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Amplitude stabilization in a synchronized nonlinear
nanomechanical oscillator
Martial Defoort 1,2✉, Sébastien Hentz 2, Steven W. Shaw 3 & Oriel Shoshani 4✉

In contrast to the well-known phenomenon of frequency stabilization in a synchronized noisy

nonlinear oscillator, little is known about its amplitude stability. In this paper, we investigate

experimentally and theoretically the amplitude evolution and stability of a nonlinear nano-

mechanical self-sustained oscillator that is synchronized with an external harmonic drive. We

show that the phase difference between the tones plays a critical role on the amplitude level,

and we demonstrate that in the strongly nonlinear regime, its amplitude fluctuations are

reduced considerably. These findings bring to light a new facet of the synchronization phe-

nomenon, extending its range of applications beyond the field of clock-references and sug-

gesting a new means to enhance oscillator amplitude stability.
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Synchronization describes the adjustment of rhythms
between oscillating objects due to their weak interaction.
The synchronization phenomenon has been studied for

centuries in various fields of science, tackling issues in both
fundamental and applied research. Reported for the first time by
Huygens1 while describing the behavior of two mechanical clocks
being progressively in anti-phase regardless of the initials con-
ditions, synchronization has been observed in living systems2 and
social behaviors3, and is nowadays implemented in modern
technology, such as medical applications4.

In one common occurrence, the synchronization phenomenon
is unidirectional, where the frequency of a free-running oscillator
is enslaved to that of an external weak perturbation signal5. If the
external perturbation has a low frequency noise, then this “slave-
master” configuration enables one to reduce the frequency noise
of the oscillator to that of the perturbation signal6, such as in
pacemakers4. This injection-locking mechanism has attracted a
particular interest in electrical oscillators7 and in optics8 for fre-
quency combs9 and telecommunication applications10. Its prop-
erty of frequency stabilization is also an extremely attractive
feature for vibrating micro- and nano-electromechanical systems
(M/NEMS), which often exhibit relatively strong fluctuations11–13
due to their small size.

For the past couple of decades, M/NEMS have proven to be key
components used in modern technology14–16, and also useful tools
to study physics in both fundamental17–19 and applied20–22
domains. Operated as self-sustained oscillators, M/NEMS are also
excellent candidates to investigate the synchronization phenom-
enon, as they have a high frequency resolution and an unprece-
dented controllability23, and are well described by comprehensive
models predicting their complex behaviors, such as those arising
from Duffing nonlinearities24. With these assets, M/NEMS were
used to explore synchronization properties, such as mutual syn-
chronization between several oscillators23,25,26, fractional synchro-
nization between oscillators which frequencies share a common
divisor27, and to probe how the Duffing nonlinearity can enhance
the frequency locking and phase noise reduction28–30. Such fun-
damental results opened the path to implement synchronization in
the applied physics community, using synchronized M/NEMS as
accelerometers31, frequency multipliers32, or frequency references33.

While phase fluctuations of synchronized oscillators have been
intensively investigated, the noisy behavior of the amplitude in
such systems has been rarely discussed, focusing either on the
linear regime34,35 or in the context of mutual synchronization36,37.
In this paper, we report both theoretically and experimentally on
the effects of synchronization on the amplitude stability of a
generic nonlinear nanomechanical oscillator. We begin by pre-
senting our NEMS device and the synchronization parameters
involved in this system. Then, we develop theoretical predictions
for the phase and amplitude, including the so-far-overlooked
effects of amplitude noise, and compare experimentally their
evolution within the synchronization range. Finally, we demon-
strate that the amplitude fluctuations of the synchronized oscil-
lator can be reduced by increasing the level of its Duffing
nonlinearity, down to a level beneath that of the noise of the free-
running oscillator.

Since M/NEMS have versatile implementations, we conclude
with a few examples where nonlinear synchronization-based
amplitude stabilization could be used to enhance their perfor-
mance, especially when they are used as micro/nano-actuators, such
as ultrasound transducers, gyroscopes, or for digital encoding.

