of the slice construction, using the Gray
tensor product in place of the cartesian product, may also fail to define 2-limits.

Grandis and Paré show that a 2-limit of a 2-functor can be characterized as a double
terminal object in a suitable double category of cones [7]. It would be interesting to
explore whether this result could be expressed in an ∞-cosmos-like setting.
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5 The Formal Theory of Bicategories, Normal Pseudofunctors, and
Icons

We now turn our attention to the∞-cosmos Icon of bicategories, normal pseudofunc-
tors, and icons, whose homotopy 2-category again is Icon itself. The equivalences in
the sense of Definition 3.1 are characterized by an observation of Lack [11, 4.3].

Proposition 5.1 For a normal pseudofunctor F : B → A between bicategories, the
following are equivalent:

(i) F : B → A is an equivalence in Icon.
(ii) F : B → A satisfies the following pair of properties:

(a) F is bijective on objects, and
(b) the induced functor F : B(x, y) → A(Fx, Fy) is an equivalence of categories

for all x, y ∈ B. 
�
In this section, we seek analogous characterizations of the adjunctions, terminal

objects, and limits in this 2-category.

5.1 Adjunctions

Suppose F : B → A is left adjoint to U : A → B in Icon. Then by the presence
of the unit and counit icons η : idB ⇒ UF and ε : FU ⇒ idA, the maps F and
U must necessarily define an inverse isomorphism between obA and obB. Now the
hom-category actions of F and U define functors

B(b,Ua) A(Fb, a)

F

U

for each b ∈ B and a ∈ A, giving rise to the following characterization of adjunctions
in Icon.

Proposition 5.2 The following are equivalent:

(i) An adjunction F : B → A and U : A → B in Icon with F � U.
(ii) An inverse isomorphism F : obB ∼= obA, U : obA ∼= obB together with a local

adjunction

B(b,Ua) A(Fb, a)

F

⊥
U

for all a ∈ A and b ∈ B.
We prove this result as a special case of a more general result appearing in Propo-

sition 5.4; see Observation 5.7.
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5.2 Terminal Objects

We now interpret Definition 3.3 in Icon.

Proposition 5.3 A bicategory A admits a terminal object t : 1 → A defining a right
adjoint to the unique normal pseudofunctor ! : A → 1 if and only if:

(i) The bicategory A has a single object t .
(ii) The identity 1-cell idt ∈ A(t, t) is terminal in the unique hom-category of A.

Recall a 1-object bicategory is equally a monoidal category. Proposition 5.3 says
that a monoidal category, regarded as a 1-object bicategory, admits a terminal object
in Icon if and only if it is semi-cartesian, meaning its monoidal unit is a terminal
object.

Proof Unpacking Definition 3.3, a terminal object in a bicategory A in Icon is given
by an adjunction

A 1
!
⊥
t

involving the terminal 2-category 1. By Proposition 5.2, this tells us in particular that
A must be a 1-object bicategory, so t : 1 → A is the unique object in A.

The remaining data defines a local adjunction

A(t, t) 1(∗, ∗)

!

⊥
t

involving the unique hom-category ofA and the terminal category 1(∗, ∗) ∼= 1. Since
t : 1 → A is a normal pseudofunctor, the local right adjoint t : 1 → A(t, t) picks out
the identity 1-cell on t . The adjointness tells us that the 1-cell idt ∈ A(t, t) is terminal,
i.e., for all f : t → t there exists a unique 2-cell η f : f ⇒ idt in A. 
�

5.3 Absolute Right Lifting Diagrams

We now consider an absolute right lifting diagram in Icon:

B

C A.

⇓ρ
F

G

R

Proposition 5.4 The following are equivalent:
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(i) The pair (R, ρ) defines absolute right lifting of G : C → A through F : B → A
in Icon.

