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ABSTRACT: The Beaufort Gyre (BG) is hypothesized to be partially equilibrated by those mesoscale eddies that form
via baroclinic instabilities of its currents. However, our understanding of the eddy field’s dependence on the mean BG cur-
rents and the role of sea ice remains incomplete. This theoretical study explores the scales and vertical structures of eddies
forming specifically due to baroclinic instabilities of interior BG flows. An idealized quasigeostrophic model is used to
show that flows driven only by the Ekman pumping contain no interior potential vorticity (PV) gradients and generate
weak and large eddies, O(200)km in size, with predominantly barotropic and first baroclinic mode energy. However, flows
containing realistic interior PV gradients in the Pacific halocline layer generate significantly smaller eddies of about 50 km
in size, with a distinct second baroclinic mode structure and a subsurface kinetic energy maximum. The dramatic change in
eddy characteristics is shown to be caused by the stirring of interior PV gradients by large-scale barotropic eddies. The sea
ice–ocean drag is identified as the dominant eddy dissipation mechanism, leading to realistic subsurface maxima of eddy
kinetic energy for drag coefficients higher than about 23 1023. A scaling law is developed for the eddy potential enstrophy,
demonstrating that it is directly proportional to the interior PV gradient and the square root of the barotropic eddy kinetic
energy. This study proposes a possible formation mechanism of large BG eddies and points to the importance of accurate
representation of the interior PV gradients and eddy dissipation by ice–ocean drag in BG simulations and theory.
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1. Introduction

a. Role of eddies in the Beaufort Gyre

The Beaufort Gyre (BG) is a large-scale, predominantly anti-

cyclonic circulation in the western Arctic Ocean, the strength

and shape of which vary on interannual to decadal time scales

(Proshutinsky et al. 2019; Regan et al. 2019). Continuing efforts

to expand the observational network in the form of in situ

measurements from ships, moorings, and ice-tethered profilers,

in addition to satellite observations, have shed light on many

crucial BG processes (Proshutinsky et al. 2020). The gyre vari-

ability has previously been characterized as surface stress driven,

with a corresponding Ekman pumping that displaces isopycnals

vertically in the ocean interior and transports surface water

masses toward its center (Proshutinsky et al. 2009).

Recent theoretical developments have highlighted two pro-

cesses that can equilibrate the gyre against the surface stress

forcing: mesoscale eddy overturning (Manucharyan et al. 2016;

Manucharyan and Spall 2016) and the ice–ocean stress

“governor” (Dewey et al. 2018; Zhong et al. 2018; Meneghello

et al. 2018a; Doddridge et al. 2019; Wang et al. 2019). On the

one hand, the equilibration by mesoscale eddies requires the

Ekman-pumping-driven currents to be baroclinically unstable,

generating mesoscale eddies that counteract the Ekman pumping

via the eddy-induced overturning. On the other hand, when

sea ice is relatively immobile, the ice–ocean stress becomes cy-

clonic for an anticyclonic gyre, counteracting the pumping in-

duced by anticyclonic stresses when the ice pack is relatively

loose. The actual state of the gyre is likely somewhere in be-

tween those two idealized limits, but with continuing global

warming and the associated reduction of sea ice over the

Beaufort Gyre, the importance of mesoscale eddies may in-

crease (Armitage et al. 2020; Manucharyan et al. 2022).

A number of observational and modeling studies point to

the necessity of eddies in explaining the observed large-scale

behavior of the gyre, as was theorized by Manucharyan and

Spall (2016) and Manucharyan et al. (2016). Meneghello et al.

(2017) estimated the eddy tracer diffusivity from mooring ve-

locities and found that it was sufficient to counteract the esti-

mated surface Ekman pumping. However, Kenigson et al.

(2021) pointed out that the eddy buoyancy diffusivity, rather

than the eddy tracer diffusivity, is necessary to evaluate the

strength of the eddy overturning, and remains to be constrained

via observations. Analyzing the isopycnal motion in mooring

observations, Kenigson et al. (2021) point out that neither the

Ekman pumping nor vertical mixing nor boundary fluxes ex-

plain the vertical structure of the halocline, in which isopycnal

slopes increase with depth through the Pacific winter layer, and

conclude that eddies likely play a key role in setting the vertical

structure.

Using idealized simulations, Meneghello et al. (2018a) and

Doddridge et al. (2019) point out that with decreasing sea ice

concentration, eddies play a larger role in gyre equilibration

because of the diminishing impact of the ice–ocean governor.

Meneghello et al. (2021) also highlighted the role of ice–ocean
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drag in dissipating eddy energy. Using a submesoscale-permitting

global ocean model, Manucharyan and Thompson (2022)

demonstrated that at concentrations beyond about 80%,

sea ice plays a major role in dissipating the eddy kinetic en-

ergy in the upper ocean and affects ice–ocean heat fluxes in

such a way as to cause a positive feedback. Providing the

first observational estimate of the BG energy budget, Armitage

et al. (2020) hypothesized that frictional eddy dissipation

against the ice is required to explain the accumulation of

the available potential energy after 2008, given the excess

kinetic energy input from winds and ice into geostrophic

currents. However, eddy characteristics inferred from in

situ observations (Zhao et al. 2016) are not well correlated

with the interannual BG variability, likely due to temporal

or spatial sparseness of the observations. The evidence re-

vealing the tight connection between the eddy field and the

BG mean flow was recently presented by Manucharyan

et al. (2022), who inferred eddy characteristics from their

observed impact on the rotation rate of isolated sea ice floes in

BG marginal ice zones.

Thus, a range of theoretical, observational, and modeling

studies focused on different aspects of BG dynamics point to

the importance of mesoscale eddies. The common argument

among these studies is that the eddies need to form via baro-

clinic instabilities of the interior BG currents to drain their

potential energy, slump the isopycnals, and counteract the

Ekman-driven isopycnal steepening.

b. Properties of BG eddies in observations and models

Direct observations of the BG eddy field remain either spa-

tially or temporally sparse, but eddies are nonetheless evident

in in situ mooring and Ice-Tethered Profiler (ITP) hydrogra-

phy (Hunkins 1974; Manley and Hunkins 1985; D’Asaro 1988;

Zhao et al. 2014, 2016, 2018). Zhao et al. (2014) characterized

the observed coherent eddies in the interior of the gyre by

their distinct core depths, core temperature and salinity prop-

erties. The shallowest eddies in the Canada Basin are found

immediately below the mixed layer, with core depths within

the top 80 m and near-freezing core temperatures; it has been

posited that they are generated by the instability of surface

fronts (Manucharyan and Timmermans 2013). Eddies with

cores between about 80 and 300 m have saltier core water and

a range of core temperatures, and may be generated by the in-

stability of boundary currents (Hunkins 1974; D’Asaro 1988;

Zhao et al. 2014). Middepth eddies that were identified in

moorings have double cores, one right below the Pacific halo-

cline around 200 m and another one at the top of the Atlantic

layer around 400 m. The deepest eddies are commonly found

at a depth of about 1 km (Zhao and Timmermans 2015). The

eddy sizes also vary, ranging from a few kilometers for sub-

mixed layer eddies up to a few tens of kilometers for deeper

eddies.

In search for a better understanding of the BG eddy field,

several recent studies used satellite observations, detecting

eddy footprints on the surface ocean and sea ice (Kozlov et al.

2019; Cassianides et al. 2021; Manucharyan et al. 2022), as

well as on sea surface height (Kubryakov et al. 2021). These

satellite observations identified over 4000 open-ocean eddies

and over 3500 eddies in marginal ice zones using Synthetic

Aperture Radar observations (Kozlov et al. 2019) and detected

over 2000 eddies using altimetric observations in ice-free re-

gions (Kubryakov et al. 2021). Additionally, 20000 isolated sea

ice floes were detected in BGmarginal ice zones, and their rota-

tion rates were attributed to the underlying oceanic eddy field

(Manucharyan et al. 2022). These numbers of eddies far exceed

the few hundred eddies that were detected using in situ ITP and

mooring observations (Zhao et al. 2014, 2016). Note that satel-

lites can detect only those eddies with surface signatures; hence,

most of the eddies with small localized cores in the interior of

the water column are excluded from that record.

The satellite-observed eddies have a wide range of length

scales, from O(5) km eddies detected from SAR patterns

(Kozlov et al. 2019) to some eddies reaching about 120 km in

diameter in altimetric observations (Kubryakov et al. 2021).

Notably, the relatively large eddies that were detected from

the coarse-resolution altimetry have average diameters of about

60 km and appear with no significant cyclone/anticyclone asym-

metry (Kubryakov et al. 2021). A range of reconstructed eddy

diameters (about 20–80 km) was estimated from sea ice floe

rotation rates (Manucharyan et al. 2022). Such eddy sizes are

significantly larger than the coherent vortices identified in the

interior of the water column in BG moorings and ITPs (Zhao

et al. 2014, 2016), but still not as large as eddies simulated in

idealized BG modeling studies (Manucharyan and Spall 2016;

Meneghello et al. 2018a; Spall 2020). Indeed, eddies simulated

in idealized Ekman-pumping-driven BG models are com-

monly over 100 km in size [see, e.g., Fig. 2a in Manucharyan

and Spall (2016), Fig. 2a in Meneghello et al. (2018a), and

Fig. 4 in Spall (2020)]. It is plausible that eddies significantly

larger than 100 km do exist but are yet to be quantified be-

cause they are generally weaker compared to the localized,

small-scale eddies. However, it is also possible that the ed-

dies generated in idealized BG models might be overly large

and/or otherwise biased due to various idealizations com-

monly used in process studies, e.g., simplified stratification and

lack of mixed layer or near-coastal dynamics.

Comprehensive mesoscale eddy-resolving global ocean or

regional Arctic Ocean simulations have the advantage of rep-

resenting many processes but require high spatial resolution

to at least resolve the O(10) km Rossby deformation radius in

deep basins away from continental shelves. Recently, a few

studies analyzed the eddy field in comprehensive models with

O(1) km resolution (Wang et al. 2020; Regan et al. 2020;

Meneghello et al. 2021). These models reproduce qualita-

tively, and in many cases quantitatively, many large-scale fea-

tures of the BG, including the ocean stratification, freshwater

content, and mean currents. However, there are substantial

discrepancies between the BG eddy simulated in these mod-

els and observations. For example, in the interior of the BG

(away from continental slopes), these models predict a rela-

tively low eddy kinetic energy in the Pacific halocline layer,

O(1024) m2 s22 at depths of 100–200 m (Wang et al. 2020;

Regan et al. 2020).

In contrast, Hunkins (1974) observed EKE levels of

O(63 1023) m2 s22 and similarly high EKE levels are observed
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in all of the Beaufort Gyre Exploration Project (BGEP) moor-

ings (A, B, C, D), reaching (1023 m2 s22) in the deep Atlantic

layer and O(5 3 1023) m2 s22 around 200-m depth in the

Pacific layer (Fig. 1). The EKE in those comprehensive models

is so low as to become of the same order of magnitude as the

mean kinetic energy (Regan et al. 2020). However, as we show

here, this is in stark contrast with BGEP mooring observations

where the EKE is at least an order of magnitude larger than the

mean KE (Fig. 1b). Furthermore, the 1 km simulation analyzed

in Wang et al. (2020) generated a vertical EKE profile that has

two narrow peaks: one below the mixed layer and another

within the Pacific halocline. This also stands in sharp contrast

with the mooring observations, in which the EKE is concen-

trated approximately between 50 and 250 m deep (with the ex-

ception of mooring B, which additionally shows a strong surface

EKE peak). Thus, there are significant discrepancies between

the observed and simulated eddy fields, which are difficult to ex-

plain due to our gaps in understanding of how the BG eddy

field relates to the large-scale currents and stratification. This

motivates further theoretical investigations of eddy dynamics to

guide quantitative analyses of eddy characteristics and forma-

tion mechanisms in both observations and eddy-resolving ocean

models.

c. Formation mechanisms of BG eddies

Previous studies have suggested various formation mecha-

nisms to explain the presence of eddies in the BG, including

hydrodynamic instabilities associated with localized boundary

currents (Hunkins 1974; Spall et al. 2008), outcropping fronts

(Manucharyan and Timmermans 2013), and convection due

to surface buoyancy fluxes under leads (Smith et al. 2002).

