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Abstract. We present a thorough study of the theoretical properties and devise efficient algorithms for the
persistent Laplacian, an extension of the standard combinatorial Laplacian to the setting of pairs
(or, in more generality, sequences) of simplicial complexes K < L, which was recently introduced
by Wang, Nguyen, and Wei. In particular, in analogy with the nonpersistent case, we first prove
that the nullity of the gth persistent Laplacian Af 'L equals the gth persistent Betti number of the
inclusion (K < L). We then present an initial algorithm for finding a matrix representation of A f L
which itself helps interpret the persistent Laplacian. We exhibit a novel relationship between the
persistent Laplacian and the notion of Schur complement of a matrix which has several important
implications. In the graph case, it both uncovers a link with the notion of effective resistance and
leads to a persistent version of the Cheeger inequality. This relationship also yields an additional,
very simple algorithm for finding (a matrix representation of) the gth persistent Laplacian which
in turn leads to a novel and fundamentally different algorithm for computing the gth persistent
Betti number for a pair K < L which can be significantly more efficient than standard algorithms.
Finally, we study persistent Laplacians for simplicial filtrations and establish novel functoriality
properties and stability results for their eigenvalues. Our work brings methods from spectral graph
theory, circuit theory, and persistent homology together with a topological view of the combinatorial
Laplacian on simplicial complexes.
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1. Introduction. The combinatorial graph Laplacian, as an operator on functions defined
on the vertex set of a graph, is a fundamental object in the analysis of and optimization on
graphs. Its spectral properties are widely used in graph optimization problems (e.g., spectral
clustering [8, 31, 40, 49]) and in the efficient solution of systems of equations; cf. [27, 34, 46, 48].
The graph Laplacian is also connected to network circuit theory via the notion of effective
resistance [1, 10, 35, 45].

There is also an algebraic topology view of the graph Laplacian which arises through
considering boundary operators and specific inner products defined on simplicial (co)chain
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groups [8]. This permits extending the graph Laplacian to a more general operator, the gth
combinatorial Laplacian Af on the gth (co)chain groups of a given simplicial complex K
(see, e.g., [12, 11, 16, 23]), so that the standard graph Laplacian simply corresponds to the
Oth case. These ideas connect to the topology of the input simplicial complex via the so-called
combinatorial Hodge theorem [12], which states that the nullity of the gth combinatorial
Laplacian is equal to the rank of the qth cohomology group of K with real coefficients, i.e.,
the gth Betti number of K. See also [23, 33] for thorough expositions.

The combinatorial Laplacian (and variants) have received a great deal of attention in
recent years; see, e.g., [16, 17, 18, 38]. For example, [26] aims to extend the related concept,
effective resistance from network circuit theory, to this “high dimensional” situation, whereas
[20, 19] consider a spectral theory of cellular sheaves with applications to sparsification and
synchronization problems.

Adopting the algebraic topology view of the gth combinatorial Laplacian, Wang, Nguyen,
and Wei [51] introduced the so-called gth persistent Laplacian Aé( ’L, which is an extension of
the combinatorial Laplacian mentioned above to a pair of simplicial complexes K < L con-
nected by an inclusion. To the best of our knowledge, [51] is the first work which establishes
a link between persistent homology [14, 54], one of the most important developments in the
field of applied and computational topology in the past two decades, with the Laplacian, a
common and fundamental object with a vast literature, in both the theoretical and applied do-
mains. These ideas surrounding the persistent Laplacian therefore have the potential to allow
importing rich ideas from the toolset of analysis into the TDA field—a field which has so far
been propelled mostly by algebraic methods. See also [9, 41] for other work in computational
topology which leverages ideas connected to the (standard) combinatorial Laplacian.

It is thus natural and also highly desirable to achieve better understanding, as well as
algorithmic developments, for this persistent Laplacian, all of which will help broaden its
potential applications. The present paper aims to close this gap.

Contributions. In this paper, we carry out a thorough study of the properties of and develop
algorithms for the persistent Laplacian. Our work brings together ideas and methods from
several communities, including spectral graph theory, circuit theory, topological treatments of
high-dimensional combinatorial Laplacians, together with a persistent homology perspective
(both at the theoretical and algorithmic levels). For instance, we relate the computation of
persistent homology with notions from network theory such as the Kron reduction (and also
Schur complements) which have novel algorithmic implications; see below.

This is an overview of our results:

e In section 2, we present several results about the properties of the gth persistent
Laplacian ACII( ’L, including Theorem 2.7, which establishes that the nullity of Af’L
equals the gth persistent Betti number from K to L—a result analogous to the one
that holds in the nonpersistent case.

e In section 3, we give a first algorithm (Algorithm 3.1) to compute a matrix repre-
sentation of Aé( L' which relies on matrix reduction ideas which are standard when
computing persistent homology.

e In section 4, we establish our main observation Theorem 4.6, a relationship between
the persistent Laplacian and the concept of Schur complement of a matrix. This
observation has several immediate and important implications:
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1. We establish a second, very simple algorithm (Algorithm 4.1) which computes
the matrix representation of the persistent Laplacian Aff L (for any q) efficiently,
purely based on a linear algebraic formulation (Theorem 4.6).

2. This observation leads to a new algorithm to compute the qth persistent Betti
number for a pair of spaces in a fundamentally different manner from extant
algorithms in the computational topology literature. This new algorithm is, under
mild conditions (e.g., as those commonly satisfied by Vietoris—Rips complexes)
significantly more efficient than existing algorithms. We believe that this new
algorithm for computing persistent Betti numbers is of independent interest.

3. In the graph case (i.e., when K and L are graphs and ¢ = 0), this provides
a direct connection with notions from network circuit theory such as the Kron
reduction [10], a connection which reveals that the matrix representation of the
persistent Laplacian permits recovering the effective resistance of pairs of vertices
in K w.r.t. the larger graph L (cf. Proposition 4.10 and Theorem 4.11). The
connection with network circuit theory leads to our definition of a “persistent”
Cheeger constant as well as to a novel persistent Cheeger-like inequality for a
pair of graphs K < L (cf. subsection 4.4).

e Finally, in section 5, we consider gth persistent Laplacians for filtrations of simplicial
complexes (connected by inclusion morphisms). We first describe an efficient algorithm
to iteratively compute the persistent Laplacian for all pairs of complexes in a filtration.
We then discuss certain functoriality and stability results for the persistent Laplacian
for filtrations of simplicial complexes.

Some technical details are relegated to the appendix and/or to the supplementary materials
(M143547R_Supplementary_Materials_1.pdf [local/web 526KB]).

2. The persistent Laplacian for simplicial pairs K — L. In this section, after introduc-
ing some basic notions/definitions in subsection 2.1, we formulate the persistent Laplacian for
simplicial pairs in subsection 2.2 and present some basic properties of persistent Laplacians
in subsection 2.3.

2.1. Basics.

Simplicial complexes. An (abstract) simplicial complex K over a finite ordered set V is a
collection of finite subsets of V such that for any o0 € K, if 7 C o, then 7 € K. Denote by
N the set of nonnegative integers. For each ¢ € N, an element ¢ € K is called a g-simplex
if |o] = ¢ + 1, where we use |A4| to denote the cardinality of a set A. A 0O-simplex, usually
denoted by v, is also called a vertex. Denote by Scf{ the set of g-simplices of K. Note that
SE C V. The dimension of K, denoted by dim(K), is the largest ¢ such that S(;{ #0. A
1-dim simplicial complex is also called a graph and we often use K = (VE, EX) to represent
a graph, where VX := SK denotes the vertex set and EX := S denotes the edge set.

An oriented simplex, denoted by [o], is a simplex ¢ € K with an ordering on its vertices.
For simplicity of our presentation, we always assume that the ordering is inherited from the
ordering of V. Let S’f ={[o] : 0 € Sf}. The gth chain group Cf = Cy(K,R) of K is
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the vector space over R with basis 5’;{ . Let nff = dim C;{ = |S§< |. We define the boundary
operator 85 : Cg( — Cf_l by

q

(2.1) OF (Jvo, -, vg)) = D _(=1)'[vo, - - Bis ., vg]

1=0

where ¥; denotes the omission of the ith vertex. The ¢th

K
homology group of K is Hy(K) = k@) and BE = rank (Hy(K)) is its qth Betti number.

