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Abstract Models for nonlinear vibrations commonly
employ polynomial terms that arise from series expan-
sions about an equilibrium point. The analysis of sym-
metric systems with cubic stiffness terms is very com-
mon, and the inclusion of asymmetric quadratic terms
is known to modify the effective cubic nonlinearity in
weakly nonlinear systems.When using low (second, in
this case)-order perturbation methods, the net effect in
these cases is found to be a monotonic dependence of
the free vibration frequency on the amplitude squared,
with a single term that depends on the coefficients of
the quadratic and cubic terms. However, in many appli-
cations, such a monotonic dependence is not observed,
necessitating the use of techniques for strongly non-
linear systems, or the inclusion of higher-order terms
and perturbation methods in weakly nonlinear for-
mulations. In either case, the analysis involves very
tedious and/or numerical approaches for determining
the system response. In the present work, we propose
a method that is a hybrid of the methods of averaging
and harmonic balance, which provides, with relatively
straightforward calculations, good approximations for
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the free and forcedvibration responseofweaklynonlin-
ear asymmetric systems. For free vibration, it captures
the correct amplitude–frequency dependence, includ-
ing cases of non-monoticity. The method can also be
used to determine the steady-state response of damped,
harmonically driven vibrations, including information
about stability. The method is described, and general
results are obtained for an asymmetric system with up
to quintic nonlinear terms. The results are applied to
a numerical example and validated using simulations.
This approach will be useful for analyzing a variety of
system models with polynomial nonlinearities.
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1 Introduction

Recently, the vibrations of micro- and nano-electrome
chanical resonators have provided a new realmof appli-
cations for nonlinear vibrations [1–4].Many significant
advances have been made in theory [5–7], experiments
[8–10], and applications [11–13], including exploring
new phenomena uncovered in previously unattainable
parameter regimes [14–16]. The dynamics of these sys-
tems range from simple Duffing responses [17–19] to
more exotic responses, sometimes involving two or
more interacting vibration modes [20–22]. Even for
single-mode nonlinear vibrations, a gap remains in the
modeling and analysis of systems that exhibit higher-
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order nonlinear effects, particularly those resulting
in non-monotonic amplitude–frequency characteristics
[23–25]. Much of the present work of such systems
relies on idealized models with reflection-symmetric
stiffness involving both hardening and softening at dif-
ferent orders, the simplest version of which includes
cubic and quintic nonlinearitieswith coefficients of dif-
ferent signs, which can be experimentally measured
[26,27]. While these models adequately describe the
frequency response of such systems, they are typi-
cally phenomenological and not fully descriptive of the
underlying physics, which generically has asymmetric
effects. That is, for asymmetric physical systems, the
effective cubic and quintic coefficients of the symmet-
ric model are not directly linked with the physics of
the device. This gap leads to an inadequate connec-
tion between device physics and the dynamical mod-
els. Closing this gap allows one to better understand the
sources of the nonlinear effects and predict how they
depend on physical parameters.

The main issue in dealing with asymmetric sys-
tems that exhibit non-monotonic amplitude–frequency
dependence is that the situation requiresmodels that are
cumbersome to analyze. In fact, to consistently capture
the frequency response of such a system with poly-
nomial nonlinearities, one must include all terms up
to fifth order in stiffness and then carry out a higher-
order analysis usingoneof the conventional techniques,
say the method of multiple scales, which will involve
four time scales—an extremely tedious task; see, for
example, a recent study of an asymmetrical structural
model [28]. Other similar methods that are equally
taxing at higher orders are the methods of averaging
and normal forms, each of which require several suc-
cessive coordinate transformations to obtain consistent
results for such systems [29]. Global approaches, for
example, using action-angle coordinates, are valid for
strong nonlinearities and can be employed to achieve
the desired results [7,30,31], but these are less acces-
sible to many researchers and often require numerical
methods to execute, except in the case of simple poten-
tials that yield results in terms of elliptic functions.
Even in the relatively simple case with only quadratic
and cubic stiffness terms, capturing non-monoticity
requires going beyond second-order perturbation, but
as shown below, a fully consistent result from a model
with expanded stiffness terms requires all terms up to
fifth order.