Results
Setup and synchronization range. The considered NEMS is
composed of a silicon-based piezoresistive doubly clamped

nanobeam 10 µm long, 160 nm thick, and 300 nm width, placed
in a vacuum chamber (~1 mbar) with no specific temperature
controller. The resonator’s transduction consists of a side elec-
trode from which the applied voltage results in an electrostatic
force on the beam, and of a differential piezoresistive readout
previously reported38. The overall electrical actuation and
detection are performed with a lock-in amplifier HF2LI Zurich
Instrument. The first in-plane flexural mode of the nanobeam has a
natural resonance frequency f 0 ¼ 27:78 MHz, a bandwidth Δf ¼
4:5 kHz, and a Duffing nonlinear coefficient αn ¼ 237 kHz/mV2

(see Figs. S1–S3). By means of a phase-locked loop (PLL), the first
flexural mode is actuated with a feedback force Fosc to operate as a
self-sustained free-running oscillator, which is perturbed both by an
external tone Fe; and an additive noise signal ξðtÞ. The system is
described by the model:

€x þ Δω _x þ ω2
0x þ

8ω0

3
α x3 ¼

Fosc

m
cos Φosc tð Þ

! "

þ
Fe

m
cos Φe tð Þ

! "
þ ξ tð Þ;

ð1Þ

with x the displacement of the resonator, ω0 ¼ 2π f 0 its angular
eigenfrequency, Δω ¼ 2πΔf its angular bandwidth (arising from
dissipation), m its effective mass, and α ¼ 2π αn its angular
Duffing coefficient. Φosc;e tð Þ ¼ ωosc;et þ φosc;e describes the
phases of the actuation and the external tone. For Fe= 0 and
ξ ¼ 0, Eq. 1 describes the evolution of a driven resonator with
an amplitude-dependent resonance frequency ωr ¼ ω0 þ αX2

0,
where X0= Fosc/(mω0Δω) is the operating amplitude39. To drive
the NEMS as an oscillator at the resonance condition, we set the
PLL such that the phase difference between the resonator and
the drive is %π=2 (Fig. 1a), matching the driving frequency with
the resonance frequency in the so-called locked regime. Note
that unlike the metastable states of the Duffing resonator, the
Duffing (locked) oscillator remains mono-stable even at reso-
nance under appropriate control settings. The presence of a
weak external signal Fe & Fosc, with a phase Φe, perturbs the
response of the oscillator. By moving to the rotating frame of
this external signal in the absence of noise ξ tð Þ ¼ 0 (see Sup-
plementary Note 1), we obtain the following expressions for the
amplitude and phase of the steady-state response:

X ¼ X0 1%
Fe

Fosc
sin δφ

# $
; ð2aÞ

δω ¼
Fe

Fosc

4ω
2

cos δφþ 2αX2
0sin δφ

# $
; ð2bÞ

where X is the amplitude of the perturbed oscillator, δφ ¼
φX % φe is the phase delay between the oscillator and the per-
turbation and δω ¼ ωr % ωe is the angular frequency difference
between the resonance and the perturbation tone.

It follows from Eq. 2b that the oscillator can be in a steady-
state regime even if there is a frequency mismatch between the
resonance and the perturbation (δω≠0), as long as the right-
hand side of Eq. 2b compensates for it. This is achieved
through the phase delay δφ, a free and inner parameter of the
system, that balances this mismatch. In practice, as the
frequency of the perturbation is detuned from that of the
resonance, the phase of the oscillator evolves such that its delay
with the perturbation satisfies Eq. 2b. Consequently, the
oscillator response remains steady in the rotating frame of
the perturbation, which implies that its oscillating frequency is
locked on the perturbation tone (f osc ¼ f e), the essential
feature of the synchronization phenomenon (Fig. 1b). It also
follows from Eq. 2b that synchronization is possible only for
certain values of frequency mismatch, which satisfies the
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inequality δωj j<4Ω=2, where the synchronization range ΔΩ, is
given by:

4Ω ¼
Fe

Fosc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2 þ 4αX2

0

& '2
q

: ð3Þ

In the following, Fe remains small compared to Fosc to remain
in the weak coupling regime, and since the dissipation 4ω is
usually an intrinsically fixed property of most M/NEMS, the
synchronization range can be tuned through the Duffing
nonlinearity αX2

0 (Fig. 1c).

