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Persistent Laplacians: Properties, Algorithms and Implications∗

Facundo Mémoli† , Zhengchao Wan‡ , and Yusu Wang‡

Abstract. We present a thorough study of the theoretical properties and devise efficient algorithms for the
persistent Laplacian, an extension of the standard combinatorial Laplacian to the setting of pairs
(or, in more generality, sequences) of simplicial complexes K ↪→ L, which was recently introduced
by Wang, Nguyen, and Wei. In particular, in analogy with the nonpersistent case, we first prove
that the nullity of the qth persistent Laplacian ∆K,L

q equals the qth persistent Betti number of the
inclusion (K ↪→ L). We then present an initial algorithm for finding a matrix representation of ∆K,L

q ,
which itself helps interpret the persistent Laplacian. We exhibit a novel relationship between the
persistent Laplacian and the notion of Schur complement of a matrix which has several important
implications. In the graph case, it both uncovers a link with the notion of effective resistance and
leads to a persistent version of the Cheeger inequality. This relationship also yields an additional,
very simple algorithm for finding (a matrix representation of) the qth persistent Laplacian which
in turn leads to a novel and fundamentally different algorithm for computing the qth persistent
Betti number for a pair K ↪→ L which can be significantly more efficient than standard algorithms.
Finally, we study persistent Laplacians for simplicial filtrations and establish novel functoriality
properties and stability results for their eigenvalues. Our work brings methods from spectral graph
theory, circuit theory, and persistent homology together with a topological view of the combinatorial
Laplacian on simplicial complexes.

Key words. combinatorial Laplacian, persistent Laplacian, Schur complement, persistent homology, effective
resistance, Cheeger inequality
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1. Introduction. The combinatorial graph Laplacian, as an operator on functions defined
on the vertex set of a graph, is a fundamental object in the analysis of and optimization on
graphs. Its spectral properties are widely used in graph optimization problems (e.g., spectral
clustering [8, 31, 40, 49]) and in the efficient solution of systems of equations; cf. [27, 34, 46, 48].
The graph Laplacian is also connected to network circuit theory via the notion of effective
resistance [1, 10, 35, 45].

There is also an algebraic topology view of the graph Laplacian which arises through
considering boundary operators and specific inner products defined on simplicial (co)chain
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groups [8]. This permits extending the graph Laplacian to a more general operator, the qth
combinatorial Laplacian ∆K

q on the qth (co)chain groups of a given simplicial complex K
(see, e.g., [12, 11, 16, 23]), so that the standard graph Laplacian simply corresponds to the
0th case. These ideas connect to the topology of the input simplicial complex via the so-called
combinatorial Hodge theorem [12], which states that the nullity of the qth combinatorial
Laplacian is equal to the rank of the qth cohomology group of K with real coefficients, i.e.,
the qth Betti number of K. See also [23, 33] for thorough expositions.

The combinatorial Laplacian (and variants) have received a great deal of attention in
recent years; see, e.g., [16, 17, 18, 38]. For example, [26] aims to extend the related concept,
effective resistance from network circuit theory, to this “high dimensional” situation, whereas
[20, 19] consider a spectral theory of cellular sheaves with applications to sparsification and
synchronization problems.

Adopting the algebraic topology view of the qth combinatorial Laplacian, Wang, Nguyen,
and Wei [51] introduced the so-called qth persistent Laplacian ∆K,L

q , which is an extension of
the combinatorial Laplacian mentioned above to a pair of simplicial complexes K ↪→ L con-
nected by an inclusion. To the best of our knowledge, [51] is the first work which establishes
a link between persistent homology [14, 54], one of the most important developments in the
field of applied and computational topology in the past two decades, with the Laplacian, a
common and fundamental object with a vast literature, in both the theoretical and applied do-
mains. These ideas surrounding the persistent Laplacian therefore have the potential to allow
importing rich ideas from the toolset of analysis into the TDA field—a field which has so far
been propelled mostly by algebraic methods. See also [9, 41] for other work in computational
topology which leverages ideas connected to the (standard) combinatorial Laplacian.

It is thus natural and also highly desirable to achieve better understanding, as well as
algorithmic developments, for this persistent Laplacian, all of which will help broaden its
potential applications. The present paper aims to close this gap.

Contributions. In this paper, we carry out a thorough study of the properties of and develop
algorithms for the persistent Laplacian. Our work brings together ideas and methods from
several communities, including spectral graph theory, circuit theory, topological treatments of
high-dimensional combinatorial Laplacians, together with a persistent homology perspective
(both at the theoretical and algorithmic levels). For instance, we relate the computation of
persistent homology with notions from network theory such as the Kron reduction (and also
Schur complements) which have novel algorithmic implications; see below.

This is an overview of our results:
• In section 2, we present several results about the properties of the qth persistent
Laplacian ∆K,L

q , including Theorem 2.7, which establishes that the nullity of ∆K,L
q

equals the qth persistent Betti number from K to L—a result analogous to the one
that holds in the nonpersistent case.
• In section 3, we give a first algorithm (Algorithm 3.1) to compute a matrix repre-
sentation of ∆K,L

q , which relies on matrix reduction ideas which are standard when
computing persistent homology.

• In section 4, we establish our main observation Theorem 4.6, a relationship between
the persistent Laplacian and the concept of Schur complement of a matrix. This
observation has several immediate and important implications:D
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860 FACUNDO MÉMOLI, ZHENGCHAO WAN, AND YUSU WANG

1. We establish a second, very simple algorithm (Algorithm 4.1) which computes
the matrix representation of the persistent Laplacian ∆K,L

q (for any q) efficiently,
purely based on a linear algebraic formulation (Theorem 4.6).

2. This observation leads to a new algorithm to compute the qth persistent Betti
number for a pair of spaces in a fundamentally different manner from extant
algorithms in the computational topology literature. This new algorithm is, under
mild conditions (e.g., as those commonly satisfied by Vietoris–Rips complexes)
significantly more efficient than existing algorithms. We believe that this new
algorithm for computing persistent Betti numbers is of independent interest.

3. In the graph case (i.e., when K and L are graphs and q = 0), this provides
a direct connection with notions from network circuit theory such as the Kron
reduction [10], a connection which reveals that the matrix representation of the
persistent Laplacian permits recovering the effective resistance of pairs of vertices
in K w.r.t. the larger graph L (cf. Proposition 4.10 and Theorem 4.11). The
connection with network circuit theory leads to our definition of a “persistent”
Cheeger constant as well as to a novel persistent Cheeger-like inequality for a
pair of graphs K ↪→ L (cf. subsection 4.4).

• Finally, in section 5, we consider qth persistent Laplacians for filtrations of simplicial
complexes (connected by inclusion morphisms). We first describe an efficient algorithm
to iteratively compute the persistent Laplacian for all pairs of complexes in a filtration.
We then discuss certain functoriality and stability results for the persistent Laplacian
for filtrations of simplicial complexes.

Some technical details are relegated to the appendix and/or to the supplementary materials
(M143547R Supplementary Materials 1.pdf [local/web 526KB]).

2. The persistent Laplacian for simplicial pairs K ↪→ L. In this section, after introduc-
ing some basic notions/definitions in subsection 2.1, we formulate the persistent Laplacian for
simplicial pairs in subsection 2.2 and present some basic properties of persistent Laplacians
in subsection 2.3.

2.1. Basics.
Simplicial complexes. An (abstract) simplicial complex K over a finite ordered set V is a

collection of finite subsets of V such that for any σ ∈ K, if τ ⊆ σ, then τ ∈ K. Denote by
N the set of nonnegative integers. For each q ∈ N, an element σ ∈ K is called a q-simplex
if |σ| = q + 1, where we use |A| to denote the cardinality of a set A. A 0-simplex, usually
denoted by v, is also called a vertex. Denote by SK

q the set of q-simplices of K. Note that

SK
0 ⊆ V . The dimension of K, denoted by dim(K), is the largest q such that SK

q ̸= ∅. A

1-dim simplicial complex is also called a graph and we often use K = (V K , EK) to represent
a graph, where V K := SK

0 denotes the vertex set and EK := SK
1 denotes the edge set.

An oriented simplex, denoted by [σ], is a simplex σ ∈ K with an ordering on its vertices.
For simplicity of our presentation, we always assume that the ordering is inherited from the
ordering of V . Let S̄K

q := {[σ] : σ ∈ SK
q }. The qth chain group CK

q := Cq(K,R) of K is
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the vector space over R with basis S̄K
q . Let nK

q := dimCK
q = |SK

q |. We define the boundary

operator ∂K
q : CK

q → CK
q−1 by

∂K
q ([v0, . . . , vq]) :=

q∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vq](2.1)

for each σ = [v0, . . . , vq] ∈ S̄K
q , where v̂i denotes the omission of the ith vertex. The qth

homology group of K is Hq(K) =
ker(∂K

q )

im(∂K
q+1)

and βK
q := rank (Hq(K)) is its qth Betti number.

A weight function on a simplicial complex K is any positive function wK : K → (0,∞).
Throughout the paper, every simplicial complex K is (implicitly) endowed with a weight func-
tion wK . We call K unweighted if wK ≡ 1 (subsection 4.4.1 is the only place where we restrict
ourselves to the unweighted case).

Combinatorial Laplacian. Let K be a simplicial complex with a weight function wK . Given
any q ∈ N, let wK

q := wK |SK
q

and define the inner product ⟨·, ·⟩wK
q

on CK
q as follows:

⟨[σ], [σ′]⟩wK
q
:= δσσ′ ·

(
wK
q (σ)

)−1 ∀σ, σ′ ∈ SK
q ,(2.2)

where δσσ′ is the Kronecker delta.

Remark 2.1. Consider the dual space of CK
q : the cochain space Cq(K) := Hom (Cq(K),R).

Then, ⟨·, ·⟩wK
q

on Cq(K) induces an inner product ⟨⟨·, ·⟩⟩wK
q

on Cq(K) such that

⟨⟨f, g⟩⟩wK
q
=
∑
σ∈SK

q

wK
q (σ)f([σ])g([σ]) ∀f, g ∈ Cq(K).

This inner product ⟨⟨·, ·⟩⟩wK
q

on Cq(K) coincides with the one defined in [23], which explains

the reciprocal in the definition (2.2) of the inner product ⟨·, ·⟩wK
q

on Cq(K).

