2022 Fifth International Conference on Connected and Autonomous Driving (MetroCAD) | 978-1-6654-7112-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/METROCAD56305.2022.00010

2022 Fifth International Conference on Connected and Autonomous Driving (MetroCAD)

Characterization of Real-Time Object Detection
Workloads on Vehicular Edge

Sihai Tang*, Kaitlynn Whitney*, Benjamin Wang!, Song Fu*, and Qing Yang*
*Department of Computer Science and Engineering, University of North Texas
Email: {SihaiTang, kaitlynnwhitney } @my.unt.edu; {Song.Fu, Qing.Yang} @unt.edu
tDepartment of Computer Science, University of Texas at Austin, Email: benywang@utexas.edu

Abstract—As recent literature suggests the need for communi-
cation between autonomous vehicles, edge devices have emerged
as a viable conduit to facilitate real-time data sharing. Edge
devices strike a suitable medium between the alternatives of
cloud centralization and full vehicle-to-vehicle decentralization,
providing the computational savings of sending and receiving
information from one place while also boosting speed by bypass-
ing internet protocols. Given the novelty of both object detection
models and autonomous vehicle-oriented edge device imple-
mentation, there are no standards for hardware and software
specifications on the edge. In this project, we seek to address this
void, investigating the GPU and CPU usage patterns of various
object detection models and machine learning frameworks. We
also aim to uncover optimization opportunities such as workload
pipelining. One early difficulty was that only a few models
tested achieved real-time (<33 ms) object detection. Qur results
show that the GPU utilization varies widely between models.
One interesting is that only one CPU core is used during the
inference process, suggesting the number of CPU cores will not
be a bottleneck. Meanwhile, we find that increasing CPU cores
proportional to the amount of traffic will likely be necessary to
preserve real-time object detection.

Index Terms—Autonomous Vehicle; Edge Computing; Real-
Time Object Detection; Faster R-CNN; PyTorch; Workload
Characterization; SSD; Darknet; YOLO.

1. INTRODUCTION

Real-time object detection has been a hurdle for autonomous
vehicles for some time. One of the primary challenges is the
constantly changing roadside environment. Vehicles informed
by an old environment can easily get into accidents. In the span
of a single second, vehicles must produce real-time detection
results in order to make accurate maneuvers. Thus, in order
to ensure the safety of humans in a world of autonomous
vehicles, both speed and accuracy need to be improved for
real-time detection.

Real-time object detection is defined by Redmon, et al as
achieving 30 fps or better [33]. In this study, as our primary
focus was on image detection, we extrapolated a benchmark
of 33 milliseconds for inference to be completed. Humans
interact and process the information from the environment to
make decisions and perform actions, this is how we function.
Safe driving takes what we can do a step further by translating
our decisions into actions performed by the car. In autonomous
driving, the function that a human would perform is instead
performed by the vehicle’s on board processing unit (OBU).
In the ideal world, a continuous and reliable method would
be used to process the data and make safe driving decisions.

However, in the real world, nothing is perfect. From sensors
to the end decision, there exist multiple steps, with various
latencies.

To facilitate the self-driving process, various sensors need to
relay their sensing data of the surrounding environment to the
on-board computing unit. This is usually handled by an array
of sensors such as the LiDAR, cameras, radar, GPS, IMU,
and more. Due to the vast array of sensors, it is estimated
that an autonomous vehicle will generate 4 terabytes of data
or more in two hours[39]. To enhance driving, connected and
autonomous vehicle (CAV) technology enables raw-data level
and feature-map level data sharing among vehicles [27, 26],
which utilizes extraneous data from other vehicles to drasti-
cally improve the detection capabilities of a single vehicle.

The three frameworks examined during this research are
ChainerCV, Darknet, and PyTorch. The three models paired
with the frameworks for this research are Faster Region-
based Convolutional Neural Network (Faster R-CNN), Single
Shot Detection (SSD), and versions 1, 3, and 4 of You Only
Look Once (YOLO). These models are popular for Region
Proposal Netwoks (RPN) which takes any sized image as input
and produces an output of the image with rectangular object
proposals. In this research we are concerned with RPN models
that utilize the Graphics Processing Unit (GPU).

