Online Self-Evolving Anomaly Detection for
Reliable Cloud Computing

Tianyu Bai*, Haili Wang*, Jingda Guo*, Sihai Tang*, Xu Ma', Mahendra Talasila*, Song Fu* and Qing Yang*
*Department of Computer Science and Engineering, University of North Texas
f Department of Electrical and Computer Engineering, Northeastern University
*{TianyuBai, HailiWang, JingdaGuo, SihaiTang, MahendraTalasila} @my.unt.edu,
"ma.xul @northeastern.edu, *{Song.Fu, Qing.Yang} @unt.edu

Abstract—Production cloud computing systems consist of hun-
dreds to thousands of computing and storage nodes. Such a
scale, combined with ever-growing system complexity, is caus-
ing a key challenge to failure and resource management for
dependable cloud computing. Efficient system monitoring and
failure detection are crucial for understanding emergent, cloud-
wide phenomena and intelligently managing cloud resources
for system-level dependability assurance and application-level
performance assurance. To detect failures, we need to monitor
the cloud execution and collect runtime performance data. These
data are usually unlabeled at runtime in real-world systems, and
thus a prior failure history is not always available. In this paper,
we present a self-evolving anomaly detection framework for cloud
dependability assurance. Our framework does not require any
prior failure history, and it self-evolves by continuously exploring
newly verified anomaly records and continuously updating the
anomaly detector at runtime without expensive model retraining.
A distinct advantage of our framework is that cloud system
operators only need to check a small number of detected anoma-
lies (compared with thousands-millions of system/application
event records) and their decisions are leveraged to update the
detector. Thus, the detector evolves following the upgrade of
system hardware, update of software stack, and change of user
workloads. Moreover, we design two types of detectors, one
for general anomaly detection and the other for type-specific
anomaly detection. Leveraging self-evolution and online learning
techniques, our detectors can achieve 88.94% of sensitivity and
94.60% of specificity on average, which makes them suitable for
real-world deployment.

Index Terms—Cloud Computing, Reliability, Anomaly Detec-
tion, Online Learning.

I. INTRODUCTION

Cloud computing is widely used in almost all aspects of
our daily life [31], from social media, online shopping, movie
streaming, photo storage, document editing to scientific com-
puting, big data processing, and smart cities (e.g., autonomous
vehicles, smart transportation and more). Production cloud
systems, such as Amazon Web Services, Google Cloud Plat-
form, and Microsoft Azure, are both economically successful
and technically popular.

Despite the great efforts on the design of reliable compo-
nents, the increase of cloud systems’ scale and complexity has
outpaced the improvement of components’ reliability. Failure
occurrence as well as its impact on cloud performance and
operating costs becomes an increasingly important concern
to cloud system operators and cloud service providers [19].
Anomaly detection [24] is an important failure management

technology for computer systems. It detects anomalous sys-
tem/component behaviors and possible failures by analyzing
history behaviors and execution states. Anomaly detection in
cloud computing systems provides a cost-effective mechanism
for resource allocation, virtual machine/container scheduling,
and cloud maintenance.

During cloud operations, a large amount of monitoring data
is collected to track the cloud’s operational status. Software
log files, system audit events, and network traffic statistics are
examples of such measurements. These data provide valuable
information about the cloud’s states and health. A failure
occurrence scatters its trace in the measurement data and
we need to analyze the data to identify a system/component
failure. However, cloud measurements usually contain a huge
number of attributes and continuous monitoring leads to an
overwhelming data volume. It is very difficult, if not im-
possible, to manually infer the cloud operating status from
those measurements. Another challenge of anomaly detection
from measurement data originates from the dynamics of cloud
computing systems [28]. It is common in those systems
that user behaviors and servers’ loads are changing. The
cloud hardware and software components are also frequently
replaced, upgraded, or updated. This requires an anomaly de-
tection mechanism be able to identify new types of anomalies
and update its detection model at runtime as the executing
environment changes.

The traditional approaches to anomaly detection rely on
statistical analysis or learning algorithms to approximate the
dependency of failure occurrences on various performance
attributes; see [13] for a comprehensive review. The underlying
assumption of those methods is that the training datasets are
labeled, i.e., for each measurement used to train an anomaly
detector, the designer knows if it corresponds to a normal
execution state or a failure. However, the labeled data are
not always available in real-world cloud computing systems,
especially with hardware and/or software upgrades or updates,
or workload changes.

Moreover, the existing approaches usually adopt an offline-
training-and-online-detection scheme. Specifically, an anomaly
detector is trained offline using a vast amount of data. Then,
the detector is used for online anomaly detection. Once
deployed, the detector is rarely changed unless the detection
accuracy is lower than expectation (e.g., below a predefined

accuracy threshold). When the detector becomes inaccurate,
an offline retraining is performed and the anomaly detector is
replaced by a newly trained model. As a result, the perfor-
mance of anomaly detection fluctuates, that is the detection
accuracy drops as time goes by until a replacement by the
retrained detector occurs, which causes an abrupt change of
the detection accuracy. After that, the cycle repeats. As model
retraining is time-consuming, the obsolete detector remains in
service for a longer period of time, which causes more sys-
tem/component failures undetected and/or false alarms. This
fluctuation of the detection performance affects the efficacy of
system monitoring and resource management as well.

In this paper, we address these issues by presenting a self-
evolving anomaly detection framework. It adopts a novel,
adaptive anomaly detection approach. Specifically, it does not
require a prior failure history. It continuously monitors the
cloud execution and collects runtime performance data. To
tackle the high dimensionality of cloud performance metrics,
our framework extracts the most relevant metrics for anomaly
detection. It describes the cloud performance using the relevant
metrics and employs online learning models to detect anoma-
lies. As the detections later get verified (either confirmed or
rejected) by cloud operators, our framework adapts its anomaly
detector by continuously learning from these verified detec-
tions (i.e., online self-evolution). The anomaly detectors are
updated to refine future detections without service disruption
(due to retraining) or abrupt changes (due to model replace-
ment). In addition, the cloud operators can report observed
but undetected failure events to the anomaly detector which
exploits these events to improve its model and detect new types
of anomalies.