Phase and amplitude behavior in the synchronization regime.
While essential for the synchronization mechanism, the variation
of δφ also affects the amplitude of oscillation Eq. 2a, such that the
amplitude of a synchronized oscillator also varies with δω (see
Supplementary Note 1). In the linear regime (αX2

0 & 4ω), a
perfect frequency matching between the free-running oscillator
and the external tone (δω ¼ 0) induces a phase delay of %π=2,
readily deduced from Eq. 2b and observed experimentally (Fig. 2).
This phase delay of %π=2 is identical to the phase delay of the
PLL at the resonance amplitude, such that the driving and the
perturbation signals linearly add (Fig. 3). However, a deviation
from the center of the synchronization range induces a parabolic
variation in the amplitude of the oscillator, directly arising from
the sinusoid in Eq. 2a for δφ ' %π=2. As the oscillator enters the
nonlinear regime, the evolution of both the phase (Fig. 2a, b) and
amplitude (Fig. 3a, b) as functions of the frequency detuning
become more complex and asymmetric. This behavior is a direct

consequence of the amplitude-to-frequency conversion arising
from the backbone curve of the Duffing oscillator, which leads to
the extra sin δφ term in Eq. 2b.

Deep in the nonlinear regime (αX2
0 ( 4ω), this Duffing term

becomes predominant, such that a perfect frequency matching
between the free-running oscillator and the external tone
(δω ¼ 0) corresponds to a zero-phase delay δφ ¼ 0, as can be
seen both from the experimental measurements (Fig. 2c, d), and
from Eq. 2b. Consequently, the amplitude of the oscillator is not
affected by the strength of the perturbation (Eq. 2a) and remains
equal to the amplitude of the free-running oscillator regardless of
the amplitude of the external tone Fe (Fig. 3c). As the frequency
of the external tone is detuned from that of the free-running
oscillator, the former parabolic behavior of the amplitude evolves
to a linear dependency (Fig. 3d). Since the Duffing nonlinearity α
is positive for the present device, the amplitude of the
synchronized oscillator becomes the largest (smallest, resp.) at
the negative (positive, resp.) boundaries of the synchronization
range (Fig. 3a, b).

The frequency and phase fluctuations in such systems have been
intensively studied both theoretically and experimentally25,30. In
light of Eq. 2a, it should be noted that since the amplitude of a
synchronized oscillator depends on δφ and hence δω, these phase
fluctuations have a direct impact on the oscillator’s amplitude
stability, which may reduce the range of applications of the
synchronization phenomenon40. In Figs. 2 and 3, the main source
of errors in the data comes from frequency drifts (on the order of
the part per million after one second), leading to both phase and
amplitude errors following Eq. 2. However, as the nonlinearity of the
oscillator increases, this frequency-to-amplitude conversion
decreases (Fig. 3d) thereby reducing the impact of frequency
fluctuations on the amplitude stability of the synchronized oscillator.

Amplitude stabilization in the nonlinear regime. As opposed to
the frequency fluctuations, the influence of the amplitude fluc-
tuations of the free-running oscillator on those of the synchro-
nized oscillator has been so far overlooked. To quantitatively
investigate these fluctuations in the synchronization regime, we
inject to the oscillator an additive noise signal generated by a
Siglent SDG1032X voltage source (Fig. 1), introduced as ξðtÞ
in Eq. 1. This noise is assumed small, with a zero mean, and
a correlation time τξ ¼ ξ2

( )%1R1
0 ξðtÞξðt þ τÞ
( )

dτ that is sig-
nificantly smaller than the relaxation time of the oscillator
τr ¼ 1=Δω. Thus, we apply the method of stochastic averaging
and linearize the resulting stochastic equations of the amplitude
and the phase delay with respect to the deterministic operating
point X; δφ