In this short paper, we introduce an approach that
combines averaging and harmonic balance that allows
one to determine the most essential features of the
dynamic response of weakly nonlinear systems with
non-monotonic amplitude frequency relationships. The
method is a blend of a first-order perturbation calcula-
tion with a high-order harmonic balance (HB) calcu-
lation, carried out by amplitude expansions. The HB
aspect of themethod captures information about higher
harmonic overtones and the constant offset from equi-
librium. The results differ from what is obtained using
the more involved calculations of standard techniques,
but are accurate and attained with much less effort.
We use the results to examine the conditions under
which a system exhibits monotonic or non-monotonic
frequency responses for asymmetric systems. These
results are the missing link between physical models
of asymmetric systems and the various types of fre-
quency responses observed in many experiments. The
price paid for these savings in effort is a lack of infor-
mation about the transient response, as subsequently
described.

To motivate our analysis, we present in Fig. 1 four
generic forms of free vibration amplitude–frequency
relationships, commonly referred to as backbone
curves, that are frequently observed for a vibration
mode. These are pure softening, pure hardening, mixed
softening to hardening, and mixed hardening to soft-
ening. Often, one employs a simple effective cubic
stiffness nonlinearity to describe the first two cases.
For example, a well-known analysis for the mono-
tonic backbone behavior for systemswith quadratic and
cubic nonlinearities can be found in classic physics and
engineering books [32,33]. The results show that the
system has an effective Duffing coefficient in which
the quadratic term has a softening effect and the effect
of the cubic term depends on its sign. Using second-
order perturbation methods, this combination results
in a monotonic amplitude–frequency dependence that
can be described by an effective cubic term, that is, a
simple Duffing resonator. It is important to note that the
Duffing coefficient depends on the level of asymmetry
in the system and can vary as one varies the level of
asymmetric bias. The description of a non-monotonic
amplitude–frequency dependence (i.e., the latter two
backbone curves in Fig. 1) with polynomial nonlinear-
ities can be described by a simplemodel with reflection
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Fig. 1 Four generic forms of amplitude–frequency backbone
curves: pure softening (red) γ < 0, σ ≤ 0, pure hardening
(orange) γ > 0, σ ≥ 0, mixed softening to hardening (blue)
γ < 0, σ > 0, and mixed hardening to softening γ > 0, σ < 0
(purple)

symmetry,

ẍ(t)+ ω2
ox(t)+ γ x3(t)+ σ x5(t) = 0 (1)

where the signs of γ and σ are opposite. In fact, this
model can describe all four cases depicted in Fig. 1,
as indicated in the caption. With this model, the back-
bone curves can be captured using a first-order pertur-
bation approach, cf. [26], although a fully consistent
result requires higher-order calculations, as demon-
strated below.

This description is adequate from a phenomenolog-
ical point of view, but the symmetry of the nonlinear
terms is inconsistent with the physics of asymmetric
systems, which are far more generic than symmet-
ric systems. The non-monotonic amplitude–frequency
relationships can also be captured using higher-order
perturbation methods, which can exhibit this feature
even for systems with only quadratic and cubic non-
linearities; see [28]. In fact, in a consistent formula-
tion, all the coefficients of lower-order nonlinear terms
(quadratic, cubic, and quartic) will affect the effec-
tive quintic coefficient, analogous to the fact that the
quadratic coefficient affects the effective cubic coef-
ficient. A key feature of the present approach is that
it gives accurate results using only a first-order per-
turbation method, coupled with higher-order harmonic
balance.

It should be noted that perturbation methods such
as the method of multiple scales and averaging are
analytical formulations that provide convenient solu-
tions for simple prototypical systems. However, for
most systems, such methods must be complemented
by numerics, for example, to solve for fixed points,
compute eigenvalues, etc. This combination of analy-

sis and numerics is powerful and certainly worthwhile
in many cases. In other situations, brute force numeri-
cal methods are more convenient, and direct numerical
simulation of the differential equations are often used to
benchmark results of analytical approximations. How-
ever, parameter studies by direct simulation are very
tedious. The HB method offers a combination that is
generally more numerically intensive than perturbation
methods, but is more convenient than simulations for
parameter studies of periodic responses. When using
HB, a series of nonlinear equations is generally solved
for the steady state harmonic amplitudes, and stability
is computed using numerical evaluation of eigenvalues
of a monodromy matrix, or some equivalent numerical
calculation. The literature on HB is vast. Here we point
to a recent book [34] that covers topics relevant for the
present work, and two open-source HB software pack-
ages, MANLAB [35] and HarmonicBalance.jl [36].
These packages are general and quite powerful.