We denote by (∂K
q )∗ : CK

q−1 → CK
q the adjoint of ∂K

q under these inner products. Then,

we define the qth (combinatorial) Laplacian ∆K
q : CK

q → CK
q as follows:

∆K
q := ∂K

q+1 ◦
(
∂K
q+1

)∗︸ ︷︷ ︸
∆K

q,up

+
(
∂K
q

)∗ ◦ ∂K
q︸ ︷︷ ︸

∆K
q,down

,(2.3)

where for convenience we have also defined the corresponding “up” and “down” Laplacians.
By convention we let ∂K

0 := 0 and thus ∆K
0 = ∂K

1 ◦ (∂K
1 )∗. When K is a graph and wK

0 ≡ 1,
∆K

0 reduces to the graph Laplacian of the weighted graph (K,wK
1 ) [8].

Theorem 2.2 ([12]). For each q ∈ N, βK
q = nullity(∆K

q ).

Simplicial pairs and simplicial filtrations. A simplicial pair, denoted K ↪→ L, consists of any
pair K and L of simplicial complexes over the same finite ordered set V such that K ⊆ L,
i.e., SK

q ⊆ SL
q for all q ∈ N, and wK = wL|K . A simplicial filtration K = {Kt}t∈T is a set of

simplicial complexes over the same finite ordered set V indexed by a subset T ⊆ R such that
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862 FACUNDO MÉMOLI, ZHENGCHAO WAN, AND YUSU WANG

for all s ≤ t ∈ T , Ks ↪→ Kt is a simplicial pair. For an integer q ≥ 0 and for any s ≤ t ∈ T ,
via functoriality of homology [21] one obtains a map f s,t

q : Hq(Ks) → Hq(Kt) and the qth
persistent homology groups are defined as the images of these maps. The qth persistent Betti
numbers βs,t

q of K are in turn defined as the ranks of these groups. Of course when one is just
presented with a simplicial pair K ↪→ L, for each q one also obtains the analogously defined
qth persistent Betti number βK,L

q .

2.2. Definition of the persistent Laplacian. Suppose that we have a simplicial pair K ↪→
L and that q ∈ N. Consider the subspace

CL,K
q :=

{
c ∈ CL

q : ∂L
q (c) ∈ CK

q−1

}
⊆ CL

q

consisting of those q-chains in CL
q such that their images under the boundary operator ∂L

q is

in the subspace CK
q−1 of CL

q−1. C
L,K
q is endowed with the inner product ⟨·, ·⟩

wL,K
q

which arises

through restricting the inner product ⟨·, ·⟩wL
q
on CL

q by to CL,K
q . Let nL,K

q := dim(CL,K
q ).

Now, for each q let ∂L,K
q denote the restriction of ∂L

q to CL,K
q so that we obtain the

“diagonal” operators ∂L,K
q : CL,K

q → CK
q−1. As we mentioned earlier, for each q both CK

q and

CL
q are endowed with inner products ⟨·, ·⟩wK

q
and ⟨·, ·⟩wL

q
so that we can consider the adjoints

of ∂L,K
q+1 and ∂L

q . See the diagram below for the construction where the blue arrows signal the
important part of the diagram:

CK
q+1 CK

q CK
q−1

CL,K
q+1

CL
q+1 CL

q CL
q−1

∂K
q+1

∂K
q

(∂L,K
q+1 )

∗

(∂K
q )

∗∂L,K
q+1

∂L
q+1 ∂L

q

One can then define the qth persistent Laplacian [51] ∆K,L
q : CK

q → CK
q by:

∆K,L
q := ∂L,K

q+1 ◦
(
∂L,K
q+1

)∗
︸ ︷︷ ︸

∆K,L
q,up

+
(
∂K
q

)∗ ◦ ∂K
q ,(2.4)

where we have also defined the qth up persistent Laplacian ∆K,L
q,up with the same domain/

codomain as ∆K,L
q . When q = 0, since ∂K

0 = 0, ∆K,L
0 = ∂K,L

1 ◦ (∂K,L
1 )∗ = ∆K,L

0,up.

Example 2.3 (trivial cases).
1. When CL,K

q+1 = {0}, ∂L,K
q+1 = 0 and thus ∆K,L

q,up = 0.

2. When K = L, then obviously ∆K,L
q = ∆L

q , the usual Laplacian on L.

3. If SK
q = SL

q , then ∆K,L
q,up = ∆L

q,up. In particular, if SK
0 = SL

0 , then ∆K,L
0 = ∆L

0 . If

furthermore SK
q−1 = SL

q−1, then ∆K
q,down = ∆L

q,down and thus ∆K,L
q = ∆L

q .D
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Obviously, ∆K,L
q is a self-adjoint, nonnegative and compact operator on CK

q and thus has

nonnegative real eigenvalues. We denote by 0 ≤ λK,L
q,1 ≤ λK,L

q,2 ≤ · · · ≤ λK,L
q,nK

q
the eigenvalues

of ∆K,L
q (including repetitions) sorted in increasing order.

2.3. Basic properties of the persistent Laplacian. We now show some basic properties
of ∆K,L

q . All proofs are given in Appendix A.

Lemma 2.4. Suppose L has n connected components L1, . . . , Ln. Suppose K only intersects
the first m connected components. Let Ki := K ∩Li for each i = 1, . . . ,m. Then, ∆K,L

q is the

direct sum of persistent Laplacians ∆Ki,Li
q on CKi

q for i = 1, . . . ,m, i.e., ∆K,L
q =

⊕m
i=1∆

Ki,Li
q .

Given a graph K, the multiplicity of the 0 eigenvalue of ∆K
0 coincides with the number of

connected components of K [37]. The following result is a persistent version of this.

Theorem 2.5. The eigenvalues of ∆K,L
0 satisfy the following basic properties.

1. λK,L
0,1 = 0, and if L is connected, then λK,L

0,2 > 0.

2. Let m be the multiplicity of the 0 eigenvalue of ∆K,L
0 , then K intersects exactly m

connected components of L.

We have a complete description of the behavior of the up persistent Laplacian on interior
simplices, where a q-simplex σ ∈ SK

q is called an interior simplex if σ only shares cofaces with

q-simplices in K, i.e., for all σ′ ∈ SL
q , if σ ∪ σ′ ∈ SL

q+1, then σ′ ∈ SK
q .

Theorem 2.6. Let cL ∈ CL
q and let cK be the image of cL under the orthogonal projection

CL
q → CK

q . Then, for any interior simplex σ ∈ SK
q , we have that〈

∆L
q,upc

L, [σ]
〉
wL

q
=
〈
∆K,L

q,upc
K , [σ]

〉
wK

q
.

The following result showing persistent Laplacians recover persistent Betti numbers was
mentioned in passing and without proof in [51]. We give a full proof in Appendix A.

Theorem 2.7. For each integer q ≥ 0, we have that βK,L
q = nullity(∆K,L

q ).

3. A first algorithm for computing a matrix representation of ∆K,L
q . In this section,

we first provide a matrix representation ∆∆∆K,L
q of ∆K,L

q given the canonical basis S̄K
q of CK

q

and then devise an algorithm for computing ∆∆∆K,L
q .1

Note. For simplicity, given a simplicial pair K ↪→ L, for each q ∈ N we assume an

ordering S̄L
q = {[σi]}

nL
q

i=1 on S̄L
q such that S̄K

q = {[σi]}
nK
q

i=1. Unless otherwise specified, matrix
representations of operators between chain groups are always from such orderings on canonical
bases S̄K

q and S̄L
q of CK

q and CL
q , respectively.

Theorem 3.1. Assume that nL,K
q+1 := dim(CL,K

q+1 ) > 0. Choose any basis of CL,K
q+1 ⊆ CL

q+1

represented by a column matrix Z ∈ RnL
q+1×nL,K

q+1 . Let BK
q and BL,K

q+1 be matrix representations

1In [51] it is suggested that the qth persistent Laplacian ∆K,L
q can be computed by (i) taking a certain

submatrix of the boundary operator and then (ii) multiplying it by its transpose. However, simply following
these two steps does not yield a correct algorithm. The calculation of the matrix form of the persistent Laplacian
turned out to be rather subtle as shown in Theorem 3.1; see also section SM2 for details.D
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of boundary maps ∂K
q and ∂L,K

q+1 , respectively. Let WK
q (or WL

q ) denote the diagonal weight

matrix representation of wK
q (or wL

q ). Then, the matrix representation ∆∆∆K,L
q of ∆K,L

q is
expressed as follows:

∆∆∆K,L
q = BL,K

q+1

(
ZT
(
WL

q+1

)−1
Z
)−1 (

BL,K
q+1

)T (
WK

q

)−1︸ ︷︷ ︸
∆∆∆K,L

q,up

+WK
q

(
BK

q

)T (
WK

q−1

)−1
BK

q︸ ︷︷ ︸
∆∆∆K

q,down

.(3.1)

Moreover, ∆∆∆K,L
q is invariant under the choice of basis for CL,K

q+1 .

Remark 3.2 (matrix representations of combinatorial Laplacians). When K = L, (3.1)
reduces to the matrix representation of the combinatorial Laplacian:

∆∆∆K
q := BK

q+1W
K
q+1

(
BK

q+1

)T (
WK

q

)−1︸ ︷︷ ︸
∆∆∆K

q,up

+WK
q

(
BK

q

)T (
WK

q−1

)−1
BK

q︸ ︷︷ ︸
∆∆∆K

q,down

.

Since BK
q+1W

K
q+1(B

K
q+1)

T(WK
q )−1 = (WK

q )
1
2 ((WK

q )−
1
2BK

q+1W
K
q+1(B

K
q+1)

T(WK
q )−

1
2 )(WK

q )−
1
2 ,

∆∆∆K
q,up is of the formW−1PW where P is symmetric positive semidefinite andW is a positive di-

agonal matrix. The same result holds for down Laplacians, up persistent Laplacians, and (per-
sistent) Laplacians. Note that if wK

q ≡ 1, then∆∆∆K
q = BK

q+1W
K
q+1(B

K
q+1)

T+(BK
q )T(WK

q−1)
−1BK

q

is itself a symmetric positive semidefinite matrix.

To prove the theorem, we need the following result.

Lemma 3.3. Let f : (Rn,Wn) → (Rm,Wm) be a linear map where Wn ∈ Rn×n and Wm ∈
Rm×m denote the inner product matrices. Let F ∈ Rm×n denote the matrix representation of
f . Then, the matrix representation F ∗ of the adjoint f∗ of f is W−1

n FTWm.

Proof. For any x = (x1, . . . , xn)
T ∈ Rn and y = (y1, . . . , ym)T ∈ Rm, we have that

⟨fx, y⟩Rm = (Fx)TWmy = xTFTWmy, and ⟨x, f∗y⟩Rn = xTWnF
∗y.

Since ⟨fx, y⟩Rm = ⟨x, f∗y⟩Rn and x, y are arbitrary, we must have that F ∗ = W−1
n FTWm.