The uniqueness of the BG eddies found in ITP and mooring

records is that they are predominantly anticyclones with rel-

atively cold cores. For submixed layer eddies, this can be

explained if they are formed via subduction processes at

outcropping fronts (Manucharyan and Timmermans 2013).

The middepth anticyclonic eddies can be explained if they

are forming at coastal boundary currents where low poten-

tial vorticity water masses are sustained by winds, frictional

effects, and mixing (D’Asaro 1988; Spall et al. 2008), pro-

vided that eddies propagate from their coastal sites toward the

interior of the gyre where they are commonly observed. The

energy input associated with eddy generation is balanced by

eddy dissipation processes that could be due to lateral and ver-

tical mixing in the interior, and/or due to frictional spindown

due to sea ice–ocean drag in the surface boundary layer. The

eddy dissipation by the sea ice is evident in in situ observations

(Hunkins 1974) and modeling studies (Brannigan et al. 2017;

Wang et al. 2020; Regan et al. 2020; Meneghello et al. 2021;

Manucharyan and Thompson 2022).

However, many proposed eddy formation mechanisms do

not involve baroclinic instabilities in the BG interior, making

it difficult to determine the role of such eddies in the gyre

equilibration. Specifically, the eddy equilibration hypothesis re-

quires that the Eulerian (Ekman-pumping-driven) overturning

streamfunction be counteracted by an eddy-driven overturning

streamfunction in the interior of the gyre (Manucharyan and

Spall 2016; Manucharyan et al. 2017). But the eddy streamfunc-

tion is proportional to the eddy-driven isopycnal layer thickness

fluxes, and the presence of those fluxes is an inherent signature

of baroclinic instabilities that drain the potential energy of the

flow. The nonacceleration result for geostrophic turbulence

FIG. 1. Signatures of the interior PV gradients and eddy kinetic energy in the Beaufort Gyre as evident from climatological hydro-
graphic observations and the four BGEP moorings. (a) The magnitude of the quasigeostrophic PV gradient in the Pacific winter water
mass bounded by the s 5 26 and 27 kg m23 isopycnals, evaluated from the July to October average of monthly climatology (MIMOC),
neglecting the contribution of relative vorticity. (b) The vertical distribution of the mean and eddy kinetic energy in the four BGEP moor-
ings. Note the overwhelming dominance of the eddy kinetic energy over the entire depth range.
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(see Vallis 2017) implies that, in the absence of instabilities

supporting the growth of eddies, weakly decaying turbulence

does not affect the mean flow and does not significantly con-

tribute to the eddy thickness fluxes. Thus, those eddies that

were not formed due to baroclinic instability of the interior

flows (e.g., those that have formed at the boundary currents

and propagated into the interior of the gyre or formed at out-

cropping mixed layer fronts) are not expected to contribute to

the eddy overturning in the interior of the gyre. Furthermore,

baroclinic instability of the interior BG halocline (that does

not outcrop) describes exponential growth of wave-like dis-

turbances and thus is not expected to generate a substan-

tially asymmetric cyclone–anticyclone distribution.

Therefore, the ubiquitous observations of predominantly

cold-core anticyclonic BG eddies that are relatively isolated

from one another imply that those eddies have likely formed

elsewhere and propagated into the BG interior as a form of

weakly decaying turbulence, which is known to lead to more

isolated and symmetric eddies compared to those in regions

of active eddy generation and interaction (McCalpin 1987;

McWilliams 1990; Pavı́a and López 1994). This leads to a

seeming contradiction: the eddy equilibration hypothesis re-

quires eddies to be formed in the interior of the BG halocline,

while the properties of the observed halocline eddies indicate

that they likely have remote origins. A hypothesis reconciling

this contradiction could be that the eddies associated with the

baroclinic instabilities in the BG interior are relatively large

and weak, such that they could appear as a background vari-

ability on top of which the strong and localized eddies stand

out. Understanding the baroclinic instability of BG currents is

necessary to test this hypothesis.

Several studies explored the possibility of BG eddy forma-

tion via linear baroclinic instability theory. Applying an Eady

model of baroclinic instability (Eady 1949) to interior BG cur-

rents with vertical shear of about 1 cm s21 (100 m)21, Hunkins

(1974) estimated the baroclinic eddy growth rate to be approx-

imately one month. Hunkins (1974) argued that this time scale

is too long to explain the frequent eddy observations, even

though the eddies appear to be of the same length scale as the

deformation radius. Hart and Killworth (1976) conducted a

theoretical baroclinic instability analysis, taking the stratifica-

tion and velocity profiles as exponentially decaying with depth.

They concluded that the baroclinic instability of the interior

BG currents (idealized to have exponential profiles) requires

length scales to be 10–20 times larger than the Rossby defor-

mation radius. Both Hart and Killworth (1976) and Hunkins

(1974) concluded that eddies must be forming elsewhere, in

shallower regions with much larger shear. Analyzing compre-

hensive eddy observations, Manley and Hunkins (1985) demon-

strated that eddies have temperature/salinity signatures distinct

from their environment and concluded that the observed eddies

likely form at the Alaskan Coastal Current and are then ad-

vected into the interior of the BG by large-scale currents. Insta-

bilities of the coastal currents were later simulated by Spall

et al. (2008) and were shown to be adequate in explaining the

key properties of the observed BG anticyclones.

Recently, the baroclinic instability problem of interior BG

currents was revisited in Meneghello et al. (2021), who used a

more realistic representation of BG stratification but kept an

idealized exponential velocity profile. Three instability modes

were found: the surface mode localized in the mixed layer and

strongly affected by sea ice dissipation, the deep mode in the

abyssal ocean, and the halocline mode localized in the Pacific

halocline layer. The halocline mode had a vertical structure

similar to the eddy profiles observed in moorings, which led

the authors to speculate that this instability mode could ex-

plain the origin of the eddies observed in moorings. However,

the growth rate for the halocline instability mode was found

to be about 2 months, similar to the estimates in Hunkins

(1974) and Hart and Killworth (1976), who, in contrast, con-

cluded that a growth time scale on the order of a month is too

long to explain the observed eddies. We note that these stud-

ies explored idealized velocity and/or stratification profiles,

but it might be necessary to use more realistic profiles to cor-

rectly interpret the observed eddy field. Also, the limitation of

the linear baroclinic instability theory is that it does not pro-

vide any information about the strength of equilibrated eddies

and commonly underestimates their length scales (Smith 2007)

because it does not take into account the nonlinear eddy inter-

actions that lead to the inverse energy cascade toward larger

length scales and lower baroclinic modes (Smith and Vallis

2001; Zhao et al. 2018). Thus, the eddy formation via local

baroclinic instability in the BG interior still requires better

understanding.

d. Purpose of this study

This study explores the characteristics of eddies that could

form due to baroclinic instabilities of the interior BG currents,

as only those eddies are expected to be explicitly counteract-

ing the Ekman pumping. We attempt to reconcile the discrep-

ancy in length scales between the idealized model eddies and

satellite observations by proposing an eddy-formation mecha-

nism that leads to the coexistence of eddies with distinct

length scales. Specifically, we will demonstrate below that the

Pacific halocline layer in the BG contains interior potential

vorticity (PV) gradients (Fig. 1a) and those gradients can dra-

matically reduce the length scales and enhance the energy of

eddies generated from local baroclinic instabilities.

The manuscript is organized as follows: section 2 discusses

the vertical profile of the flows pertinent to the BG, pointing

out the associated interior PV gradients and the inability of

the Ekman pumping to generate them. In section 3 we use

quasigeostrophic linear stability analysis to investigate whether

linear growth of baroclinic waves can account for the observed

structure of BG eddies. In section 4 we present numerical sim-

ulations of an idealized three-layer quasigeostrophic model

with a range of background flow profiles. In section 5 we show

that in these simulations, interior PV gradient and ice–ocean

drag play crucial roles in generating small-scale subsurface-

intensified eddies. In section 6 we propose the eddy formation

mechanism, supporting it with the scaling law based on the

analysis of the potential enstrophy budget, directly connecting

the existence of the smaller-scale subsurface-intensified eddies

to the background PV gradient and the strength of the larger-

scale barotropic eddies. Finally, in section 7 we summarize the
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results, outline the key limitations of the study, and discuss our

proposed paradigm of the BG eddy field with implications for

the BG eddy equilibration hypothesis.

2. Baroclinic shear of the Ekman-driven gyre

Previous theories of the BG circulation have typically char-

acterized it as being forced by surface stresses, leading to

Ekman pumping that displaces isopycnals in the interior of

the water column (e.g., Proshutinsky et al. 2009; Meneghello

et al. 2018a; Doddridge et al. 2019; Manucharyan et al. 2016,

2017; Manucharyan and Spall 2016; Manucharyan and Isachsen

2019). The surface-stress-driven Ekman pumping has counter-

acting components due to the ice–ocean stress and atmosphere-

ocean stress (Meneghello et al. 2018b; Doddridge et al. 2019).

Considering that length scale of the surface Ekman pumping

is significantly larger than the deformation radius, and due

to a relatively weak beta effect at such high latitudes, the

Ekman-pumping-driven Eulerian-mean vertical velocity does

not dramatically decrease with depth (as it occurs in midlatitude

gyres) and can penetrate all the way to the bottom boundary

layer of the water column (Manucharyan and Isachsen 2019;

Kenigson et al. 2021). Importantly, the strong vertical velocity

is present across the BG halocline, which is evident in ideal-

ized numerical simulations [Figs. 5 and 6 of Manucharyan and

Isachsen (2019)], comprehensive ocean models [Fig. 1 in Liang

et al. (2017)], and analytical solutions for the BG stratification

[Fig. 6b in Kenigson et al. (2021)].

If isopycnal displacements at depth were solely due to the

nearly depth-independent Ekman-pumping-induced vertical

velocity, the isopycnals would remain roughly parallel to each

other, leading to a state with zero interior PV gradients

(Kenigson et al. 2021). Indeed, since the stress occurs at the

surface, it can only explicitly affect the PV gradients in the sur-

face mixed layer, leaving the interior PV intact. This key obser-

vation allows one to estimate the expected vertical structure of

the mean flow from the density stratification.

Consider a situation in which the slopes of the gyre’s iso-

pycnals have been generated by vertically displacing the iso-

pycnals that were initially horizontal. The local buoyancy

anomaly b(z, x) can then be expressed as

b 5 bz(z)h(x): (1)

Here bz 5N2(z) is the mean stratification and h(x) is the ver-

tical isopycnal displacement, which is the same for all depths

and only depends on the horizontal location x, following that

ht 5 wEkman(x). Using the thermal wind balance we obtain

that f k 3 uz 5 2=b, where = denotes the horizontal gradient

vector and f is the Coriolis parameter. Taking the isopycnal

depth gradient to be directed along the x axis, the baroclinic

shear of the y-direction velocity y is yz 5 bx f
21 5 bz(z)hx f

21

and the velocity itself is determined after vertical integration as

y (z) 5 y0 1 b(z)f21hx: (2)

Here hx(x) does not depend on the depth, and y0 is the deep

ocean flow where bz ’ 0. Thus, the vertical structure of the

mean flow for a gyre driven solely by surface stresses should be

simply proportional to its buoyancy anomaly, i.e., y (z); b(z).

Note that such a profile implies zero isopycnal PV gradients: ne-

glecting the planetary vorticity gradient, the quasigeostrophic

PV may be written as

­q

­x
’

­

­z

f 2

bz

­y

­z

( )

: (3)

Substituting (2) into (3) yields ­q/­x 5 0. Note that the layer-

averaged quasigeostrophic PV gradient is simply proportional

to the difference between the isopycnal slopes bounding the

layer. Thus, the presence of the interior PV gradients can be

inferred either from the deviations of the mean flow profile

from (2) or, equivalently, from the presence of nonparallel

isopycnals bounding the Pacific halocline layer.

We now explore the observed vertical structure of the BG

mean flow and point out its similarities and deviations from

the zero PV gradient solution. The velocity measurements

come from long-term ADCP and CTD data at the four BG

moorings (A, B, C, D) that are sustained as part of the Beaufort

Gyre Exploration Program (Proshutinsky et al. 2009). The

moorings are located in the interior of the BG (Fig. 1a)

where the mean flow is not as strong as at the edges of the

gyre, but these measurements nonetheless provide critical

information about the vertical structure of the currents.

