
Characterization of Real-Time Object Detection
Workloads on Vehicular Edge

Sihai Tang∗, Kaitlynn Whitney∗, Benjamin Wang†, Song Fu∗, and Qing Yang∗
∗Department of Computer Science and Engineering, University of North Texas

Email: {SihaiTang, kaitlynnwhitney}@my.unt.edu; {Song.Fu, Qing.Yang}@unt.edu
†Department of Computer Science, University of Texas at Austin, Email: benywang@utexas.edu

Abstract—As recent literature suggests the need for communi-
cation between autonomous vehicles, edge devices have emerged
as a viable conduit to facilitate real-time data sharing. Edge
devices strike a suitable medium between the alternatives of
cloud centralization and full vehicle-to-vehicle decentralization,
providing the computational savings of sending and receiving
information from one place while also boosting speed by bypass-
ing internet protocols. Given the novelty of both object detection
models and autonomous vehicle-oriented edge device imple-
mentation, there are no standards for hardware and software
specifications on the edge. In this project, we seek to address this
void, investigating the GPU and CPU usage patterns of various
object detection models and machine learning frameworks. We
also aim to uncover optimization opportunities such as workload
pipelining. One early difficulty was that only a few models
tested achieved real-time (<33 ms) object detection. Our results
show that the GPU utilization varies widely between models.
One interesting is that only one CPU core is used during the
inference process, suggesting the number of CPU cores will not
be a bottleneck. Meanwhile, we find that increasing CPU cores
proportional to the amount of traffic will likely be necessary to
preserve real-time object detection.

Index Terms—Autonomous Vehicle; Edge Computing; Real-
Time Object Detection; Faster R-CNN; PyTorch; Workload
Characterization; SSD; Darknet; YOLO.

I. INTRODUCTION

Real-time object detection has been a hurdle for autonomous

vehicles for some time. One of the primary challenges is the

constantly changing roadside environment. Vehicles informed

by an old environment can easily get into accidents. In the span

of a single second, vehicles must produce real-time detection

results in order to make accurate maneuvers. Thus, in order

to ensure the safety of humans in a world of autonomous

vehicles, both speed and accuracy need to be improved for

real-time detection.

Real-time object detection is defined by Redmon, et al as

achieving 30 fps or better [33]. In this study, as our primary

focus was on image detection, we extrapolated a benchmark

of 33 milliseconds for inference to be completed. Humans

interact and process the information from the environment to

make decisions and perform actions, this is how we function.

Safe driving takes what we can do a step further by translating

our decisions into actions performed by the car. In autonomous

driving, the function that a human would perform is instead

performed by the vehicle’s on board processing unit (OBU).

In the ideal world, a continuous and reliable method would

be used to process the data and make safe driving decisions.

However, in the real world, nothing is perfect. From sensors

to the end decision, there exist multiple steps, with various

latencies.

To facilitate the self-driving process, various sensors need to

relay their sensing data of the surrounding environment to the

on-board computing unit. This is usually handled by an array

of sensors such as the LiDAR, cameras, radar, GPS, IMU,

and more. Due to the vast array of sensors, it is estimated

that an autonomous vehicle will generate 4 terabytes of data

or more in two hours[39]. To enhance driving, connected and

autonomous vehicle (CAV) technology enables raw-data level

and feature-map level data sharing among vehicles [27, 26],

which utilizes extraneous data from other vehicles to drasti-

cally improve the detection capabilities of a single vehicle.

The three frameworks examined during this research are

ChainerCV, Darknet, and PyTorch. The three models paired

with the frameworks for this research are Faster Region-

based Convolutional Neural Network (Faster R-CNN), Single

Shot Detection (SSD), and versions 1, 3, and 4 of You Only

Look Once (YOLO). These models are popular for Region

Proposal Netwoks (RPN) which takes any sized image as input

and produces an output of the image with rectangular object

proposals. In this research we are concerned with RPN models

that utilize the Graphics Processing Unit (GPU).