Using the program NVIDIA Nsight™ Systems (NSys),
a system-wide performance analysis tool, we are able to
visualize each algorithm framework-model combination. We
then will compare the results against the other framework-
model combinations.

With the use of a consumer grade Graphics Processing
Unit (GPU) as the external accelerator, we are interested in
examining the variance of multiple frameworks and models
processing real-time object detection. This will help us to
gain a better understanding for the need of resource analy-
sis and optimization for cooperative perception on edge for
consumer grade GPUs. The goal is to obtain information on
a framework-model combination such that can preform at a
quicker speed without too drastic of a change to accuracy. If
there is a way to increase speed without sacrificing accuracy
on a more affordable consumer grade setup, the safety of
autonomous vehicles on the road could become more readily
accessible to both researchers and industries.

Our key observations are that over encompassing frame-
works tends to run the same detection algorithm slower than

978-1-6654-7112-1/22/$31.00 ©2022 IEEE 30
DOI 10.1109/MetroCAD56305.2022.00010

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

the specific detector for the same detection algorithm. We also
find that the most commonly used framework, PyTorch, relies
heavily on CUDA kernels and not as much on memory. We
also find that the fastest inferencing method, Darknet based
YOLOV3, relies more heavily on memory than on CUDA
kernels.

We organize the our paper as follows. We will discuss the
related works in Section II and our motivation in Section III.
We then introduce the frameworks and models characterized in
Sections IV and V respectively. The key findings are presented
in Section VII, and we discuss the potential impacts of said
findings in Section VIII. Finally, we conclude our paper in
Section IX.

II. RELATED WORKS

Setting the foundation for most of autonomous vehicles is
the combined rise of both hardware and software advances.
Starting from the early 2000s, techniques such as Gradient
based neural networks begin to see popularity[1]. But it really
was not until powerful GPUs and TPUs came into the picture
before the autonomous vehicles became a real possibility [19].

A. Autonomous Vehicles

It is undeniable that autonomous vehicles are not ready for
mass public adoption yet, but the future of having autonomous
vehicles is also being paved by most auto makers. Besides
the work being done to incorporate autonomous driving, we
also see other challenging issues rise up. In works such as
[36, 5], we see numerous opportunities for infrastructure,
communication, object detection, fusion and more all play an
important role towards the success of a autonomous future.
However, it is also evident that all types of sensors, ranging
from LiDAR to radar have been used to drive the data
collection for autonomy over the years[32]. That leads to the
main safety issue of actual detection for autonomous vehicles.

B. Object Detection

From open datasets such as [7, 3, 20], we see many
motivated research institutions prioritize the rapid research
and development of autonomous vehicles; particularly the
facet of autonomous vehicles that deal with local environment
perception, lane detection, traffic sign detection and detection
for objects like cars, cyclists and pedestrians [9, 15, 25, 18].

In works such as [26, 27], the authors make clear of the fact
that sensors from individual vehicles are inherently limited
in their sensing range. Adding on top of this fact, we also
see vast room for advancement even when using cutting edge
Convolutional Neural Networks [4].

C. Edge Computing

When it comes to the main usage of on board computation
for autonomous driving, the main components that matters are
perception and path planning. Works such as [22] introduce the
idea of fusing data from multiple sources for object detection
and object tracking, but the idea of operating such tasks On-
Edge has only been explored by few authors. In the inspiring

31

work [17], the authors developed a shared real-time situational
awareness system by aggregating crowd sourcing and edge
computing together. Also, in [28], the authors explored collab-
orative learning On-Edge computing, however, the challenges
that edge computing faces in specific applications for object
detection are not explored in this paper.

Aside from the technical challenges faced, we must also
consider the hardware challenges that exist for the integration
of edge computing. For example, the typical load of a single
autonomous vehicle is the combined data from all the sensors.
This load will only increase with more sophisticated sensors
and hardware. While innovative solutions for using feature
maps or feature pyramid networks reduce the load on the
hardware, this is not a long term solution [16, 12]. Advances
in more capable real time detectors, such as the Single Shot
Detector (SSD)[8], still rely on the underlying hardware.