We present the mean velocity observations by aligning the

x axis of our coordinate in the direction of the strongest surface

flow. Since mooring observations do not provide the infor-

mation about the large-scale horizontal gradient in isopyc-

nal depth, it is instructive to view the mooring observations

using [u(z), b(z)] diagrams (Fig. 2). In all four moorings,

there is a clear distinction between the deep Atlantic water

mass (below about 350 m) and the Pacific water mass above

it, seen not only in the potential density profile but also in

the velocity profile (Fig. 2a). Both Atlantic and Pacific water

masses, with approximate potential densities ranges of about

(24.5, 27.5) kg m23 and (27.5, 28) kg m23, generally follow the

linear relation between the mean velocity and the buoyancy in

moorings C and D, while moorings A and B exhibit substantial

deviations, particularly in the Pacific halocline and near-surface

layers (Fig. 2b). Specifically, relative to the potential density

profile, the velocity profile in mooring A exhibits an overly

strong subsurface flow in the depth range of 100–200 m. In

contrast, mooring B exhibits a relatively weak flow.

These deviations imply that processes other than Ekman

pumping are actively present in the Pacific and near-surface

layers. The surface layer, extending to about 60–80 m, is ex-

pected to deviate from the Ekman solution due to surface

buoyancy forcing, enhanced vertical diffusivity, and eddy

viscosity in the mixed layer due to ice–ocean drag}all of

which act as PV sources for isopycnal layers that even tem-

porarily outcrop to the surface. In the Pacific layer, the PV

gradients could emerge from a lateral injection of water

masses or due to eddies with vertically varying eddy diffu-

sivity (Kenigson et al. 2021). Critically, any deviations of

the velocity profile from the potential density profile signify
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the presence of the interior PV gradients that can affect the

flow stability.

The PV gradients can be estimated from either the climato-

logical distribution of isopycnal layer thicknesses or the long-

term mean velocity profiles in moorings. We calculate the

quasigeostrophic PV gradients for the Pacific halocline layer

derived from a climatological hydrography, the Monthly Iso-

pycnal and Mixed-Layer Ocean Climatology (MIMOC) data-

set (Johnson et al. 2012), as =Q/f0 5 2=h/hhi, where h is the

thickness of the isopycnal layer bounded by potential densi-

ties s1 5 26 kg m23 and s2 5 27 kg m23, and hhi is its average

over the gyre (Fig. 1a). The PV gradients for the Pacific layer

are strong near prominent bathymetric features, e.g., conti-

nental slopes, Northwind Ridge, and Chukchi Plateau, where

Q2y/f ranges from 1 3 1026 to 4 3 1026 m21. The BG interior

also has elevated PV gradients, with Q2y/f 5 0.4 31026 m21

on average within the gyre. The weakest PV gradients are

found in regions of cyclonic circulation at the northern edge of

the gyre (centered at about 818N), with Q2y/f , 1 3 1027 m21.

Interior PV gradients can also be estimated from mooring ve-

locity and stratification data using Eq. (3); averaged in the halo-

cline layer between 80 and 250 m, Q2y/f is about 1 3 1026 m21

for moorings A and B, but it is ,1 3 1027 m21 in moorings

C and D, which is significantly lower than its estimate using the

climatology. The discrepancy could be due to mooring obser-

vations reflecting only a point measurement that might not

be representative of a large area, as is the case with the

highly smoothed climatology.

We also note that calculating the PV from mooring veloci-

ties using its continuously stratified quasigeostrophic definition

leads to noisy profiles even after smoothing the stratification

and velocity profiles with low-order splines. Consequently, the

stability analysis might lead to unstable modes that are not

necessarily present in the real ocean and are simply an artifact

of specifying a noisy background PV gradient profile. This mo-

tivates us to explore the BG dynamics as a simple three-layer

system that explicitly prohibits any vertical structure within

each layer and allows focusing on eddies that are large enough

to affect the entire Pacific halocline layer. But, since the mean

BG currents are heterogeneous, we will conduct a sensitivity

study exploring the eddy field forming due to a range of ideal-

ized velocity profiles.

3. Linear instabilities of Beaufort Gyre–like flows

The baroclinic instability of profiles with zero interior PV

gradients is a version of the so-called Eady problem (Eady

1949), in which the instability emerges due to resonant inter-

actions of the edge waves generated at the very surface and

bottom of the ocean (Vallis 2017). The presence of interior

PV gradients allows the formation of an interior Rossby wave

that can interact with the surface edge wave to generate the

instability}this is a version of the so-called Charney problem,

in which the interior PV gradient is due to the beta effect

(Charney 1947). Since mean flows with no interior PV gra-

dients profiles present a special case from the perspectives of

FIG. 2. Characteristics of the vertical profiles of mean ocean currents and potential densities estimated for the four BGEP moorings
A, B, C, and D, with their locations denoted with red stars in Fig. 1a. (a) Panels show the mean horizontal flow (black, top x axis) and
the potential density (red, bottom x axis) as measured by the BGEP moorings. (b) The time-averaged profiles of horizontal currents and
potential density are plotted against each other. The component of the mean flow in the direction of the strongest upper ocean currents is
plotted, and the weaker mean flow component in the orthogonal direction has been omitted. The right y axis shows the depths corre-
sponding to the mean potential density profile over all moorings. A linear fit is shown for reference for mooring D. Note that deviation
from linear dependency between the density and mean flow is a signature of interior PV gradients [see Eq. (2)].
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the Ekman-driven BG dynamics and the baroclinic instability,

we will use those profiles as a baseline for comparison of eddy

characteristics between different profiles.

In section 2 we showed that the BG mean flow and poten-

tial density profiles generally deviate from the linear relation,

implying that the gyre maintains interior PV gradients. This has

also been pointed out by Kenigson et al. (2021) and Meneghello

et al. (2021). The mean BG isopycnals are not parallel, and their

slopes increase in magnitude down to about 200-m depth. This

increase is also evident in the transient gyre evolution, in which

the isopycnal depths are correlated with the Pacific halocline

layer thickness (Kenigson et al. 2021). This implies that the inte-

rior PV gradients are time dependent and likely coupled with

the gyre and eddy dynamics. In this paper, however, we simplify

the problem by investigating the implications of these interior

PV gradients for eddy characteristics in an uncoupled way.

We represent the key features of the stratification and velocity

profiles using an idealized three-layer quasigeostrophic (QG)

flow corresponding approximately to the surface (0–80 m),

Pacific (80–250 m), and abyssal (250–4000 m) layers. The ad-

vantage of the three-layer idealization is that it offers a mini-

mum level of complexity required to represent the interior

PV gradients. It is also motivated by several dynamical con-

siderations: the BG potential density has strong gradients at

the base of the mixed layer, in the Pacific halocline layer, and

much weaker gradients in the Atlantic and abyssal layers.

Since we are interested in explaining the properties of eddies

that could contribute to the gyre equilibration, those eddies

must be forming and occupying the entire Pacific layer, which

we must therefore include in our idealized model. The sur-

face mixed layer is essential to allow ice–ocean drag to dissi-

pate eddy kinetic energy}a crucial process necessary for eddy

equilibration. And the bottom layer represents the abyssal

ocean, essential for the development of instabilities in flows

with zero interior PV gradients; for such flows, the very top

and bottom layers are the only layers capable of carrying PV

anomalies. The three-layer truncation is motivated by moored

measurements of the kinetic energy in the Beaufort Gyre that

has a relatively simple vertical profile, being concentrated in

the Pacific halocline layer (depths between about 50 and 250 m)

and substantially weaker in the surface mixed layer and the

abyssal ocean (Fig. 1b). In addition, as was shown in Zhao et al.

(2018), the EKE in BG moorings is dominated by the baro-

tropic and first two baroclinic modes. Thus, the three-layer QG

model is aimed at representing large-scale eddies occupying the

entire Pacific halocline layer (the focus of our study), with the

limitation that it cannot represent the development of eddies

with vertical scales smaller than the selected layer thicknesses,

for example localized eddy cores inside the layers (Zhao et al.

2014; Zhao and Timmermans 2015).

a. Quasigeostrophic model formulation

We represent the vertical structure of the BG with three

isopycnal layers: a surface layer of thickness H1 5 80 m and

r1 5 1025 kg m23, a middle halocline layer with H2 5 170 m

and r2 5 1027.5 kg m23, and a deep layer with H3 5 3750 m

and r3 5 1028 kg m23. The stratification parameters for the

three-layer quasigeostrophic model are estimated from the ob-

served profiles of the potential density (see Fig. 2). The first and

second baroclinic Rossby deformation radii are Rd1 5 12.7 km

and Rd2 5 6.3 km, which are approximately consistent with

observational estimates (Nurser and Bacon 2014; Zhao et al.

2014).

The flow in each of the three isopycnal layers is assumed to

obey quasigeostrophic dynamics (e.g., Vallis 2017). We intro-

duce the QG potential vorticity in each layer, qi, where i is the

layer index counting from the top. The PV in each layer is re-

lated to a corresponding streamfunction ci as follows:

q1 5 by 1 =2c1 1
f 20
H1

c2 2 c1

g′1

( )

, (4a)

q2 5 by 1 =2c2 1
f 20
H2

c1 2 c2

g′1
2

c2 2 c3

g′2

( )

, (4b)

q3 5 by 1 =2c3 1
f 20
H3

c2 2 c3

g′2

( )

: (4c)

Here f0 and b are the Coriolis and beta plane parameters,

with reference values of 1.4 3 1024 s21 and 10213 m21 s21,

respectively. We denote the reference thicknesses of each

layer as Hi, and the reduced gravity at each layer interface as

g′15g0(r22r1)/r3 and g′2 5 g0(r32r2)/r3, where g05 9.81 m s22

is the gravitational acceleration.

In our linear stability calculations, as well as in our non-

linear numerical simulations in sections 4 and 5, (4a)–(4c)

describe perturbations relative to zonal background flow in

each layer (Ui) that is stationary and horizontally homoge-

neous such that

c i 5 2Uiy: (5)

The corresponding background PV gradients Qiy are computed

from (4a)–(4c), taking into account that for the spatially uni-

form background flow we have =2c i 5 0. For example, the

background PV gradient in the second layer is defined as

Q2y 5 b 1
f 20
H2

2U1 1 U2

g′1
2

2U2 1 U3

g′2

( )

, (6)

which can be estimated from mooring observations using

layer-averaged velocities Ui in the direction of the gyre, as-

suming that long-term average velocities are approximately

geostrophic. Note that we neglect the effect of bottom topo-

graphic slopes, which would modify the PV gradient in the

lowest layer. The perturbation PV in each isopycnal layer

evolves according to

Dqi
Dt

5
­qi
­t

1 (ui 1 Ui) · =qi 1 yiQiy 5 Si, (7)

where the mean flow vector Ui is aligned in the x direction

and has amplitude Ui.

The terms Si in (7) denote nonconservative effects. In our

linear stability calculations, we parameterize the effects of
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friction against the sea ice via a linear drag, and we neglect

frictional damping at the sea floor:

S1 5 2r1=
2c1, (8a)

S2 5 0, (8b)

S3 5 0: (8c)

We use a reference value of r1 5 0.2 days21, corresponding to

a surface Ekman layer thickness of approximately 4 m (Vallis

2017; Meneghello et al. 2020). Note that this is a highly simpli-

fied representation of ice–ocean stresses (e.g., McPhee 2012;

Cole et al. 2014), which we use to allow linearization of the

equations of motion; in section 5 we conduct numerical simu-

lations using a more realistic, quadratic formulation of the

frictional stresses. We found that including a linear bottom

drag yielded a negligible change in the unstable modes. How-

ever, the ice–ocean drag is expected to play a crucial role in

determining equilibrium eddy characteristics in nonlinear sim-

ulations (Manucharyan and Thompson 2022).