The main contributions of this paper are as follows.

o We design a self-evolving anomaly detection framework
for cloud computing systems. It does not require any
previously labeled failure data and can learn from newly
generated records incrementally online. No hardware or
software in the existing cloud computing systems needs
to be modified to support the proposed framework.

e In pursuit of online learning, we develop an efficient
anomaly detector, leveraging a stochastic gradient descent
method to build a detection model.

o While existing anomaly detection methods only classify
a record as either normal or not, ignoring the difference
between anomalies, our framework can detect abnormal
behaviors with their different anomaly types.

o By adding a sparsity regularization component to our
framework, the anomaly detector can select the most
relevant attributes for effective detection.

o Results from extensive experiments show that our self-
evolving framework achieves a better performance com-
pared with the existing approaches/models. Specifically,
our self-evolving anomaly detector achieves 88.94% of
detection sensitivity and 94.60% of detection specificity
without expensive retraining, making it practical for real-
world cloud computing systems.

The remaining paper is organized as follows. In Section
II, we review the related work on cloud computing anomaly
detection. Section III presents the pipeline of our self-evolving
framework and detail our novel detectors. Section IV presents
and discuss the experimental results. Section V concludes the
paper with remarks on future research.

II. RELATED WORK

Theories and practices that apply machine learning methods
to anomaly detection have been studied for many years. An
early practice of learning anomaly detection is to apply Naive
Bayes [25] for detecting cloud anomaly [27]. Combined with
feature transformation algorithms, the work in [27] achieved
a promising performance. Following a similar strategy, a dis-
tributed approach [22] used Independent Component Analysis
(ICA) [15] instead of Principal Component Analysis (PCA)
[16] for feature selection. In addition, a decision tree model
was employed to classify anomalies. The general pipeline
(composed of two modules: an unsupervised feature trans-
formation module that preprocesses the collected data and a
supervised classification module that detects anomalies) has
also been used for disk failure analysis, network security,
cloud computing detection, etc. Nevertheless, detecting cloud
anomalies by simply using a supervised learning algorithm has
limitations. The unlabeled data logs and entries make that type
of approach impractical for online anomaly detection in real-
world cloud computing systems with constant changes (e.g.,
hardware upgrades, software updates, and workload shifts).

Considering a lack of prior knowledge of failures, Pannu
et al. [24] used unsupervised methods (i.e., one class sup-
port vector machine [3]) for cloud anomaly detection. Their
strategy allows the adaptive system to surpass the previously
published works in real-world applications, such as [11], [30].
The success comes from 1) no introduction of prior knowledge
in the model learning stage, and 2) a high-capacity of one-class
support vector machine (SVM). Analogous to Pannu’s work
[24] that applied unsupervised learning algorithms, recent
studies [9], [14] employed support vector data description
[29] to detect ICA/Kernel-PCA transformed data. The results
demonstrated that they improved the detection sensitivity by
19.6% over Bayesian predictors and decision trees ensemble
[11].

With the advance of machine learning, a trend of using
learning algorithms to detect cloud computing anomaly is
emerging [20], [23]. The supervised detector learns in a man-
ner of feedback from detections. Hence, adaption is an elastic
alternative of unsupervised learning, especially in the field of
cloud computing anomaly detection. The anomaly detection
framework yields a better cloud computing anomaly detection
performance [5], [10], [12]. Aside from being capable of
replacing unsupervised detectors, adaptive frameworks are also
appropriate for online learning.

In parallel with our work, there are efforts, such as [4], [26],
using neural network, especially deep learning, for anomaly
detection. In addition to accuracy, online learning would not
be an issue as stochastic gradient descent (SGD) optimizer

[17] has been adopted in those methods. Although neural
networks achieve good results in computer vision and natural
language processing, it may not be suitable for cloud anomaly
detection. The key limitations are as follows. 1) Training a
neural network requires extensive resources and consumes
a considerable amount of time, which is not cost-effective
considering the scale and complexity of cloud computing
systems. 2) The cloud failure data is highly imbalanced and
traditional neural networks cannot handle well. 3) The log
data from real-world cloud computing systems usually do not
contain a large number of labeled instances for training a
complex neural network.

Different from aforementioned works, our proposed frame-
work pursuit a simple yet efficient realization of anomaly
detection for real-world cloud computing systems. We cus-
tomize models for class-agnostic and class-known anomaly
detections respectively. The models meet the requirements
of classification, online learning, and feature selection. The
customized models can be considered as performing both a
feature reduction task and an anomaly detection task (e.g.
[9], [27]). Unlike PCA and ICA which project the original
data to a new subspace and lose the original semantics of
features, we evaluate each feature by weights. By leveraging
the advantages of the model that can self-evolve incremen-
tally, we can dynamically and automatically select the most
important features for future detections. We design a self-
evolving framework that feeds verified predictions to the
training process to automatically adapt the model. This design
allows us to employ our framework and detectors to real-world
cloud computing systems without overfitting, performance
fluctuation, or service disruption.

ITI. SELF-EVOLVING ANOMALY DETECTION FRAMEWORK

To build a self-evolving architecture for cloud anomaly
detection, we propose a decoupled framework, leveraging the
self-evolving property to adjust our embedded customized de-
tection models over iterations, and improving the performance
over time. Different from the existing two-stage detection
methods (i.e., using PCA/ICA for dimension reduction, then
feeding the processed data to a classifier), we design a series
of single-stage detectors for cloud anomaly detection. These
detectors identify anomalies, select relevant attributes, and
improve models continuously at runtime.