Using the program NVIDIA NsightTM Systems (NSys),

a system-wide performance analysis tool, we are able to

visualize each algorithm framework-model combination. We

then will compare the results against the other framework-

model combinations.

With the use of a consumer grade Graphics Processing

Unit (GPU) as the external accelerator, we are interested in

examining the variance of multiple frameworks and models

processing real-time object detection. This will help us to

gain a better understanding for the need of resource analy-

sis and optimization for cooperative perception on edge for

consumer grade GPUs. The goal is to obtain information on

a framework-model combination such that can preform at a

quicker speed without too drastic of a change to accuracy. If

there is a way to increase speed without sacrificing accuracy

on a more affordable consumer grade setup, the safety of

autonomous vehicles on the road could become more readily

accessible to both researchers and industries.

Our key observations are that over encompassing frame-

works tends to run the same detection algorithm slower than

30

2022 Fifth International Conference on Connected and Autonomous Driving (MetroCAD)

978-1-6654-7112-1/22/$31.00 ©2022 IEEE
DOI 10.1109/MetroCAD56305.2022.00010

20
22

 F
ift

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
on

ne
ct

ed
 a

nd
 A

ut
on

om
ou

s D
riv

in
g 

(M
et

ro
CA

D)
 |

 9
78

-1
-6

65
4-

71
12

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
M

ET
RO

CA
D5

63
05

.2
02

2.
00

01
0

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



the specific detector for the same detection algorithm. We also

find that the most commonly used framework, PyTorch, relies

heavily on CUDA kernels and not as much on memory. We

also find that the fastest inferencing method, Darknet based

YOLOv3, relies more heavily on memory than on CUDA

kernels.

We organize the our paper as follows. We will discuss the

related works in Section II and our motivation in Section III.

We then introduce the frameworks and models characterized in

Sections IV and V respectively. The key findings are presented

in Section VII, and we discuss the potential impacts of said

findings in Section VIII. Finally, we conclude our paper in

Section IX.

II. RELATED WORKS

Setting the foundation for most of autonomous vehicles is

the combined rise of both hardware and software advances.

Starting from the early 2000s, techniques such as Gradient

based neural networks begin to see popularity[1]. But it really

was not until powerful GPUs and TPUs came into the picture

before the autonomous vehicles became a real possibility [19].

A. Autonomous Vehicles

It is undeniable that autonomous vehicles are not ready for

mass public adoption yet, but the future of having autonomous

vehicles is also being paved by most auto makers. Besides

the work being done to incorporate autonomous driving, we

also see other challenging issues rise up. In works such as

[36, 5], we see numerous opportunities for infrastructure,

communication, object detection, fusion and more all play an

important role towards the success of a autonomous future.

However, it is also evident that all types of sensors, ranging

from LiDAR to radar have been used to drive the data

collection for autonomy over the years[32]. That leads to the

main safety issue of actual detection for autonomous vehicles.

B. Object Detection

From open datasets such as [7, 3, 20], we see many

motivated research institutions prioritize the rapid research

and development of autonomous vehicles; particularly the

facet of autonomous vehicles that deal with local environment

perception, lane detection, traffic sign detection and detection

for objects like cars, cyclists and pedestrians [9, 15, 25, 18].

In works such as [26, 27], the authors make clear of the fact

that sensors from individual vehicles are inherently limited

in their sensing range. Adding on top of this fact, we also

see vast room for advancement even when using cutting edge

Convolutional Neural Networks [4].

C. Edge Computing

When it comes to the main usage of on board computation

for autonomous driving, the main components that matters are

perception and path planning. Works such as [22] introduce the

idea of fusing data from multiple sources for object detection

and object tracking, but the idea of operating such tasks On-

Edge has only been explored by few authors. In the inspiring

work [17], the authors developed a shared real-time situational

awareness system by aggregating crowd sourcing and edge

computing together. Also, in [28], the authors explored collab-

orative learning On-Edge computing, however, the challenges

that edge computing faces in specific applications for object

detection are not explored in this paper.