III. MOTIVATION

One of the primary challenges in object detection for
autonomous vehicles is the constantly changing roadside en-
vironment. Latency in this process can lead to catastrophic
accidents. Thus, in the span of a single second, vehicles must
produce many real-time detection results in order to make
accurate maneuvers. Real-time object detection is defined by
Redmon, et al as achieving 30 fps or better [9]. In this study,
as our primary focus was on image detection, we extrapolated
a benchmark of 33 milliseconds for inference to qualify as
real-time. To further bolster vehicles’ perception, we envision
connected autonomous vehicles combating object occlusion
and expanding sensing range. Regarding connectedness, edge
devices strike a happy medium between the alternatives of
cloud centralization and full vehicle-to-vehicle decentraliza-
tion, providing the computational savings of sending and
receiving information from one place while also boosting
speed by bypassing internet protocols.

As edge devices can facilitate both real-time detection and
data sharing, they are the focus of our study. Our target system
is F-Cooper, a system that uses PyTorch as its main machine
learning framework. However, due to this, traditional static
profiling methods will not work due to the dynamic graph
nature of PyTorch, it will generate different network behavior
at runtime for model optimization [29]. With static offline
testing, it is not possible to glean all the available details.
So we turn to NVIDIA’s Nsight System (NSys), a sampling
based profiler. With a sampling of 1 million events per sample
at 1000Hz, we are able to directly gather information during
run-time.

A. End to End profiling for Edge

To fully understand the workflow of something like the F-
cooper framework, we must keep track of resources such as
data, scheduling, and hardware interactions.

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

Fig. 1. ChainerCV Output Images

1) Data: In modern day autonomous systems, multiple
sensor types are utilized, with the most commonly seen being
the combination of LiDAR and Camera for the main driving
input. Take tesla for example, to help reduce latency, they
utilize embedded soc on the sensors to help pre-process the
information. More on single vehicle here On the other hand,
other methods include V2X infrastructures and frameworks.
Take F-Cooper for example, the data is extracted from the
vehicles before being sent to the edge. In many cases, there
will also be the overhead of network latency on top of
everything else.

2) Scheduling: Scheduling is often a matter handled by the
framework, such as PyTorch, or the system, such as native
kernel functions. Normally this approach is fine as modern
systems are quite well equipped to handle loads. However,
when we add in the factors for real-time driving and real-
world scenarios with passenger lives on the line, we must take
utmost caution.

This variable is embedded in every step of the way, from
deciding which vehicle to service all the way to how the edge
unit needs to process the data. In our profiling, we must take
care to address this variable.

3) Hardware: As for the hardware component, the neces-
sity for profiling is even more prudent than the previous two
factors added together. From the perspective of manufacturers
and customers, this issue is a simple matter of how much they
are willing to spend. However, even with the best hardware,
we will find that even the best hardware will be limited by
a plethora of bottlenecks. Take yolov4 for example, while it
is capable of real time detection on the developer’s platform
with top of the line hardware. On our hardware, TU106 Silicon
with a memory bandwidth of 327.89 GiB/s, we see an average
of 30 to 40 frames per second(fps) inference on video data,
but when we perform the same inference on a live video feed,
the performance drops down to 6 fps, a loss of performance
by 500 %.

Specifically for the purpose of this research, we relied on
a consumer grade NVIDIA GeForce RTX 2070 (mobile) as
the GPU for the external accelerator of all the codes tested.
The driver version associated with the GPU is 465.19.01 with
CUDA version 11.3. The architecture on the machine we used
is Intel x86_64. The Central Processing Unit (CPU) was an
Intel(R) Core™ i7-1050H CPU @ 2.6GHz which contains 6

32

cores with 2 threads each, for a total of 12 threads.

IV. FRAMEWORKS

A framework provides fundamental low-level functional-
ity to a programmer so that they can focus on the high-
level functionality aspects of their application. Each of the
frameworks use different architecture to calculate the real-time
object detection of an image. The frameworks selected for this
research all utilized the Graphics Processing Unit (GPU) for
computation power.