Proof of Theorem 3.1. Based on our choice of bases for CL,K
q+1 , C

K
q , and CK

q−1, the corre-

sponding inner product matrices are ZT(WL
q+1)

−1Z, (WK
q )−1, and (WK

q−1)
−1, respectively. By

Lemma 3.3, the matrix representation for (∂L,K
q+1 )

∗ is (ZT(WL
q+1)

−1Z)−1(BL,K
q+1 )

T(WK
q )−1 and

the matrix representation for (∂K
q )∗ is WK

q (BK
q )T(WK

q−1)
−1. By (2.4), we have

∆∆∆K,L
q = BL,K

q+1

(
ZT
(
WL

q+1

)−1
Z
)−1 (

BL,K
q+1

)T (
WK

q

)−1
+WK

q

(
BK

q

)T (
WK

q−1

)−1
BK

q .

Since ∂L,K
q+1 (∂

L,K
q+1 )

∗ is a self-operator on CK
q , its matrix representation ∆∆∆K,L

q only depends

on the choice of basis of CK
q and it is thus independent of the choice of basis of CL,K

q+1 .D
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An algorithm for computing the matrix representation of ∆K,L
q . We use the symbol [n] to

denote the set {1, . . . , n} for a positive integer n. We first introduce a notation for representing
submatrices. Let M ∈ Rm×n be a real matrix and let ∅ ̸= I ⊆ [m] and ∅ ̸= J ⊆ [n]. We
denote by M(I, J) the submatrix of M consisting of those rows and columns indexed by I and
J , respectively. Moreover, we use M(:, J) (or M(I, :)) to denote M([m], J) (or M(I, [n])).

By Theorem 3.1, to compute a matrix representation of ∆K,L
q , the key is to produce a

basis (i.e., Z) for CL,K
q+1 . Let BL

q+1 ∈ RnL
q ×nL

q+1 be the matrix representation of the boundary

map ∂L
q+1. We assume that nK

q < nL
q since the case nK

q = nL
q is trivial (cf. Example 2.3).

Then, the following lemma (see the proof in Appendix A) suggests a way of constructing Z
from BL

q+1.

Lemma 3.4. Let DL
q+1 := BL

q+1([n
L
q ]\[nK

q ], :). Then, there exists a nonsingular matrix Y ∈
RnL

q+1×nL
q+1 such that RL

q+1 := DL
q+1Y is column reduced.2 Moreover, let I ⊆ [nL

q+1] be the

index set of 0 columns of RL
q+1. The following hold:

1. If I = ∅, then CL,K
q+1 = {0}.

2. If I ̸= ∅, let Z := Y (:, I), then columns of Z constitute a basis of CL,K
q+1 .

Moreover, if I ̸= ∅, then BL,K
q+1 := (BL

q+1Y )([nK
q ], I) is the matrix representation of ∂L,K

q+1 .

We can apply a column reduction process (e.g., Gaussian elimination) to DL
q+1 to ob-

tain Y ∈ RnL
q+1×nL

q+1 and RL
q+1 := DL

q+1Y requested in Lemma 3.4. See Algorithm 3.1 for a

Algorithm 3.1. Persistent Laplacian: matrix representation

1: Data: BK
q , BL

q+1,W
K
q−1,W

K
q , and WL

q+1

2: Result: ∆∆∆K,L
q

3: compute ∆∆∆K
q,down from BK

q ,WK
q−1, and WK

q

4: if nK
q == nL

q then

5: compute ∆∆∆L
q,up from BL

q+1,W
K
q , and WL

q+1;

6: return ∆∆∆L
q,up +∆∆∆K

q,down

7: end if
8: DL

q+1 = BL
q+1

(
[nL

q ]\[nK
q ], :

)
9: (RL

q+1, Y ) = ColumnReduction(DL
q+1)

10: I ← index set corresponding to the all-zero columns of RL
q+1

11: if I == ∅ then
12: return ∆∆∆K

q,down

13: end if
14: Z = Y (:, I)
15: BL,K

q+1 =
(
BL

q+1Y
) (

[nK
q ], I

)
16:

17: return BL,K
q+1

(
ZT
(
WL

q+1

)−1
Z
)−1 (

BL,K
q+1

)T (
WK

q

)−1
+∆∆∆K

q,down

2We say a matrix is column reduced if for each two nonzero columns, their indices of the lowest nonzero
elements are different.
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pseudocode for computing ∆∆∆K,L
q based on Lemma 3.4. We remark that Algorithm 3.1 is con-

ceptually important, as it connects to the standard matrix reduction algorithm for computing
persistent homology [13].

Complexity analysis. The computation of ∆∆∆K
q,down takes time O((nK

q )2) (see section SM1

for details). The size of DL
q+1 is (nL

q − nK
q ) × nL

q+1; thus the column reduction process takes

time O((nL
q − nK

q )(nL
q+1)

2). Computing the product BL
q+1Y takes time O(nL

q (n
L
q+1)

2). The

size of Z is nL
q+1 × |I|, where |I| ≤ nL

q+1. Then, computing (ZT(WL
q+1)

−1Z)−1 takes time

O((nL
q+1)

3). The product BL,K
q+1 (Z

T(WL
q+1)

−1Z)−1(BL,K
q+1 )

T(WK
q )−1 can be computed in time

O(nK
q (nL

q+1)
2). Hence Algorithm 3.1 takes O(nL

q (n
L
q+1)

2 + (nL
q+1)

3 + (nK
q )2) total time. One

can also improve this time complexity by using fast matrix multiplication to both perform
reductions and compute multiplications/inverses. We omit the details.

4. Schur complement, persistent Laplacian, and implications. Let M ∈ Rn×n be a
block matrix M = ( A B

C D ) where D ∈ Rd×d is a square matrix. Then, the (generalized) Schur
complement of D in M [4], denoted by M/D, is M/D := A−BD†C, where D† is the Moore–
Penrose generalized inverse of D. Note that having D be the bottom right submatrix is done
only for notational simplicity. Schur complement is defined for any principal submatrix. More
precisely, let ∅ ̸= I ⊊ [n] be a proper subset. Then, the (generalized) Schur complement of
M(I, I) in M is defined as

M/M(I, I) := M([n]\I, [n]\I)−M([n]\I, I)M(I, I)†M(I, [n]\I).(4.1)

Now we introduce some useful properties of the Schur complement.

Definition 4.1 (proper submatrices). Let M = ( A B
C D ) be a square block matrix where both

A and D are square matrices. The submatrix D is proper in M if ker(D) ⊆ ker(B) and
ker(DT) ⊆ ker(CT).

Lemma 4.2 (positive semidefinite matrices). Let P be a positive semidefinite block matrix
P = ( A B

C D ) such that A and D are square matrices. Let W be a positive diagonal matrix and

we write W as a block matrix W = (W1 0
0 W2

) such that W1 and W2 have the same sizes as

A and D, respectively. Consider M := W−1PW = (
W−1

1 AW1 W−1
1 BW2

W−1
2 CW1 W−1

2 DW2
). Then, W−1

2 DW2 is

proper in M and M/(W−1
2 DW2) = W−1

1 (P/D)W1.

Lemma 4.3 ([4, Theorem 1]). Let M be a square block matrix M = ( A B
C D ) such that A

and D are square matrices. Then, rank(M) ≥ rank(D) + rank(M/D).

Lemma 4.4 (quotient formula [4, Theorem 4]). Let M,D, and H be square matrices with
the following block structures: M = ( A B

C D ) and D = (E F
G H ). If D is proper in M and H is

proper in D, then D/H is proper in M/H and M/D = (M/H)/(D/H).

Lemma 4.5 (eigenvalue interlacing property). Let M = W−1PW be as in Lemma 4.2.
Suppose that the size of M is n× n and the size of D is d× d. Then,

λk(M) ≤ λk(M/(W−1
2 DW2)) ≤ λk(W

−1
1 AW1) ∀1 ≤ k ≤ n− d,(4.2)

where λk(A) denotes the kth smallest eigenvalue of A (counted with multiplicity).

See section SM6 for proofs of Lemmas 4.2 and 4.5.D
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4.1. Up persistent Laplacian as a Schur complement. For a simplicial pair K ↪→ L,

recall from section 3 that for each q ∈ N we assume an ordering S̄L
q = {[σi]}

nL
q

i=1 on S̄L
q such

that S̄K
q = {[σi]}

nK
q

i=1. Given such orderings on canonical bases of CK
q and CL

q , the matrix

representation ∆∆∆K,L
q,up of ∆K,L

q,up : CK
q → CK

q is related to the matrix representation ∆∆∆L
q,up of

∆L
q,up : CL

q → CL
q via the Schur complement as follows.

Theorem 4.6 (up persistent Laplacian as Schur complement). Let K ↪→ L be a simplicial
pair. Assume that nK

q < nL
q and let ILK := [nL

q ]\[nK
q ]. Then,

∆∆∆K,L
q,up =∆∆∆L

q,up/∆∆∆
L
q,up

(
ILK , ILK

)
.(4.3)

To prove the above theorem, we first need the following lemma (whose proof is given in
section SM6) which relates Schur complements with a certain matrix operation.

Lemma 4.7. Let B ∈ Rn×m be a block matrix B = (B1
B2

), where B1 ∈ Rd×m for some

1 ≤ d < n. Let W1 ∈ Rd×d and W2 ∈ R(n−d)×(n−d) be nonsingular diagonal matrices and let
W = (W1 0

0 W2
). Let M := BBTW , which is a block matrix

M =

(
M11 M12

M21 M22

)
=

(
B1B

T
1 W1 B1B

T
2 W2

B2B
T
1 W1 B2B

T
2 W2

)
.

If B2 has full column rank, then M/M22 = 0. Otherwise, for any nonsingular block ma-
trix Y = ( Y1 Y2 ) ∈ Rm×m, if B2Y1 = 0 and B2Y2 has full column rank, then M/M22 =
B1Y1(Y

T
1 Y1)

−1(B1Y1)
TW1.

Proof of Theorem 4.6. Let B := BL
q+1(W

L
q+1)

1
2 , W := WL

q and W1 := W ([nK
q ], [nK

q ]) =

WK
q . Set B1 := B([nK

q ], :) and B2 := B([nL
q ]\[nK

q ], :). Then, B = (B1
B2

). Note that B2 =

DL
q+1(W

L
q+1)

1
2 using notation in Lemma 3.4. By Lemma 3.4, there exists a nonsingular matrix

Ŷ ∈ RnL
q+1×nL

q+1 such that RL
q+1 := DL

q+1Ŷ is column reduced. Let Y := (WL
q+1)

− 1
2 Ŷ , which is

still nonsingular. Then,

RL
q+1 = DL

q+1Ŷ = DL
q+1

(
WL

q+1

) 1
2
(
WL

q+1

)− 1
2 Ŷ = B2Y.