Aside from the technical challenges faced, we must also

consider the hardware challenges that exist for the integration

of edge computing. For example, the typical load of a single

autonomous vehicle is the combined data from all the sensors.

This load will only increase with more sophisticated sensors

and hardware. While innovative solutions for using feature

maps or feature pyramid networks reduce the load on the

hardware, this is not a long term solution [16, 12]. Advances

in more capable real time detectors, such as the Single Shot

Detector (SSD)[8], still rely on the underlying hardware.

III. MOTIVATION

One of the primary challenges in object detection for

autonomous vehicles is the constantly changing roadside en-

vironment. Latency in this process can lead to catastrophic

accidents. Thus, in the span of a single second, vehicles must

produce many real-time detection results in order to make

accurate maneuvers. Real-time object detection is defined by

Redmon, et al as achieving 30 fps or better [9]. In this study,

as our primary focus was on image detection, we extrapolated

a benchmark of 33 milliseconds for inference to qualify as

real-time. To further bolster vehicles’ perception, we envision

connected autonomous vehicles combating object occlusion

and expanding sensing range. Regarding connectedness, edge

devices strike a happy medium between the alternatives of

cloud centralization and full vehicle-to-vehicle decentraliza-

tion, providing the computational savings of sending and

receiving information from one place while also boosting

speed by bypassing internet protocols.

As edge devices can facilitate both real-time detection and

data sharing, they are the focus of our study. Our target system

is F-Cooper, a system that uses PyTorch as its main machine

learning framework. However, due to this, traditional static

profiling methods will not work due to the dynamic graph

nature of PyTorch, it will generate different network behavior

at runtime for model optimization [29]. With static offline

testing, it is not possible to glean all the available details.

So we turn to NVIDIA’s Nsight System (NSys), a sampling

based profiler. With a sampling of 1 million events per sample

at 1000Hz, we are able to directly gather information during

run-time.

A. End to End profiling for Edge

To fully understand the workflow of something like the F-

cooper framework, we must keep track of resources such as

data, scheduling, and hardware interactions.

31

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. ChainerCV Output Images

1) Data: In modern day autonomous systems, multiple

sensor types are utilized, with the most commonly seen being

the combination of LiDAR and Camera for the main driving

input. Take tesla for example, to help reduce latency, they

utilize embedded soc on the sensors to help pre-process the

information. More on single vehicle here On the other hand,

other methods include V2X infrastructures and frameworks.

Take F-Cooper for example, the data is extracted from the

vehicles before being sent to the edge. In many cases, there

will also be the overhead of network latency on top of

everything else.

2) Scheduling: Scheduling is often a matter handled by the

framework, such as PyTorch, or the system, such as native

kernel functions. Normally this approach is fine as modern

systems are quite well equipped to handle loads. However,

when we add in the factors for real-time driving and real-

world scenarios with passenger lives on the line, we must take

utmost caution.

This variable is embedded in every step of the way, from

deciding which vehicle to service all the way to how the edge

unit needs to process the data. In our profiling, we must take

care to address this variable.

3) Hardware: As for the hardware component, the neces-

sity for profiling is even more prudent than the previous two

factors added together. From the perspective of manufacturers

and customers, this issue is a simple matter of how much they

are willing to spend. However, even with the best hardware,

we will find that even the best hardware will be limited by

a plethora of bottlenecks. Take yolov4 for example, while it

is capable of real time detection on the developer’s platform

with top of the line hardware. On our hardware, TU106 Silicon

with a memory bandwidth of 327.89 GiB/s, we see an average

of 30 to 40 frames per second(fps) inference on video data,

but when we perform the same inference on a live video feed,

the performance drops down to 6 fps, a loss of performance

by 500 %.

Specifically for the purpose of this research, we relied on

a consumer grade NVIDIA GeForce RTX 2070 (mobile) as

the GPU for the external accelerator of all the codes tested.

The driver version associated with the GPU is 465.19.01 with

CUDA version 11.3. The architecture on the machine we used

is Intel x86 64. The Central Processing Unit (CPU) was an

Intel(R) CoreTM i7-1050H CPU @ 2.6GHz which contains 6

cores with 2 threads each, for a total of 12 threads.