(ii) The normal pseudofunctors R, G, and F give rise to a pullback diagram of object
functions

obC obB

obC obA

R

�
F

G

and for all x, y ∈ C, the induced diagram of hom-categories

B(Rx, Ry)

C(x, y) A(Gx,Gy) = A(FRx, FRy)
⇓ρx,y F

G

R (5.5)

is an absolute right lifting diagram in Cat.

Our proof of Proposition 5.4 makes use of the following lemma.

Lemma 5.6 There is a 2-adjunction

1+1/
Icon Cat

Hom

⊥
�

between the 2-category of bicategories with a chosen pair of objects, basepoint-
preserving normal pseudofunctors, and icons and the 2-category of categories whose
right adjoint carries a bipointed bicategory (C, x, y) to the hom-category C(x, y).

Proof The left 2-adjoint is the fully faithful 2-functor that carries a category J to the
2-category with two objects 0 and 1 and whose hom-categories are given by

�J (0, 1):=J , �J (0, 0):=�J (1, 1):=1, and �J (1, 0):=∅.

The component of the counit at (C, x, y) is given by the canonical normal pseudo-
functor �C(x, y) → C. We leave the verification of the 2-adjointness of this
construction to the reader. 
�
Proof of Proposition 5.4 First assume that (R, ρ) defines an absolute right lifting of G
through F , which implies in particular that the 2-functors FR and G agree on objects.

Observe that there exists an icon 1 A
x

y

⇓α if and only if x = y as objects of

A, in which case there is a unique icon from x to y (the identity icon). The universal
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property of absolute right lifting diagrams specializes to give a bijection between icons
as below-left and as below-right

1 B 1 B

C A C
⇓χ

b

c F �
⇓ζ

b

c

G

R

implemented by pasting with ρ. The former stand in bijection with pairs of objects
(b, c) so that Fb = Gc, while the latter stand in bijection with objects of C. Thus we
see that if (R, ρ) is absolute right lifting, then the square

obC obB

obC obA

R

�
F

G

is a pullback.
Now let x, y ∈ C. Since the forgetful 2-functor 1+1/

Icon → Icon is locally fully
faithful, the absolute right lifting diagram (R, ρ) lifts to define an absolute right lifting
diagram in 1+1/

Icon starting from the object (C, x, y). Right 2-adjoints preserve
absolute right lifting diagrams, so it follows that (5.5) defines an absolute right lifting
diagram in Cat as claimed.

For the converse, consider an icon

X B

C A.

B

C ⇓χ F

G

The presence of the icon χ demands that FB and GC agree on objects. It follows
from the pullback given in (ii) that B and RC agree on objects as well, which means
it is possible to define an icon between these functors.

We use the remaining condition of (ii) to specify the data of such an icon. For any
x, y ∈ X , the given absolute right lifting in Cat factors the component of the icon χ

at x, y as follows:

X (x, y) B(Bx, By)

C(Cx,Cy) A(FBx, FBy)

B

C ⇓χx,y F

G

=
X (x, y) B(Bx, By)

C(Cx,Cy) A(FBx, FBy).

B

C
∃!⇓ζx,y

⇓ρCx,Cy
F

G

R

We claim that this defines the component at x, y ∈ X of an icon ζ in the sense of
Definition 2.7. Since icons are determined entirely by their components, it will follow
immediately that χ = ρC · Fζ and that this is the unique such factorization, proving
that (R, ρ) is absolute right lifting in Icon.
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To see that the components ζx,y assemble into an icon observe first that since χ and
ρ are icons, for each x ∈ X their components at identity 1-cells define identity natural
transformations in Cat. The defining factorization property tells us that ζx,x also has
its component at 1x given by the identity natural transformation. This verifies the unit
property.