A. Overall Architecture and Key Components

System states and application execution are monitored in a
cloud computing system. The collected runtime data is pro-
cessed by an anomaly detector for classification. The detected
anomalies are then examined by cloud operators. The verified
events are then used to update/refine the detector at runtime
without offline model retraining. The detector selects the most
relevant attributes for future detections. Algorithm 1 sketches
our self-evolving anomaly detection framework.

When the anomaly detection system is first deployed in
a cloud computing environment, we selectively initialize the
detector to identify most records as normal. The detector

Algorithm 1 Self-Evolving Anomaly Detection

Input: Newly collected cloud performance data X
Output: Updated anomaly detector D
Initialize ©.
while X! = NULL do

Predict label Y =

Find predicted negative labeled data X4

Send X4 to Cloud Operators and get verified label
Yneg

Online updating detector ® = update(D, Xneg, Yneg)

predicts records and sends predicted anomaly records to the
cloud operators for verification. These records are identified
as either failures or normal states once a single epoch of
cloud performance data records is available. Different from
other approaches that send all records to the cloud opera-
tors, our method significantly reduce the workload of the
cloud operators by only checking the predicted anomalies
and achieve comparable results (See Section IV). The verified
records are used to update the detector. In our experiments, a
model achieves satisfactory results after ten epochs with 300
examples in each epoch.

The pipeline of our architecture requires an embedded
detector. Most current advances in cloud computing anomaly
detection have been driven by combinations of dimension
reduction methods and powerful basic statistical classifiers,
such as [14], [27]. However, such a combination would not be
suitable for our self-evolving framework since it is unable to
adjust models in an incremental fashion. To address it, we de-
velop new detectors (detailed in the following sections) which
can detect anomalies with their abnormal reason. Moreover, by
introducing a sparsity regularization component, our detector
can also select the most distinguishing attribute from records.

B. Cloud Anomaly Detection

In this section, we present a novel incremental detector for
class-agnostic anomaly detection in cloud computing systems.

To ease our discussion, we use the following notations. The
monitoring system collects n execution/state records from the
cloud, and each record contains d attributes. The set of records
is denoted as X € R™*? in the real valued space. The label
y of a certain record is either 1 or -1, representing a normal
record or a failure record. Initially, we use a vector Y € R"
to store the labels of X.

For detection, we adopt a classification plane fashion to
build our models, which is similar to the Least Squares
Estimator (LSE) and Support Vector Machine (SVM). Let
w denote a classification plane which is a column vector
(that is w € R?), the predictions of X can be expressed
by Xw. Following statistical analysis methods, we design an
incremental binary classifier, called L1LS, for cloud anomaly
detection. The design of L1LS is described next.

The Least Squares Estimator [8] is a machine learning
method which minimizes the residual sum of squared errors

between the true labels and predictions. That is

n

D (i — wixw —wo)? (1)

i=1

where w is the bias. We rewrite the objective function by
appending a column vector of 1s and increasing the length of
w by 1 as follows.

min||Y—XwH§. (2)

The classification plane w can be considered as the co-
efficients of attributes. For instance, w; is the weight for
attribute X7. The greater w; is, the more X7 contributes to
the detection. Hence, to select the most relevant attributes, we
should get the elements in w close to 0. Inspired by research
on sparsity such as [18], [21], we modify Equation (2) by
adding L1-norm regularization, which improves the sparsity
of w. That is

min [Y — Xwlf5 + A Jw], , 3)

where)\ is a parameter representing the trade-off between the
empirical loss and model sparsity. We name our design using
LSE with L1-regularization as L1LS.

We note that L1LS cannot be embedded in our self-evolving
framework due to the following two issues. 1) The objective
function of L1LS is not convex, which makes it difficult to
solve. 2) L1LS is not an incremental method which is required
by our framework. To address these issues, we leverage the
Stochastic gradient descent (SGD) method to build our model.
SGD only needs the first-order derivative of our original
model, and it can converge to a local optimal solution. Another
advantage of using SGD is that it meets the requirement of
incremental learning, as SGD learns one example from anther
(or one batch of examples from another batch).

The derivative on both sides of Equation (3) is as follows.

o _ —2X' (Y — Xw) + Asign (w) , 4)
ow

where sign (-) denotes an element-wise function that returns
1 if the element’s value is greater than zero or -1 otherwise.
Specially, if an element is zero, we add a small value le~" to
make the function differentiable. Based on our experiments,
we set the learning rate of SGD to 1le~* for training !. After
several iterations, the objective function converges to a local
minimum and the sub-optimal w can be determined. Algorithm
2 describes how to solve LILS.

Once we have the output w, we are able to detect a cloud
performance record x by comparing the distance of xw to 1
and to -1. If zw is closer to 1, we predict it as a normal record,
otherwise it is considered as an anomaly record.

'A dynamic selection approach is used to modulate the learning rate. For
a quick training process, the initial learning rate is set, e.g., 0.1. Each time
when the value of the objective function does not decrease, we divide the
learning rate by 10. The minimum learning rate is le 7.

C. Self-Evolving Anomaly Detection

In the previous section, we present the LILS model for
anomaly detection. L1LS is effective to detect anomalies and is
capable of selecting the most relevant attributes for detection.
However, it is a binary classifier that can only detect whether
anomalies exist, but not their types.

To generalize from a binary classifier to a multi-class
classifier, we consider two possible ways: 1) “One vs Rest”
and 2) “One vs One”. The “One vs Rest” strategy trains a
single classifier for each class. For C-class detections, we
need to train C — 1 classifiers. In contrast, the “One vs One”
strategy trains oe-1) binary classifiers for a C-way multi-
class problem. There are drawbacks in either of the strategies,
e.g., the training stage is expensive in both time and space.
In addition, these two strategies for multi-class classification
problems could lose the competition between classes. They ig-
nore the information that contributes to differentiating classes.