IV. FRAMEWORKS

A framework provides fundamental low-level functional-

ity to a programmer so that they can focus on the high-

level functionality aspects of their application. Each of the

frameworks use different architecture to calculate the real-time

object detection of an image. The frameworks selected for this

research all utilized the Graphics Processing Unit (GPU) for

computation power.

In this section, a brief description of the architecture and

functions for each framework is explained. First, a descrip-

tion of the ChainerCV framework, followed by Darknet, and

finally PyTorch. A brief mention of the models used for each

framework will also be provided in this section. Though a

more thorough look at the models will be discussed in the

Models section. The datasets that the frameworks used in this

research are the PASCAL Visual Object Classes (VOC) [2]

and Common Objects in Context (COCO) [11]. Each dataset

used for each framework-model combination will also be

mentioned.

A. ChainerCV

ChainerCV is an add-on package to the Chainer framework,

which is intended to provide non-experts fast prototyping

by utilizing pre-trained weights, state-of-the-art models, and

training scripts [30].

The deep neural network requires a significant amount of

power in order to perform floating point numeric calcula-

tions. Therefore, an external accelerator, such as a GPU, is

necessary in order to fully leverage the computation power.

Chainer specifically relies on the open-source Python library,

CuPy which provides the computational power of specifically

NVIDIA GPUs and was initially developed as the back-end

of Chainer. Only in June 2017 did CuPy become independent

of Chainer. CuPy fully utilizes the GPU architecture with the

CUDA platform that is provided by NVIDIA. Since CuPy has

a NumPy-like syntax, it is highly compatible with NumPy

and can often be interchangeable with a NumPy import. CuPy

implements many functions that supports linear algebra, sparse

32

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. ChainerCV GPU Nsys Results

Fig. 3. Darknet Output Images

matrices, and sorting which all assist with the computations

needed for a deep learning framework. [30]

For this research, three models were examined utilizing

the ChainerCV framework; Faster R-CNN, SSD, and YOLO

version 1. ChainerCV is a single download that gives access

to each of the models mentioned and as such all models utilize

the same datasets. The datasets used for this framework are

the VOC 2007 and 2012 [2].

B. Darknet

One of the goals of the Darknet framework was to allow

conventional consumer grade GPUs for training and detecting

objects. To accomplish this task, Darknet uses a small number

of groups (1-8) in convolutions layers and relies on the

use of grouped-convolution while refraining from the use of

Squeeze-and-excitement (SE) blocks [31]. According to [31],

the hope in doing so is to find the optimal balance among

the input network resolution, the convolutional layer number,

the parameter number, and the number of layer outputs. While

Darknet is not the most proficient in object classification, it

claims to excel at the detection of objects utilizing the COCO

dataset [31].

For this research, only one model was examined utilizing the

Darknet framework, YOLO. There is, however, two versions

of YOLO examined, version 3 and version 4. Darknet is a

single download that gives access to both version 3 and 4 of

YOLO as as such uses the same dataset. The dataset used for

this framework is COCO 2017 [11].

C. PyTorch

Most deep learning frameworks will favor usability over

speed or vice versa. PyTorch uses hardware accelerators,

like GPUs, to favor both usability and speed. According to

[29], some of the design goals for PyTorch include: keeping

interfaces simple and consistent with the already popular

Python language; prioritizing research by ensuring that writing

models, data loaders, and optimization is as easy and produc-

tive as possible; provide tools that will allow researchers to

manually control their code’s execution in order to find their

own performance improvements outside of what the library

already provides; and keeping the internal implementation

simple in order to easily adapt to new situations and keep

up with the constant progression of the AI field.

For this research, three models were examined utilizing the

PyTorch framework; Faster R-CNN, SSD, and YOLO version

3. Each model is part of its own individual code and do not use

the same dataset. The Faster R-CNN and YOLO models utilize

the COCO 2017 [11] dataset while the SSD model utilizes the

VOC 2007 and 2012 [2] datasets.