& '
. This procedure (Supplementary Note 1) leads to a

pair of linear coupled Langevin equations from which we calcu-
late the power spectral density SuX ωs

& '
¼ δX ωs

& '2, with δX the
amplitude fluctuations of the synchronized oscillator and ωs is the
offset frequency from the carrier frequency ωe. Focusing on a
perfect frequency match (δω ¼ 0), these amplitude fluctuations
fall back to the standard Lorentzian spectral density of the free-
running oscillator in the linear regime δX0. However, deep in the
nonlinear regime (αX2

0 ( 4ω), the power spectral density of the
amplitude fluctuations reduces to:

SnonlinuX
ωs

& '
¼

Fe
Fosc

* +2
Δω2 þ 4ω2

s

, -
Sξ ωe
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ω2
e ω2

sΔω
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ΔωαX2

0 % ω2
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where Sξ ωe

& '
is the noise intensity of the source at the carrier

frequency. This original theoretical result is at the core of the
nonlinearity-induced amplitude stabilization in the synchronization
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Fig. 1 Experimental setup and synchronization regime. a The resonator
(colored scanning electron micrograph of a representative NEMS in inset)
is driven as an oscillator at fosc using a feedback loop (arrow), and is subject
to an external tone at fe. Using a lock-in amplifier, the output signal of the
NEMS is demodulated at either fosc or fe to obtain amplitude and phase
difference. The noise source is turned off for the synchronization range
characterization. b The oscillator gets synchronized and locked to the
frequency fe for a sufficiently small frequency mismatch δf ¼ fr % fe. c The
synchronization range increases quadratically with the drive amplitude in
the nonlinear regime. The external tone level is set to 10% of the drive. The
experimental black data points are plotted on top of the blue theoretical
predictions from the model.
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regime. Two main features arise from this nonlinear regime. First,
the spectral density is peaked at an offset frequency ωspeak ¼
2π f speak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fe ΔωαX

2
0=Fosc

p
from the carrier frequency ωe. Sec-

ond, near the carrier frequency (ωs ¼ 0), the amplitude fluctuations
reduce as the nonlinearity increases, dropping below that of

the free-running oscillator, following δX
δX0

¼ Δω
4αX2

0
(Supplementary

Note 1). To explore these behaviors experimentally, we probed the
oscillator’s response at the resonance frequency in both free-running
and synchronized regimes with a fixed input noise amplitude as the
system enters the nonlinear regime (Fig. 4). We find a quantitative

Fig. 2 Phase variation within the synchronization range. As the drive Fosc is changed, the ratio between the perturbation and the drive Fe=Fosc is kept at a
constant level of 10%. As the tone of the perturbation is detuned from the frequency of the free running oscillator, their phase difference δφ adjusts to
maintain synchronization (a: experimental results, b: model). c Cross-section of panels (a, b) along δf ¼ 0, where the phase delay between the oscillator
and the perturbation shrinks as the system enters the nonlinear regime (line: theory, dots: experiment). d Cross-sections of panels (a, b) along different
drive levels near zero detuning, where the phase delay varies less with the increasing Duffing nonlinearity. Measurement errors mainly arise from
frequency drifts on the order of 20 Hz, close to the distance between two consecutive points.

Fig. 3 Amplitude variation within the synchronization range. As the drive Fosc is changed, the ratio between the perturbation and the drive Fe=Fosc is kept
at a constant level of 10%. The amplitude is normalized to that of the free-running oscillator for the same drive (X=X0). The phase delay induced by the
frequency detuning leads to an amplitude variation (a: experimental results, b: model). c Cross-section of panel (a, b) along δf ¼ 0, where the amplitude
drops towards the free-running oscillator amplitude as the nonlinearity increases (line: theory, dots: experiment). d Cross-sections of panels (a, b) along
different drive levels near zero detuning, where the amplitude variation changes from parabolic to linear with a decreasing slope. Measurement errors
mainly arise from frequency drifts on the order of 20 Hz, close to the distance between two consecutive points.
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agreement with the theoretical predictions, resulting in a decrease of
the amplitude noise by a factor four near the carrier frequency. This
substantial noise-reduction was performed with a relatively small
Duffing nonlinearity, less than three bandwidths (Fig. S1), easily
accessible to most micro/nanomechanical resonators.