Let I ⊆ [nL
q+1] be the index set of 0 columns of RL

q+1. If I = ∅, then by Lemma 3.4 we have

that CL,K
q+1 = {0} and thus ∆∆∆K,L

q,up = 0. On the other hand, I = ∅ implies that B2 has full

column rank. Let M := BBTW . Then, we have that

M = BL
q+1W

L
q+1

(
BL

q+1

)T
WL

q =∆∆∆L
q,up

and thus M22 =∆∆∆L
q,up(I

L
K , ILK). Then by Lemma 4.7, we have that

∆∆∆L
q,up/∆∆∆

L
q,up

(
ILK , ILK

)
= M/M22 = 0 = ∆∆∆K,L

q,up.

Now, we assume that I ̸= ∅. Without loss of generality, we assume that I = [nL,K
q+1 ] ⊆ [nL

q+1]

(otherwise we multiply Y by a permutation matrix). Let Y1 := Y (:, I) = (WL
q+1)

− 1
2Z whereD
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Z is a column matrix representing a basis of CL,K
q+1 (cf. Lemma 3.4). Let Y2 := Y (:, [nL

q+1]\I).
Then, Y =

(
Y1 Y2

)
is a block matrix such that B2Y1 = RL

q+1(:, I) = 0 and that B2Y2 =

RL
q+1(:, [n

L
q+1]\I) has full column rank. Then, by Lemma 4.7, we have that

∆∆∆L
q,up/∆∆∆

L
q,up

(
ILK , ILK

)
= M/M22 = B1Y1

(
Y T
1 Y1

)−1
(B1Y1)

TW1

=B1

(
WL

q+1

)− 1
2 Z

(((
WL

q+1

)− 1
2 Z

)T (
WL

q+1

)− 1
2 Z

)−1(
B1

(
WL

q+1

)− 1
2 Z

)T

WK
q

=B1

(
WL

q+1

)− 1
2 Z
(
ZT
(
WL

q+1

)−1
Z
)−1

(
B1

(
WL

q+1

)− 1
2 Z

)T

WK
q .

Note also that BL,K
q+1 = BL

q+1([n
K
q ], :)Z = B1(W

L
q+1)

− 1
2Z. Then, by Lemma 3.4 we have that

∆∆∆K,L
q,up = BL,K

q+1

(
ZT
(
WL

q+1

)−1
Z
)−1 (

BL,K
q+1

)T
WK

q =∆∆∆L
q,up/∆∆∆

L
q,up

(
ILK , ILK

)
.

This finishes the proof of Theorem 4.6.

4.2. Fast computation of the matrix representation of ∆K,L
q . For a simplicial pair

K ↪→ L, by Theorem 4.6, we now simply compute ∆∆∆K,L
q,up via (4.3) using only Schur complement

computations, which then give us ∆∆∆K,L
q = ∆∆∆K,L

q,up + ∆∆∆K
q,down. A pseudocode for this simple

algorithm is given in Algorithm 4.1.

Algorithm 4.1. Persistent Laplacian: matrix representation via Schur complement

1: Data: BK
q , BL

q+1,W
K
q−1,W

K
q ,WL

q , and WL
q+1

2: Result: ∆∆∆K,L
q

3: Compute ∆∆∆K
q,down from BK

q ,WK
q−1, and WK

q

4: Compute ∆∆∆L
q,up from BL

q+1,W
L
q , and WL

q+1

5: if nK
q == nL

q then

6: return ∆∆∆L
q,up +∆∆∆K

q,down

7: end if
8: ∆∆∆K,L

q,up =∆∆∆L
q,up/∆∆∆

L
q,up

(
ILK , ILK

)
9:

10: return ∆∆∆K,L
q,up +∆∆∆K

q,down

Time complexity. Computing ∆∆∆L
q,up takes time O(nL

q+1) and computing ∆∆∆K
q,down takes

O((nK
q )2) (see section SM1 for details). The Schur complement ∆∆∆L

q,up/∆∆∆
L
q,up(I

L
K , ILK) takes

time O((nK
q )2 + (nL

q − nK
q )3 + nK

q (nL
q − nK

q )2) = O((nL
q )

3) to compute. Hence the total time

complexity of computing ∆∆∆K,L
q via (4.3) is O((nL

q )
3 + nL

q+1). By using the fast matrix multi-
plication algorithm (which takes O(rω), ω < 2.373, to multiply two r× r matrices), this time
complexity can be improved to O((nL

q )
ω + nL

q+1).

Remark 4.8 (comparison with Algorithm 4.1). The time complexity of Algorithm 3.1 and
that of Algorithm 4.1 are not directly comparable: which one is faster depends on the re-
lationship between of the number of p-dimensional simplices in L and the corresponding
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number of (p+ 1)-dimensional simplices. Recall that the time complexity of Algorithm 3.1 is
O(nL

q (n
L
q+1)

2 + (nL
q+1)

3 + (nK
q )2). In a scenario when nL

q = O(nL
q+1), this complexity is larger

than O((nL
q )

3 + nL
q+1) which is the time complexity of Algorithm 4.1. In the case of clique

complexes, which commonly arise when studying point cloud data via Rips complexes, nL
p+1

is often larger than nL
p , rendering Algorithm 4.1 more efficient. However, this may not always

be the case: given a graph (which can be viewed as a one-dimensional simplicial complex),
the number of 2-simplices is 0, while the number of 1-simplices is much larger.

Computation of persistent Betti numbers. By Theorem 2.7, we can compute the persistent
Betti number βK,L

q in the following manner: we first compute ∆∆∆K,L
q and then compute βK,L

q =

nullity(∆∆∆K,L
q ). Since calculating the nullity of an nK

q ×nK
q square matrix can be done in time

O((nK
q )ω) = O((nL

q )
ω), we obtain a method for computing the persistent Betti number in time

O((nL
q )

ω + nL
q+1) (which is O((nL

q )
ω) if nL

q = O(nL
q+1)). Currently, the existing approach in

the literature to compute the persistent Betti numbers is through computing the persistent
homology of the pair K ↪→ L using boundary matrices BL

q+1 and BK
q , which can be done

in O((nL
q )

2nL
q+1 + (nK

q−1)
2nK

q ) time or in O((nL
q )

ω−1nL
q+1 + (nK

q−1)
ω−1nK

q ) (if we assume that

nL
q = O(nL

q+1) and nK
q−1 = O(nK

q )) using the earliest basis (via fast matrix multiplication)
approach [2]. Our new algebraic formulation of persistent Laplacian (via Schur complement)
thus also leads to a faster algorithm to compute the persistent Betti number for a pair of
spaces for the setting when nL

q = O(nL
q+1). Note that the condition nL

q = O(nL
q+1) holds in

many practical scenarios, especially for the popular Rips or Čech complexes and their variants.
Given that this new algorithm is fundamentally different from existing ones (using only simple
Schur complement computations), we believe that this is of independent interest.

Remark 4.9. A MATLAB implementation of Algorithm 4.1 for unweighted simplicial pairs
is given in [39]. A recent preprint [52] by some of the authors of [51] describes an alternative
software implementation of the persistent Laplacian which is available at [53].

4.3. Relationship with the notion of effective resistance. Let K = (V K , EK , wK) be
a connected weighted graph. Unless otherwise specified, for any weighted graph considered
in this section, we assume that wK satisfies that wK

0 = wK |SK
0
≡ 1, i.e., the vertices of the

graph are unweighted. For any two vertices v, v′ ∈ V K , we let ∂[v,v′] := −[v] + [v′] ∈ CK
0 . Let

DK
[v,v′]

:= χv′ − χv ∈ RnK
0 denote the vector representation of ∂[v,v′] in CK

0 , where χv ∈ RnK
0

is the indicator vector of v ∈ V K . We consider that each edge e ∈ EK has an electrical
conductance wK(e). Then, the effective resistance RK

v,v′ between v and v′ is defined by

RK
v,v′ :=

(
DK

[v,v′]

)T (
∆∆∆K

0

)†
DK

[v,v′].(4.4)

Given a graph pair K ↪→ L, by Theorem 4.6 the persistent Laplacian ∆∆∆K,L
0 turns out to

be the graph Laplacian of a new weighted graph.

Proposition 4.10 ([10, Lemma 2.1]). Suppose that K ↪→ L is a graph pair. Assume that

L is connected and wL
0 ≡ 1. Then, ∆∆∆K,L

0 = ∆∆∆K,L
0,up is the graph Laplacian ∆∆∆K̃

0 of a connected

weighted graph K̃ = (V K̃ , EK̃ , wK̃) such that V K̃ = V K .D
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Figure 1. On the left we show a weighted graph L consisting of four vertices with edge weights indicated
next to each edge. Let K be the subgraph of L induced by the three red vertices (i.e., the fully disconnected graph
on three vertices). Then, K̃ is the three-vertex weighted graph shown on the right (edge weights are indicated
next to each edge). Note that K̃ has a totally different edge set from that of K.

K̃ is known as the Kron reduction of L and ∆∆∆K̃
0 is called the Kron-reduced matrix ; see

Figure 1 for an illustration. The Kron reduction [28] has been used in network circuit theory,
and it preserves effective resistance (cf. [10, Theorem 3.8]). This in turn implies that the
persistent Laplacian ∆∆∆K,L

0 is able to recover the effective resistance RL
v,v′ w.r.t. the larger

graph L for all pairs of vertices v, v′ ∈ K. The result below follows from Theorem 4.6 and
[10, Theorem 3.8].

Theorem 4.11. Let K ↪→ L be a graph pair where L is connected. Let K̃ = (V K , EK̃ , wK̃)

denote the weighted graph such that ∆∆∆K̃
0 = ∆∆∆K,L

0 . Then, K̃ is connected and for two distinct

vertices v, v′ ∈ V K , we have that RL
v,v′ = RK̃

v,v′ .

Remark 4.12 (higher dimensional generalization). The effective resistance has been general-
ized to the case of simplicial complexes in [26]. In section SM5, we show a higher dimensional
extension of Theorem 4.11, i.e., that higher dimensional effective resistances are preserved by
the up persistent Laplacian, the proof of which deals with the subtleties of the Moore–Penrose
generalized inverse directly without resorting to a limiting argument as in the proof of [10,
Theorem 3.8]. In addition, we provide an example illustrating the impossibility of a higher
dimensional generalization of the Kron reduction in the current simplicial setting.

The following result controls the change of degrees after applying the Kron reduction.

Proposition 4.13. Let K̃ be the graph described in Proposition 4.10. Then, for any v ∈
V K = V K̃ , we have that degK̃(v) ≤ degL(v), where degG(v) :=

∑
v′∈GwG({v, v′}) is the

weighted degree of a vertex in a graph G.