33

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



V. MODELS

There are three models utilized during this research:

Faster Region-based Convolutional Neural Networks (Faster

R-CNN), Single Shot MultiBox Detector (SSD), and You Only

Look Once (YOLO). During this section, the architectures for

each model will be explained.

A. Faster R-CNN

Region-based Convolutional Neural Networks (R-CNNs)

have for many years been the influence in the advancement

of object detection. At first the R-CNNs were computationally

expensive in their original development which prompted the

advancement of fast R-CNN, which used GPUs for faster

computation power. Both R-CNN and fast R-CNN rely on a

Selective Search architecture, which greedily merges superpix-

els based on engineered low-level features [6]. However, while

fast R-CNN was an improvement from R-CNN, the Selective

Search architecture became the bottleneck of the algorithm.

Therefore, when faster R-CNN was developed, it introduced

the use of a different type of architecture, Region Proposal

Network (RPN). RPN generates potential bounding boxes in

an image, classifies the proposed boxes, and then refines the

bounding boxes by eliminating any duplicate detection, and

finally re-scores the box based on the other objects in the

scene [9]. The frameworks in this research that use the Faster

R-CNN model are ChainerCV and PyTorch.

B. SSD

Often times for object detection, when speed is preferred

then the accuracy of object detection suffers. The Single

Shot MultiBox Detector (SSD) model maintains an accuracy

of object detection and increases the speed by avoiding the

re-sampling of pixels [8]. Some of the changes SSD has

implemented that differs from other models, such as Faster

R-CNN and YOLO, includes offsetting bounding box loca-

tions by using a small convolutional filter to predict object

categories, detecting different aspect ratios with the use of

separate predictors (filters), and then applying these filters

to various feature maps from the later stages of a network

in order to perform object detection at multiple scales [8].

The frameworks in this research that use the SSD model are

ChainerCV and PyTorch.

C. YOLO

The You Only Look Once (YOLO) model reframes object

detection as a single regression problem to predict what

objects are in an image and where they are located within

the image by only looking at the image a single time [9].

The simplicity of YOLO is one of the reasons it is considered

on of the fastest models available; the image is resized, run

through a convolutional network that simultaneously predicts

multiple bounding boxes with potential classifications, and

then output goes through a non-max suppression to filter

the object detection predictions [9]. The frameworks in this

research that use the YOLO model are Chainer, Darknet, and

PyTorch.

VI. CHARACTERIZATION RESULTS

For the evaluation of the different frameworks in this paper,

first we will examine the differences in the output images

that each model produced. Then we will examine the GPU

Kernels and briefly discuss the time that the code spent on

the GPU. A more comparative look of the time on the GPU

will be discussed in the Results section. Each Framework-

model combination utilize the same image [34] for a clearer

comparison of the output images.

A. ChainerCV

The ChainerCV framework that was utilized in this research

included the three models, Faster R-CNN, SSD, and YOLO, in

a single code. Each have a similar structure to each other with

varying speeds and detection accuracy that each produced.

Figure 1 displays the output images of each model using the

ChainerCV framework.

From the output images, we notice that the Faster R-CNN

(left) and SSD (center) had a slightly more accurate detection

rate on the bounding boxes compared to the YOLO (right)

model. When paired with the ChainerCV framework, the

YOLO model did not produce as many detected vehicles as

Faster R-CNN or SSD models. The decrease in accuracy and

detection rate could be the result of attempting to write a single

code for multiple models as opposed to optimizing a code to

a specific model.

The algorithmic pattern mapped out by the NSys program,

figure 2 displays a scattered pattern. The reason for this is that

the code is constantly switching between processing the data

on the CPU and GPU. Where the GPU has gaps, the CPU

takes over processing.

This switching method is not the most efficient since the

CPU has an overall longer duration for processing than the

GPU does. This switching prolongs the code into making

ChainerCV the longest running framework of those tested in

this research.

B. Darknet

The single Darknet code utilized during this experiment

used both version 3 and 4 of the YOLO model. Therefore, this

comparison can only be observed between the two different

versions of the same model. Figure 3 displays the output

images of both versions.