We define a set of background velocity profiles in the three

isopycnal layers as (U1, U2, 0), making the simplifying assump-

tion that the deep ocean velocity is zero (see Fig. 2). In the

more general case of nonzero bottom flow, one could switch to

a reference frame that translates zonally at the speed of the bot-

tom flow, resulting in a velocity profile (U1 2 U3,U2 2 U3, 0) in

the moving frame. Thus, only two mean flow parameters deter-

mine the modes of baroclinic instability: the surface mean flow

U1, and the upper-ocean shear DU 5 U1 2 U2. Based on the

mooring observations shown in Fig. 2, we select an upper-layer

mean flow of U1 5 3 cm s21. We use a range of DU to explore

velocity profiles ranging from strongly surface-intensified flows

(e.g., mooring B) to flows with a pronounced subsurface ve-

locity maximum (e.g., mooring A). For reference, the purely

Ekman-driven solution with zero PV gradient in the second

layer corresponds to DU 5U1/(11 g2/g1)5 2:5cm s21. Pro-

files with near-vanishing interior PV gradients correspond

to a linear relation between the potential density and veloc-

ity profiles, as approximately occurs at moorings C and D

(see Fig. 1).

b. Linear stability formulation

We formulate the linear stability problem by linearizing the

PV conservation equations, considering periodic solutions with

a range of wavenumbers, and solving the resulting eigenvalue

problem to obtain the corresponding growth rates. The linear-

ized PV conservation equation is

­q

­t
5 2U ·

­q

­x
2

­c

­x
· Qy 2 r · =2c: (9)

Here we have switched our notation to simplify the pre-

sentation of the following equations: vectors now describe

the vertical structure of the corresponding quantity, e.g.,

q 5 {qi, i 5 1, …, 3}, From (4a)–(4c), the PV depends on

the streamfunction via q5=2c1 L · c, where L is a matrix

containing the coefficients of the stretching component of

the PV. The streamfunction can therefore be expressed in

terms of the PV as c 5 (=2 1 L)21 · q.

We seek solutions of the form q5R[q̃ exp(ikx)exp(lt)],

which describes a zonal baroclinic wave with wavenumber k

and growth rate l. This simplifies the relationship between

the PV and streamfunction to c̃ 5 (2k2I1 L)21 · q̃, where I

denotes the identity matrix. The linearized PV evolution Eq. (9)

can then be written as

[2ikdiag(U) 2 ikdiag(Qy)(2k2I 1 L)21

1 k2diag(r) · (2k2I 1 L)21] · q̃ 5 lq̃, (10)

where “diag” denotes the construction of a diagonal matrix

from a vector. Thus, the problem of identifying the growth

rates l and the corresponding vertical structures q̃ reduces to

identifying eigenvalues and corresponding eigenfunctions of

the matrix operator given by the left-hand side of (10).

c. Stability characteristics

In Figs. 3a and 3b we map the growth rate l as a function of

the zonal wavenumber k, and also as a function of the upper-

ocean shear DU. This reveals multiple instability “branches,”

depending on the sign and magnitude of DU. The gravest un-

stable mode, with wavenumber kRd1 , 1, persists throughout

the entire range of velocity shears DU. The vertical structure

of this unstable mode (not shown) is similar to that of the first

baroclinic mode (see section 6), i.e., having a single zero cross-

ing in the horizontal velocity field within the halocline. A key

feature of this instability branch is that at velocity shears cor-

responding to purely Ekman-driven currents (i.e., having zero

PV gradient in the middle layer), the growth rates are mini-

mized, with an exponential growth time scale of several months

(Fig. 3c). The growth rates increase quasi-linearly with the mag-

nitude of the middle-layer PV gradient, reaching exponential

growth time scales of ;10 days for the largest upper-ocean

shears considered here. We define the eddy scale corresponding

to the most unstable mode as p/km, where km is the correspond-

ing wavenumber. The eddy scale is maximized in the Ekman-

driven case (the Eady problem), reaching ;120 km (Figs. 3d),

and decreasing to ;40 km for the strongest shears considered

here. Note that the resulting eddies are expected to be even

larger due to the inverse energy cascade (see section 5).

For nonzero interior PV gradients, i.e., for deviations from a

purely Ekman-driven flow, two additional instability branches

emerge at higher wavenumbers (Figs. 3a,b). One branch occurs

when there is subsurface velocity maximum, U2 . U1 [region

below the red dashed line in Figs. 3a and 3b; the other branch

occurs when the PV gradient in deepest layer flips sign, i.e.,

U2 , U3 (region above the blue dashed line in Figs. 3a,b).

The growth rates associated with these higher-wavenumber

branches are smaller than those of the low-wavenumber branch

(Fig. 3c), but the associated eddy sizes are much smaller,

around 10–30 km (Fig. 3d).

In Fig. 3 we additionally contrast the linear growth rates

with and without linear surface friction, parameterizing the ef-

fect of drag against sea ice, and with and without the inclusion

of the planetary PV gradient b. Figures 3a and 3b show that
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the inclusion of surface friction does not qualitatively change

the dependence of the low-wavenumber and high-wavenumber

unstable modes on the upper-ocean shear DU. An exception is

the case of zero interior PV gradient, a purely Ekman-driven

flow, in which case the flow is linearly stable. For nonzero inte-

rior PV gradients, the growth rates are generally reduced, par-

ticularly in the low-wavenumber mode for positive DU and in

the high-wavenumber mode for low DU (Fig. 3c). The wave-

length of the low-wavenumber unstable mode increases by up

to ;25% when surface friction is included (Fig. 3d). Figures 3c

and 3d also show that including the planetary PV gradient has

almost no discernible impact on the growth rates and length

scales of the low- and high-wavenumber unstable modes.

These findings are qualitatively consistent with those of

Meneghello et al. (2021), who performed linear stability

analysis using a continuous vertical profile of horizontal PV

gradient from the Beaufort Gyre. They found that introduc-

ing an ocean–sea ice Ekman layer only served to damp an

unstable “surface mode” confined to the top ;10 m of the

water column, leaving other unstable modes largely unaf-

fected. However, despite having minimal effects on the linear

stability characteristics, the ice–ocean stress will play a crucial

role in suppressing the equilibrium eddy kinetic energy by pro-

viding a major source of energy dissipation to balance the en-

ergy input from baroclinic instability (see section 5).

In summary, our linear stability analysis indicates that

Beaufort Gyre–like flows should be dominated by low-wave-

number (eddy scale ;50–100 km) instabilities, regardless of

whether the flow is damped by friction against the overlying

sea ice, and that these instabilities should grow more rapidly

FIG. 3. Growth rates of unstable quasigeostrophic waves in a three-layer ocean. We fix the mean flow in the top layer at 0.03 m s21 and
impose zero mean flow in the bottom layer, then vary the middle layer velocity (quantified by the shear DU 5 U1 2 U2). (a),(b) Growth
rates on an f plane at 758N as a function of horizontal wavenumber (k) and DU, with the linear surface drag coefficient set to r1 5 0 in
(a) and r1 5 0.2 days21 in (b). (c) Maximum growth rates and (d) corresponding eddy diameter in each instability branch (see section 3), as
functions of DU. The eddy diameter is calculated as p/kmax where kmax is the wavenumber corresponding to the maximum growth rate.
Colored curves correspond to an f plane with no surface drag (red), a b plane with no surface drag (green), and a b plane with a surface
drag of r1 5 0.2 days21 (blue). Thick and thin lines correspond to the growth rates of the low- and high-wavenumber unstable modes,
respectively. All cases correspond to a latitude of 758N.
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at smaller scales as the interior PV gradient increases. For suffi-

ciently large interior PV gradients, additional, slower-growing

modes emerge at smaller scales (;10–30 km). However, the

smaller-scale instability branches only exist for extreme interior

PV gradients, larger than any of those shown in Fig. 1a. Only

the PV gradient inferred from mooring A with subsurface ve-

locity maximum (DU , 0) may be large enough to activate the

small-scale instabilities shown in Fig. 3. This suggests that the

presence of small, subsurface-intensified eddies in the BG is

likely not explained by the local linear growth of unstable

waves and motivates exploration of the nonlinear dynamics.

4. Numerical experiments

In section 3 we showed that the growth of relatively small,

subsurface-intensified eddies is consistently slower than those

of larger-scale, surface-intensified eddies. This is true even in

the presence of a sea ice–ocean drag that retards near-surface

flows, as the subsurface-intensified wave modes are linearly

stable for sufficiently small interior PV gradients. However,

the linear stability theory does not necessarily explain the char-

acteristics of the equilibrated eddy field (Smith 2007). Hence,

we perform a series of numerical simulations of the fully non-

linear three-layer quasigeostrophic equations.

We configure our simulations to match the posing of our linear

stability analysis (section 3) as closely as possible, prescribing a

background flow with velocities (U1, U2, 0). However, we now

impose quadratic drag laws in the uppermost and lowermost

layers, consistent with previous analyses of the ice–ocean bound-

ary layer (e.g., McPhee 2012; Cole et al. 2014). Specifically, we

prescribe

S1 5 2= 3
C surf

d |u1|u1
H1

1 D1, (11a)

S2 5 D2, (11b)

S3 5 2= 3
Cbot

d |u3|u3
H3

1 D3: (11c)

Here we neglect any motion of the overlying sea ice in the

prescription of the upper-layer quadratic drag (11a). The ad-

ditional dissipation terms Di in (11a)–(11c) denote dissipation

of gridscale enstrophy via spectral truncation. The equations

are solved via the same pseudospectral algorithm as used by

Arbic et al. (2012), to which the reader is referred for further

information of the numerical formulation.

We conduct a series of experiments that span a range of

mean flow strengths, upper-ocean shears, and surface drag

coefficients, ensuring that we explore a comparable range of

interior PV gradients as in Fig. 3. Specifically we covary the

upper-layer velocity U1 over the ranges {1.2, 2.3, 3.5} cm s21,

the upper-ocean shear U1 2 U2 over the range {21.2, 20.6,

0.0, 0.6, 1.2, 1.7, 2.3, 2.9, 3.5, 4.1, 4.6} cm s21, and the surface

drag coefficient Csurf
d over the range {1, 6, 12} 3 1023. This

yields a total of 99 experiments, each of which is integrated for

10 years to achieve a statistically steady state. These experiments

span PV gradients ranging from f21Q2y ’ 27 3 1026 m21 to

f21Q2y ’ 17 3 1026 m21. This range includes the magnitude

of f |=q| ’ 1 3 1026 m21 inferred from moorings A and B,

which we use as a reference simulation. The bottom drag is

held constant and set to Cbot
d 5 23 1023, and the layer thick-

nesses are fixed at H1 5 80 m, H2 5 170 m, and H3 5 3750 m.

We use a doubly periodic model domain with dimensions of

Lx 3 Ly 5 1000 km 3 1000 km, discretized using 512 3 512

Fourier modes, yielding a horizontal grid spacing of approxi-

mately 2 km. We selected this configuration because the do-

main width is many times [O(100)] larger than the first Rossby

radius of deformation, allowing quasigeostrophic eddies to

develop with minimal self-interaction through the periodic

boundaries, and because the grid resolves the Rossby radii

of deformation at moderate computational cost.

5. Equilibrium eddy field characteristics

Numerical simulations with significantly reduced ice–ocean

quadratic drag coefficient produced unrealistically high eddy

kinetic energy levels O(0.01) m2 s22, but for a realistic range

of drag coefficients (0:001�Cd � 0:01) the EKE levels be-

come comparable with observations (Fig. 4). In our frame-

work, the sea ice is considered stationary and the ice–ocean

drag coefficient effectively represents a product between the

sea ice concentration and the actual ice–ocean drag coeffi-

cient; hence, Cd actually changes seasonally but we have ne-

glected this complication. The strong EKE dependence on Cd

in all layers (but especially in the surface layer) implies that

the ice–ocean damping plays a key role in equilibrating the

eddy field, consistent with arguments made in a set of previ-

ous studies (e.g., Ou and Gordon 1986; Armitage et al. 2020;

Meneghello et al. 2021; Manucharyan and Thompson 2022).

We now focus on explaining the sensitivity of eddy length

scales and formation mechanisms on the magnitude of the in-

terior PV gradient.