Qualitatively, we can explain the source of the amplitude noise-
reduction from a deterministic analysis by considering the
additive noise as an amplitude perturbation in the rotating frame
approximation. Such an amplitude variation generates a
frequency shift due to the amplitude-to-frequency conversion of
the Duffing nonlinearity. However, this frequency shift is
compensated by a phase delay adjustment due to the synchro-
nization regime (Fig. 2), which acts back on the amplitude of the
oscillator (Fig. 3). In an initially perfect frequency matching
(δω ¼ 0) deep in the nonlinear regime (αX2

0 ( 4ω), this
retroaction tends toward an exact compensation of the initially
added amplitude perturbation. Going a step further in this
deterministic approach, the dynamics around the stable synchro-
nized solution reveals that the Duffing nonlinearity acts as an
effective restoring force that bounds the motion of the amplitude
fluctuations, thereby reducing their impact on the oscillator’s
amplitude (Supplementary Note 1 and Fig. S5).

Discussion
The frequency locking property of the synchronization phenom-
enon is ideal when it comes to reducing the frequency fluctuations
of an oscillator, but it inherently requires the master signal to be
cleaner than the synchronized oscillator. On the other hand, the
reduction of amplitude fluctuations is not a locking mechanism, it is
directly related to the oscillator’s nonlinear properties, as demon-
strated by Eq. 4, and does not involve strong requirements on the
amplitude fluctuations of the master signal. In both cases, this noise
reduction prevents the use of synchronization for sensing

applications, as the sensing mechanism is thereby reduced. However,
the amplitude stabilization property could have a substantial impact
for resonant micro/nano-actuators. For ultrasound transducers, the
interaction with the environment (gas or liquids) drastically damps
the acoustic pressure level41. Achieving large amplitudes is therefore
essential, which is usually performed with arrays of transducers, and
improving their resolution through synchronization could open new
perspectives for airborne communication schemes. In the case of
mechanical vibratory rate gyroscopes42, the amplitude of the
actuation mode is traditionally stabilized with a proportional inte-
grator (PI) loop controller to enhance the angular rate sensitivity
with an improved signal-to-noise ratio. However, as the amplitude
of the actuation mode increases, the resonator enters the Duffing
regime, such that a direct control on the amplitude might induce
frequency fluctuations, thereby reducing the sensor’s performance,
which would be avoided with this nonlinear synchronization regime.
Finally, micro/nano-mechanical resonators have also demonstrated
logic gate and memory applications for digital implementation21,43.
In this context, amplitude stabilization would enhance the resolution
for amplitude-based digital encoding such as quadrature amplitude
modulation.

In conclusion, we demonstrated both experimentally and theo-
retically that the phase delay between the oscillator and the external
tone plays a crucial role in the amplitude level of the synchronized
oscillator. Near frequency matching, the impact of the external
signal on the amplitude fades as the Duffing nonlinearity of the
oscillator increases. This behavior is followed by a reduction of
the amplitude fluctuations of the system to a level below that of the
free-running oscillator. Our study explores the largely ignored
amplitude stabilization property of the synchronization phenom-
enon and paves the way to implement synchronization in drastically
different applications, exploiting the amplitude stabilization rather
than the frequency locking mechanism.