In this section, a brief description of the architecture and
functions for each framework is explained. First, a descrip-
tion of the ChainerCV framework, followed by Darknet, and
finally PyTorch. A brief mention of the models used for each
framework will also be provided in this section. Though a
more thorough look at the models will be discussed in the
Models section. The datasets that the frameworks used in this
research are the PASCAL Visual Object Classes (VOC) [2]
and Common Objects in Context (COCO) [11]. Each dataset
used for each framework-model combination will also be
mentioned.

A. ChainerCV

ChainerCV is an add-on package to the Chainer framework,
which is intended to provide non-experts fast prototyping
by utilizing pre-trained weights, state-of-the-art models, and
training scripts [30].

The deep neural network requires a significant amount of
power in order to perform floating point numeric calcula-
tions. Therefore, an external accelerator, such as a GPU, is
necessary in order to fully leverage the computation power.
Chainer specifically relies on the open-source Python library,
CuPy which provides the computational power of specifically
NVIDIA GPUs and was initially developed as the back-end
of Chainer. Only in June 2017 did CuPy become independent
of Chainer. CuPy fully utilizes the GPU architecture with the
CUDA platform that is provided by NVIDIA. Since CuPy has
a NumPy-like syntax, it is highly compatible with NumPy
and can often be interchangeable with a NumPy import. CuPy
implements many functions that supports linear algebra, sparse

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

Chainer Yolo |

Chainer SSD ‘

Chainer Faster
RCNN

Fig. 2. ChainerCV GPU Nsys Results

Fig. 3. Darknet Output Images

matrices, and sorting which all assist with the computations
needed for a deep learning framework. [30]

For this research, three models were examined utilizing
the ChainerCV framework; Faster R-CNN, SSD, and YOLO
version 1. ChainerCV is a single download that gives access
to each of the models mentioned and as such all models utilize
the same datasets. The datasets used for this framework are
the VOC 2007 and 2012 [2].

B. Darknet

One of the goals of the Darknet framework was to allow
conventional consumer grade GPUs for training and detecting
objects. To accomplish this task, Darknet uses a small number
of groups (1-8) in convolutions layers and relies on the
use of grouped-convolution while refraining from the use of
Squeeze-and-excitement (SE) blocks [31]. According to [31],
the hope in doing so is to find the optimal balance among
the input network resolution, the convolutional layer number,
the parameter number, and the number of layer outputs. While
Darknet is not the most proficient in object classification, it
claims to excel at the detection of objects utilizing the COCO
dataset [31].

For this research, only one model was examined utilizing the
Darknet framework, YOLO. There is, however, two versions
of YOLO examined, version 3 and version 4. Darknet is a

33

single download that gives access to both version 3 and 4 of
YOLO as as such uses the same dataset. The dataset used for
this framework is COCO 2017 [11].

C. PyTorch

Most deep learning frameworks will favor usability over
speed or vice versa. PyTorch uses hardware accelerators,
like GPUs, to favor both usability and speed. According to
[29], some of the design goals for PyTorch include: keeping
interfaces simple and consistent with the already popular
Python language; prioritizing research by ensuring that writing
models, data loaders, and optimization is as easy and produc-
tive as possible; provide tools that will allow researchers to
manually control their code’s execution in order to find their
own performance improvements outside of what the library
already provides; and keeping the internal implementation
simple in order to easily adapt to new situations and keep
up with the constant progression of the Al field.

For this research, three models were examined utilizing the
PyTorch framework; Faster R-CNN, SSD, and YOLO version
3. Each model is part of its own individual code and do not use
the same dataset. The Faster R-CNN and YOLO models utilize
the COCO 2017 [11] dataset while the SSD model utilizes the
VOC 2007 and 2012 [2] datasets.

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

V. MODELS

There are three models utilized during this research:
Faster Region-based Convolutional Neural Networks (Faster
R-CNN), Single Shot MultiBox Detector (SSD), and You Only
Look Once (YOLO). During this section, the architectures for
each model will be explained.