The final icon condition requires us to verify that the top pasted composite equals
the bottom one

X (y, z) × X (x, y) B(By, Bz) × B(Bx, By)

X (x, z) B(Bx, Bz)

C(Cy,Cz) × C(Cx,Cy)

C(Cx,Cz) =

◦
C×C

B×B

◦
B

C

∼=

∼=

◦

⇓ζx,z

R

X (y, z) × X (x, y) B(By, Bz) × B(Bx, By)

B(Bx, Bz)

C(Cy,Cz) × C(Cx,Cy)

C(Cx,Cz)

C×C

B×B

◦⇓ζy,z×ζx,y

R×R

◦

∼=
R

for any x, y, z ∈ X , where the unlabelled isomorphisms are the coherences of the
normal pseudofunctors B, C , and R. By the universal property of the absolute right
lifting diagrams in Cat it suffices to verify this equality after pasting with ρCx,Cz . At
this point, the required pasting equality reduces to the corresponding icon condition
for χ . 
�

Observation 5.7 Proposition 5.2 can be deduced as a special case of Lemma 5.4 via
Lemma 3.7. An icon ε : FU ⇒ idA defines the counit of an adjunction if and only if
it defines an absolute right lifting, which we have just shown is the case if and only if

obA obB

obA obA

U

�
F
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is a pullback and for all z, a ∈ A,

B(Uz,Ua)

A(z, a) A(z, a)

⇓ε F
U

is an absolute right lifting diagram of categories. The former property holds if and
only if F : obB → obA and U : obA → obB define an inverse isomorphism. In
particular, we may replace z ∈ A by the unique b ∈ B so that Fb = z. By Lemma 3.7
again,

B(b,Ua)

A(Fb, a) A(Fb, a)

⇓ε F
U

defines an absolute right lifting if and only if ε is the counit of an adjunction

B(b,Ua) A(Fb, a).

F

⊥
U

5.4 Limits

While the 1-category of bicategories and normal pseudofunctors is cartesian closed,
the 2-category of bicategories, normal pseudofunctors, and icons is not cartesian
closed as a 2-category. A parallel pair of normal pseudofunctors F,G : A → B may
admit a (non-identity) icon between them, but the transposed normal pseudofunctors
F,G : 1 → BA only admit an icon between them when F = G, in which case the
only icon is the identity.

However, since the 2-category Icon has PIE-limits, it necessarily also has cotensors
by any 1-category [15, 4.4]. The cotensor of a bicategory A with a 1-category J is
the bicategory AJ characterized by the natural isomorphism of categories

Icon(X ,AJ ) ∼= Icon(X ,A)J .

By substituting the free 0-cell 1, free 1-cell C1, and free 2-cell C2 for X , we can
describe the bicategory AJ .

Observation 5.8 For a 1-category J and bicategory A:

• Objects in AJ correspond to functors J → Icon(1,A). Since the hom-category
Icon(1,A) is isomorphic to the discrete category on the set of objects of A, the
objects in AJ can also be understood as functions π0J → obA from the set of
path components of J to the set of objects of A.
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• 1-cells in AJ correspond to functors J → Icon(C1,A). These in turn can be
understood via the isomorphism

Icon(C1,A) ∼=
∐

x,y∈A
A(x, y).

The source and target of a 1-cell φ : S → T in AJ are, of course, objects in AJ ,
these being given by functions S, T : π0J → obA. The rest of the data of the
1-cell φ is then given by a “dependent functor" that sends each j ∈ J to a 1-cell in
A(Sj, T j) and a morphism f : j → k ∈ J to a 2-cell between such 1-cells; note
that since j and k belong to the same path component, Sj = Sk and T j = T k.

• 2-cells inAJ correspond to functorsJ → Icon(C2,A), which can be understood
via the isomorphism

Icon(C2,A) ∼=
∐

x,y∈A
A(x, y)2.

We use Proposition 5.4 to describe limits in Icon of 1-category indexed diagrams
valued in a bicategory. By Observation 5.8, a “diagram" D : 1 → AJ is given by a
function D : π0J → obA. Thus the diagrams considered in this context are rather
degenerate.