Fig. 4 Amplitude fluctuations in the synchronization regime at the resonance frequency. The added noise applied to the oscillator is kept fixed at 0.5 V
(standard deviation). The amplitude fluctuations are normalized to that of the free-running oscillator for the same drive levels (see Fig. S4 and
Supplementary Note 2). a Experimental spectral density of the amplitude fluctuations as the nonlinearity of the oscillator increases. The red line shows the
theoretical position of the peak at fspeak . b Numerical simulation associated to panel (a). c Cross-section of panels (a, b) near the carrier frequency,
highlighting the reduction in amplitude fluctuations as the oscillator enters the nonlinear regime (black line: theory, blue dots: experimental results). The
spectral frequency was purposely shifted by ∼100 Hz from the carrier frequency to avoid 1/f noise. The experimental data are the result of an average over
40 measurements, the error bars corresponding to the associated standard deviation. d Cross-section of panels (a, b) along 0.1 V (black, linear regime) and
0.5 V (blue, Duffing regime), presenting the evolution of the spectral density from a regime similar to that of a free-running oscillator to the nonlinear
regime where the fluctuations are shifted away from the carrier frequency (dashed line: theory, continuous line: experiment).
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Methods
Synchronization regime. The synchronization range of the oscillator extends far
from the resonance frequency of the free-running oscillator. However, it is
necessary to first match the external tone to the frequency of the oscillator to enter
in the synchronization regime. Starting from that working point, it is then possible
to explore the synchronization phenomenon as a function of the frequency
detuning.

Amplitude and phase measurements. Oscillators suffer from frequency noise,
which directly impacts the estimated frequency detuning from the resonance fre-
quency. When characterizing the amplitude and phase within the synchronization
regime, it is essential to average over several independent measurements, each of
them comprising:

– measuring the resonance frequency
– turning on the external tone
– entering the synchronization regime
– applying the desired frequency detuning
– measuring the synchronization state
– turning off the external tone

Depending on the frequency fluctuations of each oscillator, steps 4 and 5 may
be looped before reinitiating the procedure. The experimental results in Fig. 2 and
Fig. 3 are the result of an average over 17 measurements.

Amplitude fluctuations measurements. The experimental results presented in
Fig. 4 are the result of an average over 40 spectra for each driving amplitude, to
obtain good resolution of the amplitude fluctuations.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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Supplementary Information  



 
Figure S1: From linear to Duffing regime. Upward and backward frequency sweeps of the 

nanoresonator for different drive levels, showing a linear response (0.02 V and 0.1 V), the 

onset of the hysteresis (0.3 V) and the full Duffing regime (0.5 V). The arrows highlight the 

sweep direction. 
  



 
Figure S2: Characterization. a The operational vibration amplitude follows a linear trend 

with the driving voltage, with a slope of 0.45 mV/V. b As the amplitude of the resonator 

increases, its resonance frequency shift quadratically due to the Duffing nonlinearity, fitted 

to !! = 237 kHz/mV2.   
  

a

b



 
Figure S3: Frequency shift upon applied DC voltage. The fit (blue line) of the experimental 

data (black points) demonstrates a parabolic coefficient of 2.25 kHz/V2. Considering the 

highest AC voltages applied (500 mV for the oscillator and 50 mV for the synchronization 

signal), the frequency difference between free-running and synchronized regime (below 

60 Hz) is negligible. 
  



 
Figure S4: Noise amplitude experienced by the nonlinear oscillator as a function of the 
oscillator’s actuation. Both the intrinsic noise level (black dots) and the impact of the fixed 

noise voltage of 0.5 Vstd (blue dots) remains fairly constant, with a small squared 

dependency on the drive for the latter. Full lines represent fits of this evolution.  
  