FIG. 4. Dependence of the equilibrated eddy kinetic energy in all
three layers of the QGmodel on the value of the ice–ocean drag coef-
ficient. The simulations were performed for the control experiment,
varying only the drag coefficient.
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To elucidate the dependence of the simulated eddy field on

the model parameters, and particularly on the interior PV

gradient, we first discuss the qualitative features of the flow

with reference to representative snapshots of the PV in the

middle layer (Fig. 5). Later in this section, we quantify the EKE

and eddy length scale dependencies on the interior PV gradient.

Eddy activity is visibly minimized in cases with smaller interior

PV gradient magnitudes (Figs. 5b,c), corresponding to a purely

Ekman-driven flow. In this case the flow is comprised of large-

scale wave-like disturbances and filaments that are O(100)km

in size with relative vorticity z/f ; O(0:01). As the magnitude

of the interior PV gradient increases, the flow develops increas-

ingly energetic small-scale eddies that are typically O(30)km

wide with z/f ; O(1), superposed on larger-scale features that

are O(100)km in size. These smaller-scale eddies are typically

subsurface intensified, i.e., their flow is largely confined to the

middle isopycnal layer. In Fig. 6 we illustrate this vertical struc-

ture via a transect across specimen cyclonic and anticyclonic ed-

dies, taken from a snapshot of one of our simulations with a

relatively strong interior PV gradient of f |=q| 5 1 3 1026 m21.

Within the anticyclonic (cyclonic) eddy, the upper isopycnal in-

terface domes up (down) while the lower isopycnal interface

domes down (up).

The emergence of smaller-scale eddies in simulations that

impose stronger interior PV gradients is superficially consistent

with the appearance of higher-wavenumber unstable modes in

our linear stability analysis (Figs. 3a,b). To refine this compari-

son we now quantify the dependence of the eddy energy and

length scales on the interior PV gradient. In Fig. 7b we plot the

area-averaged eddy kinetic energy (EKE),

EKEi 5
1

2
(u2i 1 y 2

i ), (12)

in each member of our suite of nonlinear simulations. Simi-

larly, in Fig. 7a we plot the dominant eddy length scales leddy,i,

defined as the length scale over which the meridional autocor-

relation of the meridional velocity drops by a factor of e.

Figure 7b shows that the EKE density in the middle layer

almost always exceeds that in the upper and lower layers,

except when the interior PV gradient is very close to zero

(|­yQ2/f | � 1023 km21). Figure 7a shows that the energy in

the middle layer is dominated by relatively small scales of

;30 km, while the energy in the upper and lower layers is

contained at much larger scales of ;80 km and �100 km,

respectively. The exception occurs close to ­Qy 5 0, where

all three layers exhibit eddy length scales of ;150 km.

FIG. 5. (a)–(f) A sample of the eddies that manifest across our suite of numerical quasigeostrophic simulations (see section 5). Each
panel shows an example of the instantaneous relative vorticity in the middle isopycnal layer in a different simulation, identified by the
background shear between the first and second layers (DU) and the background PV gradient in the middle layerQ2y. In each case the sur-
face quadratic drag coefficient is Csurf

d 5 63 1023 and the top-layer mean flow is U1 5 0.03 m s21. Panel (c) corresponds to the purely Ek-
man case with zero interior PV gradients; (a) and (b) correspond to an overly weak background flow in the middle layer (relative to the
Ekman case), while (d), (e), and (f) correspond to an overly strong subsurface flow.
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Taken together, these diagnostics indicate that interior

PV gradients produce a small-scale, subsurface-intensified

eddy field. When the interior PV gradient becomes suffi-

ciently weak, corresponding to the limit of a purely Ekman-

driven flow, the eddy field becomes orders of magnitude

weaker and dominated by much larger, approximately baro-

tropic structures. The length scales of the large and small

eddies in our simulations (Fig. 7a) are approximately consis-

tent with the scales of the two unstable mode branches in

our linear stability calculations (Fig. 3d). However, the

high-wavenumber instability branch (see Fig. 3a) vanishes

across almost the entire range of PV gradients explored in

our simulations (Fig. 5) and observed in nature (Fig. 1a).

This suggests that the generation of the small, subsurface-

intensified eddies results from a nonlinear mechanism, which

we explore in section 6. We note, however, that a comparison

of eddy characteristics between sparse observations and our

idealized model simulation is imperfect as it relies on values

found in the literature that use different methods.

6. Formation mechanism of subsurface-intensified eddies

In section 5 we showed that the generation of subsurface-

intensified eddies in nonlinear quasigeostrophic simulations

differs substantially from the predictions of linear stability

theory (section 3). We now show that this difference occurs

because the subsurface-intensified eddies are generated by

barotropic eddy stirring of PV anomalies in the interior iso-

pycnal layer.

We first provide a visual illustration of the mechanism via

which subsurface-intensified eddies are generated, shown

in Fig. 8. Here we have initialized a simulation using a

“smoothed” snapshot from the experiment shown in Fig. 5e.

We selected this simulation because the background PV gra-

dient Q2y/f0 5 1026 m21 is comparable to those diagnosed in

the Beaufort Gyre from the MIMOC climatology and esti-

mated from moorings A and B (note, moorings C and D

have much weaker interior PV gradients). The smoothing is

performed by removing variations in the PV at wavelengths

smaller than 200 km, and serves to remove the subsurface-

intensified eddies from the PV snapshot. Figure 8 shows

the evolution of the second-layer relative vorticity field over

140 days of this experiment, and visualizes the reemergence

of the small-scale (30–50 km) subsurface-intensified eddies.

Within ;20 days (Fig. 8a, advection by the larger-scale flow

has already created PV gradients scales of O(10)km. By

t 5 40 days (Fig. 8b), these gradients are visibly beginning

to destabilize and form small-scale vortices. These small-

scale vortex formation events become increasingly numerous

at t 5 60 and t 5 80 days (Figs. 8c,d). By t 5 100–120 days

(Figs. 8e,f), small-scale eddies are ubiquitous, and their forma-

tion process can no longer be visually distinguished from the

ambient eddy field.

To complement the visual illustration provided by Fig. 8,

we now provide quantitative evidence that barotropic advec-

tion of interior PV anomalies is responsible for generating the

subsurface-intensified eddies. Specifically, we decompose the

flow in our numerical experiments into baroclinic modes and

quantify the transfer of enstrophy between modes. The baro-

clinic mode decomposition is described in detail in the appendix,

and follows the approach of Smith and Vallis (2001). Briefly, the

baroclinic modes of our three-layer system are defined by the ei-

genvectors em,m 5 1, … , 3 of the vertical quasi-differential op-

erator on the right-hand sides of (4a)–(4c). These eigenvectors

FIG. 6. Vertical and horizontal structure of specimen subsurface-intensified cyclonic and anticyclonic eddies in a ref-
erence simulation (shown in Fig. 5e). (a) Snapshot of the relative vorticity in the middle isopycnal layer. White arrows
denote the velocity in the middle layer; for clarity, only every third velocity vector is plotted. The red and black
dashed lines identify the specimen subsurface-intensified anticyclonic and cyclonic eddies and indicates the location
of the transect shown in (b) and (c). (b),(c) Transects of the zonal velocity across the specimen subsurface-intensified
eddies, black curves denoting the interfaces between the three isopycnal layers.
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comprise an orthogonal basis for the vertical structure of any

variable in our three-layer system. For example the instantaneous

PV vector q(x, t)5 {qk, k5 1, … , 3}, can then be uniquely writ-

ten as a linear combination of the modal structures,

q(x, t) 5 +
3

m51

q̂m(x, t)em, (13)

where q̂m is the amplitude of themth mode. Figure 9 illustrates

the structures of the three baroclinic modes in our model: the

barotropic, first baroclinic, and second baroclinic modes. We

will interchange the subscripts 1, 2, and 3 with bt, bc1, and bc2

for clarity.

Figure 9 suggests that there should be a close correspondence

between the barotropic, first-baroclinic, and second-baroclinic

modes and the flows in layers 3, 1, and 2, respectively. To test

this, we compute the energy in each baroclinic mode, averaged

over the full depth of the water column. Figure 7d shows that

the energy in the modes exhibits a qualitatively similar depen-

dence on ­yQ2 as the energy in the layers: the EKE is lowest

for f21Q2y 5 0, and increases by two orders of magnitude

when |f21Q2y| is comparable to the PV gradient estimated

from moorings A and B (5 3 1026 m21), with approximate

symmetry for positive and negative f21Q2y. However, the

magnitudes differ because the modal energies are computed

over the full water column depth, which emphasizes the

flow in the deep, bottom layer, which is dominated by the

barotropic mode. We also compute the dominant length

scales of the flow associated with each baroclinic mode fol-

lowing the same approach as described in section 5, but us-

ing autocorrelations of ŷbt, ŷbc1, and ŷbc2, rather than y1, y2,

and y3. Figure 7c confirms that the barotropic mode is domi-

nated by large length scales, decreasing from ;150 km when

the middle-layer PV gradient ­yQ2 is close to zero, to ;100 km

for sufficiently large |­yQ2|. This is similar to the length scale

dependence of the flow in layer 3. However, the second baro-

clinic mode is consistently dominated by smaller length scales

of ;30–40 km, whereas the flow in layer 2 exhibits larger

length scales when ­yQ2 is close to zero; this is consistent

with the approximate vanishing of the second-mode energy

as ­yQ2 " 0 (Fig. 7b). The dependence of the first baroclinic

mode on ­yQ2 qualitatively resembles that of the flow in

layer 1, but the length scales approach those of the second

baroclinic mode for sufficiently large ­yQ2.
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FIG. 7. Dependence of the eddy characteristics on the interior PV gradient. (a),(c) Eddy length scales and (b),(d) eddy
kinetic energy partitioning in different (top) isopycnal layers and (bottom) barotropic/baroclinic modes (see sections 5
and 6 for definitions). Each point corresponds to one member of our suite of numerical experiments, and all quantities
are averaged in time and over the entire model domain in each experiment. Colored points in (a) and (b) correspond to
the top-layer diagnostics, while in (c) and (d) they correspond to vertical modes. Note, there is a significant scatter in data
points as the interior PV gradient is not the only parameter that changes between the simulations.
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We now quantify the generation of second-mode eddies us-

ing the enstrophy budget, decomposed into baroclinic modes.

We use the enstrophy budget instead of the energy budget be-

cause the conversions between the mean and eddy enstrophy

reservoirs are mathematically simpler. The derivation of the

modal enstrophy budget, decomposed into mean and eddy

components, is given in the appendix. Briefly, we first note

that the depth-integrated enstrophy can be decomposed exactly

FIG. 8. Emergence of small-scale, subsurface-intensified eddies due to stirring of interior PV gradients by large-scale, barotropic eddies. This
simulation was initialized using a filtered snapshot from the simulation shown Fig. 5e, preserving only flows with scales larger than 100 km. The
panels show snapshots of the relative vorticity in the middle isopycnal layer; the panel titles denote the time since the beginning of the simulation.

0

-H

Z

Ubt Ubc1 Ubc2

H1

H2

H3

FIG. 9. Profiles of the barotropic and the two baroclinic modes in the three-layer quasigeostrophic
model. The arrow sizes match quantitatively with the vertical modes: (3.3, 0.7,20.1) km20.5 for the
first baroclinic mode and (1.1, 22.3, 0.08) km20.5 for the second baroclinic mode; the modes have
been normalized to have the norm of 1. Note the axis breaks within the third layer, which is much
deeper than the first two.
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into positive-definite contributions from the enstrophies in

each baroclinic mode, (1/2)q̂2
m, m5 bt,bc1, bc2. The domain-

integrated modal enstrophies satisfy an evolution equation of

the form

­
t

1

2
q̂2
n

〈 〉

5 2+
m

+
l

hŷ
m
q̂
l
i­

y
Q̂

n
«
mln

︸											︷︷											︸

mean-to-eddy enstrophy conversion

1 +
m

+
l

hûmq̂ l · =q̂ni«mln

︸											︷︷											︸

mode-to-mode eddy enstrophy transfer

1 hD̂nq̂ni
︸	︷︷	︸

enstrophy dissipation

, (14)

where the angle brackets denote an integral over the model

domain and an average in time

h ·i 5





A

dA
1

T


 t01T

t0

dt: (15)

The mean-to-eddy enstrophy conversion term in (14)

quantifies the production of eddy enstrophy in each mode,

which results from advection of PV anomalies (hŷ
m
q̂
l
i) down

the corresponding mean modal PV gradient (­
y
Q̂

n
). Impor-

tantly, the advection of PV anomalies can occur due to any com-

bination of modes, i.e., enstrophy in mode n can be produced

by the velocity in any mode m advecting PV anomalies in

any mode l. The mode-to-mode eddy enstrophy transfer is

structured similarly, but results from triple correlations

between modal velocity anomalies, PV anomalies, and PV

gradient anomalies. Both of these terms are proportional

to the mode interaction coefficient,

«mln ≡ +
k

Hkemkelkenk: (16)

Note that «mln is not the Levi–Civita symbol; it is simply a ma-

trix whose entries are equal to the vertical integrals of cubic

products of the baroclinic modal eigenvectors.