To address the preceding issues, we develop a multi-class
classifier based on LILS by leveraging the one-hot encoder.
Let = be a performance record that belongs to the c-th class,
based on one-hot encoder, label y is denoted by a row of zero
valued vector y € R¢ where the c-th element’s value is one 2.
For example, if there are five classes and a record that belongs
to the 3-th class, the label can be presented by [0,0, 1,0, 0].
For a dataset X € R"*, the corresponding labels Y € R"*¢
are presented by a n by ¢ matrix.

1) MCLILS: Different from L1LS in which the classifica-
tion plane is a one-dimensional vector, the classification plane
W € R?%¢ of the new multi-class L1-norm Least Squares
model (MCLILS in short) is a c-dimensional matrix. A general
MCLILS model can be expressed as follows.

min [Y — XW |5+ A [[W]|, 5)
and the related derivative are as follows.
OF
— =-2X'(Y-X ;
W (W) + Asign (W) (6)

Although Equation (5) is similar to Equation (3), it is noted
that W in MCLILS is a matrix while w in L1LS is a column
vector. This change enables MCLILS to detect multi-class
records.

Once we obtain the desired W, the prediction of a record
z can be performed by computing x'W and the index of the
max value in vector W indicates the predicted class of z.

2) MCL2ILS: MCLILS improves the detection of anoma-
lies from known classes. However, it is not able to select
the most relevant attributes. For attribute selection, it requires
that most of the rows in W should be close to zeros. A L1-
norm based regularization term is not enough as it cannot deal
with row sparsity. In order to handle the row sparsity in W,
we design an enhanced model by leveraging the L21-norm
regularization term.

2In experiments, we find that using +1 and -1 achieves better results than
using O and +1. This can be explained from two aspects. 1) The model is a
distance based model instead of a possibility based model, and the output is
not in the range of [0, 1]. 2) The distance between -1 and +1 is greater than
that between 0 and +1.

Different from the sparsity requirement of the L1-norm
regularization term, the L21-norm regularization term requires
row sparsity. For a matrix W € R9*¢, the L21 norm is defined
as

.)

d c n
_ 2 _ i
Wil = | D w = o]
i=1 \ j=1 i=1
where w;; is the element in the i-th row and j-th column in
W, and w"* denotes the vector in the i-th row in W.

By adapting the L21-norm regularization term, the target
problem becomes

min [[Y — XWI[3 + A [|W]l, , . ®)

We call this model a Multi-Class L21-norm Least Squares
model (MCL21LS in short). MCL21LS is effective in selecting
the most relevant attributes. Algorithm 2 sketches how to solve
MCL2ILS and it is compatible with online learning.

Algorithm 2 Solving MCL21LS Using SGD.

Input: Newly collected cloud performance data X
Output: w
Initialize weight w, learning rate [r, and parameter A
Compute the objective function
Set d = o0
while d > 1e76 do
Compute the derivative der using Equation (4)
Update the value of the objective function F., =
IF;Drevious — lr * der
Update d= F[n'evious

- Fnew

From Equation (7), we obtain the derivative of the L21-norm
W as follows.

B d
oWl 9 (Zizl Hwi”z)
2,1 _ (9)
8W 8wj
L dx1
E (Z?:l (wzsz)é)
= (10)
8wj
L dx1
= |] (1)
Llwilly] oy
_1)
Toilz wy
_ Twal,)
’ 1
I Twal,] L*d
- -
Twill)
_ Twall, W (13)
1
L deHQ_
=YW (14)

where Y is a diagonal matrix. Thus, the derivative of Equation
(8) w.r.t. W can be expressed as follows.

OF -
g = 2XT(Y —XW) 4 AnW.

Applying Algorithm 2, we can solve Equation(8) efficiently.

15)

IV. PERFORMANCE EVALUATION

We have implemented a prototype of the self-evolving
anomaly detection framework and models and have conducted
experiments using performance data collected from a real-
world cloud computing system. In this section, we present
the experimental results and evaluate the performance of our
anomaly detectors.

A. Experiment Settings

We collect performance data from a cloud computing en-
vironment that consists of 362 servers connected by gigabit
Ethernet in a local data center. The cloud servers are equipped
with two to four Intel Xeon or AMD Opteron cores and 2.5 to
8 GB of RAM. We have installed hypervisors (Xen 4.16.0) on
the cloud servers. The operating system on a virtual machine
is Linux. Each cloud server hosts up to eight VMs. A VM
is assigned up to two VCPUs, among which the number of
active ones depends on applications. The amount of memory
allocated to a VM is set to 2 GB. We run the RUBIS distributed
online service benchmark, MapReduce and machine learning
jobs from the Hadoop MapReduce benchmark suite as cloud
applications on VMs. The applications are submitted to the
cloud computing system through a web based interface.

We have developed a fault injection program, which is able
to randomly inject four major types with 17 sub-types of faults
to cloud servers. They mimic faults from CPU, memory, disk,
and network. One fault was injected at a time and the time
between faults was randomly distributed. We exploit third-
party monitoring tools, such as sysstat [2] to collect runtime
performance data in the hypervisor and VMs, and a Linux
profiler perf [1] to profile performance counters from the
hypervisor on each cloud server. In total, 518 metrics are
profiled, i.e., 182 from the hypervisor, 182 from VMs and
154 from performance counters every minute. They cover the
statistics of every component of a cloud server, including the
CPU usage, process creation, task switching activity, memory
and swap space utilization, page faults, interrupts, network
activity, I/O and data transfer, power management and so on.
We collected the performance data from the cloud testbed
for two months. In total, about 520 GB performance data
were collected and recorded from the cloud computing testbed
during the period. The rolling time window is set as 1,440
records for a day.

An important design advantage of our self-evolving
anomaly detection method is that it requires a small amount
of labeled data in the collected cloud performance data and
reduces the load of cloud operators in checking the cloud
execution logs and data. We initialize the weights that make
the predictions biased towards the normal records which are
dominant. Instead of randomly initializing the weights using a

Gaussian distribution, we use w = rand() +aX ~! Xe, where
« is a parameter that regulates the anomaly rate and rand)()
is a function that generates weights following a standard
Gaussian distribution.