Supplementary note 1 
 

To study the dynamics of the system described by Eq. (1) of the main text, it is convenient to 

switch to a rotating frame of reference by transforming " to a complex form as "($) =

""($)'
#$!% + ""

∗($)''#$!%, where ""($) is the slowly-varying complex amplitude and ""
∗($) is 

its complex-conjugate. Assuming that ()( − )")/)" ≪ 1, and applying the rotating wave 

approximation (RWA), we obtain the following equation for the evolution of the complex-

amplitude: 

"̇" = −
#

)$!*
(/+,-'

#."#$ + /('
#.!) − 0

/$

0
+ 1(2)3 + 4!|""|

0)6 "" −
#(%&'!(1(%)

0$!
, (S1)            

where 2)3 ≡ )" − )(. For correlation time 91 = 〈;0〉'4 ∫ 〈;($);($ + 9)〉>9
5

"
 of the noise that 

is sufficiently small when compared to the system relaxation time Δ)'4, we can apply the 

method of stochastic averaging [1] to obtain approximate equations that describe the slow 

evolution of the oscillator amplitude @($) and phase delay 2A = A6($) − A(, where ""($) =

@($)'#.)(%)/2.  These equations are given by 

@̇ = −
7"#$
0$!*

Csin 2A+,- +
7!
7"#$

sin 2AG −
/$

0
@ +

8*($!)
$!+6

+ H4,  (S2) 

2Ȧ = 2)3 + !@0 −
7"#$

0$!*6
Ccos 2A+,- +

7!
7"#$

cos 2AG +
9+
6
,  (S3) 

where 2A+,- = A6($) − A+,-, and the properties of the averaged noise terms are given by  

〈H4,0($)〉 = 0, 〈H!($)H*($ + 9)〉 = 2!*
8*($!)
$!+

2(9), L1()() = ∫ 〈;($);($ + 9)〉 cos()(9) >9.
5

"

  (S4) 

Deterministic Analysis  
For the deterministic case, we set L1()() = 0, assume a resonant drive of the oscillator 

2A+,- = −N/2, and a weak synchronizing injected signal, i.e., /(//+,- ≡ O ≪ 1. As a result, 

the steady-state amplitude of the free-running oscillator (i.e., the non-synchronized oscillator 

with /( = 0) @" = /+,-/()(PΔ)) is slightly perturbed by the injected signal @($) = @" +

OQ($) + R(O0). Hence, we obtain from the deterministic part of Eq. (S2) the following 

equation for the perturbation 

Q̇ = −
/$

0
Q −

7"#$
0$!*

sin 2A.     (S5) 

Consequently, after the transient response decays, the perturbed amplitude settles down to  

@ = @"(1 − O sin 2A) + R(O
0).    (S6) 

Substituting Eq. (S6) into the deterministic part of Eq. (S3) and retaining terms up to	R(O), we 

obtain the following equation for the oscillator phase delay 

2Ȧ = 2) − O C
/;

0
cos 2A + 2!@"

0 sin 2AG.   (S7) 

Solving Eq. (S7) with 2Ȧ = 0 yields a pair of synchronized/phase-locked solutions (stable and 

unstable) with phase values of  

2A,, = arcsinV
0<$

=>/;+?@)A6,+B
+
W − arctan C

/;

)A6,+
G .  (S8) 

which exist for |2)| <
∆Ω

0
, where ∆Ω = O\Δω0 + (4!@"

0)0 is the synchronization range. 

Substituting Eq. (S8) into Eq. (S6) and retaining terms up to	R(O) leads to the following 

synchronized solution of the perturbed amplitude 

@,, = @" ^1 + O V
/;>E

∆Ω
+ F

+
'<$+	'	)	A6,+	<$

∆Ω
+ >/;

+?@)A6,+B
+
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Stochastic Analysis  
For small noise terms in Eqs. (S2)-(S3), we assume that the system is fluctuating around the 

stable synchronized phase-locked solution, @ = @,, + `6 , 2A = 2A,, + `<., where 
H)
6##

≪

1, `<. ≪ 1	. Hence, by linearizing Eqs. (S2)-(S3) around @,, and 2A,,, we obtain the following 

pair of linear Langevin equations 

`̇6 = −
/$

0
`6 − O

/$

0
@" cos 2A,, `<. + H4,   (S10) 

`̇<. = 2!@"(1 − O sin 2A,,)`6 + O
/$

0
sin 2A,, `<. +

9+
6,
. (S11) 

From Eqs. (S10)-(S11) we can readily calculate the spectral density of the amplitude 

fluctuations, which is given by 

LH)(),) =
)(=+/;+?)$#+)8*($!)