In Fig. 10 we plot the domain-integrated mean-to-eddy

enstrophy conversion and eddy-to-eddy enstrophy transfer

to the second baroclinic mode [i.e., to h(1/2)q̂2
bc2i] from (14),

in our suite of numerical simulations. These plots show that

mean-to-eddy enstrophy conversion is consistently a source

of second-mode eddy enstrophy, and is typically an order of

magnitude larger than the eddy-to-eddy enstrophy transfer.

This implies that the primary balance in the second-mode

enstrophy budget (14) is between mean-to-eddy enstrophy

conversion and enstrophy dissipation, though we do not quan-

tify the latter directly. Furthermore, Fig. 10a shows that the

mean-to-eddy enstrophy transfer is consistently dominated

by a single term, corresponding to barotropic advection

of second-mode PV anomalies, or hŷbtq̂bc2i · ­yQ̂bc2 · «bt,bc2,bc2.

This finding supports the mechanism suggested by Fig. 8: the

second-mode, or subsurface-intensified, eddies are generated

via advection of interior PV anomalies by larger-scale, approxi-

mately barotropic eddies.

Finally, we develop a scaling to synthesize our qualitative il-

lustration and enstrophy budged-based quantification of the
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FIG. 10. Quantification of the sources and sinks of enstrophy in the second baroclinic mode, h(1/2)q̂2
bci [see Eq. (14)].

For each of our suites of numerical quasigeostrophic experiments (see section 5), we plot the area- and time-averaged
(a) mean-to-eddy enstrophy conversion and (b) eddy-to-eddy enstrophy conversion (purple points). In (a) we
additionally show 3 of the 9 modal mean-to-eddy enstrophy conversion terms, associated with barotropic
advection of second mode PV anomalies (;hŷbtq̂bc2i­yQ̂bc2, blue points), first mode advection of second mode
PV anomalies (;hŷbc1q̂bc2i­yQ̂bc2, red points), and second mode advection of second mode PV anomalies
(;hŷbc2q̂bc2i­yQ̂bc2, yellow points). In (b) we similarly show 3 of the 9 modal eddy-to-eddy enstrophy conver-
sion terms, associated with barotropic advection of second mode PV anomalies (;hûbtq̂bc2 · =q̂bc2i, blue
points), first mode advection of second mode PV anomalies (;hûbc1q̂bc2 · =q̂bc2i, red points), and second mode
advection of second mode PV anomalies (;hûbc2q̂bc2 · =q̂bc2i, yellow points).
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subsurface-intensified eddy generation mechanism. Given the

close correspondence between the flow in the middle isopyc-

nal layer and in the second baroclinic mode (Fig. 7), and given

that the production of second-mode enstrophy is approximately

proportional to hŷbtq̂bci · ­yQ̂bc2, we pose an approximate scal-

ing for the second-layer enstrophy budget as

­tq
2
2 ; ybtq2­yQ2 2 Cdissq

p
2 : (17)

Here we have posited that the dissipation of second-layer

enstrophy scales with q2 raised to an unknown power p,

with an unknown coefficient Cdiss. To further simplify (17),

we assume steady state (­t ’ 0), we assume that the magni-

tude of the barotropic flow scales with the barotropic eddy

kinetic energy, ybt ; EKE1/2
bt , and we assume second-layer

PV anomalies scale with the second-layer eddy enstrophy,

q2 ; Z1/2
2 5 h(1/2)q22i

1/2. Making these substitutions in (17)

and rearranging, we obtain

Z2
(p21)/2

; EKE1/2
bt ­yQ2: (18)

Empirically, we find that this scaling most closely matches our

numerical simulations when the enstrophy dissipation scales

as Z3/2
2 , i.e., for p5 3. In this case (18) reduces to

Z2 ; EKE1/2
bt ­yQ2: (19)

In Fig. 11 we show that (19) agrees closely with diagnostics

from our suite of numerical simulations across two orders of

magnitude in Z2. This lends additional support to our finding

that the smaller, subsurface-intensified eddies are generated by

advection of interior PV anomalies by the larger-scale, approxi-

mately barotropic eddies. The coefficient of proportionality in

Fig. 11 is a time scale T ’ 24 days, which may be interpreted as

the time scale for the second mode enstrophy to be removed by

gridscale dissipation.

7. Summary and discussion

Previous studies have shown that the Beaufort Gyre hosts a

wide range of eddies. The eddies that clearly stand out from

the background conditions appear in mooring and ITP data as

high-Rossby-number localized coherent vortices with cores

residing in the interior of the water column (e.g., Zhao et al.

2014, 2016). These eddies are thought to be generated remotely

at the continental slope currents and propagated into the inte-

rior of the gyre (Hunkins 1974; D’Asaro 1988; Zhao et al.

2014). In this paper, we point out that the baroclinic instability

of interior BG currents could generate a different type of ed-

dies, characterized by large length scales, about 50–100 km, and

low Rossby numbers, O(0.1). These large-scale eddies are con-

sistent with recent satellite observations that indicate the fre-

quent eddy appearance with diameters of 60 km (Kozlov et al.

2019; Kubryakov et al. 2021; Manucharyan et al. 2022), but they

have not yet been comprehensively explored using in situ obser-

vations in which the strong localized vertices appear dominant

(Zhao et al. 2014, 2016). The existence of large-scale eddies

was rationalized by the idealized eddy-resolving simulations of

Manucharyan and Spall (2016) in a context of such eddies be-

ing necessary to generate the eddy overturning that could

counteract the Ekman pumping-induced vertical velocity and

contribute to BG equilibration. However, in this and following

idealized simulations (Meneghello et al. 2018a; Spall 2020),

the eddy length scales are greater than 100 km, appearing to

be overly large compared to available satellite observations.

a. Summary of key findings

In this study, we highlighted the critical role of interior PV

gradients in energizing and diminishing the length scales of

large mesoscale eddies formed by the instabilities of interior

BG currents. Specifically, we demonstrated that the background

velocity profiles associated solely with the Ekman-driven verti-

cal displacement of isopycnals only generate relatively weak ed-

dies substantially larger than 100 km. These eddies form as a

result of a direct baroclinic instability of the mean flow with no

interior PV gradients (the Eady problem) that involves reso-

nant interactions between the surface and the abyssal ocean

layers (section 3). The emerging eddies are surface intensified,

consisting predominantly of the barotropic and the first baro-

clinic modes (e.g., Figs. 3 and 5c). However, based on the analy-

sis of mooring observations and climatological BG state, its

large-scale currents contain substantial interior PV gradients in

the Pacific halocline layer that lead to dramatic changes in eddy

scales derived from the linear stability analysis and observed in

nonlinear instability simulations.

Using a set of idealized simulations, in sections 5 and 6 we

reveal a formation mechanism for the subsurface-amplified

eddies with length scales significantly smaller than those ex-

pected from the linear stability of the mean flow (see Fig. 6).

The large-scale eddies stir the PV gradients in the interior of

the halocline and generate filamentary structures that advect
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FIG. 11. Test of our scaling for the subsurface eddy enstrophy,
Eq. (19). Each point corresponds to one member of our suite of nu-
merical quasigeostrophic experiments (see section 5), and each
term in the scaling is averaged in time and over the entire model
domain. A single parameter fit was performed with the best-fit
value of the time scale T5 24 days.
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the weak interior PV gradients over large distances (Fig. 8).

This resulting localized PV filaments then become unstable

and form smaller-scale subsurface-intensified eddies, with di-

ameters on the order of 40 km and smaller and Rossby num-

bers of O(0:1) and higher. The observed velocity profiles in

the BG moorings (Fig. 2) are consistent with relatively strong

interior PV gradients (Q2yf
21 of up to 1 3 1026 m21) at

moorings A and B, while relatively weak interior PV gra-

dients appear at moorings C and D. This suggests that the eddy

stirring mechanism that generates the subsurface-amplified ed-

dies should be spatially heterogeneous and likely promi-

nent at the locations of moorings A and B. In contrast, the

climatologically derived PV gradients have similar magni-

tudes at all four mooring locations but averaged over the

BG interior Q2yf
21

’ 0.4 3 4026 m21, which is significantly

smaller than that estimated from velocity observations in

moorings A and B but higher than for moorings C and D.

This suggest that subsurface-intensified eddy activity could

be highly heterogeneous in space, spanning a range of scenarios

shown in Fig. 5.

Note that the QG simulations corresponding to a particular

value of the PV gradient would likely provide an overestimated

eddy energy because they use a uniform PV gradient over an

entire 1000 km 3 1000 km simulation domain while the high

PV gradients in moorings are likely representative of a smaller

surrounding area. Nonetheless, the representative QG simula-

tion withQ2yf
21 5 1026 m21 results in the O(53 1023) m2 s22

mean eddy kinetic energy in the second layer, which is similar

to the energy levels reflected by the moorings. This implies that

the PV stirring mechanism can substantially energize the BG

eddy field, and hence to better simulate the eddy field in eddy-

resolving ocean models, it may be necessary to pay close atten-

tion to how well they represent the mean interior PV gradients.

We also note the similarity between the discussed PV stirring

mechanism and the submesoscale eddy formation via advection

of mixed layer density gradients by a mesoscale strain that can

also lead to filamentation and secondary instabilities (Thomas

et al. 2008; McWilliams 2016). Since our discussed mechanism is

sufficiently general, it could be active in other ocean regions as

long as the PV there is not completely homogenized and there

are mechanisms to energize large-scale eddies with a significant

barotropic signal.

Eddies of various sizes participate in the energy and

enstrophy cascades, resulting in the equilibrium eddy field

that becomes more energetic and contains smaller scales

with increasing interior PV gradients (Fig. 7). Analyzing

the interactions between the different baroclinic modes, we

identified that it is specifically the barotropic mode stirring

of the interior PV gradients that transfers the enstrophy

into the interior layer (Fig. 10). Based on this barotropic

stirring mechanism, we proposed a scaling law in which the

interior enstrophy is directly proportional to the back-

ground PV gradient in that layer and the square root of the

barotropic eddy kinetic energy (Fig. 11). The scaling law is

accurate across a wide range of mean flow profiles and sur-

face drag coefficients, with only a single fitting time scale

parameter T ’ 24 days. The exact interpretation of this

parameter remains unclear, but it can be speculated that its

magnitude is related to the dissipation of enstrophy in the

middle layer, which in our model is achieved with spectral

filtering akin to hyperviscosity. In nature, the enstrophy

destruction in the interior of the Beaufort Gyre is likely

governed by small-scale nongeostrophic processes such as

lateral intrusions and vertical mixing.

b. Caveats and outlook for future research

Several idealizations in our study can qualitatively affect

the interpretation of the observed eddy characteristics. Most

notable is the representation of the continuously stratified

ocean with only three quasigeostrophic layers and the use of

the spatially homogeneous and stationary background mean

flow. The three-layer system allows only the development of

the barotropic and the two baroclinic modes as the interior

eddies occupy the entire Pacific winter halocline. Zhao et al.