B. Experimental Results

We evaluate the anomaly detectors in terms of sensitivity
and specificity. Other performance metrics, such as accuracy
and Fl-score, are also measured. Our anomaly detectors use
the learning methods that can evolve the models. We set the
number of epochs to 300 in the experiments unless otherwise
specified.

Note that when detecting the type of anomalies, the number
of records in each type is small as the majority of records
are for normal states, which is common in production cloud
systems. The imbalance problem in training may introduce a
significant bias towards normal records, and the training may
ignore anomalies. As a solution, we adopt an up-sampling
method, i.e., SMOTE [7], to generate more anomaly records
and thus balance the data distribution.

A +
0.9 / f N /
VI
I \
08 [+ | \/
@ 07 /
= [
g 0.6 - -
(&) W
= Vi
= d
D 05 ol
= !
0.4 i
Accuracy
+— Sensitivity
0.3 Specificity
0.2
0 5 10 15 20 25
Epochs

Fig. 1: Performance of a self-evolving anomaly detector using
the L1LS model.

1) Performance of the LILS Anomaly Detector: Figure 1
shows the performance of a self-evolving anomaly detector
using the L1LS model. From the figure, we can see that the
specificity fluctuates in early epochs and then converges to
82%-92%. The accuracy follows a similar trend, indicating that
the detector is effective and converges quickly with about 10
epochs. In contrast, the sensitivity always achieves a high level
(around 95%). This may be due to the weight initialization
method and the fact that the normal records outnumber the
failure records in the dataset.

2) Performance of the MCL2ILS Anomaly Detector: An
anomaly detector using the MCL21LS model is able to identify
the type of anomalies in addition to anomalies themselves.
Faults in the dataset consist of four major types from CPU,
memory, disk, and network. Figure 2 presents the detection
performance of an anomaly detector using the MCL2ILS
model for each fault type.

TABLE I: Performance comparison with other detection meth-
ods.

Sensitivity ~ Specificity
Ensemble [11] 72.5% -
Hybrid [9] 92.1% 83.8%
Ours(L1LS) 94.90 % 85.99%
Ours(MCL21LS) | 83.47% 95.72%

We plot the sensitivity, specificity and additional accuracy
in the figures. Overall, the anomaly detector performs better
on all anomaly types as the number of epochs increases. After
about 10 epochs, the detection performance becomes stable.
The average sensitivity over the last five epochs across all
anomaly types reaches 83.47%, and the average specificity
achieves 95.72%. Remarkably, our self-evolving anomaly de-
tector achieves a fairly high specificity for all anomaly types,
which indicates that almost all the detected anomalies are true
faults.

We also plot the receiver operating characteristic (ROC)
curve for each epoch as the ROC curve is independent of
the data distribution and can visualize the performance of the
anomaly detector. Figure 3 includes the ROC curves for the
first 10 epochs. The area under the curve (AUC) is shown in
Figure 4. We can see in Figures 3 and 4 that the performance
of our anomaly detector becomes better as the number of
epochs increases and then gets stable. The AUC stabilizes
around 0.94. The high AUC value indicates that the anomaly
detector would not be influenced by the imbalance in the data
distribution.

From the above results, we find that 1) The anomaly detector
using the MCL21LS model progressively achieves a better
performance as more data are available, and becomes stable
in a short period of time; 2) Our detector is able to detect
different types of anomalies accurately; 3) Across all the
metrics that are evaluated, our anomaly detector performs well.
As demonstrated in Figures 1 and 2, our detector could be
effective and practical for real-world applications.

3) Performance Comparison with Other Approaches: We
also compare our self-evolving anomaly detector with other
existing approaches using learning algorithms, such as an
ensemble of Bayesian sub-models and decision tree classifiers
[11] and a hybrid 1 and 2-class SVM [9]. We list the
performance comparison results with several other approaches
in Table I. As our approach employ online learning, we
measure the average performance over the last five epochs
in comparison.

In Table I, we can see our anomaly detector with the L1LS
model achieves the best sensitivity (94.90%), but not the best
specificity. The detector using the L21LS model achieves the
best specificity (95.72%), but not the best sensitivity. This
is because the LILS model is designed for type-agnostic
anomaly detection, while the L21LS model is tailored for type-
aware anomaly detection. Beside the better performance, a
major advantage is that our self-evolving detectors are capable
of improving/updating the detection model continuously at

CPU Anomaly

e o
[S I
T T

Metric values
o
iy

o
w
T

o
)
T
I

T accuracy
—+—— Sensitivity | 4
| Specificity

e
T

o
+

0 5 10 15 20 25

Metric values
o o o o o o
X~ o o N o o©
o - e
= +
\
&
I

o
w
T
L

0.2 | q
—-—-—accuracy
01 F i -+ Sensitivity | 4
Specificity

0 ;3 16 1‘5 26 25
Epochs
©

Memory Anomaly

Metric values
o o o o
w S [¢,] (o>}

o
(S}
T
I

N accuracy
Sensitivity |
Specificity

o
T

o

Epochs
(b)

Network Anomaly

o
©

T

-

T
<

Metric values
o o o o o o
w S o » ~ @
- - +
. +
-

o
)
T

i —-—-—accuracy
+— Sensitivity
Specificity

o

o

0 E; 1 I0 1 I’5 2I0 25
Epochs
(d)

Fig. 2: Performance of an anomaly detector using the MCL21LS model. From left to right and top to bottom are the detection

results on CPU, memory, disk, and network anomalies.

runtime, which is not provided by other approaches. Further-
more, our approach can adaptively select the most relevant
attributes for future detections. These advantages make the
self-evolving anomaly detector suitable for real-world cloud
computing systems.