- im(aq}f‘_l)
A weight function on a simplicial complex K is any positive function w’ : K — (0,00).
Throughout the paper, every simplicial complex K is (implicitly) endowed with a weight func-
tion w’. We call K unweighted if w® = 1 (subsection 4.4.1 is the only place where we restrict
ourselves to the unweighted case).
Combinatorial Laplacian. Let K be a simplicial complex with a weight function w’. Given
any ¢ € N, let wf = wK|Sg< and define the inner product (-, ->w5< on Cf as follows:

for each o = [vo,...,v4] € qu,

(2.2) ([0, [0 uic = boor - (wh (0)) " V0,0’ € SK,

where 0,4 is the Kronecker delta.

Remark 2.1. Consider the dual space of Cf: the cochain space C?(K) := Hom (Cy(K),R).
Then, (-, ->w(§( on Cy(K) induces an inner product ((, ->>w§( on CY(K) such that

(9w = D wi(@)f(loDg([o]) Vf.g € CUK).

oeSk
This inner product ({:,-)),,x on C?(K) coincides with the one defined in [23], which explains
the reciprocal in the definition (2.2) of the inner product (-, '>w£< on Cy(K).

We denote by (85( ) C’;{ 1 — C’f the adjoint of 85 under these inner products. Then,
we define the gth (combinatorial) Laplacian Af : Cf — C’f as follows:

(2.3) A =00 (94) + (07) 0 0y,
Ag(:‘lp Aé(,dovvn

where for convenience we have also defined the corresponding “up” and “down” Laplacians.
By convention we let 9 := 0 and thus AL = 95 o (0f)*. When K is a graph and w{f = 1,
AK reduces to the graph Laplacian of the weighted graph (K, wi€) [8].

Theorem 2.2 ([12]). For each q € N, /35 = nullity(Af).

Simplicial pairs and simplicial filtrations. A simplicial pair, denoted K < L, consists of any
pair K and L of simplicial complexes over the same finite ordered set V such that K C L,
ie., Sf - SqL for all ¢ € N, and w® = w”|x. A simplicial filtration K = {K;}ser is a set of
simplicial complexes over the same finite ordered set V' indexed by a subset T' C R such that
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for all s <t e T, Ky — K is a simplicial pair. For an integer ¢ > 0 and for any s <t € T,

via functoriality of homology [21] one obtains a map f;" : H,(K,) — H,(K;) and the gth

persistent homology groups are defined as the images of these maps. The gth persistent Betti

numbers ﬂg’t of K are in turn defined as the ranks of these groups. Of course when one is just

presented with a simplicial pair K < L, for each ¢ one also obtains the analogously defined
. . K,L

gth persistent Betti number j,

2.2. Definition of the persistent Laplacian. Suppose that we have a simplicial pair K <
L and that ¢ € N. Consider the subspace

chl={cecl . olc)eck,} cct

consisting of those g-chains in C'qL such that their images under the boundary operator 8qL is
in the subspace C’;{_ , of C’qL_l. Cé: s endowed with the inner product ()L which arises
q
through restricting the inner product (-, -)qu on Cél by to C’qL’K. Let nqL’K = dim(CqL’K).
Now, for each ¢ let 8qL X denote the restriction of 8qL to CqL M 50 that we obtain the

“diagonal” operators 8;3 K CqL K Cf_ 1- As we mentioned earlier, for each ¢ both Cf and
Ck are endowed with inner products (., ->w5< and (-, ->w5 so that we can consider the adjoints

of 8 e X and 8qL. See the diagram below for the construction where the blue arrows signal the
1mportant part of the diagram:

o5, X« 9’ K«
q
Cf]+1 LK Cq Y qul
atl (dq )
ALK\ *
LK (dq+1)
Cfl—i—l
oL oL
I q+1 L q y L
Cq—l—l Cq " Cq—l

One can then define the qth persistent Laplacian [51] Af’L : C’f — Cg( by:

(2.4) AKL =9 +1 (8q+1> +(6§)* 085(’

q
—_———

K,L
Aq up

where we have also defined the gth wup persistent Laplacian Ag{ﬁ, with the same domain/

: K,L 0w K _ KL _ oKL _(oK,Lys K,L
codomain as Ag"". When ¢ = 0, since dy' =0, Ag>" = 09,770 (9 7)" = Ay,

Example 2.3 (trivial cases

1. When C%; +1 = {0}, 02"} = 0 and thus Aq ap = 0.

2. When K = L, then obviously AK’L = AqL, the usual Laplacian on L.

3. If SK = SL then Aq wp = AL In particular, if S = S§, then Aé(’L = A} If

q,up°
furthermore Séi = SL |, then AK = A{;down and thus Aé(’L = AqL.

q— q,down
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Obviously, Aé{’L is a self-adjoint, nonnegative and compact operator on C’K and thus has

nonnegative real eigenvalues. We denote by 0 < )\fiL < )\féL < ... < )\ 7 the eigenvalues
of Af’L (including repetitions) sorted in increasing order.

2.3. Basic properties of the persistent Laplacian. We now show some basic properties
of Aé(’L. All proofs are given in Appendix A.

Lemma 2.4. Suppose L has n connected components L1, ..., L,. Suppose K only intersects
the first m connected components. Let K; .= KN L; for eachi=1,...,m. Then, Aé{’L 1s the
direct sum of persistent Laplacians Ag(i’Li on C’;Q fori=1,...,m, i.e., Af’L =@, Aé(“Li.

Given a graph K, the multiplicity of the 0 eigenvalue of A(If coincides with the number of
connected components of K [37]. The following result is a persistent version of this.

Theorem 2.5. The eigenvalues of AKL satisfy the following basic properties.
1. )\é(lL =0, and if L is connected, then )\0 2 > 0.
2. Let m be the multiplicity of the 0 eigenvalue of Aé(’L, then K intersects exactly m

connected components of L.

We have a complete description of the behavior of the up persistent Laplacian on interior
simplices, where a g-simplex o € S, K is called an interior simplex if o only shares cofaces with
g-simplices in K, i.e., for all ¢’ € SL ifoUo € Sq+1’ then o’ € SK

Theorem 2.6. Let ¢! € C(f and let ¢ be the image of c* under the orthogonal projection
C'qL — Cf. Then, for any interior simplex o € SK, we have that

<AL ,[J> —<AKL K,[0]>w§.

q,up q,up
The following result showing persistent Laplacians recover persistent Betti numbers was
mentioned in passing and without proof in [51]. We give a full proof in Appendix A.

Theorem 2.7. For each integer ¢ > 0, we have that 6§’L = nullity(Af’L).

3. A first algorithm for computing a matrix representation of Af’L. In this section,
we first provide a matrix representation Af’L of Aé{’L given the canonical basis S(‘IK of Cf

and then devise an algorithm for computing Aé{ L1

Note. For simplicity, given a simplicial pair K < L, for each ¢ € N we assume an
_ L _ _ K
ordering S¥ = {[o7] 29 on Sk such that S = {[oi]}:2,. Unless otherwise specified, matrix
representations of operators between chain groups are always from such orderings on canonical
bases SK and SL of CK and CL respectively.

LK ALK
Theorem 3.1. Assume that n/}; = dnn(Cqul

represented by a column matriz Z € R} | Let BK and qurl

) > 0. Choose any basis of C Cq+1

be matriz representatzons

Tn [51] it is suggested that the gth persistent Laplacian Af’L can be computed by (i) taking a certain
submatrix of the boundary operator and then (ii) multiplying it by its transpose. However, simply following
these two steps does not yield a correct algorithm. The calculation of the matrix form of the persistent Laplacian
turned out to be rather subtle as shown in Theorem 3.1; see also section SM2 for details.
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of boundary maps aK and 3q+1 ,

matriz representation of wg{ (or w(j;). Then, the matriz representation Af’L of
expressed as follows:

respectively. Let WqK (or WqL) denote the diagonal weight

Aé{’L is

B0 AFE =B (20 (h) T 2) (B) ) e ) v By

AKL AK

q,up gq,down

K,L L K
Moreover, Ay is invariant under the choice of basis for C, i

Remark 3.2 (matrix representations of combinatorial Laplacians). When K = L, (3.1)
reduces to the matrix representation of the combinatorial Laplacian:

T -1
A =B (B (W) W (B (W) By

~~

Aé{,up A;{down
Since BIS W (BE. )T (W)™ = (WE)2 (WE) =2 BI W (BE) (W)= (W),

Aéfup is of the form W~ 1PVV where P is symmetric positive semidefinite and W is a positive di-
agonal matrix. The same result holds for down Laplacians, up persistent Laplacians, and (per-
sistent) Laplacians. Note that if wi =1, then AKX = q+1Wq+1( qH)T—i—(Bf)T(qufl)_le

is itself a symmetric positive semidefinite matrix.
To prove the theorem, we need the following result.