(2018) have shown that kinetic energy in the Beaufort Gyre is

indeed concentrated in the barotropic and first two baroclinic

modes. However, if multiple layers are used with the Pacific

halocline layer, even smaller eddies with higher Rossby num-

bers could potentially form via the same stirring mechanism

or due to the emergence of additional instability modes asso-

ciated with PV reversals within the halocline layer, as was ar-

gued in Meneghello et al. (2021). In this case, one could

expect the enstrophy transfer in the interior layers to depend

not only on the barotropic mode but also on the second (or

higher) baroclinic mode, i.e., the 40–100-km eddies discussed

in our simulations could also stir the PV gradients within the

halocline and contribute to the generation of even smaller-

scale eddies that would occupy only a fraction of the Pacific

halocline layer. Such smaller-scale eddies might resemble the

intrahalocline and sub–mixed layer eddies observed in ITPs

and moorings, which typically have length scales of O(10) km

and Rossby numbers of O(1).

An associated caveat is that the temperature and salinity

signatures of the observed small-scale eddies, which are pre-

dominantly anticyclonic with cores localized within the halo-

cline layer, suggest a remote formation mechanism (Hunkins

1974; Manley and Hunkins 1985; Zhao et al. 2014) instead of

the local instability. Exploring the remote formation of anticy-

clones at the slope currents and their subsequent propagation

to the BG interior, Spall et al. (2008) notes that these eddies

have lifetimes of about 2 years, during which they are effec-

tive in carrying water mass properties with them. Hence, it is

possible that the water mass transfer by those remotely formed

eddies is creating the observed interior PV gradients necessary

for our proposed stirring mechanism of eddy generation. A

more detailed analysis of the observations is needed to better

understand the complexities of the BG eddy dynamics.

Our simulations demonstrate that for the eddy field to

equilibrate to a realistic range of energies and Rossby num-

bers, the existence of a quadratic surface drag associated with

the sea ice cover is strictly necessary (Fig. 4). The winter sea

ice moves slowly compared to the eddy velocities simulated

here (Spreen et al. 2011; Holland and Kwok 2012), and hence

primarily acts as a lid that drains the eddy kinetic energy,
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favoring subsurface-intensified eddies over surface-intensified

eddies. Without sea ice, the primary mechanism of energy dis-

sipation is absent and the eddy field becomes an order of mag-

nitude more energetic, provided the mean flow stays the

same. While our study considered constant-in-time drag coef-

ficients, the strong seasonality in surface dissipation of eddies

might lead to significant seasonality in eddy dynamics, and

with the increasingly larger areas of the Beaufort Gyre be-

coming seasonally ice-free (Cavalieri and Parkinson 2012;

Serreze and Stroeve 2015) the eddy field is expected to be

more energetic (Armitage et al. 2020; Manucharyan et al.

2022). Note that current eddy parameterizations used in coarse-

resolution climate models have been developed for ice-free

oceans and do not take sea ice into account, and recently sea

ice–aware parameterizations of submesoscale eddies have been

proposed (Shrestha and Manucharyan 2022).

Our other idealization is the use of the spatially heteroge-

neous and stationary background flow, which allowed us to

explore a wide range of mean flow configurations. In reality,

however, the background currents are not stationary and the

associated PV gradients are spatially heterogeneous (Fig. 1a).

The localized nature of the currents, particularly near bathy-

metric features, affects their stability characteristics because,

in addition to the baroclinic instabilities examined in section 3,

the horizontal shear can introduce barotropic and mixed insta-

bilities. Meanwhile, the topographic beta effect can act to either

suppress or amplify the instabilities depending on the relative

orientation of the isopycnal and bathymetric slopes (Blumsack

and Gierasch 1972; Isachsen 2011). The impact of these lateral

heterogeneities on the generation of subsurface-intensified Arctic

eddies remains to be explored.

Comprehensive eddy-resolving ocean models present an alter-

native approach to exploring BG eddy generation mechanisms,

but our findings suggest that it is necessary for such models to

generate a realistic stratification and mean flow with correct inte-

rior PV gradients. For instance, the high-resolution simulations

of Regan et al. (2020) andWang et al. (2020) significantly under-

estimate the EKE in the BG interior (see section 1). The results

of our study imply that the lack of EKE in eddy-resolving mod-

els may be due to the overly weak interior PV gradients and/or

overly weak barotropic eddies [see Eq. (19)]. It is also possible

that the remotely formed eddies in those models are not propa-

gating toward the BG interior fast enough given their lifetimes

and hence do not contribute to the interior EKE.

c. Conclusions

In summary, our study demonstrates that advection of inte-

rior PV gradients by relatively large-scale eddies with a baro-

tropic flow component could be the key formation mechanism

of mesoscale eddies that are about 40–100 km in diameter and

localized in the interior of the BG halocline. These large-scale

and low Rossby number eddies have not been characterized in

the Beaufort Gyre because the attention of the observational

community has been drawn to more energetic and localized

small-scales eddies with remote formation mechanisms (Hunkins

1974; Manley and Hunkins 1985; Zhao et al. 2014, 2016). How-

ever, the remotely formed eddies that decay weakly as they

propagate to the interior of the gyre are not expected to signifi-

cantly contribute to the eddy overturning streamfunction as the

isopycnal eddy thickness (or PV) fluxes are strongest only near

their formation sites [see the nonacceleration result in Vallis

(2017)].

Thus, only the large-scale eddies are expected to drive the

eddy overturning and counteract the Eulerian mean vertical

velocity in the BG because they form as a direct result of local

baroclinic instabilities of the BG currents. The large eddies

may also be efficient in transporting water parcels and biogeo-

chemical tracers over large distances, as they are more coher-

ent over large distances compared to small-scale isolated

eddies. Nonetheless, it is important to note that the different

types of eddies actively interact with the mean flow as well as

with each other via the energy and enstrophy cascades, and

hence separating their roles in the Beaufort Gyre dynamics is

a challenging problem.

Given the importance of the interior PV gradient in defin-

ing the BG eddy characteristics, it is crucial to understand

the processes that create it and accurately represent those in

numerical models and theory. Note that Ekman pumping

for an f-plane gyre leads to nearly parallel deepening of all

isopycnals in the interior of the water column and thus can-

not generate PV gradients in those isopycnal layers that do

not outcrop at the location where that pumping occurs (see

section 2). However, exploring the vertical structure of the

BG halocline and its transient response to Ekman pumping,

Kenigson et al. (2021) demonstrate that as the gyre spins up

(spins down), the halocline thickness gradient in the Pacific

layer increases (decreases). This behavior can be caused by

mesoscale eddies if they act according to the Gent–McWilliams

parameterization with depth-dependent diffusivity rather than

an assumption of eddy PV diffusion.

Assuming this is indeed the case, a complex picture of the

Ekman-driven eddy dynamics emerges. The Ekman pumping

generates geostrophic flows with zero interior PV gradients,

but those flows are nonetheless baroclinically unstable and

form weak large-scale eddies. These eddies cumulatively act

to generate the interior PV gradients, i.e., they result in an

antidiffusive process with the isopycnal thickness flux directed

from the boundaries, where the isopycnal layer thickness is

smaller, toward the center of the gyre, where the thickness is

larger. However, antidiffusive eddy processes are counterintu-

itive and need systematic exposition. It is also possible that

the interior PV gradients are generated due to the offshore

water mass transport by small-scale eddies formed at the

slope currents. In either case, the presence of the interior PV

gradient leads to the amplification of the eddy growth rates,

reduction of their length scales from about 200 to 40 km, and

a dramatic enhancement of the eddy kinetic energy in the

Pacific halocline layer. The equilibrium is presumably es-

tablished when the interior eddies counteract the buildup

of the interior PV gradients. Understanding the response

of such complex eddy–mean flow interactions to changes in

the winds, sea ice cover, and resulting Ekman pumping

would require comprehensive eddy field observations and

accurate representation of the interior PV gradients and

associated instabilities in ocean models.
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APPENDIX

Mean/Eddy Enstrophy Budget Decomposed into

Baroclinic Modes

In this appendix, we derive a decomposition of the QG ens-

trophy budget into mean and eddy components of the flow

and into baroclinic modes. We use this budget to quantify the

sources of enstrophy in the second baroclinic mode and to mo-

tivate a scaling relation for the enstrophy in this mode. The

derivation follows a similar approach as that of Smith and

Vallis (2001) for the baroclinic modal decomposition of the

energy budget. We first derive the budget equations for an ar-

bitrary number of layers and baroclinic modes, then specialize

the equations to the configuration of our QG model equations

in the main text, in which the direction of the PV gradient

does not vary with depth.

The QG evolution equations describe conservation of PV,

­qk
­t

1 uk · =qk 5 Dk, (A1)

where qk, uk, and Dk denote the PV, horizontal velocity,

and nonconservative terms in each layer, respectively, for

k 5 1, …, N. The PV in each layer is given by (Vallis

2017)

q1 5 by 1 =2c1 1
f 20
H1

c2 2 c1

g′3/2

( )

, (A2a)

q
k
5 by 1 =2c

k
1

f 20
Hk

ck21 2 ck

g′k21/2

2
ck 2 ck11

g′k11/2

( )

, (A2b)

qN 5 by 1 =2cN 1
f 20
HN

cN21 2 cN

g′N21/2

( )

1
f0
HN

hb, (A2c)

where (A2b) holds for k 5 2, …, N 2 1, Hk is reference

thickness of kth layer. The reduced gravity between each

pair of adjacent layers is g′k11/2 5 g(r
k11 2 r

k
)/r0, where r0

is a reference density.

The baroclinic mode decomposition is defined by solu-

tions of the following system of equations:

f 20
H1

ĉ2 2 ĉ1

g′3/2

( )

5 Gĉ1, (A3a)

f 20
Hk

ĉk21 2 ĉk

g′k21/2

2
ĉk 2 ĉk11

g′k11/2

( )

5 Gĉk, (A3b)

f 20
HN

ĉ
N21 2 ĉ

N

g′N21/2

( )

5 Gĉ
N

: (A3c)

The solution of this system is a sequence of N eigen-

values Gm, m 5 1, …, N, and corresponding orthogonal

eigenvectors emk for m, k 5 1, …, N. The eigenvectors

are a basis for the vertical structure of the QG stream-

function, i.e., for ck, k 5 1, …, N. Formally, this may be

expressed as

qk 5 +
m

q̂memk, (A4)

where q̂m, m 5 1, …, N are the modal amplitudes and

we normalize the eigenvectors so that their inner product

satisfies

+
k

Hkemkenk 5 dmn: (A5)

To decompose the nonlinear terms in the enstrophy budget,

we must also evaluate the vertical integral of triads of baro-

clinic modes. These integrals are proportional to the mode

interaction coefficient «mln defined in (16).

We will now decompose the enstrophy into mean and

eddy components, and into baroclinic modes. First, note

that the depth-integrated enstrophy is equal to the sum of

the modal enstrophies, i.e.,

+
k

1

2
Hkq

2
k 5 +

m

1

2
q̂2
m, (A6)

which is the analog of Parseval’s theorem in the vector

space defined by the baroclinic modal eigenvectors. This

implies that the enstrophy budget can be completely charac-

terized by deriving evolution equations for the mean and

eddy modal enstrophies.

