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ABSTRACT: We report on experimental measurements and
quantitative analyses of nonlinear dynamic characteristics in
ultimately thin nanomechanical resonators built upon single-
layer, bilayer, and trilayer (1L, 2L, and 3L) molybdenum disulfide
(MoS2) vibrating drumhead membranes. This synergistic study
with calibrated measurements and analytical modeling on observed
nonlinear responses has led to the determination of nonlinear
damping and sti!ness coe"cients at cubic and quintic orders for
these two-dimensional (2D) resonators operating in the very high
frequency (VHF) band (up to ∼90 MHz). We find that the quintic
force can be ∼20% of the Du"ng force at larger amplitudes, and
thus, it generally cannot be ignored in a nonlinear dynamics
analysis. This study provides the first quantification of nonlinear
damping and frequency detuning characteristics in 2D semiconductor nanomechanical resonators and elucidates their origins and
dependency on engineerable parameters, setting a foundation for future exploration and utilization of the rich nonlinear dynamics in
2D nanomechanical systems.
KEYWORDS: Resonator, Nonlinearity, Du!ng, Quintic, Nonlinear Damping, 2D Materials

Miniaturized nonlinear resonators, particularly those
made in micro/nanoelectromechanical systems (M/

NEMS), have received growing interest in recent years because
of their small sizes and related advantages, including their
nimble tunability, which opens the door to novel applica-
tions.1,2 Nonlinearity plays an increasingly important role in
describing the dynamic behavior of these devices,3−8 due to
their relatively small sizes and high vibration amplitudes. This
has an impact on the performance of such resonators, for
example, in engineering the quantum behavior of M/NEMS,9
force and mass sensing,10 and radio frequency (RF) signal
processing applications.11−13 These applications require very
high precision, which necessitates performance improvements
associated with high quality (Q) factors, large signal-to-noise
ratio,14 very low phase noise,15 etc. To meet these demands,
M/NEMS resonators are frequently operated at relatively large
vibration amplitudes that can induce the onset of nonlinearity.
To analyze and predict the nonlinear dynamic behavior of
these systems, it is often necessary to use a model expressed in
terms of coe"cients that account for both nonlinear
damping16−18 and nonlinear sti!ness.19 Insights gained from
single-mode models with such terms will be essential for
describing dynamics involving more degrees of freedom
(DoFs), such as arrays of devices with coupling or
interconnections which can be used, for example, for noise
reduction and demonstrating intrinsic localized modes.20,21

To fully realize the benefits of the emerging two-dimensional
(2D) NEMS resonant devices enabled by atomically thin
crystals, it is important to thoroughly investigate their
nonlinear behavior. During recent years, 2D NEMS have
exhibited many intriguing features,1,22−24 e.g., they show strong
nonlinear mode coupling25 between vibrational modes, which
can result in internal resonances with unique and potentially
useful properties.26 Nonlinear damping in one-dimensional
(1D) carbon nanotube and 2D graphene resonators has been
studied,16 and Q ∼ 100,000 (at T = 90 mK) has been achieved
for graphene resonators by manipulating this nonlinear nature
of damping.16 Though nonlinear sti!ness of 2D NEMS has
been studied in literature,16,27,28 to date, however, there has
been no experimental demonstration and investigation of
nonlinear damping in 2D semiconductor NEMS resonators.
In this paper, we present nonlinearity measurements and

analyses of atomically thin MoS2 2D nanomechanical
resonators. In comparison to their 1D NEMS predecessors,
these 2D atomic layer devices exhibit wide dynamic ranges29
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(often ∼70−110 dB), making them promising candidates for
ultrasensitive resonant transduction and ultralow-power
information processing applications. We have found that the
observed behavior of the present devices requires the inclusion
of nonlinear damping ef fects and higher-order nonlinear stif fness
coef f icients in analysis and modeling. Because of the various
length scales and device sizes, estimating these nonlinear
coe"cients in vibrating systems is often di"cult, and it
necessitates understanding the dynamics of the system using
standard models. This work aims to extract the values of linear
and nonlinear damping coe"cients, along with linear, Du"ng,
and quintic sti!ness terms, for single-layer and few-layer MoS2
2D nanomechanical resonators.
The conceptual illustration and the optical interferometry

measurement system (Supporting Information S2) are shown
in Figure 1. As depicted in Figure 1a, the input energy to the
device is dissipated through linear and nonlinear damping
forces. Increased input driving force induces large displace-
ment in the MoS2 device, resulting in observed e!ects from
Du"ng and quintic nonlinearities, which in turn cause
detuning in the resonant frequency.
Considering the fundamental flexural mode of the 2D

vibrating drumheads, we assume a single DoF system of a
driven, damped harmonic resonator with eigenfrequency ω0
and with nonlinear characteristics (Figure 1a). Beyond the
regular treatment of nonlinear resonators, where the equation
of motion includes a Q factor associated with linear damping
(∼(ω0ẋ/Q)), a linear restoring force (keffx = meffω0