Lemma 3.3. Let f: (R",W,,) — (R™, Wy,) be a linear map where Wy, € R™*"™ and W, €
R™>™ denote the inner product matrices. Let F' € R™*™ denote the matriz representation of
f. Then, the matriz representation F* of the adjoint f* of f is W, ' FTW,,.

Proof. For any © = (21,...,2,)T € R" and y = (y1,...,ym)" € R™, we have that
(fr,y)gm = (Fa:)T Wy = mTFTme, and (z, f*y)gn = xTWnF*y.

Since (fz,y)gm = (z, f*y)g» and z,y are arbitrary, we must have that F* = W, 'FTW,,. &

Proof of Theorem 3.1. Based on our choice of bases for C'qul, Cq ,

sponding inner product matrices are ZT(Wq )72, (WE)T and (qui )L respectively By

Lemma 3.3, the matrix representation for (8;_5)* is (ZT(Wq_H) Z)*l(Bq_H) (WE)~t and

the matrix representation for (8(5{)* is WqK(Bf) (Wq[fl)* . By (2.4), we have

and C’ * 1, the corre-

1 -1 T -1
ARE = B (27 k) 2) T (BEE) V) w9 ) B

Since 8q T (ﬁfff)* is a self-operator on C’f , its matrix representation Af’L only depends

on the choice of basis of Cf and it is thus independent of the choice of basis of C’(fjr[l(. |

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/15/22 to 140.254.87.149 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERSISTENT LAPLACIANS 865

An algorithm for computing the matrix representation of AK L We use the symbol [n] to
denote the set {1,...,n} for a positive integer n. We first mtroduce a notation for representing
submatrices. Let M € R™*™ be a real matrix and let @ # I C [m] and 0 # J C [n]. We
denote by M (I, J) the submatrix of M consisting of those rows and columns indexed by I and
J, respectively. Moreover, we use M(:,J) (or M(I,:)) to denote M([m], J) (or M(I,[n])).

By Theorem 3.1, to compute a matrix representation of Aé( ’L, the key is to produce a

basis (i.e., Z) for C'qurIf. Let BqLH € R™ "1 be the matrix representation of the boundary
K

map 8qL+1. We assume that nf < nqL since the case ng, = ng is trivial (cf. Example 2.3).

Then, the following lemma (see the proof in Appendix A) suggests a way of constructing Z
from BL

Lemma 3.4. Let Dq+1 = Bq-i—l([ IN\[nk1,:). Then, there exists a nonsingular matriz Y €

R™+1 41 sych that RqL+1 = Dq+1Y is column reduced.” Moreover, let I C [n§+1] be the
index set of 0 columns of RL ‘1. The following hold:

1. If I =0, then CqJrl = {0}.
2. If I £ 0, let Z =Y(:,I), then columns of Z constitute a basis of C’q+1
Moreover, if I # 0, then Bq+1 = (BqHY)([nq |, I) is the matriz representation of BqurIf.

We can apply a column reduction process (e.g., Gaussian elimination) to D¢11:+1 to ob-

tain Y € R™+1 %" and RL,| = DL Y requested in Lemma 3.4. See Algorithm 3.1 for a

Algorithm 3.1. Persistent Laplacian: matrix representation

Data: B Bq+17 W WqK, and I/VqLJrl

Result: AK L

Compute AK ¢ down from B W ., and WK

if nq == nL then
compute Agup from Bq+1, WK, and Wk fuRE
return Al 4+ AK
end if
Dq+1 Bq+1 ([ L]\[né{]a :)
(RgH,Y) ColumnReduction(DéH)
I + index set corresponding to the all-zero columns of Ré 1
. if I == () then
return AX
: end if
 Z=Y(,1)

: B;-&-Il{ - (Bq—HY) ([né(LI)

gq,down

— =
o2

q,down

—_ = =
o ol W

=
-3

: return Bqul (ZT (I/Vqﬂ)_]L Z)_l (Bqurff)T (WqK) +AE

q,down

2We say a matrix is column reduced if for each two nonzero columns, their indices of the lowest nonzero
elements are different.
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pseudocode for computing Aff’L based on Lemma 3.4. We remark that Algorithm 3.1 is con-
ceptually important, as it connects to the standard matrix reduction algorithm for computing
persistent homology [13].

Complexity analysis. The computation of AX

qdown takes time O((n K)Q) (see section SM1
for details). The size of DL, | is (n} — n[)

q X nq . 1; thus the column reduction process takes
time O((nf — nf)(nqLﬂ)z). Computlng the product BqHY takes time O(nk(n q+1)2). The

size of Z is nqL_H x |I|, where |I| < nk 4+1- Then, computing (ZT(Wq+1) Z) takes time

O((nk,1)?). The product Bl (ZT(Wk,)~ 1Z)_1(Bq+1) (W)~! can be computed in time

O(nlf (nk,1)?). Hence Algorithm 3.1 takes O(nk(nk, )? 4 (n §+1)3 + (nf)?) total time. One
can also improve this time complexity by usmg fast matrix multiplication to both perform

reductions and compute multiplications/inverses. We omit the details.

4. Schur complement, persistent Laplacian, and implications. Let M € R™* "™ be a
block matrix M = (4 B) where D € R¥*? is a square matrix. Then, the (generalized) Schur
complement of D in M [4], denoted by M /D, is M/D := A— BD'C, where D' is the Moore—
Penrose generalized inverse of D. Note that having D be the bottom right submatrix is done
only for notational simplicity. Schur complement is defined for any principal submatrix. More
precisely, let () # I C [n] be a proper subset. Then, the (generalized) Schur complement of
M(I1,I)in M is defined as

(4.1) M/M(I,1) = M([n\L, [n]\I) = M([n]\I, T)M (I, ) M(I, [n]\I).
Now we introduce some useful properties of the Schur complement.

Definition 4.1 (proper submatrices). Let M = (A B) be a square block matriz where both

A and D are square matrices. The submatriz D is proper in M if ker(D) C ker(B) and
ker(DT) C ker(CT).

Lemma 4.2 (positive semidefinite matrices). Let P be a positive semidefinite block matriz

P =(225) such that A and D are square matrices. Let W be a positive diagonal matriz and

we write W as a block matrix W = (Vgl M%) such that W1 and Wy have the same sizes as

A and D, respectively. Consider M = W1PW = (W 12&1 " 1?;//2 ). Then, W;lDWQ 18
proper in M and M/(W, ' DWy) = W, ' (P/D)W;.

Lemma 4.3 ([4, Theorem 1]). Let M be a square block matriz M = (& B) such that A
and D are square matrices. Then, rank(M) > rank(D) + rank(M/D).

Lemma 4.4 (quotient formula [4, Theorem 4]). Let M, D, and H be square matrices with
the following block structures: M = (4 B) and D = (E §). If D is proper in M and H is
proper in D, then D/H is proper in M/H and M/D = (M/H)/(D/H)

Lemma 4.5 (eigenvalue interlacing property). Let M = W~1PW be as in Lemma 4.2.
Suppose that the size of M is n x n and the size of D is d x d. Then,

(4.2) Me(M) < X\e(M/(Wy ' DWR)) < A\ (WP AWY) V1 <k <n—d,
where A\ (A) denotes the kth smallest eigenvalue of A (counted with multiplicity).

See section SM6 for proofs of Lemmas 4.2 and 4.5.
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4.1. Up persistent Laplacian as a Schur complement. For a simplicial pair K — L,

_ L _
recall from section 3 that for each ¢ € N we assume an ordering Sé: = {[oi] ?il on SqL such

— K
that SK ={ [UZ]}nql. Given such orderings on canonical bases of C’f and C'qL , the matrix
representation Aq up of Af uf) : Cf — Cf is related to the matrix representation Aéup of

Agup Cé: — CqL via the Schur complement as follows.

Theorem 4.6 (up persistent Laplacian as Schur complement). Let K — L be a simplicial

pair. Assume that nf < né and let Tk == [né]\[nf] Then,

(4'3) Aé{ulé qup/Aq up (IILOIIL%) :

To prove the above theorem, we first need the following lemma (whose proof is given in
section SM6) which relates Schur complements with a certain matrix operation.