The contribution of the present work is twofold: (i)
the introduction of a newhybrid approach for analyzing
the free and forced vibration for asymmetric systems,
and (ii) general results for systems with up through
quintic nonlinearities, which are used to categorize the
possible frequency responses and how they depend on
the nonlinear stiffness coefficients. The paper begins
by introducing the method and provides its detailed
execution for quintic systems. This is followed by a
discussion of the results and a demonstration using an
example of the non-monotonic response obtained from
a resonator with quadratic and cubic nonlinearities.

2 The hybrid averaging method

We consider a model for a mode of vibration with up
to fifth-order stiffness and damping nonlinearities,

ẍ(t)+ 2$g(x(t))ẋ(t)+ ω2
0x(t)+ f (x(t))

= h(x)F cos(ωt), (2)

where ω0 is the mode eigenfrequency, $ is the linear
decay rate (damping), g(x) = 1+∑4

n=1 gnx
n includes

nonlinear damping effects, f (x) = ∑5
n=2 αnxn rep-

resents nonlinear stiffness, h(x) = 1 + h1x + h2x2

allows for displacement-dependent excitation, and F
and ω are the drive amplitude and frequency. We note
that Eq. (2) is quite general and is a truncated version
of the model that one gets from the microscopic the-
ory of a resonator that interacts with a medium (see the
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Fig. 2 The frequency content of a weakly nonlinear resonator
with quadratic and cubic nonlinearities. Left panel: The approx-
imations for the scaled amplitudes of the DC and overtone com-
ponents [a0 × 10 (red), a2 × 102 (yellow), a3 × 103 (green),
a4×104 (blue), a5×105 (purple)] as a function of the amplitude
of the fundamental harmonic a as described by Eq. (7). The black
vertical line in the left panel denotes the amplitude a = 1.92 of

the fundamental harmonic for the attendant spectrum shown in
the right panel. Right panel: The numerically computed spectral
content (black curve) and analytical approximations (red, orange,
yellow, green, blue, and purple) of the spectral components of a
damped, driven resonatorwith quadratic and cubic nonlinearities.
The system parameters are ω0 = 10, α2 = 9.64, α3 = 1, α4 =
α5 = 0, $ = 2.5 × 10−4, F = 10−2,ω − ω0 = 3 × 10−3

Appendix of Ref. [37] and the references therein). This
model can also arise from projection of a distributed
parameter model onto a single mode. Here we use Eq.
(2) only as a prototypical example, and our method is
not restricted to thismodel. To be specific, the functions
g(x), f (x), and h(x) in Eq. (2) are intimately related
via the fluctuation–dissipation theorem. Nevertheless,
our method can be applied to other systems, where the
functions g(x), f (x), and h(x) have different forms
that can also depend on ẋ .

We focus on energy levels that are associated with
weakly nonlinear dynamics. The response of the sys-
tem in this regime is dominated by the fundamental
harmonic and can be expressed as x = a cos(ω0t +
φ)+HOT. TheHOT are the higher harmonic overtones
and a constant offset (herein referred to as DC, from
“direct current” in electronics) generated from the non-
linearities, and their energy is significantly lower than
the energy of the fundamental harmonic (see Fig. 2).

To make the previous statement quantitative, we
write the response as

x = εa cos(ωt + φ)+
5∑

k=0,k %=1

ak cos[k(ωt + φ)],

(3)

where the ak’s are polynomial functions of εa that
start from quadratic order, and are given by a2k =∑4

n=2k,n %=0 ckn(εa)
n for evenharmonics, andbya2k+1 =∑5

n=2k+1 ckn(εa)
n for odd harmonics. The bookkeep-

ing parameter ε has been introduced to keep track of
small quantities.