Proof. We first observe that degG(v) :=
∑

v′∈GwG({v, v′}) =
(
χG
v

)T
∆∆∆G

0 χv. Therefore,

degK̃(v) =
(
χK
v

)T
∆∆∆K̃

0 χK̃
v =

(
χK̃
v

)T
∆∆∆K,L

0 χK̃
v =

(
χK̃
v

)T
∆∆∆L

0 /∆∆∆
L
0 (I

L
K , ILK)χK̃

v

=
(
χK̃
v

)T
∆∆∆L

0

(
[nK

0 ], [nK
0 ]
)
χK̃
v −

(
χK̃
v

)T
∆∆∆L

0

(
[nK

0 ], ILK
) (

∆∆∆L
0

(
ILK , ILK

))†
∆∆∆L

0

(
ILK , [nK

0 ]
)
χK̃
v

≤
(
χK̃
v

)T
∆∆∆L

0

(
[nK

0 ], [nK
0 ]
)
χK̃
v =

(
χL
v

)T
∆∆∆L

0 χ
L
v = degL(v).
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In the case when K consists of only two points in L, we have the following explicit relation
between the persistent Laplacian and the effective resistance.

Corollary 4.14. Let L be a connected graph and let K be a two-vertex subgraph with vertex
set V K = {v, v′}. Then,

∆∆∆K,L
0 =

( 1

RL
v,v′

− 1

RL
v,v′

− 1

RL
v,v′

1

RL
v,v′

)
.

Proof of Corollary 4.14. By Theorem 4.11 (or by [10, Lemma 3.10]), it is easy to show
that

(∆∆∆K,L
0 )† =

(
RL
v,v′
4

−
RL
v,v′
4

−
RL
v,v′
4

RL
v,v′
4

)
.

Therefore,

∆∆∆K,L
0 =

( 1

RL
v,v′

− 1

RL
v,v′

− 1

RL
v,v′

1

RL
v,v′

)
.

4.3.1. Effective resistance between disjoint sets. The effective resistance between two
vertices has been generalized to the case of two disjoint sets of vertices in [35, Exercise 2.13]
via an energy minimization process. In [44], a formula invoking the graph Laplacian was used
to define the effective resistance between disjoint sets. The two definitions are equivalent (see
subsection SM3.1 for a proof) and in this section we adopt the definition from [44].

Let K be a connected weighted graph. For any nonempty disjoint subsets A,B ⊆ V K , let
V J := A∪B and let J be the induced subgraph with vertex set V J . Then, following [44], the
effective resistance RK

A,B between A and B is defined as follows:

RK
A,B :=

((
χJ
A

)T ·∆∆∆K
0 /∆∆∆K

0

(
V J , V J

)
· χJ

A

)−1
,(4.5)

where ∆∆∆K
0 (V J , V J)3 denotes the submatrix of ∆∆∆K

0 with rows and columns indexed by V J and

χJ
A ∈ RnJ

0 denotes the indicator vector of A ⊆ V J . By Theorem 4.6, we have that RK
A,B =

((χJ
A)

T ·∆∆∆J,K
0 · χJ

A)
−1. In particular, when A ∪B = V J = V K , RK

A,B = ((χK
A )T ·∆∆∆K

0 · χK
A )−1.

We call CK
A,B := 1

RK
A,B

the effective conductance between A and B.

Remark 4.15. Note that (a) when A = {v} and B = {w} are two singleton sets, it is easy
to see that RK

A,B = RK
v,v′ ; (b) (4.5) might seem asymmetric with respect to A and B; in fact,

we have that RK
A,B = −((χJ

A)
T ·∆∆∆J,K

0 · χJ
B)

−1 (see [44, Lemma 3]): (c) an explanation from
the point of view of circuit theory is given in section SM3; see Figure 2.

As a generalization of Theorem 4.11, we establish the following result.

Theorem 4.16. For a graph pair K ↪→ L where L is connected, let K̃ = (V K , EK̃ , wK̃)

denote the graph such that ∆∆∆K̃
0 =∆∆∆K,L

0 . Then RK̃
A,B = RL

A,B for any disjoint A,B ⊆ V K .

3∆∆∆K
0 (V J , V J) was required to be nonsingular in [44]. This holds automatically as long as K is connected;

see [10, Lemma 2.1].D
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Figure 2. The effective resistance between two sets of vertices from the circuit theory perspective. One
set is represented by the orange vertices, the other one by the green vertices. See subsection SM3.1 for more
details.

Proof. By Theorem 4.11, K̃ is a connected graph and thus RK̃
A,B is well-defined. Then,

let V J := A ∪ B ⊆ V K ⊆ V L and let J denote the induced graph in L with vertex set

V J . By Lemma 4.4, we have that ∆∆∆J,K̃
0 = ∆∆∆J,L

0 . Then, by (4.5) we have that RK̃
A,B =

RL
A,B.

4.4. Persistent Cheeger inequality for graph pairs K ↪→ L. The Cheeger constant [7]
hK of a weighted graph K = (V K , EK , wK) is defined as follows:

hK := min
∅̸=A⊊V K

|A|≤ 1
2
|V K |

∥∥EK(A, V K\A)
∥∥
wK

|A|
,

where EK(A,B) denotes the set of all edges {v, v′} ∈ EK such that v ∈ A and v′ ∈ B, |A|
denotes the cardinality of A, and ∥EK(A,B)∥wK :=

∑
{v,v′}∈EK(A,B)w

K({v, v′}).
The Cheeger constant hK measures the edge expansion [22] of K and it is related to the

second smallest eigenvalue λK
0,2 of the graph Laplacian ∆K

0 as follows:(
hK
)2

2 dKmax

≤ λK
0,2 ≤ 2hK ,(4.6)

where dKmax := maxv∈V K degK(v). Equation (4.6) is called the discrete Cheeger inequality
[7, 18, 24], which is a discrete analogue to isoperimetric inequalities in Riemannian geometry
[3, 5].

In this section, we define a persistent Cheeger constant for any graph pair K ↪→ L via the
effective resistance and establish a corresponding persistent Cheeger inequality in analogy to
(4.6).

To this end, for a subset ∅ ̸= A ⊊ V K , we first observe the following relationship between
∥EK(A, V K\A)∥wK and the effective conductance CK

A,V K\A in a given weighted graph K.

Lemma 4.17. Given a weighted graph K and any ∅ ̸= A ⊊ V K , we have that∥∥EK(A, V K\A)
∥∥
wK = CK

A,V K\A.D
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Proof. By Remark 4.15,

CK
A,V K\A = −

(
χK
A

)T ·∆∆∆K
0 · χK

V K\A =
∑
v∈A

∑
v′∈V K\A
{v,v′}∈SK

1

wK({v, v′}) =
∥∥EK(A, V K\A)

∥∥
wK .

Hence, the Cheeger constant of a weighted graph K can be equivalently expressed as

hK = min
∅̸=A⊊V K

|A|≤ 1
2
|V K |

CK
A,V K\A

|A|
.(4.7)

We will use this expression to generalize the Cheeger constant to the case of graph pairs. In
the case of a graph pair K ↪→ L, we define a persistent Cheeger constant by replacing the
right-hand side of (4.7) with the effective conductance between subsets of vertices of K inside
the ambient graph L:

Definition 4.18 (Persistent Cheeger constant). The persistent Cheeger constant hK,L for
a graph pair K ↪→ L is defined as follows:

hK,L := min
∅̸=A⊊V K

|A|≤ 1
2
|V K |

CL
A,V K\A

|A|
.

It is clear that when K = L, hK,L reduces to hK . The following result (whose proof is
postponed to section SM6) indicates the persistent Cheeger constant grows as the ambient
graph becomes “more connected.”

Proposition 4.19. Consider three weighted graphs K ⊆ L1 ⊆ L2. Then,

hK ≤ hK,L1 ≤ hK,L2 .

See subsection 4.4.1 for comments about using other possible generalizations of the stan-
dard Cheeger constant to the case of graph pairs.

Remark 4.20 (probabilistic interpretation). Consider the canonical random walk {Xn}∞n=0

defined on L with V L being the set of states and the transition probability from v to one of its

neighbors v′ is wL({v,v′})
degL(v)

. For any A ⊊ V K , let B := V K\A. We establish in subsection SM3.2

that CL
A,B is proportional to the escape probability from A to B, i.e., the probability of the

walk, starting randomly from a vertex in A, reaching B before returning to A. In this way,
we see that CL

A,B measures whether A and B are well-separated in L, i.e., the larger CL
A,B is,

the more connected A and B are. Thus, hK,L measures the capability of K being partitioned
into two well-separated parts in L.

Our definition of persistent Cheeger constant naturally leads us to the following persistent
Cheeger inequality.D
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874 FACUNDO MÉMOLI, ZHENGCHAO WAN, AND YUSU WANG

Theorem 4.21 (persistent Cheeger inequality). Let K ↪→ L be a weighted graph pair, then(
hK,L

)2
2 dK,L

max

≤ λK,L
0,2 ≤ 2hK,L,(4.8)

where dK,L
max := maxv∈V K degL(v) and λK,L

0,2 denotes the second smallest eigenvalue of ∆K,L
0 .

Note that when K = L, (4.8) reduces to (4.6). So our persistent Cheeger inequality is a
proper generalization of the standard discrete Cheeger inequality.

Proof. By Proposition 4.10, ∆∆∆K,L
0 is the graph Laplacian ∆∆∆K̃

0 of a weighted graph K̃ =

(V K , EK̃ , wK̃), so that λK,L
0,2 = λK̃

0,2. By (4.6), we have that (hK̃)2

2dK̃max

≤ λK,L
0,2 ≤ 2hK̃ . Note that

by Lemma 4.17

hK̃ = min
∅̸=A⊊V K

|A|≤ 1
2
|V K |

∥∥EK(A, V K\A)
∥∥
wK

|A|
= min

∅̸=A⊊V K

|A|≤ 1
2
|V K |

CK̃
A,V K\A

|A|
,

where we have used the fact that V K = V K̃ . By Theorem 4.16, we have that RK̃
A,V K\A =

RL
A,V K\A and thus CK̃

A,V K\A = CL
A,V K\A. This implies that hK̃ = hK,L.

For any v ∈ V K = V K̃ , by Proposition 4.13 we have that∑
v′∈V K

wK̃({v, v′}) ≤
∑

v′∈V L

wL({v, v′})

and thus dK̃max ≤ dK,L
max. Therefore,

(hK,L)2

2dK,L
max

≤ (hK,L)2

2dK̃max

=
(hK̃)2

2dK̃max

≤ λK,L
0,2 ≤ 2hK̃ = 2hK,L.