Lemma 4.7. Let B € R™™ be a block matrix B = (g;), where By € R™™ for some

1<d<n. Let W € R and Wy € RO=D*(=d) pe nonsingular diagonal matrices and let
W = (Vgl ng ). Let M :== BBTW , which is a block matriz

- (MH M12> _ (BlB;FWl BlB;fI/Vg)
My Mo BeBfWy1 BaBIW3) -

If By has full column rank, then M /My = 0. Otherwise, for any nonsingular block ma-
tric Y = (viv2) € R™ 4f BoY, = 0 and BY2 has full column rank, then M /My =
B (Y{'Y)~Y(BYh)Tw.

Proof of Theorem 4.6. Let B = Bq-i—l(Wq—l—l) W WL and W = W([nﬁa [né(]) =

WK. Set By = B([nK],:) and By = B([n q]\[n{f],:). Then, B = (). Note that By =

Dg“ +1(WqL_H)% using notation in Lemma 3.4. By Lemma 3.4, there exists a nonsingular matrix

Y € R™+1 %"+ such that RL = D§+1Y is column reduced. Let Y := (Wqul) 2V, which is
still nonsingular. Then,

ESEN
Ry = DEY = Dhy (Wh)? (Wh) 2V = By,

Let I C [n},,] be the index set of 0 columns of R}, ,. If I = 0, then by Lemma 3.4 we have
that C'qLﬁl( — {0} and thus AL = 0. On the other hand, I = § implies that By has full
column rank. Let M := BBTW. Then, we have that

T
M = By Wiy (Bia) Wi =Ap,

and thus My = AL (IE TE). Then by Lemma 4.7, we have that

q,up
up/Aqup (I,L(,IIL{) M/My =0 = Aqup

Now, we assume that I # (). Without loss of generality, we assume that I = [n qLJrIl(] C [nqL ‘1]

(otherwise we multiply Y by a permutation matrix). Let Y7 =Y (:,]) = (Wq 1) 27 where
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Z is a column matrix representing a basis of Ccf_ff (cf. Lemma 3.4). Let Y3 :=Y(;, [n{; A \).

Then, ¥V = (Y1 Yg) is a block matrix such that BsY; = R(?H(:,I) = 0 and that ByYy =
Ré 1 [ng .1J\I) has full column rank. Then, by Lemma 4.7, we have that

Loo/AL (TR TE) = M/My = By, (V') 7 (BiY1)™W,
1 1 \T s\ B N
(Wq+1) *Z <(Wq+1) ’ Z> (Wq+1) *Z (Bl (Wq+1) ’ Z) Wq

B g 2 (77 i) ) (k) E )

Note also that B +1 = Bq-i—l([ K1.97 = Bl(WqH) 7. Then, by Lemma 3.4 we have that
KL LK (T -1 \" K L L 7L
Ak =B (27 (W) Z) (Br +1) WE = AL /AL (TR, TE) .
This finishes the proof of Theorem 4.6. [ ]

4.2. Fast computation of the matrix representation of Af’L. For a simplicial pair

K < L, by Theorem 4.6, we now simply compute Af u%, via (4.3) using only Schur complement
computations, which then give us Aff L Aéfup + AK A pseudocode for this simple

algorithm is given in Algorithm 4.1.

q,down"

Algorithm 4.1. Persistent Laplacian: matrix representation via Schur complement

Data: BJ, Bl |, Wl WK W] and W),

Result: AK L

Compute A 0 down from BK WK 1, and WK
gup {rom Bq+17 WL and Wq+1
if n == nL then
L
return Aq up + AE
end if

Ay = AL /AL (TR, TE)

return ALL + AK

Compute AL

q,down

H
@

q,down

Time complexity. Computing Aq up takes time O(n +1) and computing Aq down bakes
O((nf)?) (see section SM1 for details). The Schur complement AL /AL (1% I%) takes
time O((nf)? + (nf — nl)? +nk(nk — nk)?) = O((nk)?) to compute. Hence the total time
complexity of computing AKX via (4.3) is O((nk)® + ”5+1)- By using the fast matrix multi-
plication algorithm (which takes O(r*), w < 2.373, to multiply two r x r matrices), this time

complexity can be improved to O((n ) +n, L.

Remark 4.8 (comparison with Algorithm 4.1). The time complexity of Algorithm 3.1 and
that of Algorithm 4.1 are not directly comparable: which one is faster depends on the re-
lationship between of the number of p-dimensional simplices in L and the corresponding
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number of (p + 1)-dimensional simplices. Recall that the time complexity of Algorithm 3.1 is
O(nk(n §+1)2 +(n 5“)3 + (nf)?). In a scenario when nl = O(nl, ), this complexity is larger
than O((n ) + ny L. 1) which is the time complexity of Algorithm 4.1. In the case of clique
complexes, which commonly arise when studying point cloud data via Rips complexes, nzg 1
is often larger than nﬁ , rendering Algorithm 4.1 more efficient. However, this may not always
be the case: given a graph (which can be viewed as a one-dimensional simplicial complex),

the number of 2-simplices is 0, while the number of 1-simplices is much larger.

Computation of persistent Betti numbers. By Theorem 2.7, we can compute the persistent
Betti number Bf L'in the following manner: we first compute Aé( 'L and then compute Bf L=

K

nullity(Af’L). Since calculating the nullity of an ng* x né{ square matrix can be done in time

O((nf ) = O((nqL )“), we obtain a method for computing the persistent Betti number in time
O((nk)~ + nqL+1) (which is O((n})«) if nk = O(néjrl)). Currently, the existing approach in
the literature to compute the persistent Betti numbers is through computing the persistent
homology of the pair K — L using boundary matrices BL 1 and Bf , which can be done
in O((né) Ny + ( )% K) time or in O((n )“’ ! §+1 + ( )wflnff) (if we assume that
nqL = O(n, nk ;) and n 1 = O(ny KY) using the earhest basis (Vla fast matrix multiplication)
approach [2]. Our new algebraic formulation of persistent Laplacian (via Schur complement)
thus also leads to a faster algorithm to compute the persistent Betti number for a pair of
spaces for the setting when nqL = O(n, nk ;). Note that the condition nq = O(ny nk ;) holds in
many practical scenarios, especially for the popular Rips or Cech complexes and their variants.
Given that this new algorithm is fundamentally different from existing ones (using only simple

Schur complement computations), we believe that this is of independent interest.

Remark 4.9. A MATLAB implementation of Algorithm 4.1 for unweighted simplicial pairs
is given in [39]. A recent preprint [52] by some of the authors of [51] describes an alternative
software implementation of the persistent Laplacian which is available at [53].

4.3. Relationship with the notion of effective resistance. Let K = (VE, EX wX) be
a connected weighted graph. Unless otherwise specified, for any weighted graph considered
in this section, we assume that w’ satisfies that wé( = wK\Séq = 1, i.e., the vertices of the

graph are unweighted. For any two vertices v,v" € VE | we let ) = —[v] + V] € CE. Let
D[Iziv/] = Xof — Xv € R denote the vector representation of 9y, ./ in C’é(, where y, € R"6
is the indicator vector of v € VX. We consider that each edge e € EX has an electrical
conductance w’ (€). Then, the effective resistance %fv/ between v and v’ is defined by

K . K K
(44) 9{v,v’ = (D[U,’U’]) (A ) [v v']”

Given a graph pair K < L, by Theorem 4.6 the persistent Laplacian Ag’L turns out to
be the graph Laplacian of a new weighted graph.

Proposition 4.10 ([10, Lemma 2.1]). Suppose that K < L is a graph pair. Assume that

L is connected and wl = 1. Then, A?L Aé{uﬁ) is the graph Laplacian AL of a connected

weighted graph K = (Vk, Ef(,wf{) such that VK = VK.
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L K
1 1 ) :
1 3 3

Figure 1. On the left we show a weighted graph L consisting of four vertices with edge weights indicated
next to each edge. Let K be the subgraph of L induced by the three red vertices (i.e., the fully disconnected graph
on three vertices). Then, K is the three-vertex weighted graph shown on the right (edge weights are indicated
next to each edge). Note that K has a totally different edge set from that of K.