To capture the effects of linear damping, forcing, and
nonlinearities near the primary resonance (ω ≈ ω0)
with a single slowly varying timescale, we make the
following assumptions: (i) The amplitude and phase
of the fundamental harmonic are slowly varying func-
tions of time, specifically, such that a = a(ε4t) and
φ = φ(ε4t). (ii) The damping, detuning, and forcing
amplitude are small and can be scaled as $ = ε4$̃,
ω − ω0 = ε4(ω, and F = ε5 F̃ . In the spirit of aver-
aging, we assume the form
ẋ = −εωa sin(ωt + φ)

−ω

5∑

k=0,k %=1

kak sin[k(ωt + φ)], (4)

so that Eqs. (3) and (4) represent a time-varying change
of coordinates from (x, ẋ) to (a,φ), one that requires
the standard constraint equation,
ȧ cos(ωt + φ) − aφ̇ sin(ωt + φ) = 0. (5)
Note that there is no need for additional constraints
on the zero (DC) and higher harmonics as their time
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derivatives are of higher order, i.e., ȧk |k %=1 ∼ O(ε6).
From Eq. (4), we find that

ẍ = −ε5ωȧ sin(ωt + φ)

−ε5ω
( ω

ε4
+ φ̇

)
a cos(ωt + φ) − ω2

5∑

k=0,k %=1

k2ak cos[k(ωt + φ)]. (6)

To obtain the dependence of the DC and overtone
amplitudes on the primary harmonic amplitude a, we
substitute Eqs. (3)-(6) into Eq. (2) and equate the coef-
ficients of cos[k(ωt + φ)] for k = 0, 2, 3, 4, 5 to zero
(this is HB), and for each harmonic, we equate the coef-
ficient of the same power of ε to zero (amplitude expan-
sions). Solving the resulting linear algebraic equations
and recombining the expansion terms, we determine

a0 = −(εa)2
α2

2ω2
0

− (εa)4
(
19α3

2 − 45ω2
0α2α3 + 27ω4

0α4

72ω6
0

)

,

a2 = (εa)2
α2

6ω2
0

− (εa)4
(
14α3

2 + 45ω2
0α2α3 − 48ω4

0α4

288ω6
0

)

,

a3 = (εa)3
(
2α2

2+3ω2
0α3

96ω4
0

)

− (εa)5
(
580α4

2+3240ω2
0α

2
2α3−405ω4

0α
2
3+648ω4

0α2α4−540ω6
0α5

69120ω8
0

)

,

a4 = (εa)4
(
10α3

2 + 45ω2
0α2α3 + 36ω4

0α4

4320ω6
0

)

,

a5 = (εa)5
(
14α2

2α3 + 9ω2
0α

2
3 + 32ω2

0α2α4 + 24ω4
0α5

9216ω6
0

)

. (7)

Note that, due to the scaling used, these expressions
for the amplitudes of the DC term and the overtones
are independent of the damping and forcing terms and
are therefore solely relevant to capturing the DC off-
set and frequency shift from nonlinear stiffness effects.
Also note that higher-order terms in ε are neglected in
these expansions and are not indicated here. The above
expressions are substituted into Eq. (3) and terms up
to order ε5 are retained. That result is used in Eq. (2),
along with ẋ from Eq. (4) and ẍ from Eq. (6) to obtain
a lengthy equation that involves a and φ, their time
derivatives, and the coefficients from the model. That
result, together with the constraint equation Eq. (5),
provides the usual equations for the method of aver-
aging. This pair of equations is solved for ȧ(t) and
φ̇(t) and the results are averaged over the period 2π/ω,

while assuming that a and φ do not change appreciably
over that period. Setting ε = 1 in the result from this
process yields the following equations that govern the
slow dynamics of (a(t), φ(t)):

ȧ = −$a − F
2ω0

sin φ, (8)

φ̇ = ω0 − ω + 3γeff
8ω0

a2 + 5σeff
16ω0

a4 − F
2aω0

cosφ,

(9)

where

γeff = α3 − 10
9

(
α2

ω0

)2

, σeff = α5 − 11
12

(
α2
2

ω3
0

)2

+ 53α3

20

(
α2

ω2
0

)2

− 14α2α4

5ω2
0

+ 3
80

(
α3

ω0

)2

(10)

represent the effective cubic and quintic coefficients
that are typically used in models. A key point is that
these expressions inform how they depend on the non-
linear coefficients of the original model. Note that
Eqs. (8)-(9) are precisely what one obtains using first-
order averaging on the symmetric system, Eq. (1), with
γeff = γ and σeff = σ [26]. For the case with quadratic
and cubic terms, the expression for γeff is well known
and can be found in textbooks, e.g., [32,38]. Under the
given assumptions, Eqs. (8)-(9) indicate that a and φ