A. Faster R-CNN

Region-based Convolutional Neural Networks (R-CNNs)
have for many years been the influence in the advancement
of object detection. At first the R-CNNs were computationally
expensive in their original development which prompted the
advancement of fast R-CNN, which used GPUs for faster
computation power. Both R-CNN and fast R-CNN rely on a
Selective Search architecture, which greedily merges superpix-
els based on engineered low-level features [6]. However, while
fast R-CNN was an improvement from R-CNN, the Selective
Search architecture became the bottleneck of the algorithm.
Therefore, when faster R-CNN was developed, it introduced
the use of a different type of architecture, Region Proposal
Network (RPN). RPN generates potential bounding boxes in
an image, classifies the proposed boxes, and then refines the
bounding boxes by eliminating any duplicate detection, and
finally re-scores the box based on the other objects in the
scene [9]. The frameworks in this research that use the Faster
R-CNN model are ChainerCV and PyTorch.

B. S§D

Often times for object detection, when speed is preferred
then the accuracy of object detection suffers. The Single
Shot MultiBox Detector (SSD) model maintains an accuracy
of object detection and increases the speed by avoiding the
re-sampling of pixels [8]. Some of the changes SSD has
implemented that differs from other models, such as Faster
R-CNN and YOLO, includes offsetting bounding box loca-
tions by using a small convolutional filter to predict object
categories, detecting different aspect ratios with the use of
separate predictors (filters), and then applying these filters
to various feature maps from the later stages of a network
in order to perform object detection at multiple scales [8].
The frameworks in this research that use the SSD model are
ChainerCV and PyTorch.

C. YOLO

The You Only Look Once (YOLO) model reframes object
detection as a single regression problem to predict what
objects are in an image and where they are located within
the image by only looking at the image a single time [9].
The simplicity of YOLO is one of the reasons it is considered
on of the fastest models available; the image is resized, run
through a convolutional network that simultaneously predicts
multiple bounding boxes with potential classifications, and
then output goes through a non-max suppression to filter
the object detection predictions [9]. The frameworks in this
research that use the YOLO model are Chainer, Darknet, and
PyTorch.

34

VI. CHARACTERIZATION RESULTS

For the evaluation of the different frameworks in this paper,
first we will examine the differences in the output images
that each model produced. Then we will examine the GPU
Kernels and briefly discuss the time that the code spent on
the GPU. A more comparative look of the time on the GPU
will be discussed in the Results section. Each Framework-
model combination utilize the same image [34] for a clearer
comparison of the output images.

A. ChainerCV

The ChainerCV framework that was utilized in this research
included the three models, Faster R-CNN, SSD, and YOLO, in
a single code. Each have a similar structure to each other with
varying speeds and detection accuracy that each produced.
Figure 1 displays the output images of each model using the
ChainerCV framework.

From the output images, we notice that the Faster R-CNN
(left) and SSD (center) had a slightly more accurate detection
rate on the bounding boxes compared to the YOLO (right)
model. When paired with the ChainerCV framework, the
YOLO model did not produce as many detected vehicles as
Faster R-CNN or SSD models. The decrease in accuracy and
detection rate could be the result of attempting to write a single
code for multiple models as opposed to optimizing a code to
a specific model.

The algorithmic pattern mapped out by the NSys program,
figure 2 displays a scattered pattern. The reason for this is that
the code is constantly switching between processing the data
on the CPU and GPU. Where the GPU has gaps, the CPU
takes over processing.

This switching method is not the most efficient since the
CPU has an overall longer duration for processing than the
GPU does. This switching prolongs the code into making
ChainerCV the longest running framework of those tested in
this research.

B. Darknet

The single Darknet code utilized during this experiment
used both version 3 and 4 of the YOLO model. Therefore, this
comparison can only be observed between the two different
versions of the same model. Figure 3 displays the output
images of both versions.

The amount of vehicles detected for the Darknet framework
far exceeded the amount of cars that were detected for the
ChainerCV framework. There are slight differences between
the YOLO version 3 (left) and version 4 (right) codes. The
most noticeable being that version 4 detects the humans
driving the vehicles in the front of the image while version
3 does not. Version 3, however, detects more vehicles further
along the street in the image than version 4 does.

The algorithmic pattern mapped out by the NSys program,
figure 4, displays a constant stream of GPU commands. While

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

Darknet Yolo V3 gy muess
w

JES i
Darknet Yolo VA gy wmow nosmemn s ommae:: 0p:
COBBDO0 | versron 110 o) 5. 0)) v 08)

Fig. 4. Darknet GPU Nsys Results

PyTorch Faster R-CNN R

1'of2 | PyTorch Faster R-CNN R

Fig. 5. PyTorch Output Images

Darknet does utilize the CPU before and after the GPU, the
GPU computation is relatively consistent.