K is known as the Kron reduction of L and Aé( is called the Kron-reduced matriz; see
Figure 1 for an illustration. The Kron reduction [28] has been used in network circuit theory,
and it preserves effective resistance (cf. [10, Theorem 3.8]). This in turn implies that the
persistent Laplacian A is able to recover the effective resistance SRL o W.I.t. the larger
graph L for all pairs of vertices v,v" € K. The result below follows from Theorem 4.6 and
[10, Theorem 3.8].

Theorem 4.11. Let K — L be a graph pair where L is connected. Let K = (VE, EX k)
denote the weighted graph such that AK = Ag(’L. Then, K is connected and for two distinct
vertices v,v" € VE, we have that 9%571), = %ﬁfy,.

Remark 4.12 (higher dimensional generalization). The effective resistance has been general-
ized to the case of simplicial complexes in [26]. In section SM5, we show a higher dimensional
extension of Theorem 4.11, i.e., that higher dimensional effective resistances are preserved by
the up persistent Laplacian, the proof of which deals with the subtleties of the Moore—Penrose
generalized inverse directly without resorting to a limiting argument as in the proof of [10,
Theorem 3.8]. In addition, we provide an example illustrating the impossibility of a higher
dimensional generalization of the Kron reduction in the current simplicial setting.

The following result controls the change of degrees after applying the Kron reduction.

Proposition 4.13. Let K be ‘the graph described in Proposition 4.10. Then, for any v €
VE = VK we have that deg®(v) < degl(v), where deg®(v) = S veawC({v,v'}) is the
weighted degree of a vertex in a graph G.

Proof. We first observe that deg®(v) =3, cc w’({v,v'}) = (x ) A§x,. Therefore,

deg® (v) = (xX) " AFAE = (X;) AN (Xv) Ab /A (I, Ti)XE
= (E) A (g 1) — () AR (). 1E) (AF (1. 12)) A (2 ) 1
S(X§>TA0L([TL£(],[”5(])XUK (x) " Afxd = deg"(v). L
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In the case when K consists of only two points in L, we have the following explicit relation
between the persistent Laplacian and the effective resistance.

Corollary 4.14. Let L be a connected graph and let K be a two-vertex subgraph with vertex

set VE = {v,0v'}. Then,
1 1
L T wL
AK,L _ SRv,v’ ERv,v/
0 - 1 1 .
nL nL
v,v! v,v!

Proof of Corollary 4.14. By Theorem 4.11 (or by [10, Lemma 3.10]), it is easy to show

that
mL mL
KL v,v R
(AO )T:( %4Ll mL4l )

v,v v,V

4 4

i ow
K,L o T
AO ’ - _ 71 1 ’ .

WL, WL o
4.3.1. Effective resistance between disjoint sets. The effective resistance between two
vertices has been generalized to the case of two disjoint sets of vertices in [35, Exercise 2.13]
via an energy minimization process. In [44], a formula invoking the graph Laplacian was used
to define the effective resistance between disjoint sets. The two definitions are equivalent (see

subsection SM3.1 for a proof) and in this section we adopt the definition from [44].
Let K be a connected weighted graph. For any nonempty disjoint subsets A, B C V& let

V7 = AU B and let J be the induced subgraph with vertex set V. Then, following [44], the
effective resistance 9%2(7 g between A and B is defined as follows:

Therefore,

-1
(4.5) R s = (0 AF/AF (VI V) xd)

where AK (V7 V7)? denotes the submatrix of AL with rows and columns indexed by V7 and
X,{x € R™ denotes the indicator vector of A C V7. By Theorem 4.6, we have that SRIAF B =

((X,{l)T . Ag’K . Xj)_l. In particular, when AUB =V’ = VK, 9‘{1}{3 = ((Xf)T AL Xf)_l.

We call Q:f B = m% the effective conductance between A and B.
’ A,B

Remark 4.15. Note that (a) when A = {v} and B = {w} are two singleton sets, it is easy
to see that fﬁfiB = mfjv,; (b) (4.5) might seem asymmetric with respect to A and B; in fact,
we have that D‘{IQ{B = —((xp*- AE)”K -x%)"! (see [44, Lemma 3]): (c) an explanation from
the point of view of circuit theory is given in section SM3; see Figure 2.

As a generalization of Theorem 4.11, we establish the following result.

Theorem 4.16. For a graph pair K — L where L is connected, let K = (VK,Ek,wK)
denote the graph such that AL = A?’L. Then 9%1[4(,3 = 9{%,3 for any disjoint A,B C VK,

SALT (V7 V7)) was required to be nonsingular in [44]. This holds automatically as long as K is connected;
see [10, Lemma 2.1].
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Figure 2. The effective resistance between two sets of vertices from the circuit theory perspective. One
set is represented by the orange vertices, the other one by the green vertices. See subsection SM3.1 for more
details.

Proof. By Theorem 4.11, K is a connected graph and thus 9‘{5’ p is well-defined. Then,
let V/ .= AUB C VK C V¥ and let J denote the induced graph in L with vertex set
V7/. By Lemma 4.4, we have that Ag’K = Ag’L. Then, by (4.5) we have that D‘{II;(’B =
RY p. ]

4.4. Persistent Cheeger inequality for graph pairs K < L. The Cheeger constant [7]
hE of a weighted graph K = (VX EX wX) is defined as follows:

I R

D£ACVE |A|
A< TV

where EX (A, B) denotes the set of all edges {v,v'} € EX such that v € A and v/ € B, |A]
denotes the cardinality of A, and ||[EX (A, B)|| & == D (v }EEK (A,B) wi ({v,0'}).

The Cheeger constant h’ measures the edge expansion [22] of K and it is related to the
second smallest eigenvalue )\(Ifg of the graph Laplacian Aé{ as follows:

(4.6) (k)" <A, <2nf
‘ 2d£ax - B ’
where dX, = max,cyx deg™ (v). Equation (4.6) is called the discrete Cheeger inequality

[7, 18, 24], which is a discrete analogue to isoperimetric inequalities in Riemannian geometry
[3, 5].

In this section, we define a persistent Cheeger constant for any graph pair K < L via the
effective resistance and establish a corresponding persistent Cheeger inequality in analogy to
(4.6).

To this end, for a subset ) # A C VX, we first observe the following relationship between

|EX(A VK\A)HwK and the effective conductance €% VK4 D& given weighted graph K.
Lemma 4.17. Given a weighted graph K and any O # A C VE, we have that

1B (A VA e = € ey a
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Proof. By Remark 4.15,

Q:f,VK\A = - (Xf)T A XIV(K\A = Z Z w({v,v'}) = |[EF (A, VE\A) ||« -
vEA o/ cVEN\A
{v,v'yesf [ |

Hence, the Cheeger constant of a weighted graph K can be equivalently expressed as

) AVE\A
4.7 M = min
.7 0£AcVE |4
|A|<IIVE]

We will use this expression to generalize the Cheeger constant to the case of graph pairs. In
the case of a graph pair K — L, we define a persistent Cheeger constant by replacing the
right-hand side of (4.7) with the effective conductance between subsets of vertices of K inside
the ambient graph L:

Definition 4.18 (Persistent Cheeger constant). The persistent Cheeger constant h’F for
a graph pair K — L is defined as follows:

Q:L
REL = min AVINA
orAcVE | A
|A|<E|VE]

It is clear that when K = L, h'F reduces to h'. The following result (whose proof is
postponed to section SM6) indicates the persistent Cheeger constant grows as the ambient
graph becomes “more connected.”

Proposition 4.19. Consider three weighted graphs K C L1 C Ly. Then,
hK < hK,Ll < hK,LQI

See subsection 4.4.1 for comments about using other possible generalizations of the stan-
dard Cheeger constant to the case of graph pairs.

Remark 4.20 (probabilistic interpretation). Consider the canonical random walk {X,,}5°
defined on L with V' being the set of states and the transition probability from v to one of its

neighbors v’ is M For any A C VK let B := VX\ A. We establish in subsection SM3.2
deg™ (v) v =

that Qﬁﬁ g is proportional to the escape probability from A to B, i.e., the probability of the
walk, stérting randomly from a vertex in A, reaching B before returning to A. In this way,
we see that QQ, p measures whether A and B are well-separated in L, i.e., the larger €ﬁ7 B s,
the more connected A and B are. Thus, Al measures the capability of K being partitioned
into two well-separated parts in L.