4.4.1. A combinatorial upper bound for λK,L
0,2 . When graphs are unweighted, we provide

a combinatorial upper bound for λK,L
0,2 .

A path in a graph K = (V K , EK) is a tuple p = (v0, . . . , vn) such that vi ∈ V K for each
i = 0, . . . , n and {vi, vi+1} ∈ EK for each i = 0, . . . , n− 1. For two nonempty disjoint subsets
A,B ⊆ V K , we denote by PK(A,B) the set of all paths p = (v0, . . . , vn) in K satisfying (i)
v0 ∈ A, vn ∈ B and vi /∈ A ∪ B for i = 1, . . . , n − 1; (ii) {vi, vi+1} ̸= {vj , vj+1} for i ̸= j. If
A = {v} and B = {w} are one-point sets, then we also denote PK(v, v′) := PK({v}, {w}). The
following Nash–Williams inequality [36, Lemma 2.1] permits relating PK(A,B) with RK

A,B.

Lemma 4.22 (Nash–Williams inequality). Let K be a weighted graph. Let A,B be nonempty
disjoint subsets of V K . A set Π ⊆ EK is called a cut set between A and B if for any v ∈ A
and v′ ∈ B, every path from v to v′ contains an edge in Π. Suppose Π1, . . . ,Πn are disjoint
cut sets between A and B. Then,

RK
A,B ≥

n∑
k=1

∑
e∈Πk

wK(e)

−1

.
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Now, consider a graph pair K ↪→ V . Let ∅ ̸= A ⊆ V K and let B := V K\A. Then, let
p1, . . . , pN denote all the paths in PL(A,B). Choose an arbitrary edge ei from each path pi.
The set Π := {ei : i = 1, . . . , N} is obviously a cut set between A and B. By Lemma 4.22 we
have that CL

A,B ≤
∑

e∈ΠwL(e) ≤ |PL(A,B)|. By Theorem 4.21 we have the following upper

bound for λK,L
0,2 which arises by minimizing the number of paths in L connecting the two sets

in a bipartition of V K :

1

2
λK,L
0,2 ≤ hK,L ≤ min

∅̸=A⊊V K

|A|≤ 1
2
|V K |

∣∣PL(A, V K\A)
∣∣

|A|
=: hK,L

path.

A priori, it seems plausible that one could have used the right-hand side of the above
inequality, hK,L

path, as the definition of the persistent Cheeger constant. However, as we show
in section SM4, this quantity does not have a good interplay with the second persistent
eigenvalue, i.e., hK,L

path cannot be upper bounded by λK,L
0,2 in any suitable sense.

5. The persistent Laplacian for simplicial filtrations. We now extend the setting of
section 2 for simplicial pairs to a simplicial filtration.

5.1. Formulation. Let K = {Kt}t∈T be a simplicial filtration with an index set T ⊆ R.
For each t ∈ T and q ∈ N we let Ct

q := CKt
q , St

q := SKt
q , and wt

q := wKt
q . For s ≤ t ∈ T we let

Ct,s
q :=

{
c ∈ Ct

q : ∂
t
q(c) ∈ Cs

q−1

}
⊆ Ct

q.

Let ∂t,s
q be the restriction of ∂t

q to Ct,s
q . Then, ∂t,s

q is a map from Ct,s
q to Cs

q−1. Finally, we

define the qth persistent Laplacian ∆s,t
q : Cs

q → Cs
q by

∆s,t
q := ∂t,s

q+1 ◦
(
∂t,s
q+1

)∗
︸ ︷︷ ︸

∆s,t
q,up

+
(
∂s
q

)∗ ◦ ∂s
q︸ ︷︷ ︸

∆s
q,down

,(5.1)

where we view Ct
q for each t ∈ T as a Hilbert space with the inner product ⟨·, ·⟩wt

q
and A∗

means the adjoint of an operator A under these inner products. We also let ∆t
q denote the

qth Laplacian of Kt for t ∈ T . Note that ∆t,t
q = ∆t

q (cf. Example 2.3).

5.2. An algorithm for ∆∆∆s,t
q . Consider the simplicial filtration K1 ↪→ K2 ↪→ · · · ↪→ Km

where each Kt+1 contains exactly one more simplex than Kt for t = 1, . . . ,m − 1. In this
section, we show that, for a fixed index t ∈ [m], we can compute the matrix representation ∆∆∆s,t

q

of the persistent Laplacian ∆s,t
q , for all 1 ≤ s ≤ t, in time O(t(nt

q)
2 + nt

q+1), where nt
q := nKt

q

is the number of q-simplices in Kt. Note that this is more efficient than applying the Schur
complement formula for ∆∆∆s,t

q (equation (4.3)) t times, which will lead to O(t(nt
q)

3 + t nt
q+1)

total time. This result is again achieved via the relation between persistent Laplacian with
Schur complement (cf. Theorem 4.6).

Recall from (5.1) that for any 1 ≤ s ≤ t, ∆∆∆s,t
q = ∆∆∆s,t

q,up +∆∆∆s
q,down. Since ∆∆∆s

q,down can be

constructed in time O((ns
q)

2) = O((nt
q)

2) (cf. section SM1), the set of ∆∆∆s
q,down for all 1 ≤ s ≤ t

can be computed in O(t(nt
q)

2) time.D
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For simplicity, we assume that Ss
q = {σ1, . . . , σs} for each s = 1, . . . , t, that is, Ks+1

contains exactly one more q-simplex than Ks for s = 1, . . . , t− 1. It then follows that ∆∆∆s,t
q,up =

∆∆∆t
q,up/∆∆∆

t
q,up(I

t
s, I

t
s), where Its is the index set Its = {s + 1, s + 2, . . . , t}. By Remark 3.2 and

Lemma 4.2, ∆∆∆t
q,up(I

t
s, I

t
s) is proper in ∆∆∆t

q,up for each s = 1, . . . , t− 1. Therefore, following the

quotient formula (Lemma 4.4), to compute ∆∆∆s,t
q,up, one can perform an iterative reduction from

∆∆∆t
q,up to ∆∆∆t−1,t

q,up , . . . ,∆∆∆s+1,t
q,up , and down to ∆∆∆s,t

q,up. More precisely, for any ℓ ≤ t,

∆∆∆ℓ−1,t
q,up (i, j) =

∆∆∆ℓ,t
q,up(i, j)− ∆∆∆ℓ,t

q,up(i,ℓ)∆∆∆
ℓ,t
q,up(j,ℓ)

∆∆∆ℓ,t
q,up(ℓ,ℓ)

if ∆∆∆ℓ,t
q,up(ℓ, ℓ) ̸= 0

∆∆∆ℓ,t
q,up(i, j) if ∆∆∆ℓ,t

q,up(ℓ, ℓ) = 0
for any i, j ∈ [ℓ− 1].

(5.2)

Equation (5.2) coincides with the celebrated Kron reduction formula (see equation (16) of [10])

when Kt is a connected graph, q = 0, and wt
0 ≡ 1. In other words, ∆∆∆ℓ−1,t

q,up can be computed

from ∆∆∆ℓ,t
q,up in time linear to the size of the matrix, which is bounded by O((nt

q)
2). Note that

from section SM1 we know computing ∆∆∆t
q,up takes time O(nt

q+1). It then follows that using

(5.2), we can compute ∆∆∆s,t
q,up for all 1 ≤ s ≤ t iteratively in O(t(nt

q)
2 + nt

q+1) total time. We
summarize our discussion into the following theorem.

Theorem 5.1. Let K1 ↪→ · · · ↪→ Km be a simplicial filtration where each Kt+1 contains
exactly one more simplex than Kt for all t ∈ [m− 1]. For any fixed t ∈ [m], we can compute
the whole set {∆∆∆s,t

q }ts=1 of persistent Laplacians in O(t(nt
q)

2 + nt
q+1) time. This also implies

that we can compute all ∆∆∆i,j
q , for any 1 ≤ i ≤ j ≤ m, in O(m2(nm

q )2 +mnm
q+1) total time.

Remark 5.2. Note that if the input filtration is not simplexwise, namely if Ki+1\Ki is
allowed to contain more than one simplex, then one can still use the above procedure by first
refining the input filtration so as to produce a simplexwise one. However, this will increase
the length of the filtration and thus impact the time complexity. Hence, if the size of Ki+1\Ki

is large, then it may be more beneficial to instead perform multiple Schur complements in
order to construct the set of persistent Laplacians.

5.3. Monotonicity, functoriality, and stability of (up) persistent eigenvalues. Recall
from subsection 2.3 that for a simplicial pair K ↪→ L, λK,L

q,k denotes the kth smallest eigen-

value of ∆K,L
q . Now, given a simplicial filtration K = {Kt}t∈T , we define its kth persistent

eigenvalue λs,t
q,k(K) for each s ≤ t ∈ T by λs,t

q,k(K) := λKs,Kt

q,k . We define the kth up persis-

tent eigenvalue λs,t
q,up,k(K) for each s ≤ t ∈ T to be the kth smallest eigenvalue of ∆s,t

q,up.

Whenever the underlying filtration K is clear from the context, we let λs,t
q,k := λs,t

q,k(K) and

λs,t
q,up,k := λs,t

q,up,k(K).
In [51] the authors suggest that invariants similar to persistent eigenvalues could be useful

for shape classification applications. With that in mind, we now explore both their monotonic-
ity and stability properties, concluding with Theorem 5.10. We remark that, in the course
of studying stability properties of persistent eigenvalues, we also establish the functoriality of
the up persistent Laplacian and its eigenvalues.
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Kt1 Kt2 Kt3
λ
t1,t2
q,up,k

λ
t1,t3
q,up,k

λ
t2,t3
q,up,k

Figure 3. All arrows represent inclusion maps and all eigenvalues λ
ti,tj
q,up,k (for 1 ≤ i < j ≤ 3) are shown

on top of their corresponding arrows. Theorem 5.3 guarantees that λt1,t3
q,up,k is the largest among these three

eigenvalues.

Theorem 5.3 (monotonicity of up persistent eigenvalues). Let K = {Kt}t∈T be a simplicial
filtration and let q ∈ N. Then, for any t1 ≤ t2 ≤ t3 ∈ T , we have for each k = 1, . . . , nt1

q that

λt1,t2
q,up,k ≤ λt1,t3

q,up,k and λt2,t3
q,up,k ≤ λt1,t3

q,up,k. See Figure 3 for an illustration.

The proof of Theorem 5.3 exploits the connection of the up persistent Laplacian with
Schur complements (Theorem 4.6).