The Darknet framework has consistently the fastest dura-
tion for object detection of the frameworks selected for the
research. The claim of being optimized for consumer grade
equipment [31] appears to be accurate.

C. PyTorch

For PyTorch, there are three different codes that were used
for the three different models, Faster R-CNN, SSD, and YOLO
version 3. As such, the resulting output images differ not only
in speed and accuracy but also how the bounding boxes are
displayed. Figure 5 displays the output images of all three
individual codes.

For the Faster R-CNN (top), two output images were
created. The image on the top left displays the bounding boxes
around all cars that the code was able to detect. The top right
image displays the bounding boxes around all buses that the
code was able to detect. The resulting output image of the SSD
model (bottom left) has the least amount of vehicles detected
of all the different code variances. The bounding boxes are
also less noticeable and more difficult to pick out. The YOLO
version 3 model (bottom right) had the most objects detected
and even included the variance of truck and persons on the
street detection. However, the accuracy of the bounding boxes
were less than the Faster R-CNN model.

The algorithmic pattern mapped out by the Nsys program,
figure 6, displays a continuous stream of GPU commands for
Faster R-CNN and SSD models. The YOLO model displays
a more sparse pattern of GPU commands.

35

One of the interesting things about the way the PyTorch
framework is structured, all of the memory the GPU needs is
allocated prior to any detection calculation. By taking the time
in the beginning to allocate the memory usage, the detection
computation time is significantly reduced.

VII. KEY FINDINGS

Our profiling results demonstrate the general trend that
frameworks that support multiple models are slower than those
that are designed around a specific model. Specifically, of
the three models that achieved real-time inference, two were
Darknet YOLO implementations. In contrast, ChainerCV SSD
and Faster-RCNN were extremely slow, running in around five
seconds, catastrophic in a live traffic environment. Another
YOLO implementation on ChainerCV nearly met our bench-
mark, completing inference in 44 ms, ensuring that YOLO
was overwhelmingly the fastest model on average.

GPU utilization was also a primary research interest targeted
in profiling. We find that we can loosely stratify utilization by
framework: PyTorch most heavily relies on CUDA kernels,
ChainerCV relatively evenly splits workload between kernels
and memory, and Darknet is highly dependent on memory.
Given these patterns, we conjecture that Darknet’s high in-
ference speed can be largely attributed to its high memory
utilization percentage.

The quickest framework-model combination tested was the
Darknet YOLO version 3 code. The accuracy and number
of objects detected was also stellar in comparison to the
others, visibly detecting many more cars at farther distances.
Overall, for the hardware setup utilized for this research,
the Darknet YOLO version 3 code had an increase of speed
without much sacrifice to accuracy. Darknet YOLO version 4,
while also maintaining a good accuracy, took almost double
the processing time that version 3 did. Contrasting YOLOV3,
while PyTorch-SSD does have the second fastest processing
time, the number of objects that were detected was the lowest
among all of the framework-model combinations.

VIII. DI1SCUSSION

Each framework-model combination showed varying results
for the kernel outlay. Through examination of the kernels, we
are able to see that the more efficient codes were those that
relied more on the GPU as opposed to the CPU. Though, it is
possible that due to the ChainerCV being a single code written
for all three models, that the code might not be optimized for
each model. Therefore, a way to further this research is to also
test frameworks that are optimized for a specific model, in the

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

Pytorch Faster
RCNN

PyTorch SSD

PyTorch YOLO

FF 9

A jamm
A i Nmn

s=ea
— "

Fig. 6. PyTorch GPU Nsys Results

Runtime of Codes

PyTorch YOLO v3
PyTorch SSD

PyTorch Faster R-CNN
Darknet YOLO v4
Darknet YOLO v3 HGPU Time

Chainer YOLO v1 m Total Time

Framework and Model

Chainer SSD

Chainer Faster R-CNN

o

2000 4000 6000 8000 10000 12000 14000 16000

Time (ms)

Fig. 7. Runtime of Codes

Model hd GPU Inference Time (ms) X3
Darknet YOLOW3 16.2
PyTorch 55D 239
Darknet YOLOwd 33.6
Chaimer YOLOv1 44.1
PyTorch Faster-RCNMN 163.9
PyTorch YOLOw3 447
Chainer Faster-RCNMN 47276
Chainer 55D 5685.2)

Fig. 8. GPU Inference Time

vein of Darknet, which also utilizes both the CPU and GPU,
in order to gain a more accurate perspective.