4) Efficiency of Anomaly Detection: Different from ex-
isting works that require labels of all training data, in our
self-evolving framework, the cloud operators only check the
detected records, which dramatically reduces the operators’
workload in real-world deployments. As faults are rare in
a system, most of the collected cloud performance records
make little contribution to updating the anomaly detector. The
overhead of our self-evolving anomaly detector is comparable
to that of the conventional counterpart.

From Figure 5, we have the following interesting ob-
servations. 1) Our self-evolving anomaly detector achieves
a similar sensitivity as the all-evolving counterpart (which
retrains a new model for future detection), indicating that our

detector is sensitive to the normal records. 2) Although their
sensitivity is comparable, the specificity of our self-evolving
anomaly detector is a little lower, as the incremental online
learning leads to smaller changes/updates compared with the
all-evolving counterpart. This is acceptable when we take the
higher overhead due to retraining into consideration. As shown
in Figure 5, we only need to label 21.06% (average over the
last 10 epochs) of the original data to achieve satisfactory
results. These results demonstrate the efficacy of our self-
evolving anomaly detectors and justify our design of using
only part of the records to update the anomaly detectors at
runtime.

C. Ablation Study

To evaluate the effectiveness of our proposed approach,
we run the anomaly detectors with different settings on the
collected cloud performance dataset. The measurements are
compiled and listed in Table II.

TABLE II: Effects of settings on the performance of self-evolving anomaly detectors.

Self-evolving anomaly detectors (epoch size:300)
LILS MCL2ILS
SMOTE v v v v v v v v
Biased Init v v v v v v v v
Self-evolving v v v v v v v v
Sensitivity 9370 9538 9398 9505 9547 9493 9571 96.06 | 84.81 8749 84.81 84.01 8749 8347 8810 88.94
Specificity 9479 9405 9486 7638 94.07 8449 7299 76.11 | 96.16 96.89 96.16 96.07 96.89 9572 96.01 96.40

By leveraging SMOTE to up-sample fault data, we can see
the sensitivity is improved both for L1LS and MCL2ILS.
They also achieve a higher sensitivity compared with the other
approaches.

After applying the biased initialization module, the per-
formance shows little difference, indicating that the biased
initialization module does not influence the detection accuracy.
This complies with our expectation, since this module is
mainly to reduce the labeling workload.

As a key feature of our proposed anomaly detectors, we
analyze the impact of the self-evolving (online learning and
model updating) component on the detection performance.
For the L1LS-based anomaly detector, we can see that there
is a decrease in specificity after we add the self-evolving
component. In contrast, the MCL21LS-based anomaly detector
maintains a high specificity. An interesting observation is that
the sensitivity of L1LS is often higher than its specificity,
while an opposite trend is observed for MCL21LS. A possible
reason is that the L1LS model is designed for type-agnostic
anomaly detection, while the MCL21LS model is for type-
aware anomaly detection, which can detect both anomalies
and their types.

D. Attribute Selection

We also study the performance of attribute selection. For
this purpose, we investigate L1LS and MCL21LS models. As
shown in Equations (3), (5), and (8), the objective functions
consist of two modules. The first one is a loss function that
aims to fit the distribution of the input data, and the second one
is the regularization term that aims to avoid over-fitting and
improve the model’s generalization. As a trick, we use the
L1/L21-norm based regularization instead of the traditional
squared L2-norm based regularization. This provides sparsity
[6], [32] for the pursuant weights and makes our models
able to select the most relevant attributes. To evaluate the
effect from each attribute, we rank the attributes by the
L2-norm distance of the corresponding rows in the weight
matrix. Experimentally, we tune the parameter A in the set of
[0.01,0.1,1, 10]. The top ten attributes are selected.

The detailed results are provided in Tables III and IV. We
observe that the selected attributes are relevant and critical,
indicating that our approach is effective. Further research will
be performed to analyze the selected features. For example, we
will analyze the relationship between the detected anomalies
and the selected attributes, aiming to predict and prevent sys-
tem failures and improve cloud reliability. We also observe that
MCL2ILS selects almost the same attributes as L1LS, when

A € {0.01,0.1,1}. This indicates that the selected features
would not change much for different detection tasks and could
be consistent. As a future study, We will correlate the results
from selection with the value/range of A. Experimental results
show that when A = 10, the weights of the attributes are
rather close. However, when A € {0.01,0.1,1}, the weights
are different. Therefore, we select A as 0.01 in the experiments.

V. CONCLUSION

In this paper, we present a new online self-evolving anomaly
detection framework for cloud computing systems. It features
a self-evolving capability of updating and improving the
anomaly detector at runtime without retraining or a prior fail-
ure history. From experiments, We show that with only 21.06%
of labeled records, our self-evolving detector can achieve
a comparable performance with the existing approaches. To
improve the detection accuracy, we design an L1LS model for
type-agnostic anomaly detection and MCL1LS and MCL21LS
models for type-aware anomaly detection. In the experimental
evaluation, our anomaly detectors achieve a consistent im-
provement in both sensitivity and specificity with the self-
evolving functionality. Moreover, in contrast to the existing
approaches, our detectors have the capability of selecting the
most relevant attributes for detection refinement. By carefully
tuning the hyper-parameters of the detectors, we will further
improve the detection performance.

By combining the self-evolving capability and the designed
LILS and MCL21LS models, our anomaly detectors naturally
integrate the online learning, labeling effort reduction, and
feature selection with anomaly detection. We also note that
due to the application of SGD, our design does not follow the
linear space. As future research, we plan to explore non-linear
kernel projection methods to analyze and further enhance our
anomaly detectors. The frequency of data collection is one
minute in our experiments. We note this is not fast enough
for certain anomalies, such as those caused by attacks. Our
design works for higher data collection frequencies. We will
evaluate the efficiency of our detectors when processing data
coming at a higher speed.