The amount of vehicles detected for the Darknet framework

far exceeded the amount of cars that were detected for the

ChainerCV framework. There are slight differences between

the YOLO version 3 (left) and version 4 (right) codes. The

most noticeable being that version 4 detects the humans

driving the vehicles in the front of the image while version

3 does not. Version 3, however, detects more vehicles further

along the street in the image than version 4 does.

The algorithmic pattern mapped out by the NSys program,

figure 4, displays a constant stream of GPU commands. While

34

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Darknet GPU Nsys Results

Fig. 5. PyTorch Output Images

Darknet does utilize the CPU before and after the GPU, the

GPU computation is relatively consistent.

The Darknet framework has consistently the fastest dura-

tion for object detection of the frameworks selected for the

research. The claim of being optimized for consumer grade

equipment [31] appears to be accurate.

C. PyTorch

For PyTorch, there are three different codes that were used

for the three different models, Faster R-CNN, SSD, and YOLO

version 3. As such, the resulting output images differ not only

in speed and accuracy but also how the bounding boxes are

displayed. Figure 5 displays the output images of all three

individual codes.

For the Faster R-CNN (top), two output images were

created. The image on the top left displays the bounding boxes

around all cars that the code was able to detect. The top right

image displays the bounding boxes around all buses that the

code was able to detect. The resulting output image of the SSD

model (bottom left) has the least amount of vehicles detected

of all the different code variances. The bounding boxes are

also less noticeable and more difficult to pick out. The YOLO

version 3 model (bottom right) had the most objects detected

and even included the variance of truck and persons on the

street detection. However, the accuracy of the bounding boxes

were less than the Faster R-CNN model.

The algorithmic pattern mapped out by the Nsys program,

figure 6, displays a continuous stream of GPU commands for

Faster R-CNN and SSD models. The YOLO model displays

a more sparse pattern of GPU commands.

One of the interesting things about the way the PyTorch

framework is structured, all of the memory the GPU needs is

allocated prior to any detection calculation. By taking the time

in the beginning to allocate the memory usage, the detection

computation time is significantly reduced.

VII. KEY FINDINGS

Our profiling results demonstrate the general trend that

frameworks that support multiple models are slower than those

that are designed around a specific model. Specifically, of

the three models that achieved real-time inference, two were

Darknet YOLO implementations. In contrast, ChainerCV SSD

and Faster-RCNN were extremely slow, running in around five

seconds, catastrophic in a live traffic environment. Another

YOLO implementation on ChainerCV nearly met our bench-

mark, completing inference in 44 ms, ensuring that YOLO

was overwhelmingly the fastest model on average.

GPU utilization was also a primary research interest targeted

in profiling. We find that we can loosely stratify utilization by

framework: PyTorch most heavily relies on CUDA kernels,

ChainerCV relatively evenly splits workload between kernels

and memory, and Darknet is highly dependent on memory.

Given these patterns, we conjecture that Darknet’s high in-

ference speed can be largely attributed to its high memory

utilization percentage.

The quickest framework-model combination tested was the

Darknet YOLO version 3 code. The accuracy and number

of objects detected was also stellar in comparison to the

others, visibly detecting many more cars at farther distances.

Overall, for the hardware setup utilized for this research,

the Darknet YOLO version 3 code had an increase of speed

without much sacrifice to accuracy. Darknet YOLO version 4,

while also maintaining a good accuracy, took almost double

the processing time that version 3 did. Contrasting YOLOv3,

while PyTorch-SSD does have the second fastest processing

time, the number of objects that were detected was the lowest

among all of the framework-model combinations.

VIII. DISCUSSION

Each framework-model combination showed varying results

for the kernel outlay. Through examination of the kernels, we

are able to see that the more efficient codes were those that

relied more on the GPU as opposed to the CPU. Though, it is

possible that due to the ChainerCV being a single code written

for all three models, that the code might not be optimized for

each model. Therefore, a way to further this research is to also

test frameworks that are optimized for a specific model, in the

35

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. PyTorch GPU Nsys Results

Fig. 7. Runtime of Codes

Fig. 8. GPU Inference Time

vein of Darknet, which also utilizes both the CPU and GPU,

in order to gain a more accurate perspective.