Proof. By the min-max theorem (see, for example, [23, Theorem 2.1]), we have for any
s ≤ t ∈ T and for each k = 1, . . . , nt1

q that

λs,t
q,up,k = min

Vk⊆Cs
q

max
g∈Vk

〈
∆s,t

q,upg, g
〉
ws

q

⟨g, g⟩ws
q

,

where the minimum is taken over all k-dim subspaces Vk of Cs
q . Then, in order to prove that

λt1,t2
q,up,k ≤ λt1,t3

q,up,k, it suffices to verify that ⟨∆t1,t2
q,upg, g⟩wt1

q
≤ ⟨∆t1,t3

q,upg, g⟩wt1
q

for any g ∈ Ct1
q .

Now, since Ct2,t1
q+1 ⊆ Ct3,t1

q+1 , we consider an orthogonal decomposition

Ct3,t1
q+1 = Ct2,t1

q+1

⊕(
Ct2,t1
q+1

)⊥
.

Then, we have the decomposition ∂t3,t1
q+1 = ∂t2,t1

q+1 ⊕ ∂⊥, where ∂⊥ maps (Ct2,t1
q+1 )

⊥ into Ct1
q .

Therefore, we have that

∆t1,t3
q,up = ∂t3,t1

q+1

(
∂t3,t1
q+1

)∗
= ∂t2,t1

q+1

(
∂t2,t1
q+1

)∗
+ ∂⊥

(
∂⊥
)∗

= ∆t1,t2
q,up + ∂⊥

(
∂⊥
)∗

.(5.3)

This implies the following and thus λt1,t2
q,up,k ≤ λt1,t3

q,up,k:〈
∆t1,t3

q,upg, g
〉
w

t1
q

=
〈
∆t1,t2

q,upg, g
〉
w

t1
q
+
〈
∂⊥
(
∂⊥
)∗

g, g
〉
w

t1
q

=
〈
∆t1,t2

q,upg, g
〉
w

t1
q
+
〈(

∂⊥
)∗

g,
(
∂⊥
)∗

g
〉
w

t1
q

≥
〈
∆t1,t2

q,upg, g
〉
w

t1
q
.

As for λt2,t3
q,up,k ≤ λt1,t3

q,up,k, we will apply Theorem 4.6. For notational simplicity, we let

Its := [nt
q]\[ns

q]. Since the matrix ∆∆∆t3
q,up is positive semidefinite, both ∆∆∆t3

q,up(I
t3
t2
, It3t2 ) and

∆∆∆t3
q,up(I

t3
t1
, It3t1 ) are proper in ∆∆∆t3

q,up (cf. Lemma 4.2). Moreover, ∆∆∆t3
q,up(I

t3
t2
, It3t2 ) is proper inD
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∆∆∆t3
q,up(I

t3
t1
, It3t1 ). Then, by Lemma 4.4 and Theorem 4.6, ∆∆∆t1,t3

q,up = ∆∆∆t3
q,up/∆∆∆

t3
q,up(I

t3
t1
, It3t1 ) is the

Schur complement of some proper principal submatrix in ∆∆∆t2,t3
q,up =∆∆∆t3

q,up/∆∆∆
t3
q,up(I

t3
t2
, It3t2 ). More

precisely,

∆∆∆t1,t3
q,up =∆∆∆t2,t3

q,up/∆∆∆
t2,t3
q,up

(
It2t1 , I

t2
t1

)
.(5.4)

Then, by Lemma 4.5, we have that

λt2,t3
q,up,k = λk

(
∆∆∆t2,t3

q,up

)
≤ λk

(
∆∆∆t1,t3

q,up

)
= λt1,t3

q,up,k ∀k = 1, . . . , ns
q.

Note that when q = 0, ∆s,t
0 = ∆s,t

0,up for s ≤ t. Then, we have the following corollary.

Corollary 5.4. Let K = {Kt}t∈T be a simplicial filtration. Then for any t1 ≤ t2 ≤ t3 ∈ T ,
we have for each k = 1, . . . , nt1

0 that λt1,t2
0,k ≤ λt1,t3

0,k and λt2,t3
0,k ≤ λt1,t3

0,k .

We remark that the persistent Cheeger constant (cf. Definition 4.18), a quantity closely
related to 0th persistent eigenvalues, is also shown to satisfy a monotonicity property (as
described in Proposition 4.19). This monotonicity property is, however, weaker than the
monotonicity property for 0th persistent eigenvalues established in the corollary above.

A simple adaptation of the proof of the formula λt1,t2
q,up,k ≤ λt1,t3

q,up,k will give rise to the
following monotonicity result for persistent eigenvalues.

Corollary 5.5. Let K = {Kt}t∈T be a simplicial filtration. Given q ∈ N, then for any
t1 ≤ t2 ≤ t3 ∈ T , we have for each k = 1, . . . , nt1

q that λt1,t2
q,k ≤ λt1,t3

q,k .

Functoriality and stability of up persistent eigenvalues. Consider the simplicial filtration
K ′ ↪→ K ↪→ L ↪→ L′. This filtration should be regarded as a morphism (in the category where
objects are simplicial pairs over a fixed vertex set V ) from the simplicial pair K ↪→ L to the
simplicial pair K ′ ↪→ L′:

(5.5)

K L

K ′ L′

Given ∆K,L
q,up on Cq(K), we induce an operator on Cq(K

′) by considering the Schur complement

∆∆∆K,L
q,up/∆∆∆

K,L
q,up(IKK′ , IKK′), where IKK′ stands for the indices corresponding to q-simplices which are

not in K ′ ⊆ K. By Lemma 4.4 and Theorem 4.6, one has that ∆∆∆K,L
q,up/∆∆∆

K,L
q,up(IKK′ , IKK′) is

the matrix representation of ∆K′,L
q,up (see also (5.4)). It follows from (5.3) in the proof of

Theorem 5.3 that

∆K′,L
q,up ⪯ ∆K′,L′

q,up ,(5.6)

i.e., ∆K′,L′
q,up −∆K′,L

q,up is positive semidefinite. Hence, the operator ∆K,L
q,up on Cq(K) arising from

the pair K ↪→ L induces an operator on Cq(K
′) which is upper bounded (in the sense of the

Loewner order ⪯) by the operator ∆K′,L′
q,up arising from the pair K ′ ↪→ L′. This should be seen

as expressing the functoriality of up persistent Laplacians. As a direct consequence of this
functoriality property of up persistent Laplacians and Lemma 4.5, we establish the following
functoriality (monotonicity) property of up persistent eigenvalues.D
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Proposition 5.6 (functoriality of up persistent eigenvalues). For the morphism (5.5) between
the simplicial pairs K ↪→ L and K ′ ↪→ L′, and for any k = 1, . . . , nK′

q , we have that

λK,L
q,up,k ≤ λK′,L′

q,up,k.(5.7)

Now, based on functoriality of up persistent eigenvalues, we establish a stability result via
interleaving-type distances.

Definition 5.7 (interleaving distance between simplicial filtrations over R). Let K = {Kt}t∈R
and L = {Lt}t∈R be two simplicial filtrations over R with the same underlying vertex set V
and the same index set R. We define the interleaving distance between K and L by

dVI (K,L) := inf {ε ≥ 0 : ∀t,Kt ⊆ Lt+ε and Lt ⊆ Kt+ε} ,

where when we write the inclusion K ⊆ L, we implicitly require that wK = wL|K .

Definition 5.8 (interleaving distance between functions). Let Int denote the set of closed
intervals in R. Let f : Int→ R≥0 and g : Int→ R≥0 be two nonnegative functions. We then
define the interleaving distance between f and g by

dI (f, g) := inf {ε ≥ 0 : ∀I ∈ Int, f(Iε) ≥ g(I) and g(Iε) ≥ f(I)} .

Above, for Int ∋ I = [a, b] and ε > 0, we denoted Iε := [a− ε, b+ ε].

Remark 5.9. The stability theorem given below is structurally similar to claims about
stability of the rank invariant; see [42, Theorem 22] and [25, Remarks 4.10 and 4.11].

With these definitions and with (5.7) we now obtain the following stability theorem.

Theorem 5.10 (stability theorem for up persistent eigenvalues). Let K = {Kt}t∈R and
L = {Lt}t∈R be two simplicial filtrations over the same underlying vertex set V . Then,

dI
(
λK
q,up,k, λ

L
q,up,k

)
≤ dVI (K,L) ,(5.8)

where λK
q,up,k : Int→ R≥0 is defined by Int ∋ I = [a, b] 7→ λa,b

q,up,k(K).

A similar but more convoluted statement, would express the stability of the persistent up
Laplacians via (5.6).

Proof. If dVI (K,L) = ∞, then (5.8) holds trivially. Otherwise we assume there exists
ε ≥ 0 such that Kt ⊆ Lt+ε and Lt ⊆ Kt+ε for all t ∈ R. For any I = [a, b] ∈ Int, then
La−ε ⊆ Ka ⊆ Kb ⊆ Lb+ε is a simplicial filtration related to the following interleaving diagram:

Ka Kb

La−ε Lb+ε

By Proposition 5.6, λ
La−ε,Lb+ε

q,up,k ≥ λKa,Kb
q,up,k . This implies that λL

q,up,k(I
ε) ≥ λK

q,up,k(I) for all

I ∈ Int. Similarly, λK
q,up,k(I

ε) ≥ λL
q,up,k(I) for all I ∈ Int. Therefore, dI(λ

K
q,up,k, λ

L
q,up,k) ≤ ε

and thus dI(λ
K
q,up,k, λ

L
q,up,k) ≤ dVI (K,L).D
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6. Discussion. As a natural progression of the ideas in this paper, where the persistent
Laplacian is formulated for inclusion maps, it is of definite interest to extend it to the setting
of simplicial maps—a natural extension which would enable other applications such as graph
sparsification where clusters of vertices might be collapsed between consecutive levels of a
filtration.

A notion of persistent Laplacian for pairs of manifolds also related by inclusion maps was
developed in [6]. In the spirit of our paper, it is then natural to attempt to relate the version
of the persistent Laplacian from [6] to notions of Schur complement of operators (e.g., [15])
in a suitable sense, which may also be related to Poincaré–Steklov operators [29].

The Cheeger inequality has been generalized both to higher order (eigenvalues of graph
Laplacians) in [30] and to higher dimensional simplicial complexes [47, 18]. This naturally
suggests to us to consider suitable extensions of our persistent Cheeger inequality to these
cases which will provide interpretation of the persistent Laplacian spectrum.

It is of clear interest to elucidate stability properties of invariants associated to the persis-
tent Laplacian which generalize the results we established in Theorem 5.10. It is conceivable
that some of these developments will follow from invoking classical operator perturbation
techniques—an “analytical” possibility afforded by the persistent Laplacian approach to per-
sistent homology.