are slowly varying in time. However, an inspection of
Eq. (9) reveals that there is an intermediate timescale
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Fig. 3 Backbone (left) and forced amplitude–frequency
response (right) curves of a resonator with only quadratic and
cubic nonlinearities (α4 = α5 = 0). Left panel: The backbone
curves exhibit mixed softening-to-hardening behavior, accom-
panied by a zero dispersion (ZD) point, denoted by the symbol
!, at which dωres/dares = 0. The locus of the ZD points is indi-
cated by the dashed black curve. The position of the ZD point on
the backbone curve changes considerably as α2 is changed from
α2 = 9.488 (red backbone curve) to α2 = 9.64 (purple back-
bone curve). All other parameters of the conservative system are
held fixed (ω0 = 10, α3 = 1). The dashed translucent curves
are calculated from the frequency ωexact of the exact analytical
solution (see Ref. [41]), which is in excellent agreement with the
frequency ωres (solid dark curves) of our approximate solution.

Right panel: Response curves for ω0 = 10, α2 = 9.64, α3 =
1, F = 10−2,$ = F/(2ω0ares), where ares is the resonance
amplitude on the backbone curve (dashed black curve) that varies
from ares = 0.2 (red response curve) to ares = 2 (purple response
curve), which effectively varies the damping coefficient. Only
when ares ≥ azd = 1.069 does the response curve become non-
monotonic. The stable/unstable branches of the response curves
are denoted by solid/dashed curves. The symbols " and # indi-
cate the steady-state fundamental harmonic amplitudes reached
during sweep-up (increasingω) and sweep-down (decreasingω),
respectively, obtained by performing numerical time integration
of Eq.(2) and Fourier analysis at the steady-state. Note that sev-
eral of the " and # overlap

proportional to a2, i.e., with the bookkeeping parame-
ter φ = φ(ε2t, ε4t), which is neglected in the present
analysis. If an accurate transient response is needed, the
dynamics associated with this intermediate timescale
can be captured with more sophisticated methods, such
as multiple time scales or higher-order averaging [38].
Nevertheless, the present results provide valid infor-
mation about the backbone curve and the steady-state
response, including stability. Consequently, we can use
this significantly simpler analysis that, strictly speak-
ing, is restricted to a = a(ε2t → ∞, ε4t) and φ =
φ(ε2t → ∞, ε4t) and take advantage of the fact that,
while a(t) and φ(t) are still evolving in their slowest
timescale ε4t , they reach their steady-state values in
the intermediate timescale ε2t . As a result, the DC and
overtones adiabatically follow the primary harmonic
on the slowest timescale. In other words, the steady-
state effects of the intermediate timescale are implicitly
accounted for, and ε2t is only needed for the transient
dynamics [see Appendix A:]. Relevant to this point is
that the averaged rotating frame phase planes generated

fromEqs. (8)-(9) do not accurately describe the dynam-
ics except at, and very near, the fixed points. This is the
price that is paid for the simplified calculations.

To determine the steady-state response of the sys-
tem,weproceed in the standardwayby setting (ȧ, φ̇) =
(0, 0) in Eqs. (8)-(9). Eliminating the phase in the usual
way,we seek solutions of the steady-state amplitude ass
from the following algebraic equation

a2ss

=
(

F
2ω0

)2
[

$2 +
(

ω0 − ω + 3γeff
8ω0

a2ss +
5σeff
16ω0

a4ss

)2
]−1

(11)

for which the attendant steady-state phase is given by

tan φss =
$

ω − ω0 − 3γeff
8ω0

a2ss − 5σeff
16ω0

a4ss
. (12)

In this way the method mimics the usual method of
first-order averaging.
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The resonance amplitude ares, is the largest ampli-
tude on the response curve for a fixed value of F (see
Fig. 3). This amplitude can be readily obtained from
Eq. (11) and (13) and is given by ares = F/(2ω0$),
which is known to be independent of the nonlinearity
for models with only linear damping [39]. The corre-
sponding resonance phase is φres = −π/2 [40]. Thus,
we find fromEq. (12) that the resonance frequencyωres
satisfies the following backbone curve relation

ωres = ω0 +
3γeff
8ω0

a2res +
5σeff
16ω0

a4res. (13)

Furthermore, Eq. (13) also serves as an approximation
for the amplitude-dependent frequency of free oscilla-
tion of the conservative system, i.e., when$ = 0, F =
0. The excellent agreement between this approximation
for ωres and the exact frequency of free oscillations
ωexact for a system with only quadratic and cubic non-
linearities is demonstrated in the left panel of Fig. 3,
which demonstrates how the present method captures
non-monotonic behavior even in this case.1 If one were
to use simple second-order perturbation methods, this
system would predict a monotonic backbone curve,
whereas the present approach captures the amplitude
dependent softening of the quadratic term and the hard-
ening of the cubic term. It should be noted that onemust
include quartic and quintic coefficients from a physi-
cal model to be strictly consistent to the same order,
but their inclusion does not alter the approach nor the
general conclusions.