)$!+/;+$#+(4'= IJK <.##)+?$!+L)$#+?=/$M/;IJK <.##')A6,+(4'= IJK <.##) NOI <.##PQ
+	. (S12) 

 

We see that in the linear regime, where 2A,, ≈ −N/2, Eqs. (S10)-(S11) are two uncoupled 

equations. Therefore, the spectral density of the amplitude fluctuations in Eq. (S12) is identical 

to the Lorentzian function that one gets from the analysis of the free-running oscillator 

LH)
RJK(),) ≡ LH)

STUU(),) =
)8*($!)

$!+@/;+?)$#+B
	.    (S13) 

However, deep in the nonlinear regime, where a perfect frequency matching between the 

oscillator and the external tone (2) = 0) corresponds to a zero phase delay 2A,, ≈ 0, Eqs. 

(S10)-(S11) are strongly coupled, and the spectral density of the amplitude fluctuations in Eq. 

(S12) reduces to  

LH)
KOKRJK(),) =

)(=+/;+?)$#+)8*($!)

$!+[)$#+/;+?@)=/$A6,+')$#+B
+
]
	.    (S14) 

Inspection of Eq. (S14) reveals that, unlike the Lorentzian spectral density of the free-running 

oscillator, in this case the peak of the spectral density is shifted from the carrier-frequency 

(), = 0) by the Duffing nonlinearity to the offset frequency ),XUYZ = \OΔ)!@"
0. Comparing 

the amplitude fluctuations of the free-running oscillator with those of the synchronized 

oscillator near the carrier frequency, we obtain 
8/)
010230($#[")

8/)
4566($#[")

= C
/$

)A6,+
G
0

,     (S15) 

Consequently, we deduce that if the Duffing frequency-shift of the oscillator !@"
0 is 

considerably larger than the bandwidth of the oscillator Δ), then the amplitude fluctuations 

of the synchronized oscillator are significantly lower from the amplitude fluctuations of the 

free-running oscillator. 

To understand the source of the noise reduction, we next consider the deterministic part of 

Eqs. (S10)-(S11) deep in the nonlinear regime, where H4 = H0 = 0 and  2A,, ≈ 0, i.e., 

`̇6 = −
/$

0
`6 − O

/$

0
@"`<. ,    (S16) 

`̇<. = 2!@"`6 .      (S17) 

By taking the time-derivative of Eq. (S16) and substitute Eq. (S17) into the equation of the 

time-derivative, we find that 

`̈6 +
/$

0
`̇6 + OΔ)!@"

0`6 = 0.   (S16) 

Therefore, we immediately see that the nonlinearity (!@"
0) acts as an effective restoring force 

that bounds the motion of the amplitude-fluctuations (`6) and prevent the highly diffusive 

random-walk motion of unbounded particles that occurs when !@"
0 = 0 (Fig S5). 



 
Figure S5: Qualitative view of the amplitude fluctuations in the nonlinear regime. Left: the 

amplitude fluctuations are associated with the motion of a randomly forced particle 

trapped in a parabolic potential well cUSS(@") =
=/$A6,+

0
`6
0 . Right: As the amplitude of 

oscillation @" increases, i.e., the oscillator operates deeper in the nonlinear regime, the 

amplitude fluctuations decrease, and the amplitude becomes more stable.  
 

Supplementary note 2 
 

Since the noise level seen by the oscillator is not perfectly constant as the drive level 

increases (Fig. S3), the fluctuations are normalized to that of the free-running regime for the 

same drive level. Moreover, the experimental measurements are performed with a low pass 

filter set at 5 kHz, and the PLL has an additional low pass filter set at 12 kHz. 

While these renormalization and transfer functions do not play any critical role in the 

experiments, they were precisely calibrated and characterized to be also considered for the 

theoretical results provided in Fig. 4. 
 

[1] Stratonovich, R. L. (1967). Topics in the theory of random noise (Vol. 2). CRC Press. 
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