Finally, we remark that whereas the multiplicity of the zero eigenvalue recovers the rank of
the corresponding homology group (i.e., Betti number), in general, both nonzero eigenvalues
and (specific) eigenvectors have applications such as in partitioning [50] and shape matching
[43]. This suggests the future exploration of applications of persistent spectral analysis beyond
mere persistent Betti numbers.

Appendix A. Relegated proofs.

Proof of Lemma 2.4. This follows directly from the following obvious observations:
1. CK

q−1 =
⊕m

i=1C
Ki
q−1, C

K
q =

⊕m
i=1C

Ki
q , and CL,K

q+1 =
⊕m

i=1C
Li,Ki
q+1 .

2. ∂K
q =

⊕m
i=1 ∂

Ki
q and ∂L,K

q+1 =
⊕m

i=1 ∂
Li,Ki
q+1 .

Proof of Theorem 2.5. For item 1, let cK0 :=
∑

v∈SK
0
wK
0 (v)[v] ∈ CK

0 . We prove that

∆K,L
0 cK0 = 0 and thus λK,L

0,1 = 0. Set cL0 :=
∑

v∈SL
0
wL
0 (v)[v]. Then,

cL0 =
∑

v∈SL
0 \SK

0

wL
0 (v)[v] +

∑
v∈SK

0

wK
0 (v)[v] =

∑
v∈SL

0 \SK
0

wL
0 (v)[v] + cK0 .

For any c1 ∈ CL,K
1 , we have that〈(

∂L,K
1

)∗
cK0 , c1

〉
wL,K

1

=
〈
cK0 , ∂L,K

1 c1

〉
wK

0

=
〈
cL0 , ∂

L,K
1 c1

〉
wL

0

−

〈 ∑
v∈SL

0 \SK
0

wL
0 (v)[v], ∂

L,K
1 c1

〉
wL

0

,

where ⟨·, ·⟩
wL,K

1
is the restriction of ⟨·, ·⟩wL

1
on CL,K

1 and we use the fact wK
0 = wL

0 |SK
0

in the

rightmost equality.
Since ∂L,K

1 c1 ∈ CK
0 , we have that ⟨

∑
v∈SL

0 \SK
0
wL
0 (v)[v], ∂

L,K
1 c1⟩wL

0
= 0. Now, assume that

c1 = x1[e1] + · · ·+ xℓ[eℓ] where each ei ∈ SL
1 and xi ∈ R. Since ∂L,K

1 [ei] = ∂L
1 [ei] = [vi]− [wi]D
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for some vi, wi ∈ SL
0 , we have that ⟨cL0 , ∂

L,K
1 [ei]⟩wL

0
= 0 for each i = 1, . . . , ℓ and thus

⟨cL0 , ∂
L,K
1 c1⟩wL

0
= 0. It then follows that〈(

∂L,K
1

)∗
cK0 , c1

〉
wL,K

1

= 0 ∀c1 ∈ CL,K
1 ,

and thus ∆K,L
0 cK0 = ∂L,K

1 (∂L,K
1 )∗c1 = 0.

Now, assume that L is connected. Suppose that there exists 0 ̸= c0 ∈ CK
0 such that

∆L,K
0 c0 = 0. Then, (∂L,K

1 )∗c0 = 0. For any v, v′ ∈ SK
0 , since L is connected, there exists a

1-chain c1 ∈ CL
1 such that ∂L

1 c1 = [v]− [v′] (for example, one can take a path in L connecting

v and v′ and let c1 be the corresponding 1-chain). Then, c1 ∈ CL,K
1 and ∂L,K

1 c1 = [v] − [v′].
Note that 〈

c0, [v]− [v′]
〉
wK

0
=
〈
c0, ∂

L,K
1 c1

〉
wK

0

=
〈(

∂L,K
1

)∗
c0, c1

〉
wL,K

1

= 0.

This implies that ⟨c0, [v]⟩wK
0
= ⟨c0, [v′]⟩wK

0
and thus there exists α ∈ R such that ⟨c0, [v]⟩wK

0
=

α for each v ∈ SK
0 . Then, c0 = α · cK0 , implying that the multiplicity of 0 eigenvalue is 1.

For item 2, suppose K intersects exactly m connected components of L, denoted by
L1, . . . , Lm. Then, by Lemma 2.4 we have that ∆K,L

0 =
⊕m

i=1∆
Ki,Li
0 . Then, the spectrum of

∆K,L
0 is the multiset union of the spectra of ∆Ki,Li

0 s. By item 1 and item 2 we have that the

multiplicity of zero eigenvalue of ∆K,L
0 is then exactly m.

Proof of Theorem 2.6. By abuse of the notation, we represent each cL ∈ CL
q by a vector

cL ∈ RnL
q . Then, cK corresponds to the vector cK = cL([nK

q ]) ∈ RnK
q . By Theorem 4.6, the

matrix representation ∆∆∆K,L
q,up of ∆K,L

q,up can be computed as follows:

∆∆∆K,L
q,up =∆∆∆L

q,up

(
[nK

q ], [nK
q ]
)
−∆∆∆L

q,up

(
[nK

q ], ILK
)
∆∆∆L

q,up

(
ILK , ILK

)†
∆∆∆L

q,up

(
ILK , [nK

q ]
)
,

where ILK = [nL
q ]\[nK

q ].

Suppose σi ∈ SK
q is an interior simplex; then the ith row of ∆∆∆L

q,up([n
K
q ], ILK) is 0 (cf.

section SM1). Then,
1. the ith entry of ∆∆∆L

q,up([n
K
q ], [nK

q ])cK exactly coincides with the ith entry of ∆∆∆L
q,upc

L;

2. the ith row of ∆∆∆L
q,up([n

K
q ], ILK)∆∆∆L

q,up

(
ILK , ILK

)†
∆∆∆L

q,up

(
ILK , [nK

q ]
)
is 0.

Therefore, the ith entry of ∆∆∆L
q,upc

L (= wL
q (σi)⟨∆L

q,upc
L, [σi]⟩wL

q
) agrees with the ith entry of

∆∆∆K,L
q,upcK (= wK

q (σi)⟨∆K,L
q,upcK , [σi]⟩wK

q
). Then by wK

q (σi) = wL
q (σi), we have that〈

∆L
q,upc

L, [σi]
〉
wL

q
=
〈
∆K,L

q,upc
K , [σi]

〉
wK

q
.

Proof of Theorem 2.7. First, we have the following elementary linear algebra fact: The
isomorphism follows from [33, Theorem 5.3] and the equality follows from [33, Theorem 5.2].

Claim A.1. Let A ∈ Rm×n and let B ∈ Rn×p. Suppose AB = 0; then we have

ker(A)/im(B) ∼= ker(A) ∩ ker
(
BT
)
= ker

(
BBT +ATA

)
,

where ∼= denotes isomorphism between vector spaces.D
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The image of Hq(K) under the inclusion map inside Hq(L) is exactly ker(∂K
q )/im(∂L,K

q+1 ).

Let BK
q be the matrix representation of ∂K

q . Choose an orthonormal basis of CL,K
q+1 and let

BL,K
q+1 be the corresponding matrix representation of ∂L,K

q+1 in this basis. Then, by Theorem 3.1

∆∆∆K,L
q = BL,K

q+1

(
BL,K

q+1

)T (
WK

q

)−1
+WK

q

(
BK

q

)T (
WK

q−1

)−1
BK

q

=
(
WK

q

) 1
2
(
WK

q

)− 1
2 BL,K

q+1

((
WK

q

)− 1
2 BL,K

q+1

)T (
WK

q

)− 1
2

+
(
WK

q

) 1
2

((
WK

q−1

)− 1
2 BK

q

(
WK

q

) 1
2

)T (
WK

q−1

)− 1
2 BK

q

(
WK

q

) 1
2
(
WK

q

)− 1
2 .

Let A := (WK
q−1)

− 1
2BK

q (WK
q )

1
2 and B := (WK

q )−
1
2BL,K

q+1 . Then,

1. AB = (WK
q−1)

− 1
2BK

q (WK
q )

1
2 (WK

q )−
1
2BL,K

q+1 = (WK
q−1)

− 1
2BK

q BL,K
q+1 = 0,

2. ∆∆∆K,L
q = (WK

q )
1
2 (BBT +ATA)(WK

q )−
1
2 .

Since both WK
q−1 and WK

q are nonsingular, we have that ker(A) ∼= ker(BK
q ), im(B) ∼=

im(BL,K
q+1 ), and ker(∆∆∆K,L

q ) ∼= ker(BBT +ATA). It then follows from Claim A.1 that

βK,L
q = dim

(
ker
(
BK

q

)
/im

(
BL,K

q+1

))
= dim

(
ker
(
∆∆∆K,L

q

))
= nullity

(
∆K,L

q

)
.

Proof of Lemma 3.4. Consider π⊥ ◦ ∂L
q+1 : CL

q+1 → (CK
q )⊥ where π⊥ : CL

q → (CK
q )⊥

is the orthogonal projection. Then, DL
q+1 is the matrix representation of π⊥ ◦ ∂L

q+1 and

CL,K
q+1 = ker(π⊥ ◦ ∂L

q+1). So RL
q+1 = DL

q+1Y is the matrix representation of π⊥ ◦ ∂L
q+1 after a

change of basis of CL
q+1.

1. If I = ∅, then since RL
q+1 is column reduced, RL

q+1 has full column rank. This implies

that π⊥ ◦ ∂L
q+1 : C

L
q+1 → (CK

q )⊥ is injective and thus CL,K
q+1 = ker(π⊥ ◦ ∂L

q+1) = {0}.
2. If I ̸= ∅, then the column space of Z = Y (:, I) coincides with ker(π⊥ ◦ ∂L

q+1) = CL,K
q+1 .

Since Y is nonsingular, Z has full column rank. Therefore, the columns of Z constitute
a basis of CL,K

q+1 .

Obviously, BL
q+1([n

K
q ], :) is the matrix representation of π ◦ ∂L

q+1 : CL
q+1 → CK

q where

π : CL
q → CK

q is the orthogonal projection. Therefore, (BL
q+1Y )([nK

q ], :) = BL
q+1([n

K
q ], :)Y is

the matrix representation of π ◦∂L
q+1 under the new basis Y of CL

q+1. Now, assume that I ̸= ∅.
Since the column space of Z = Y (:, I) is CL,K

q+1 , we have that BL,K
q+1 = (BL

q+1Y )([nK
q ], I) is the

matrix representation of π ◦ ∂L
q+1|CL,K

q+1
= ∂L,K

q+1 .

Note added in proof. The notion of persistent Laplacian also arose in the work of André
Lieutier in 2014 [32].D
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