When looking at accuracy, Darknet has produced the overall

fastest inference speed with no drastic decrease in accuracy

for object detection utilizing the YOLO framework. It is also

worth mentioning that three of the four YOLO framework-

model combinations were among the top four fastest GPU

inference times as shown by figure 8 in the Results section.

Therefore, we must conclude that the YOLO model, specifi-

cally paired with the Darknet framework, is the most efficient

algorithm for consumer grade computing equipment.

Note that all of these results were conducted using consumer

grade computing equipment and as such, may vary with other

consumer grade or industrial grade computing equipment.

With further funding of this type of research, we can gain a

better understanding of the full impact that these programs

have on other consumer grade computing equipment as it

could be tested on a variance of other consumer computing

equipment.

IX. CONCLUSION

One of the most significant takeaways from our resource

characterization was that the four models with the highest

GPU memory utilization percentage were also the four models

with the quickest inference times. In future roadside edge

devices, we may therefore be interested in prioritizing memory

rather than CUDA cores to optimize speed. We agree that

further exploration is necessary to better understand our results

and offer clarity on edge requirements. Possible extensions

include profiling these models on a variety of GPUs, testing

on video input, and performing detection on a large data set

with varying pixel count, number of objects, and weather

conditions.

REFERENCES

[1] Y. Lecun et al. “Gradient-based learning applied to

document recognition”. In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

[2] Mark Everingham et al. PASCAL Visual Object Classes
(VOC). 2007 and 2012. URL: http://host.robots.ox.ac.

uk/pascal/VOC/.

[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are

we ready for Autonomous Driving? The KITTI Vision

Benchmark Suite”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2012.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. “Imagenet classification with deep convolutional

neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105.

[5] Daniel J Fagnant and Kara Kockelman. “Preparing a

nation for autonomous vehicles: opportunities, barriers

and policy recommendations”. In: Transportation Re-
search Part A: Policy and Practice 77 (2015), pp. 167–

181.

36

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



[6] Shaoqing Ren et al. “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Net-

works”. In: Advances in Neural Information Processing
Systems (NIPS). 2015.

[7] Marius Cordts et al. “The cityscapes dataset for se-

mantic urban scene understanding”. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2016, pp. 3213–3223.

[8] Wei Liu et al. “Ssd: Single shot multibox detector”.

In: European conference on computer vision. Springer.

2016, pp. 21–37.

[9] Joseph Redmon et al. “You only look once: Unified,

real-time object detection”. In: Proceedings of IEEE
conference on computer vision and pattern recognition.

2016.

[10] Xinlei Chen and Abhinav Gupta. “An Implementation

of Faster RCNN with Study for Region Sampling”. In:

arXiv preprint arXiv:1702.02138 (2017).

[11] Tsung-Yi Lin et al. COCO: Common Objects in Con-
text. 2017. URL: https://cocodataset.org/#home.

[12] Tsung-Yi Lin et al. “Feature pyramid networks for ob-

ject detection”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017.

[13] Yusuke Niitani et al. “ChainerCV: a Library for Deep

Learning in Computer Vision”. In: ACM Multimedia.

2017.

[14] Joseph Redmon and Ali Farhadi. “YOLO9000: better,

faster, stronger”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2017.

[15] J. Ren et al. “Accurate Single Stage Detector Using Re-

current Rolling Convolution”. In: ArXiv e-prints (Apr.

2017). arXiv: 1704.05776 [cs.CV].

[16] Shaoqing Ren et al. “Object detection networks on

convolutional feature maps”. In: IEEE transactions on
pattern analysis and machine intelligence 39.7 (2017),

pp. 1476–1481.

[17] Mahadev Satyanarayanan. “Edge computing for situa-

tional awareness”. In: IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN).
2017.