Our definition of persistent Cheeger constant naturally leads us to the following persistent
Cheeger inequality.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/15/22 to 140.254.87.149 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

874 FACUNDO MEMOLI, ZHENGCHAO WAN, AND YUSU WANG

Theorem 4.21 (persistent Cheeger inequality). Let K < L be a weighted graph pair, then
(RE)”

o 2

< ANGE < apfoL)

where dii = max,cy K deg(v) and )\éféL denotes the second smallest eigenvalue of Aé(’L.

Note that when K = L, (4.8) reduces to (4.6). So our persistent Cheeger inequality is a
proper generalization of the standard discrete Cheeger inequality.

Proof. By Proposition 4.10, A{){’L is the graph Laplacian Ag( of a weighted graph K =
(VK,ER,wf{), so that )\(IféL = )\52. By (4.6), we have that 222)2 < A(IféL < 21K Note that
by Lemma 4.17

max

K
7 . | EX (A, VE\A)|| x o Cvka
h™ = min = min ——————,
0£ACV K Al p£acvE  |A|
lAl<T|vE| A< |VE]

where we have used the fact that VK = VK. By Theorem 4.16, we have that 9‘{5
%Q,VK\A and thus Q:Q(,VK}A = Qﬁ,vK\A' This implies that A% = L,
For any v € VE = V& by Proposition 4.13 we have that

S R ({3 wh({u, o))

v eVE v eVl

VE\A —

< dfg;f(. Therefore,

BEGLY2 B2 hf{ 2 _
N7 URER 000 < gt < on = s

max max

and thus d¥

max

4.4.1. A combinatorial upper bound for AéféL. When graphs are unweighted, we provide

a combinatorial upper bound for )\(If éL.

A path in a graph K = (VX EX) is a tuple p = (vg, ..., v,) such that v; € VX for each
i=0,...,n and {v;,v;11} € EX for each i = 0,...,n — 1. For two nonempty disjoint subsets
A, B C VE we denote by Pk (A, B) the set of all paths p = (vo,...,v,) in K satisfying (i)
vo € A,v, € Band v; ¢ AUB for i =1,...,n —1; (i) {vi,vit1} # {vj,vjq1} for i # 5. If
A = {v} and B = {w} are one-point sets, then we also denote Pk (v,v") := Pr({v},{w}). The
following Nash—Williams inequality [36, Lemma 2.1] permits relating Pk (A, B) with SRX B

Lemma 4.22 (Nash-Williams inequality). Let K be a weighted graph. Let A, B be nonempty
disjoint subsets of VE. A set I1 C EX is called a cut set between A and B if for any v € A
and v' € B, every path from v to v' contains an edge in 1. Suppose Iy, ... 11, are disjoint
cut sets between A and B. Then,

R p > Z Z w’ (e)

k=1 EEHk

-1
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Now, consider a graph pair K < V. Let ) # A C VK and let B := VX\A. Then, let
p1,...,pn denote all the paths in Pr(A, B). Choose an arbitrary edge e; from each path p;.
The set IT:={e; : i =1,..., N} is obviously a cut set between A and B. By Lemma 4.22 we
have that Qﬁﬁ}B <Y .enw¥(e) < |PL(A, B)|. By Theorem 4.21 we have the following upper
bound for )\(IféL which arises by minimizing the number of paths in L connecting the two sets
in a bipartition of VX:

| PL(A, VE\A)] _ kL

path”

1

fké(éL < piol < in

27 0£ACV K Al
|A|<3VE]

A priori, it seems plausible that one could have used the right-hand side of the above
inequality, hf;’tLh, as the definition of the persistent Cheeger constant. However, as we show
in section SM4, this quantity does not have a good interplay with the second persistent

. . K,L K,L . .
eigenvalue, i.e., hpath cannot be upper bounded by A 3" in any suitable sense.

5. The persistent Laplacian for simplicial filtrations. We now extend the setting of
section 2 for simplicial pairs to a simplicial filtration.

5.1. Formulation. Let K = {K;};er be a simplicial filtration with an index set 7' C R.
For each t € T' and ¢ € N we let C’é = Cfi, Sé = Sfﬂ and wfl = wf’f. For s <t eT we let

Cloi={ceCl: d(c) e C:_,} C CL.

Let 07° be the restriction of 9% to C¢°. Then, 97° is a map from Cg*° to C3_;. Finally, we

define the gth persistent Laplacian AJ* : Cy — Cy by

s,t . at,s t,s * s\ * s
(5.1) A= oty o (000) +(9) 0 0,
AS
AZZEp gq,down

where we view C}; for each t € T as a Hilbert space with the inner product (-, -)wé and A*
means the adjoint of an operator A under these inner products. We also let Ag denote the
gth Laplacian of K, for t € T. Note that Ag" = Al (cf. Example 2.3).

5.2. An algorithm for Afl’t. Consider the simplicial filtration K7 «— Ky < -+ — K,
where each K;y; contains exactly one more simplex than K; for ¢ = 1,...,m — 1. In this
section, we show that, for a fixed index ¢ € [m], we can compute the matrix representation AZ’t
of the persistent Laplacian A", for all 1 < s < ¢, in time O(t(nk)* + nt, 1), where nl, == nfi
is the number of g-simplices in K;. Note that this is more efficient than applying the Schur
complement formula for AJ* (equation (4.3)) ¢ times, which will lead to O(t(nh)? +tnl, )
total time. This result is again achieved via the relation between persistent Laplacian with

Schur complement (cf. Theorem 4.6).

Recall from (5.1) that for any 1 < s < t, A" = Adl, + A? joun- Since AP 4 can be
constructed in time O((n$)?) = O((nf)?) (cf. section SM1), the set of A joun foralll <s <t

can be computed in O(t(n})?) time.
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For simplicity, we assume that S; = {01,...,0s} for each s = 1,...,¢, that is, Ky
contains exactly one more ¢g-simplex than K for s = 1,...,t—1. It then follows that Agjflp =
Al /AL (IE TE), where I is the index set If = {s + 1,5 +2,...,t}. By Remark 3.2 and
Lemma 4.2, Afmp([;, It) is proper in Atq’up for each s =1,...,t — 1. Therefore, following the
quotient formula (Lemma 4.4), to compute Aj’hp, one can perform an iterative reduction from
Al to Alnt L ASLEY and down to A, More precisely, for any £ < t,

(5.2)

N ABLGOAS () .
Aé’ip(ﬁ,]) _ 2q p(zt) gup (4,0) if Ag’,ﬁp(f,ﬁ) £0
Aq,up(f,f)

Aghp(i, j) if AZho(0,0) =0

Al (i.d) =

aup for any 7,5 € [¢ — 1].

Equation (5.2) coincides with the celebrated Kron reduction formula (see equation (16) of [10])
when K is a connected graph, ¢ = 0, and w6 = 1. In other words, Ag:&;t can be computed
from Af;’ﬁlp in time linear to the size of the matrix, which is bounded by O((n})?). Note that
from section SM1 we know computing A}, takes time O(n} ). It then follows that using
(5.2), we can compute Ajh, for all 1 < s < ¢ iteratively in O(t(nfl)2 +ngyq) total time. We
summarize our discussion into the following theorem.

Theorem 5.1. Let K1 — --- — K, be a simplicial filtration where each Ky 1 contains
exactly one more simplex than K for allt € [m — 1]. For any fized t € [m], we can compute
the whole set {AP'}_, of.p'ersz'stent Laplacians in O(t(nf])z +ngyq) time. This also implies
that we can compute all A7, for any 1 <i < j <m, in O(m*(ng*)* + mnl ) total time.

Remark 5.2. Note that if the input filtration is not simplexwise, namely if K, ;\K; is
allowed to contain more than one simplex, then one can still use the above procedure by first
refining the input filtration so as to produce a simplexwise one. However, this will increase
the length of the filtration and thus impact the time complexity. Hence, if the size of K;11\K;
is large, then it may be more beneficial to instead perform multiple Schur complements in
order to construct the set of persistent Laplacians.