When looking at accuracy, Darknet has produced the overall
fastest inference speed with no drastic decrease in accuracy
for object detection utilizing the YOLO framework. It is also
worth mentioning that three of the four YOLO framework-
model combinations were among the top four fastest GPU
inference times as shown by figure 8 in the Results section.
Therefore, we must conclude that the YOLO model, specifi-
cally paired with the Darknet framework, is the most efficient
algorithm for consumer grade computing equipment.

Note that all of these results were conducted using consumer
grade computing equipment and as such, may vary with other
consumer grade or industrial grade computing equipment.
With further funding of this type of research, we can gain a

36

better understanding of the full impact that these programs
have on other consumer grade computing equipment as it
could be tested on a variance of other consumer computing
equipment.

IX. CONCLUSION

One of the most significant takeaways from our resource
characterization was that the four models with the highest
GPU memory utilization percentage were also the four models
with the quickest inference times. In future roadside edge
devices, we may therefore be interested in prioritizing memory
rather than CUDA cores to optimize speed. We agree that
further exploration is necessary to better understand our results
and offer clarity on edge requirements. Possible extensions
include profiling these models on a variety of GPUs, testing
on video input, and performing detection on a large data set
with varying pixel count, number of objects, and weather
conditions.

REFERENCES
[1] Y. Lecun et al. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE
86.11 (1998), pp. 2278-2324. por: 10.1109/5.726791.
Mark Everingham et al. PASCAL Visual Object Classes
(VOC). 2007 and 2012. URL: http://host.robots.ox.ac.
uk/pascal/VOC/.
Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are
we ready for Autonomous Driving? The KITTI Vision
Benchmark Suite”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2012.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. “Imagenet classification with deep convolutional
neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097-1105.
Daniel J Fagnant and Kara Kockelman. “Preparing a
nation for autonomous vehicles: opportunities, barriers
and policy recommendations”. In: Transportation Re-
search Part A: Policy and Practice 77 (2015), pp. 167-
181.

(2]

(3]

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

(6]

(8]

(9]

[17]

(18]

[19]

Shaoqing Ren et al. “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Net-
works”. In: Advances in Neural Information Processing
Systems (NIPS). 2015.

Marius Cordts et al. “The cityscapes dataset for se-
mantic urban scene understanding”. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2016, pp. 3213-3223.

Wei Liu et al. “Ssd: Single shot multibox detector”.
In: European conference on computer vision. Springer.
2016, pp. 21-37.

Joseph Redmon et al. “You only look once: Unified,
real-time object detection”. In: Proceedings of IEEE
conference on computer vision and pattern recognition.
2016.

Xinlei Chen and Abhinav Gupta. “An Implementation
of Faster RCNN with Study for Region Sampling”. In:
arXiv preprint arXiv:1702.02138 (2017).

Tsung-Yi Lin et al. COCO: Common Objects in Con-
text. 2017. URL: https://cocodataset.org/#home.
Tsung-Yi Lin et al. “Feature pyramid networks for ob-
ject detection”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017.
Yusuke Niitani et al. “ChainerCV: a Library for Deep
Learning in Computer Vision”. In: ACM Multimedia.
2017.

Joseph Redmon and Ali Farhadi. “YOLO9000: better,
faster, stronger”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2017.
J. Ren et al. “Accurate Single Stage Detector Using Re-
current Rolling Convolution”. In: ArXiv e-prints (Apr.
2017). arXiv: 1704.05776 [cs.CV].

Shaoqing Ren et al. “Object detection networks on
convolutional feature maps”. In: IEEE transactions on
pattern analysis and machine intelligence 39.7 (2017),
pp. 1476-1481.

Mahadev Satyanarayanan. “Edge computing for situa-
tional awareness”. In: IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN).
2017.