[18] Y. Zhou and O. Tuzel. “VoxelNet: End-to-End Learning

for Point Cloud Based 3D Object Detection”. In: ArXiv
e-prints (Nov. 2017). arXiv: 1711.06396 [cs.CV].

[19] Toru Baji. “Evolution of the GPU Device widely used

in AI and Massive Parallel Processing”. In: 2018 IEEE
2nd Electron Devices Technology and Manufacturing
Conference (EDTM). IEEE. 2018, pp. 7–9.

[20] Xinyu Huang et al. “The ApolloScape Dataset

for Autonomous Driving”. In: arXiv preprint
arXiv:1803.06184 (2018).

[21] Congcong Li. High quality, fast, modular reference
implementation of SSD in PyTorch. https://github.com/

lufficc/SSD. 2018.

[22] Wenjie Luo, Bin Yang, and Raquel Urtasun. “Fast and

furious: Real time end-to-end 3d detection, tracking

and motion forecasting with a single convolutional net”.

In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 2018, pp. 3569–3577.

[23] Hang Qiu et al. “AVR: Augmented vehicular reality”.

In: Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services.

ACM. 2018, pp. 81–95.

[24] Joseph Redmon and Ali Farhadi. “Yolov3: An

incremental improvement”. In: arXiv preprint
arXiv:1804.02767 (2018).

[25] Yan Yan, Yuxing Mao, and Bo Li. “Second: Sparsely

embedded convolutional detection”. In: Sensors 18.10

(2018), p. 3337.

[26] Qi Chen et al. “Cooper: Cooperative Perception for

Connected Autonomous Vehicles Based on 3D Point

Clouds”. In: 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS). 2019,

pp. 514–524. DOI: 10.1109/ICDCS.2019.00058.

[27] Qi Chen et al. “F-cooper: Feature based cooperative per-

ception for autonomous vehicle edge computing system

using 3D point clouds”. In: Proceedings of ACM/IEEE
Symposium on Edge Computing (SEC). 2019.

[28] Sidi Lu, Yongtao Yao, and Weisong Shi. “Collaborative

Learning on the Edges: A Case Study on Connected

Vehicles”. In: 2nd {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 19). 2019.

[29] Adam Paszke et al. “Pytorch: An imperative style, high-

performance deep learning library”. In: Advances in
neural information processing systems 32 (2019).

[30] Seiya Tokui et al. Chainer: A Deep Learning Frame-
work for Accelerating the Research Cycle. Sept. 2019.

URL: https://export.arxiv.org/pdf/1908.00213.

[31] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan

Mark Liao. YOLOv4: Optimal Speed and Accuracy of
Object Detection. Apr. 2020. URL: https://arxiv.org/pdf/

2004.10934.pdf.

[32] Asif Faisal et al. “Mapping two decades of autonomous

vehicle research: A systematic scientometric analysis”.

In: Journal of Urban Technology 28.3-4 (2021), pp. 45–

74.

[33] Glenn Jocher et al. ultralytics/yolov3: v9.5.0 - YOLOv5
v5.0 release compatibility update for YOLOv3 (Version
v9.5.0). 2021.

[34] Sarah Maslin Nir. Traffic in New York City has returned
to nearly prepandemic heights, mirroring a trend repli-
cated nationwide. May 2021.

[35] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan

Mark Liao. “Scaled-YOLOv4: Scaling Cross Stage Par-

tial Network”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). June 2021, pp. 13029–13038.

[36] Qing Yang et al. “Machine-learning-enabled cooper-

ative perception for connected autonomous vehicles:

Challenges and opportunities”. In: IEEE Network 35.3

(2021), pp. 96–101.

[37] Autopilot – Tesla. https://www.tesla.com/autopilot.

[38] GeForce – Nvidia. https://www.nvidia.com/.

37

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 



[39] Intel Editorial: For Self-Driving Cars, Theres Big
Meaning Behind One Big Number: 4 Terabytes —
Business Wire.

[40] Velodyne – LiDAR. https://velodynelidar.com/.

38

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from IEEE Xplore.  Restrictions apply. 