5.3. Monotonicity, functoriality, and stability of (up) persistent eigenvalues. Recall
from subsection 2.3 that for a simplicial pair K — L, )\f,; denotes the kth smallest eigen-
value of Af L Now, given a simplicial filtration K = {K;}cr, we define its kth persistent
eigenvalue )\ZZ(K) for each s <t € T by )\ZZ(K) = )\f,z’Kt. We define the kth up persis-

tent eigenvalue \>'  (K) for each s < t € T to be the kth smallest eigenvalue of AJ%p.

q,up;k
Whenever the underlying filtration K is clear from the context, we let )\2’2 = )\ZZ(K) and
s,t St
gup,k " )‘q,up,k(K)'

In [51] the authors suggest that invariants similar to persistent eigenvalues could be useful
for shape classification applications. With that in mind, we now explore both their monotonic-
ity and stability properties, concluding with Theorem 5.10. We remark that, in the course
of studying stability properties of persistent eigenvalues, we also establish the functoriality of
the up persistent Laplacian and its eigenvalues.
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Af1ot2 t2,t3

A
Ktl g.up.k N Kt2 q.up.k Kt3

\/

ty,t
by 1:'3
q,up,k

Figure 3. All arrows represent inclusion maps and all eigenvalues /\ o ” ok (for 1 <1i < j < 3) are shown

on top of their corresponding arrows. Theorem 5.3 guarantees that )\tlup , 18 the largest among these three
etgenvalues.

Theorem 5.3 (monotonicity of up persistent eigenvalues). Let K = {K;}icr be a simplicial
filtration and let ¢ € N. Then, for any t1 < to <tz €T, we have for each k =1,. .. ,ngl that

t1,t2 t1,t3 to,t3 t1,t3
A < )\b and X < BB
q,up,k = “‘q,up,k g,up,k = “*q,up,k

The proof of Theorem 5.3 exploits the connection of the up persistent Laplacian with
Schur complements (Theorem 4.6).

See Figure 3 for an illustration.

Proof. By the min-max theorem (see, for example, [23, Theorem 2.1]), we have for any
s <t €T and for each k = 1,...,nf]1 that

<As7upg7 >
s,t w,

. q
= min max ——————,
q;up,k Vi CCs g€Vi (g, 9>w3

where the minimum is taken over all k-dim subspaces Vj of C7. Then, in order to prove that

t1,t tits . t1,t i
)‘ql,iliik < )\qll’l;k, it suffices to verify that (Agupg, 9), 0 < (Agipg, 9) Wil for any g € C’él.
to,t ta,t :
Now, since C 7' € C%', we consider an orthogonal decomposition
clsh _ o2t ot )
g+l = Ygt1 g+1

Then, we have the decomposition 8;1’? = agitf @® 0, where 0 maps (C’;i’tf)L into Cél.
Therefore, we have that

(5:3) A=t (o) =oay (o) +ot (04) =i + ot (04)

t1,t2 )\ti,ts .
q,up, k q,up,k”

(A3, 9) 0 = (AEg.9) 0 + (0" (ai)*979>w;1
= (8p0.0),0 +((04) 9.(94) 0),. = (Aitika0),

As for )\ZZJS p < )\le’lts w» we will apply Theorem 4.6. For notational simplicity, we let
It == [nl]\[ng]. Since the matrix A!_ is positive semidefinite, both A 1;*) and
Al ( tl,I ) are proper in Af_ (cf. Lemma 4.2). Moreover, Al ( t2,I ) is proper in

This implies the following and thus A

qup( to

q q q,up
q,up q,up q,up
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Affup(lff,lff). Then, by Lemma 4.4 and Theorem 4.6, Al = Aflfup/Aéfup(Iff,Iff) is the
Schur complement of some proper principal submatrix in Als = A3, /A (It If;”) More

. qup/ “qup\ oo
precisely,

(5.4) Al = AR AR (12,17)
Then, by Lemma 4.5, we have that
N =M (BZE) < M (ARGE) = Mgy VR =1,.m5, o
Note that when ¢ = 0, Ag’t = A(S)ﬁlp for s <t. Then, we have the following corollary.
Corollary 5.4. Let K = {K}ier be a simplicial filtration. Then for any t; <ty <t3 €T,
we have for each k =1,... ,n61 that )\617,’52 < )\617,’53 and )\62’,’;3 < )\61,53

We remark that the persistent Cheeger constant (cf. Definition 4.18), a quantity closely
related to Oth persistent eigenvalues, is also shown to satisfy a monotonicity property (as
described in Proposition 4.19). This monotonicity property is, however, weaker than the
monotonicity property for Oth persistent eigenvalues established in the corollary above.

A simple adaptation of the proof of the formula )\Zl’l’f;,k < /\Ztﬁ,k will give rise to the
following monotonicity result for persistent eigenvalues.

Corollary 5.5. Let K = {Ki}er be a simplicial filtration. Given q¢ € N, then for any
t1 <ty <tz eT, we have for each k =1,..., nfll that A;l,,;t{" < )\zl’l’fi”.

Functoriality and stability of up persistent eigenvalues. Consider the simplicial filtration
K' < K — L < L'. This filtration should be regarded as a morphism (in the category where
objects are simplicial pairs over a fixed vertex set V') from the simplicial pair K < L to the
simplicial pair K/ — L'

(5.5) /// Q\\

Given Agf ’u%) on Cy(K), we induce an operator on Cy(K’) by considering the Schur complement

A(f {1% /Aéfﬁ{é([ K, 1)), where I, stands for the indices corresponding to g-simplices which are
not in K’ € K. By Lemma 4.4 and Theorem 4.6, one has that Af{fl{) Ag&%([g,,[fé) is
the matrix representation of Af 1/11{4 (see also (5.4)). It follows from (5.3) in the proof of
Theorem 5.3 that

(5.6) AR = ARL

ie., AKX (;PF —AK l/lpL is positive semidefinite. Hence, the operator Agus on Cy(K) arising from
the pair K < L induces an operator on C,(K’) which is upper bounded (in the sense of the
Loewner order <) by the operator Af {I’I{J arising from the pair K’ < L’. This should be seen
as expressing the functoriality of up persistent Laplacians. As a direct consequence of this
functoriality property of up persistent Laplacians and Lemma 4.5, we establish the following
functoriality (monotonicity) property of up persistent eigenvalues.
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Proposition 5.6 (functoriality of up persistent eigenvalues). For the morphism (5.5) between

the simplicial pairs K — L and K' — L', and for any k =1,... ,nf/, we have that
K,L K',L'
(5.7) Aq,upJﬂ < Aq,up,k'

Now, based on functoriality of up persistent eigenvalues, we establish a stability result via
interleaving-type distances.

Definition 5.7 (interleaving distance between simplicial filtrations over R). Let K = {K}}ter
and L = {Li}ter be two simplicial filtrations over R with the same underlying vertex set V
and the same index set R. We define the interleaving distance between K and L by

dy (K,L) :=inf{e >0: Vt,K; C Ly, and Ly C Ky},

where when we write the inclusion K C L, we implicitly require that w™ = w’|x.

Definition 5.8 (interleaving distance between functions). Let Int denote the set of closed
intervals in R. Let f : Int — R>o and g : Int — R>¢ be two nonnegative functions. We then
define the interleaving distance between f and g by

di(f,g) =inf{e >0: VI € Int, f(I°) > g(I) and g(I*) > f(I)}.

Above, for Int > I = [a,b] and € > 0, we denoted I¢ :=[a —&,b+ ¢].

Remark 5.9. The stability theorem given below is structurally similar to claims about
stability of the rank invariant; see [42, Theorem 22] and [25, Remarks 4.10 and 4.11].

With these definitions and with (5.7) we now obtain the following stability theorem.

Theorem 5.10 (stability theorem for up persistent eigenvalues). Let K = {K;}icr and
L = {L}ter be two simplicial filtrations over the same underlying vertex set V.. Then,

(5'8) dr ()‘(Ifup,k? )‘(],];,up,k) < d}/ (Kv L) )
where XK - Int — R is defined by Int > T = [a,b] — AZY (K.

A similar but more convoluted statement, would express the stability of the persistent up
Laplacians via (5.6).

Proof. If dY (K,L) = oo, then (5.8) holds trivially. Otherwise we assume there exists
e > 0 such that Ky C Ly, and Ly C Ky for all t € R. For any I = [a,b] € Int, then
L, C K, C Ky C Ly is a simplicial filtration related to the following interleaving diagram:

Ka‘—>Kb

e N

Lo—c < Lb—i—e
By Proposition 5.6, Aot > AXef - This implies that AL (1%) > MK (1) for all
I € Int. Similarly, )\gupk(lf) > )\E‘,up,k(I) for all I € Int. Therefore, dI()\f:up’k,)\;up’k) <e
and thus dl()‘gup,kv Ag,up,k) < dY (K,L). [ ]
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6. Discussion. As a natural progression of the ideas in this paper, where the persistent
Laplacian is formulated for inclusion maps, it is of definite interest to extend it to the setting
of simplicial maps—a natural extension which would enable other applications such as graph
sparsification where clusters of vertices might be collapsed between consecutive levels of a
filtration.