We note that a non-monotonic response can only
occur if the backbone curve has a zero-dispersion (ZD)
point at which the derivative dωres/dares vanishes at

1 Note that the exact solution of the free oscillation given in
Eq. (11) of Ref. [41] is obtained from an elliptic integral of
the conservative system, and is expressed in terms of the total
energy of the system Etot rather than in terms of the amplitude
of oscillation a. However, the relation between these two quanti-
ties is simply Etot = ω2

0x
2
max/2+ α2x3max/3+ α3x4max/4, where

xmax = a +∑5
k=0,k %=1 ak , and therefore, we can easily compute

ωexact in terms of a.

a non-zero amplitude. From Eq. (13), we find that
the amplitude and the frequency at the ZD point are
given by azd = √

(−3γeff)/(5σeff) and ωzd = ω0 −
9γ 2

eff/(80ω0σeff). For resonators with only quadratic
and cubic nonlinearities, these expressions simplify to

azd = 4

√
ω4
0(10α

2
2 − 9ω2

0α3)

9ω4
0α

2
3 − 220α4

2 + 636ω2
0α

2
2α3

, ωzd

= 760ω0α
4
2 + 54ω5

0α
2
3 − 2088ω3

0α
2
2α3

660α4
2 − 27ω4

0α
2
3 − 1908ω2

0α
2
2α3

.

As shown in Fig. 3, the existence of a ZD point in
the backbone curve is not the only requirement for
a non-monotonic frequency response curve in the
damped-driven case. The additional requirement is that
the drive amplitude must be sufficiently large such
that ares ≥ azd. In particular, for resonators with only
quadratic and cubic nonlinearities, this requirement is
satisfied when

F ≥ 2ω0$

√
−3γeff
5σeff

= 8ω0$

√
ω4
0(10α

2
2 − 9ω2

0α3)

9ω4
0α

2
3 − 220α4

2 + 636ω2
0α

2
2α3

.

To assess the local stability of the different branches
of the response curve, we superimpose a perturbation
δu = (δa, δφ)T on the steady-state response uss =
(ass,φss)

T, carry out the corresponding substitutions
in Eqs. (8)-(9), linearize in the perturbation terms, and
obtain a pair of linear equations δu̇ = J · δu, where J
is the Jacobian matrix evaluated at uss,

J =




−$ ass

(
ω − ω0 − 3γeff

8ω0
a2ss − 5σeff

16ω0
a4ss

)

− 1
ass

(
ω − ω0 − 9γeff

8ω0
a2ss − 25σeff

16ω0
a4ss

)
−$





whose trace and determinant are given by

tr(J) = −2$, (14)

det(J) = $2 +
(

ω − ω0 − 3γeff
8ω0

a2ss − 5σeff
16ω0

a4ss

)

(
ω − ω0 − 9γeff

8ω0
a2ss − 25σeff

16ω0
a4ss

)
, (15)

respectively. For a non-conservative system, $ %= 0, so
that tr(J) %= 0 and thus no Hopf bifurcations can occur
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[29]. However, static bifurcations in which det(J) = 0
can occur. From a simple analysis of the amplitude
response curve given by Eq. (11), it can be shown that
only saddle-node bifurcations, which correspond to an
infinite slope in the response curve (dass/dω → ∞),
are possible [39]. Moreover, from Eqs. (11) and (15),
we find the following simple relation must hold at a
bifurcation point (ωsn, asn),

(
F
2ω0

)2

= a4sn

(
3γeff
4ω0

+ 5σeff
4ω0

a2sn

)

(
ωsn − ω0 − 3γeff

8ω0
a2sn − 5σeff

16ω0
a4sn

)
.