ACKNOWLEDGEMENT

This work has been supported in part by the U.S.
National Science Foundation grants CNS-2113805, CNS-
1852134, OAC-2017564, ECCS-2010332, CNS-2037982,
CNS-1563750, DUE-2225229, and CNS-1828105.

[1]

_
Lt

[3]

[4

=

[8

=

[9]

[10]

[11]

TABLE III: Attribute selection by an anomaly detector using the L1LS model.

rank A=0.01 A=0.1 A=1 A=10
weights Attributes weights Attributes weights Attributes weights Attributes
#1 1.1563 rung-sz 1.1378 rung-sz 0.6223 rung-sz 0.0337 oseg/s
#2 0.8523 plist-sz 0.7171 ldavg-1 0.3141 plist-sz 0.0322 Yovmeft
#3 0.7992 ldavg-1 0.7068 plist-sz 0.2975 cswch/s 0.0318 Yosoft 4
#4 | 0.6899 tepsck 0.5946 tepsck 0.2794 tepsck 0.0267 idel/s
#5 0.5683 cswch/s 0.564 cswch/s 0.2744 ldavg-1 0.0261 txpck/s ethO
#6 0.5178 bufpg/s 0.4248 totsck 0.2306 udpbsck 0.026 org/s
#7 0.4177 svctm dev8-0 | 0.3811 bufpg/s 0.1696 %util dev253-1 | 0.0238 pgsteal/s
#8 0.3991 totsck 0.3382 Yosoft 1 0.1357 totsck 0.0222 Yousr 4
#9 | 0.3556 Yosoft 1 0.3321 svetm dev8-0 | 0.1194 pgscank/s 0.0221 tps
#10 | 0.3528 kbcached 0.2987 Idavg-15 0.1112 Yousr 4 0.0215 %util dev253-0
TABLE IV: Attribute selection by an anomaly detector using the MCL21LS model.
rank A=0.01 A=0.1 A=1 A=10
weights Attributes weights Attributes weights Attributes weights Attributes
#1 2.0591 rung-sz 1.907 rung-sz 1.5179 rung-sz 0.1649 Yosys all
#2 1.3902 plist-sz 1.5266 plist-sz 1.3218 ldavg-1 0.1649 rd_sec/s dev253-1
#3 1.2291 Idavg-1 1.3514 Idavg-1 1.2645 plist-sz 0.1648 rxpck/s ethO
#4 1.1666 tcpsck 1.2505 tcpsck 0.9829 tcpsck 0.1648 Yosys 5
#5 0.9077 cswch/s 0.8944 cswch/s 0.94 cswch/s 0.1648 9osys 2
#6 0.8969 bufpg/s 0.8323 bufpg/s 0.88 bufpg/s 0.1647 totsck
#7 | 0.6911 rxdrop/s ethO | 0.7129 totsck 0.6897 kbbuffers 0.1647 majflt/s
#8 | 0.5885 await dev8-0 | 0.6536 rxdrop/s ethO | 0.6383 totsck 0.1647 intr/s
#9 0.5835 kbbuffers 0.6048 await dev8-0 | 0.5802 Idavg-15 0.1647 Yiowait all
#10 | 0.5635 kbcached 0.5586 proc/s 0.5789 await dev8-0 | 0.1646 tps dev253-1
REFERENCES [12] T. Hagemann and K. Katsarou, “A systematic review on anomaly
. . . detection for cloud computing environments,” in AICCC, 2021.
perf: Linux profiling with performance counters. [13] J. Hochenbaum, O. S. Vallis, and A. Kejariwal, “Automatic anomaly
hps:/iperfwiki.kernel.org/. o) detection in the cloud via statistical learning,” arXiv preprint
Syssfat utllttl.es: a collection of performance monitoring tools for Linux. arXiv:1704.07706, 2017.
hitp://sebastien.godar d',p agesperso-orange.fr/. w . [14] J. Huang and X. Yan, “Related and independent variable fault detection
M. Amer, M. Goldsteln, and S. Abd.ennadher, Enhanmpg Oqe'ClaSS based on kpca and svdd,” Journal of Process Control, vol. 39, pp. 88-99,
support vector machines for unsupervised anomaly detection,” in Pro- 2016.
;’)ee‘dm.gj of tz}(l)el? CM SIGKDD Workshop on Qutlier Detection and [15] A. Hyvérinen, J. Karhunen, and E. Oja, Independent component analysis.
escripiion, SULS. . . L John Wiley & Sons, 2004, vol. 46.
A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
« . . L . [16] I Jolliffe, Principal component analysis. Springer, 2011.
‘Anomaly detection using autoencoders in high performance computing
systems,” arXiv preprint arXiv:1811.05269, 2018. [17] Y. LeCun, B. Boser, J. S. Denker, D. He.nderson., R. E. Hovxfard,
A. Borghesi, M. Molan et al., “Anomaly detection and anticipation in W Huctl)bard, am,i L D, JaCkell’ ‘Backpro'pagatl(;n lappheito harsli\;/rlsttseln
high performance computing systems,” IEEE Transactions on Parallel ?9[)8;0 e recognition,” Neural computation, vol. 1, no. 4, pp. 0
and Distributed Systems, 2021. Do " . . o
G. Cai, R. Zhang, F. Nie, and X. Li, “Feature selection via incorporating [18] P. Mianjy and R. Arora, “Stochastic pca with Iz and [1 regulanzatlop,
stiefel manifold in relaxed k-means,” in Proceedings of the 25th IEEE in Proceedings of the International Conference on Machine Learning
International Conference on Image Processing (ICIP), 2018. (ICML), 2018.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: ~ [19] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
synthetic minority over-sampling technique,” Journal of artificial intel- Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends, architec-
ligence research, vol. 16, pp. 321-357, 2002. tures, requirements, and research directions,” IEEE access, vol. 6, pp.
J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical 4798048 099’ 2018.) .))
learning. Springer series in statistics, 2001, vol. 1, no. 10. [20] A. B._ Nassif, M. A Talilb it al., “Machine learning for anomaly
S. Fu, J. Liu, and H. Pannu, “A hybrid anomaly detection framework detection: A systematic review,” IEEE Access, vol. 9, pp. 78 658-78 700,
in cloud computing using one-class and two-class support vector ma- 2021.] o)
chines,” in Proceedings of the International Conference on Advanced —[21] A. Y. Ng, “Feature selection, 1 1 vs. 1 2 regularization, and rotational
Data Mining and Applications, 2012, pp. 726-738. invariance,” in Proceedings of the 21st International Conference on
Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric Machine learning (ICML), 2004.
subspace in cloud computing infrastructures,” in Proceedings of the 32nd ~ [22] F. Palmieri, U. Fiore, and A. Castiglione, “A distributed approach to
IEEE International Symposium on Reliable Distributed Systems (SRDS), network anomaly detection based on independent component analysis,”
2013. Concurrency and Computation: Practice and Experience, vol. 26, no. 5,
Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian predictors and pp. 1113-1129, 2014.
decision trees for proactive failure management in cloud computing [23] G. Pang, C. Shen et al., “Deep learning for anomaly detection: A