Y. Zhou and O. Tuzel. “VoxelNet: End-to-End Learning
for Point Cloud Based 3D Object Detection”. In: ArXiv
e-prints (Nov. 2017). arXiv: 1711.06396 [cs.CV].
Toru Baji. “Evolution of the GPU Device widely used
in Al and Massive Parallel Processing”. In: 2018 IEEE
2nd Electron Devices Technology and Manufacturing
Conference (EDTM). IEEE. 2018, pp. 7-9.

Xinyu Huang et al. “The ApolloScape Dataset
for Autonomous Driving”. In: arXiv preprint
arXiv:1803.06184 (2018).

Congcong Li. High quality, fast, modular reference
implementation of SSD in PyTorch. https://github.com/
lufficc/SSD. 2018.

Wenjie Luo, Bin Yang, and Raquel Urtasun. “Fast and
furious: Real time end-to-end 3d detection, tracking
and motion forecasting with a single convolutional net”.

37

(23]

(24]

(25]

[26]

(28]

(29]

(30]

(31]

(36]

(37]
(38]

In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 2018, pp. 3569-3577.
Hang Qiu et al. “AVR: Augmented vehicular reality”.
In: Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services.
ACM. 2018, pp. 81-95.
Joseph Redmon and Ali
incremental improvement”.
arXiv:1804.02767 (2018).
Yan Yan, Yuxing Mao, and Bo Li. “Second: Sparsely
embedded convolutional detection”. In: Sensors 18.10
(2018), p. 3337.

Qi Chen et al. “Cooper: Cooperative Perception for
Connected Autonomous Vehicles Based on 3D Point
Clouds”. In: 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS). 2019,
pp. 514-524. po1: 10.1109/ICDCS.2019.00058.

Qi Chen et al. “F-cooper: Feature based cooperative per-
ception for autonomous vehicle edge computing system
using 3D point clouds”. In: Proceedings of ACM/IEEE
Symposium on Edge Computing (SEC). 2019.

Sidi Lu, Yongtao Yao, and Weisong Shi. “Collaborative
Learning on the Edges: A Case Study on Connected
Vehicles”. In: 2nd {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 19). 2019.

Adam Paszke et al. “Pytorch: An imperative style, high-
performance deep learning library”. In: Advances in
neural information processing systems 32 (2019).
Seiya Tokui et al. Chainer: A Deep Learning Frame-
work for Accelerating the Research Cycle. Sept. 2019.
URL: https://export.arxiv.org/pdf/1908.00213.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan
Mark Liao. YOLOv4: Optimal Speed and Accuracy of
Object Detection. Apr. 2020. URL: https://arxiv.org/pdf/
2004.10934.pdf.

Asif Faisal et al. “Mapping two decades of autonomous
vehicle research: A systematic scientometric analysis”.
In: Journal of Urban Technology 28.3-4 (2021), pp. 45—
74.

Glenn Jocher et al. ultralytics/yolov3: v9.5.0 - YOLOvS
v5.0 release compatibility update for YOLOv3 (Version
v9.5.0). 2021.

Sarah Maslin Nir. Traffic in New York City has returned
to nearly prepandemic heights, mirroring a trend repli-
cated nationwide. May 2021.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan
Mark Liao. “Scaled-YOLOv4: Scaling Cross Stage Par-
tial Network”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). June 2021, pp. 13029-13038.

Qing Yang et al. “Machine-learning-enabled cooper-
ative perception for connected autonomous vehicles:
Challenges and opportunities”. In: IEEE Network 35.3
(2021), pp. 96-101.

Autopilot — Tesla. https://www.tesla.com/autopilot.
GeForce — Nvidia. https://www.nvidia.com/.

Farhadi.
In:

“Yolov3: An
arXiv preprint

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

[39] Intel Editorial: For Self-Driving Cars, Theres Big

Meaning Behind One Big Number: 4 Terabytes —
Business Wire.

[40] Velodyne — LiDAR. https://velodynelidar.com/.

38

Authorized licensed use limited to: University of North Texas. Downloaded on December 15,2022 at 23:24:50 UTC from |IEEE Xplore. Restrictions apply.