(16)

From Eq. (16), we can calculate the critical drive level
Fcr at which saddle node bifurcations emerge. To cal-
culate Fcr, we set dF2/da2sn = 0, and find the critical
amplitude asn,cr from the resulting cubic equation in
a2sn. Then, asn,cr is substituted into Eq. (15) with the
condition det(J) = 0 to eliminate the frequency depen-
dency of asn,cr, and finally, asn,cr is substituted into Eq.
(16) to yield Fcr. For systemswithσeff = 0, that is, with
only effective cubic nonlinearities, the above process
significantly simplifies, and we obtain the well-known
result Fcr = [256ω2

0$
3/(9

√
3|γeff |)]1/2 [32].

3 Closing remarks

In this brief exposition, we introduced a method that
combines higher-order harmonic balance and first-
order averaging. This technique provides a relatively
simple approach to dealing with systems with higher-
order polynomial nonlinearitieswhen compared to con-
ventional methods such as the method of multiple
scales. The main assumption of the method is that
the constant offset (DC) and overtone amplitudes and
phases adiabatically track the amplitude and phase of
the primary harmonic, whose dynamics are described
by evolution equations that capture only the slowest
timescale in the system. The results provide equations
that govern the very slow dynamics of the primary
amplitude and phase, along with predictions for the
DC and overtone amplitudes in terms of the primary
amplitude. This allows one to determine the backbone
curve for free vibrations and the steady-state response
for the damped, driven system, along with its stabil-

ity characteristics. The assumptions and simplifications
are restrictive only in terms of the transient dynam-
ics, a minor inconvenience when considering the ben-
efits of the approach. It should also be noted that
one obtains distinct expressions for the higher-order
frequency coefficient σeff using the present method,
higher-order MMS, and a series expansion of the exact
integral for free vibrations (this can be most easily
confirmed for the case with only quadratic and cubic
nonlinearities); however, all three approximations give
accurate results when compared to the exact integral.

The results illuminate why experimentally observed
frequency responses show generic forms that can be
described by equivalent symmetric systems with only
cubic and quintic terms, and they provide the explicit
connection between these forms and the coefficients
from asymmetric physical system models. A typical
example of such an asymmetric system is one that is
nominally symmetric, but with a DC bias that breaks
the symmetry [7]. Such bias can arise, for example,
from gravity or, in the case of MEMS, a bias voltage.
In such cases, the coefficients of the nonlinear stiffness
terms in the dynamic model will vary with the level of
bias and, in turn, the coefficients in the harmonic terms
given inEq. (7) and in the averaged equationsEq.(8)-(9)
will also vary, providing an explicit connectionbetween
the physics and the predicted response. In this way, the
present results will be of use for parameter identifica-
tion in asymmetric systems [42]. Also, while not con-
sidered here, with appropriate scaling this method can
be applied to parametric, subharmonic, superharmonic,
and internal resonances of multimode systems. These
topics will be considered in future studies.
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Appendix A: Transient dynamics

Here, we demonstrate themain shortcoming of the pro-
posed approach, namely its inability to correctly cap-
ture the full transient dynamics. To this end, we numer-
ically integrated both Eq. (2) and Eqs. (8)-(9) with
identical initial conditions and compared their transient

dynamics. To extract the amplitude a(t) and phase φ(t)
of the fundamental harmonic from Eq. (2), we hetero-
dyned the numerically obtained signal x(t) with the
in-phase and quadrature components at the drive fre-
quencyω, and passed themixed signals through a band-
pass filter to remove the overtones and DC components
[26]. We then use the resulting slowly-varying (with
respect to ω−1) quadratures of the fundamental har-
monics, u(t) and v(t), to construct the amplitude and
phase. The top panel of Fig. 4 depicts this process. The
simulation results shown in the bottom panel of Fig. 4
clearly demonstrate that the transient dynamics from
our analysis [Eqs. (8)-(9)] are distinctly different from
those of the original system [Eq. (2)].

Fig. 4 Schematic of the post-processing procedure (top), and a
comparison between the extracted transient dynamics from the
original equation of motion and the results from the present
approach (bottom). We numerically integrated Eq. (2) (black
curves) and Eqs. (8)-(9) (red curves) for the case of a driven

resonator with quadratic and cubic nonlinearities (α4 = α5 = 0)
under identical initial conditions. The system parameters and
initial conditions are: F = 10−2, ω = 9.998, ω0 = 10, $ =
2.5 × 10−4, α2 = 9.64, α3 = 1, a(0) = 0.1, φ(0) = 0
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