systems,” Journal of Communications, vol. 7, no. 1, pp. 52-61, 2012.

review,” ACM Computing Surveys, vol. 54, pp. 1-38, 2021.

Epoch 1 . Epoch 2
1 - - .
09 - 09
08 08
@97 297
® -]
@ o0s o5
o o
2 05 2 05
@ %
S
& o4 & o4
o o
2 03
E 03 £
02 02
01 01
ol ol . " "
0 02 04 08 08 1 0 02 04 08 08
False Positive Rate False Positive Rate
() (b)
Epoch 3
1 u
“ ' i . Epoch ¢
T
08 08 . -
o 07 a8 /'/
] /
T os o 97 i
° /
Iy
=05 T os
3 205
a 04 =
2 Coat |
2 03 @]
L 203
02 =
oz]
01
o1 /
° o
0 oz o s 08 s 0 o2 04 08 0.8
False Positive Rate False Positive Rate
(© (@
. Epoch 5 . Epoch 6
T o ’
09 03 /
08 ,l 08 {
f I
@07 s 07),
© f
T o5 « 05
o o
£ s 2ot J
3 / 3
Eoul | Eosl |
o
203 203
= =
0z 0z
0 a1 l
0 0
[} 0z a4 s 08 1] 0z a4 s 08
False Positive Rate False Positive Rate
(e) ()
s Epoch 7 Epoch 8
—— 1
o~ s
08 S 08 4
/
ot o
207 f 007
& / g
05t/ T os
o { o
s
Sosrf =05 J
g @
@ 04 l Eoaf [
@ @
20s Sosl /
= = J
0z 0z 1)
] at
° o
o 02 [[[1 o 0z [05 08
False Positive Rate False Positive Rate
s Epoch 9 . Epoch 10
o o0 J
at | wl
/
Qorf [o7
® ®
@ o8 f @ a8
@ { o
Sos|] Sos| |
g |f % /
€ a4 &£ as
o o
203 203l |
= = g
02 0z /
01 a1
o o
[} 0z [s 08 1 [} 0z [s 08
False Positive Rate False Positive Rate
® ()]

Fig. 3: The receiver operating characteristic (ROC) curves for

the first 15 epochs.

Values

Fig.

09

08

.
P B,R SPoe0P " Seq P
k- o, ¥

07 | 4

08

05

04

AUC Value
-0

1 L L

10 15 20
Epoch

25

Fig. 4: The area under the curve (AUC) for epochs.

1 T T T
: S
048 T A
i\ I- ! _\ .-'
1Y . II !
s | 4_/ \ ¥ 1
1 *
0y r + 1
o6 —*%— Benaitvity_ssif-evolving
i 1 = ® = Senaifvity_all-dats-counerpan
IJI_ Specifcity_sslf-evolving
0s r — 4+ —Speciicity_all-dats-countempan
---------- labeling rale
04 1
03 r 1
0z b l_l:' 4
f H
01t .
o . A \ \
4] 5 10 15 20 25

Epochs

5: Performance of self-evolving anomaly detectors com-

pared with other detection methods.

[24]

(25]

[26]

(27]

[28]

[29]

[30]

(31]

(32]

10

H. S. Pannu, J. Liu, and S. Fu, “Aad: Adaptive anomaly detection system
for cloud computing infrastructures,” in Proceedings of the 31st IEEE
Symposium on Reliable Distributed Systems (SRDS), 2012.

I. Rish ez al., “An empirical study of the naive bayes classifier,” in JJCAI
workshop on empirical methods in artificial intelligence, 2001.

L. Ruff, N. Gornitz, L. Deecke, S. A. Siddiqui, R. Vandermeulen,
A. Binder, E. Miiller, and M. Kloft, “Deep one-class classification,” in
International Conference on Machine Learning, 2018, pp. 4390-4399.

D. Smith, Q. Guan, and S. Fu, “An anomaly detection framework for
autonomic management of compute cloud systems,” in Proceedings of
the 34th IEEE Annual Computer Software and Applications Conference
(COMPSAC), 2010.

N. Subramanian and A. Jeyaraj, “Recent security challenges in cloud
computing,” Computers & Electrical Engineering, vol. 71, pp. 28-42,
2018.

D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, no. 1, pp. 45-66, 2004.

C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan, “Statistical techniques for online anomaly detection in
data centers,” in Proceedings of IFIP/IEEE International Symposium
on Integrated Network Management (IM), 2011.

L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao,
and C. Fu, “Cloud computing: a perspective study,” New generation
computing, vol. 28, no. 2, pp. 137-146, 2010.

J. Wen, X. Fang, J. Cui, L. Fei, K. Yan, Y. Chen, and Y. Xu, “Robust
sparse linear discriminant analysis,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 29, no. 2, pp. 390-403, 2019.