A notion of persistent Laplacian for pairs of manifolds also related by inclusion maps was
developed in [6]. In the spirit of our paper, it is then natural to attempt to relate the version
of the persistent Laplacian from [6] to notions of Schur complement of operators (e.g., [15])
in a suitable sense, which may also be related to Poincaré-Steklov operators [29].

The Cheeger inequality has been generalized both to higher order (eigenvalues of graph
Laplacians) in [30] and to higher dimensional simplicial complexes [47, 18]. This naturally
suggests to us to consider suitable extensions of our persistent Cheeger inequality to these
cases which will provide interpretation of the persistent Laplacian spectrum.

It is of clear interest to elucidate stability properties of invariants associated to the persis-
tent Laplacian which generalize the results we established in Theorem 5.10. It is conceivable
that some of these developments will follow from invoking classical operator perturbation
techniques—an “analytical” possibility afforded by the persistent Laplacian approach to per-
sistent homology.

Finally, we remark that whereas the multiplicity of the zero eigenvalue recovers the rank of
the corresponding homology group (i.e., Betti number), in general, both nonzero eigenvalues
and (specific) eigenvectors have applications such as in partitioning [50] and shape matching
[43]. This suggests the future exploration of applications of persistent spectral analysis beyond
mere persistent Betti numbers.

Appendix A. Relegated proofs.

Proof of Lemma 2 4 This follows directly from the following obvious observations:
L;,K;
L. OK1_®7, 1 G 1vCK DL 1CKZ and0+1—€97;10q+1 :

2. 0F =PI 16& and 0,1} = @, o u

Proof of Theorem 2.5. For item 1, let cff = Zvesé( wi (v)[v] € CI. We prove that
Aé(’Lcé( = 0 and thus )\éf’lL =0. Set ¢} = EUESOL wi (v)[v]. Then,

=Y w@l+ Y wi@kl= Y wi®)p]+cf.

veSH\SE veSE veSH\SE

For any ¢; € ClL ’K, we have that

((GF%) dfrer),, = (el 0t er) = (chof e >w5—< > wé<v>[v],af’Kc1> |
vESFASEE

L
Wo

where (,-) r.x is the restriction of (-,-), on CEE and we use the fact wil = w§|sé< in the
1
rightmost equality.
Since 81L’Kcl € CE, we have that <ZUESL\SK wk (v)[v], 8 Kep) wi = 0. Now, assume that

c1 = wie1] + - -+ + x¢les] where each e; € ST and z; € R. Since 81 e = 0F[es] = [vi] — [wi]
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r = 0 for each 4 = 1,...,¢ and thus

for some v;,w; € SF, we have that <co,8LK[ ])wo

(ct, 81L’Kcl)w€ = 0. It then follows that

<<81L’K>*cé{,cl> L =0 Ve € Cf’K,
wy’
and thus Aé( Lcé( = GIL’K((?lL’K)*Cl =0.

Now, assume that L is connected. Suppose that there exists 0 # co € C& such that
Ag’Kco = 0. Then, (8{:’1()*00 = 0. For any v,v’ € ng, since L is connected, there exists a
I-chain ¢; € CF such that 9fc; = [v] — [¢] (for example, one can take a path in L connecting
v and v’ and let ¢; be the corresponding 1-chain). Then, ¢; € C’lL K and 81L e =[] = ).

Note that .
(cor 0] = []) s = <co,81L’KC1>wé< = {(of") 00,61>w1L’K 0.

This implies that (co, [U]>w§ = (cp, [v’]>w5( and thus there exists o € R such that (co, [”]>w§< =
a for each v € SI. Then, ¢y = a - ¢, implying that the multiplicity of 0 eigenvalue is 1.
For item 2, suppose K intersects exactly m connected components of L, denoted by

Ly,...,Ly,. Then, by Lemma 2.4 we have that Aé(’L =h, Aé(i’Li. Then, the spectrum of
Aé{ ' is the multiset union of the spectra of Aéf ilig, By item 1 and item 2 we have that the

multiplicity of zero eigenvalue of Ag){ L is then exactly m. |
Proof of Theorem 2.6. By abuse of the notation, we represent each ¢ € C’qL by a vector

¢ € R" . Then, & corresponds to the vector ¢ = cH([nk]) € R™ . By Theorem 4.6, the

matrix representation Ay, u]f, of Aq up can be computed as follows:

ARE = AL (0, In]) — Al (18], 1h) ALy, (1, TR) T AL (T, [05))

q,up q,up ‘1 q,up q,up q,up

where If; = [nL]\[n[].
Suppose o; € SK is an interior simplex; then the ith row of A
section SM1). Then,

qup([nf}alflé) is 0 (Cf

1. the ith entry of AL ([nK], [nE])c™ exactly Tcomcldes with the ith entry of AL ch;
2. the ith row of AL ([nk], ,@A@u (Ik, 1) AqLup (I%, [ng']) is 0.
Therefore, the ith entry of Aq uch (= wy, L(o )<A5up [Uz])qu) agrees with the ith entry of
Aflfu%cK (= wf(aﬁ(Aéf{éc o ])w ). Then by w, Kloy) = wé(ai), we have that
<A§7UP g [O-i}>qu <A£<ULP = [O-i]>wé<' |

Proof of Theorem 2.7. First, we have the following elementary linear algebra fact: The
isomorphism follows from [33, Theorem 5.3] and the equality follows from [33, Theorem 5.2].

Claim A.1. Let A € R™™ qnd let B € R"*P. Suppose AB = 0; then we have
ker(A)/im(B) = ker(A) Nker (BT) = ker (BBT + AT A),

where = denotes isomorphism between vector spaces.
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The image of H,(K) under the inclusion map inside Hy(L) is exactly ker(@f)/im(@L’K)

q+1/°
Let BK be the matrix representation of 8K . Choose an orthonormal basis of C’Lff and let

Bé_ff be the corresponding matrix representation of ok +1 in this basis. Then, by Theorem 3.1

T _ _
ARt =By (BEY) W) Wl (B (W) B

»Q
T+ 4
=

T
= (W) (vl Bl (v B ) (i

N

st (v e ) vy g it vy

Let A := (quﬁl)‘lBK(WK)% and B == (WX) "2 B4Y. Then,
_1 1 LK
1. AB=(WEK))z BK(WK) (WK) Bqu1 = (WkE)) BKBqH =0,
2. AP = (WE)2(BBT + ATA)(W[E) 2.
Since both quil and W[ are nonsingular, we have that ker(4) = ker(BE), im(B)
im(B(i’_Il{), and ker(Aff’L) = ker(BBT + AT A). Tt then follows from Claim A.1 that

1

it = dim (ker (B fim (BLY)) = dim (ke (AFH)) = mallity (AF4).

Proof of Lemma 3.4. Consider 7+ o aqLH : C;H — (C’f)L where 7t : ck — (C’f)L

is the orthogonal projection. Then, DqLJrl is the matrix representation of 7+ o qL+1 and
C'qLJrIf = ker(7t o qul) So Rq+1 = qulY is the matrix representation of 7 o 8§+1 after a
change of basis of Cq

1. If I =, then since Ré: ', 1 is column reduced, Ré "1 has full column rank. This implies
that 7t o 8q+1 Cck P (CE)* is injective and thus C 1 = ker(mt o 6q+1) = {0}.

2. If I # (), then the column space of Z =Y (:,I) commdes with ker(m o 8q+1) CqurIf.

Since Y is nonsmgular, Z has full column rank. Therefore, the columns of Z constitute

a basis of Cq+1

Obviously, Bq+1<[ nk],:) is the matrix representation of 7 o 8qL+1 : CqLH — CK where

7 : Ck — C[ is the orthogonal projection. Therefore, (BqLHY)([ KD = BqLH([ K1Y is
the matrix representation of 7r08qL 1 under the new basis Y of Cq ‘1. Now, assume that I#0.

Since the column space of Z =Y (:, ) is C'qLJrIf we have that Bquf = (B;HY)([né(],I) is the

. . I _ aLLK
matrix representation of 7o 9., | oL = Oyi1 - [ ]

Note added in proof. The notion of persistent Laplacian also arose in the work of André
Lieutier in 2014 [32].
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