We derive an evolution equation of the mean enstrophy

by taking the mean of (A1),

­q
k

­t
1 = · (ukqk 1 u′kq

′
k ) 5 Dk, (A7)

and writing the mean PV as a sum of baroclinic modes fol-

lowing (A4),

qk 5 +
m

q̂memk: (A8)
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To obtain an evolution equation for the enstrophy in a single

mode n, we multiply (A7) by q̂nenkHk and sum over k, using

(A5) and (16),

­

­t

1

2
q̂
2

n

( )

1 +
m

+
l

[= · (ûmq̂ l) 1 = · (û′mq̂
′
l )] q̂n«mln 5 D̂nq̂n:

(A9)

Next, we form an equation for the eddy PV by subtracting

(A7) from (A1),

­q′k
­t

1 = · (u
k
q′k 1 u′

k
q′
k
1 u′

k
q′k 2 u′

k
q′k ) 5 D

′
k
: (A10)

We then follow a similar derivation as we did to obtain (A9),

multiplying (A10) by q̂′
nenkHk and summing over k, using

(A5) and (16),

­

­t

1

2
q̂′
n
2

( )

1 +
m

+
l

[= · (ûmq̂
′
l )q̂

′
n 1 = · (û′mq̂l)q̂

′
n

1 = · (û′
m
q̂′
l
)q̂′

n
]«

mln
5 D̂

′
n
q̂′
n
: (A11)

We now decompose the advective terms in (A9) and (A11)

into enstrophy fluxes and enstrophy conversions. After some

manipulation, we arrive at

­t
1

2
q̂n

2
( )

1 = ·

[

+
m

+
l

…

]

5 D̂
n
q̂
n

1 +
m

+
l

[û′mq̂
′
l · =q̂n ]«mln

︸											︷︷											︸

mean-to-eddy enstrophy conversion

1 +
m

+
l

[û
m
q̂
l
· =q̂

n
]«

mln

︸											︷︷											︸

mode-to-mode mean enstrophy transfer

, and

(A12)

­t
1

2
q̂′2
n

( )

1 = ·

[

+
m

+
l

…

]

5 D̂
′
n q̂

′
n

1 +
m

+
l

[2û′mq̂
′
l · =q̂n ]«mln

︸												︷︷												︸

mean-to-eddy enstrophy conversion

1 +
m

+
l

[û′
m
q̂′
l
· =q̂′

n
]«

mln

︸											︷︷											︸

mode-to-mode eddy enstrophy transfer

:

(A13)

Finally, we specialize this enstrophy budget to our quasi-

geostrophic model configuration, in which the time-mean

flow and PV gradients are imposed and are horizontally

uniform and constant in time

u
k
5 U

k
x̂, q

k
5 b

k
y, (A14)

Thus, the mean enstrophy is fixed and (A9) is not directly

relevant, while the eddy enstrophy budget simplifies to

­t
1

2
q̂2
n

( )

1 = ·

[

+
m

+
l

…

]

5 D̂nq̂n 1 +
m

+
l

[2ŷmq̂ l b̂n]«mln

︸									︷︷									︸

mean-to-eddy enstrophy conversion

1 +
m

+
l

[ûmq̂ l · =q̂n ]«mln

︸											︷︷											︸

mode-to-mode eddy enstrophy transfer

,

(A15)

for m, l, n 5 1, …, N. Here b̂n denotes the nth baroclinic

mode of the mean PV gradients, bk 5 ­yQk.

REFERENCES

Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman,

and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic

geostrophic kinetic energy in the frequency domain. J. Phys.

Oceanogr., 42, 1577–1600, https://doi.org/10.1175/JPO-D-11-

0151.1.
Armitage, T. W. K., G. E. Manucharyan, A. A. Petty, R. Kwok,

and A. F. Thompson, 2020: Enhanced eddy activity in the

Beaufort Gyre in response to sea ice loss. Nat. Commun., 11,

761, https://doi.org/10.1038/s41467-020-14449-z.
Blumsack, S. L., and P. J. Gierasch, 1972: Mars: The effects of

topography on baroclinic instability. J. Atmos. Sci., 29,

1081–1089, https://doi.org/10.1175/1520-0469(1972)029,1081:

MTEOTO.2.0.CO;2.
Brannigan, L., H. Johnson, C. Lique, J. Nycander, and J. Nilsson,

2017: Generation of subsurface anticyclones at Arctic surface

fronts due to a surface stress. J. Phys. Oceanogr., 47, 2653–

2671, https://doi.org/10.1175/JPO-D-17-0022.1.
Cassianides, A., C. Lique, and A. Korosov, 2021: Ocean eddy

signature on SAR-derived sea ice drift and vorticity. Geo-

phys. Res. Lett., 48, e2020GL092066, https://doi.org/10.1029/

2020GL092066.
Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic Sea ice variability

and trends, 1979–2010. Cryosphere, 6, 881–889, https://doi.org/

10.5194/tc-6-881-2012.
Charney, J. G., 1947: The dynamics of long waves in a baroclinic

westerly current. J. Atmos. Sci., 4, 136–162, https://doi.org/10.

1175/1520-0469(1947)004,0136:TDOLWI.2.0.CO;2.
Cole, S. T., M.-L. Timmermans, J. M. Toole, R. A. Krishfield, and

F. T. Thwaites, 2014: Ekman veering, internal waves, and tur-

bulence observed under Arctic Sea ice. J. Phys. Oceanogr.,

44, 1306–1328, https://doi.org/10.1175/JPO-D-12-0191.1.
D’Asaro, E. A., 1988: Observations of small eddies in the Beaufort

Sea. J. Geophys. Res., 93, 6669–6684, https://doi.org/10.1029/

JC093iC06p06669.
Dewey, S., J. Morison, R. Kwok, S. Dickinson, D. Morison, and

R. Andersen, 2018: Arctic ice-ocean coupling and gyre equili-

bration observed with remote sensing. Geophys. Res. Lett.,

45, 1499–1508, https://doi.org/10.1002/2017GL076229.
Doddridge, E. W., G. Meneghello, J. Marshall, J. Scott, and

C. Lique, 2019: A three-way balance in the Beaufort Gyre:

The ice-ocean governor, wind stress, and eddy diffusivity.

J. Geophys. Res. Oceans, 124, 3107–3124, https://doi.org/10.

1029/2018JC014897.
Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–

52, https://doi.org/10.3402/tellusa.v1i3.8507.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 523368

Unauthenticated | Downloaded 12/16/22 05:53 AM UTC



Hart, J. E., and P. D. Killworth, 1976: On open ocean baroclinic
instability in the Arctic. Deep-Sea Res. Oceanogr. Abstr., 23,
637–645, https://doi.org/10.1016/0011-7471(76)90006-1.

Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic
sea-ice drift. Nat. Geosci., 5, 872–875, https://doi.org/10.1038/
ngeo1627.

Hunkins, K. L., 1974: Subsurface eddies in the Arctic Ocean.
Deep-Sea Res. Oceanogr. Abstr., 21, 1017–1033, https://doi.
org/10.1016/0011-7471(74)90064-3.

Isachsen, P. E., 2011: Baroclinic instability and eddy tracer trans-
port across sloping bottom topography: How well does a
modified Eady model do in primitive equation simulations?
Ocean Modell., 39, 183–199, https://doi.org/10.1016/j.ocemod.
2010.09.007.

Johnson, G. C., S. Schmidtko, and J. M. Lyman, 2012: Relative
contributions of temperature and salinity to seasonal mixed
layer density changes and horizontal density gradients. J. Geo-

phys. Res., 117, C04015, https://doi.org/10.1029/2011JC007651.
Kenigson, J. S., R. Gelderloos, and G. E. Manucharyan, 2021:

Vertical structure of the Beaufort Gyre halocline and the cru-
cial role of the depth-dependent eddy diffusivity. J. Phys.

Oceanogr., 51, 845–860, https://doi.org/10.1175/JPO-D-20-
0077.1.

Kozlov, I. E., A. V. Artamonova, G. E. Manucharyan, and A. A.
Kubryakov, 2019: Eddies in the western Arctic Ocean from
spaceborne SAR observations over open ocean and marginal
ice zones. J. Geophys. Res. Oceans, 124, 6601–6616, https://
doi.org/10.1029/2019JC015113.

Kubryakov, A. A., I. E. Kozlov, and G. E. Manucharyan, 2021:
Large mesoscale eddies in the western Arctic Ocean from
satellite altimetry measurements. J. Geophys. Res. Oceans,
126, e2020JC016670, https://doi.org/10.1029/2020JC016670.

Liang, X., M. Spall, and C. Wunsch, 2017: Global ocean vertical
velocity from a dynamically consistent ocean state estimate.
J. Geophys. Res. Oceans, 122, 8208–8224, https://doi.org/10.
1002/2017JC012985.

Manley, T. O., and K. Hunkins, 1985: Mesoscale eddies of the
Arctic Ocean. J. Geophys. Res., 90, 4911–4930, https://doi.org/
10.1029/JC090iC03p04911.

Manucharyan, G. E., and M.-L. Timmermans, 2013: Generation
and separation of mesoscale eddies from surface ocean
fronts. J. Phys. Oceanogr., 43, 2545–2562, https://doi.org/10.
1175/JPO-D-13-094.1.

}}, and M. A. Spall, 2016: Wind-driven freshwater buildup and
release in the Beaufort Gyre constrained by mesoscale ed-
dies. Geophys. Res. Lett., 43, 273–282, https://doi.org/10.1002/
2015GL065957.

}}, and P. E. Isachsen, 2019: Critical role of continental slopes
in halocline and eddy dynamics of the Ekman-driven Beau-
fort Gyre. J. Geophys. Res. Oceans, 124, 2679–2696, https://
doi.org/10.1029/2018JC014624.

}}, and A. F. Thompson, 2022: Heavy footprints of upper-ocean
eddies on weakened Arctic sea ice in marginal ice zones. Nat.

Commun., 13, 2147, https://doi.org/10.1038/s41467-022-29663-0.
}}, M. A. Spall, and A. F. Thompson, 2016: A theory of the

wind-driven Beaufort Gyre variability. J. Phys. Oceanogr., 46,
3263–3278, https://doi.org/10.1175/JPO-D-16-0091.1.

}}, A. F. Thompson, and M. A. Spall, 2017: Eddy memory
mode of multidecadal variability in residual-mean ocean cir-
culations with application to the Beaufort Gyre. J. Phys. Oce-

anogr., 47, 855–866, https://doi.org/10.1175/JPO-D-16-0194.1.
}}, R. Lopez-Acosta, and M. M. Wilhelmus, 2022: Spinning ice

floes reveal intensification of mesoscale eddies in the western

Arctic Ocean. Sci. Rep., 12, 7070, https://doi.org/10.1038/
s41598-022-10712-z.

McCalpin, J. D., 1987: On the adjustment of azimuthally per-
turbed vortices. J. Geophys. Res., 92, 8213–8225, https://doi.
org/10.1029/JC092iC08p08213.

McPhee, M. G., 2012: Advances in understanding ice–ocean stress
during and since AIDJEX. Cold Reg. Sci. Technol., 76–77,
24–36, https://doi.org/10.1016/j.coldregions.2011.05.001.

McWilliams, J. C., 1990: The vortices of geostrophic turbulence.
J. Fluid Mech., 219, 387–404, https://doi.org/10.1017/
S0022112090002993.

}}, 2016: Submesoscale currents in the ocean. Proc. Roy. Soc.,
A472, 20160117, http://doi.org/10.1098/rspa.2016.0117.

Meneghello, G., J. Marshall, S. T. Cole, and M.-L. Timmermans,
2017: Observational inferences of lateral eddy diffusivity in
the halocline of the Beaufort Gyre. Geophys. Res. Lett., 44,
12 331–12 338, https://doi.org/10.1002/2017GL075126.

}}, }}, J.-M. Campin, E. Doddridge, and M.-L. Timmermans,
2018a: The ice-ocean governor: Ice-ocean stress feedback limits
Beaufort Gyre spin-up. Geophys. Res. Lett., 45, 11293–11299,
https://doi.org/10.1029/2018GL080171.

}}, }}, M.-L. Timmermans, and J. Scott, 2018b: Observations
of seasonal upwelling and downwelling in the Beaufort Sea
mediated by sea ice. J. Phys. Oceanogr., 48, 795–805, https://
doi.org/10.1175/JPO-D-17-0188.1.

}}, E. Doddridge, J. Marshall, J. Scott, and J.-M. Campin, 2020:
Exploring the role of the “ice–ocean governor” and meso-
scale eddies in the equilibration of the Beaufort Gyre: Les-
sons from observations. J. Phys. Oceanogr., 50, 269–277,
https://doi.org/10.1175/JPO-D-18-0223.1.

}}, J. Marshall, C. Lique, P. E. Isachsen, E. Doddridge, J.-M.
Campin, H. Regan, and C. Talandier, 2021: Genesis and de-
cay of mesoscale baroclinic eddies in the seasonally ice-cov-
ered interior Arctic Ocean. J. Phys. Oceanogr., 51, 115–129,
https://doi.org/10.1175/JPO-D-20-0054.1.

Nurser, A. J. G., and S. Bacon, 2014: The Rossby radius in the
Arctic Ocean. Ocean Sci., 10, 967–975, https://doi.org/10.5194/
os-10-967-2014.

Ou, H. W., and A. L. Gordon, 1986: Spin-down of baroclinic ed-
dies under sea ice. J. Geophys. Res., 91, 7623–7630, https://
doi.org/10.1029/JC091iC06p07623.
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