Proposition 5.9 A diagram D : 1 → AJ in Icon admits a limit if and only if

(i) the diagram D is constant at some object 
 ∈ A, and
(ii) id
 ∈ A(
, 
) is the limit of the constant J -shaped diagram in A(
, 
) at this

object, with the identity natural transformation defining the limit cone.

Proof If D : 1 → AJ admits a limit, then it must admit a limit cone, this being an
icon

A

1 AJ .

⇓λ
�


D

As observed above, such icons exist if and only if �
 = D. This tells us that D must
be the constant diagram at the object 
, in which case the icon λ is necessarily the
identity icon.

It remains to describe conditions that make (
, id�
) an absolute right lifting of
the constant diagram D = �
 through �. By Proposition 5.4, (
, id�
) defines an
absolute right lifting in Icon if and only if two conditions hold. The first requirement
is that the induced object functions define a pullback diagram, which is automatic in
this case since � : obA → obAJ is a monomorphism. The second requirement is
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that the diagram of categories

A(
, 
)

1 AJ (�
,�
) ∼= A(
, 
)J
⇓id �

id


id


is an absolute right lifting diagram. Observation 5.8 provides the isomorphism in the
lower-right corner, Thus, we see that a constant diagram D = �
 admits a limit if and
only if the identity cone defines a limit for the object id
 in the hom-category A(
, 
)

by Definition 3.9 applied in the ∞-cosmos Cat. 
�
The conditions of Proposition 5.9 are satisfied in particular if either:

(i) J has a single path component, or
(ii) id
 ∈ A(
, 
) is terminal.

We do not know whether there are any contexts in which the notion of limit captured
by this result is of interest.

6 Another∞-Cosmos of Bicategories

The most general notion of sameness between 2-categories or bicategories is not
captured by either of the ∞-cosmoi 2-Cat or Icon. A normal pseudofunctor F : B →
A is a biequivalence just when

(i) F is surjective on objects up to isomorphism, and
(ii) the induced functor F : B(x, y) → A(Fx, Fy) is an equivalence of categories for

all x, y ∈ B,
combining the weaker of the two properties captured by the equivalences in Proposi-
tions 4.1 and 5.1. In this section, we describe another∞-cosmos of bicategories whose
equivalences are the biequivalences due to Alexander Campbell, which he obtains by
applying [18, E.1.3] to a model structure he constructs on a closely related category
of algebraically cofibrant 2-categories [5].

The underlying 1-category of the ∞-cosmos Bicat is the category of bicategories
and normal pseudofunctors. The isofibrations in Bicat are the equifibrations, normal
pseudofunctors F : A → B with the property that:

(i) Any equivalence Fa � b in B can be lifted to an equivalence a � x in A.
(ii) For all x, y ∈ A, the functor F : A(x, y) → B(Fx, Fy) is an isofibration of

categories.

Unlike the ∞-cosmoi considered above, the ∞-cosmos Bicat is not isomorphic
to its homotopy 2-category. Here the simplicial functor-space between bicategories
A and B is the the quasi-category whose n-simplices are normal pseudofunctors
A × [n] → B, where [n] is the free 1-category on n composable arrows. Thus,
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the homotopy 2-category of Bicat is the 2-category of bicategories, normal pseud-
ofunctors, and equivalence classes of “enhanced pseudonatural transformations.”3

This homotopy 2-category can also be obtained in another fashion using the fact that
the category of bicategories and normal pseudofunctors is cartesian closed. There is
a product-preserving functor that takes a bicategory to the category with the same
objects and whose arrows are isomorphism classes of parallel 1-cells. Change-of-base
then converts the bicategorically enriched category of bicategories to a 2-category of
bicategories, namely the homotopy 2-category described above.

Unlike the familiar 2-categories 2-Cat and Icon, we are not sure whether this
homotopy 2-category of bicategories, normal pseudofunctors, and equivalence classes
of enhanced pseudonatural transformations has been studied before. Nevertheless, it
would be interesting to explore the formal category theory of the ∞-cosmos Bicat.
We leave this unfinished end for future work.
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