2x), and a
Du"ng nonlinearity (k3x3), here we also consider higher-order
nonlinearities, specifically, a quintic sti!ness nonlinearity
(k5x5), and higher-order, nonlinear damping e!ects (∼x2ẋ
and ∼ x4ẋ terms), as illustrated in Figure 1a. We focus on the
use of this model to quantitively examine the nonlinear
dynamics of atomically thin circular membrane NEMS
resonators made of one to three molecular layers (1L to 3L)
of MoS2 crystals. The governing equation of motion that
includes these higher-order nonlinearities is

x x x x x
k
m

x
k
m

x

F
m

2( )1 3
2

5
4

0 0
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eff
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ext

eff

+ + + + + +
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Here, ω0 = 2πf 0 is the angular eigenfrequency of the mode of
interest, meff is the e!ective modal mass, Fext(t) = F cos(ωt) is
the external driving force, k3 [unit: N m−3] and k5 [unit: N
m−5] are the coe"cients of the conservative Du"ng and
quintic nonlinearities, respectively, ζ1 is the linear damping
coe"cient, and ζ3 [unit: m−2] and ζ5 [unit: m−4] are the third
and fifth order nonlinear damping coe"cients, respectively.
The linear damping coe"cient ζ1 describes the resonator decay
at small vibration amplitudes and is inversely proportional to
the Q of the resonator, ζ1 = 1/(2Q). The nonlinear sti!ness
terms associated with k3 and k5 create an amplitude-dependent
frequency shift and attendant bending of the frequency
response curve near resonance. The nonlinear damping
terms associated with ζ3 and ζ5 result in an amplitude-
dependent decay rate and an attendant nonexponential decay.
The overall decay of the oscillation amplitude can be
determined by the terms proportional to ζ1, ζ3, and ζ5.
The method of averaging is used to obtain equations that

approximate the slow variation of the amplitude and phase of
x(t) under the assumptions of small, near-resonant drive, small
damping, and weak nonlinear e!ects.30 The van der Pol
transformation is first applied to move to a rotating frame of
reference in which the equations for the amplitude and phase
are suitable equations for averaging (Supporting Information
S5). Specifically, we define

x t r t t t x t r t t t( ) ( )cos ( ) , ( ) ( )sin ( )= [ + ] = [ + ]
(2)

and the associated constraint equation to satisfy the above
transformation is r(̇t) cos [ωt + φ(t)] − r(t) φ̇ (t) sin [ωt + φ
(t)] = 0. In the above equations, r(t) and φ(t) are the time-
varying amplitude and phase of x(t). We define frequency

Figure 1. Conceptual illustration of nonlinear e!ects and optical interferometry measurement system. (a) Illustration showing nonlinear damping
and sti!ness associated with mode shape due to increasing displacement of the device. (b) Laser optical interferometry measurement scheme,
including photodetector (PD), long pass filter (LPF), beam splitter (BS), dichroic mirror (DM), and device image identified by optical microscopy
(inset, scale bar: 2 μm). The output of the photodetector is connected to position 1 while measuring driven resonance and connected to position 2
during undriven thermomechanical noise measurement.
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detuning as Δω = ω − ω0 and assume 1, so that

2
2

0
2

. Then, we average time over one period, 2π/ω,
assuming that r(t) and φ(t) do not vary appreciably over one
period. After implementing the detuning definition and
substituting eq 2 and its derivatives to eq 1, imposing the
constraint equation, and averaging, eq 1 is converted to the
following equations
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The free vibration dynamics are determined by setting F = 0,
and Δω = 0, for which the amplitude-dependent decay rate
and frequency pulling are evident in eqs 3 and 4, respectively.
For the driven steady-state conditions, let r ̇ = 0 and φ̇ = 0, and
from this, one can apply a trigonometric identity on F sin φ
and F cos φ to eliminate φ, yielding an implicit condition for
the steady-state amplitude as
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The terms before the ± sign determine the backbone curve
(the undriven amplitude dependent instantaneous frequency Ω
during ringdown), while the terms inside the square root
determine the peak amplitude, rp, specifically,
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where eq 6 corresponds to the backbone curve that can be used
to determine sti!ness parameters by measuring the instanta-
neous frequency as r decays. The peak of the frequency
response occurs for φ = π/2 in the driven system and the
frequency at the peak tracks along the backbone curve as the
drive level is varied. Eq 7 expresses how the peak amplitude rp
depends on the nonlinear damping parameters and can be used
to estimate them from forced response data.17 These results
provide an alternative method to the ringdown approach for
measuring nonlinear sti!ness and damping.7

■ RESULTS AND DISCUSSIONS
Figure 2 shows signal amplitude (in both transduced voltage
signal and device displacement), transmission and transduction
responsivity, backbone curve, and curve fitting analysis of a 1L
MoS2 resonator (device 1). The device has diameter d = 1.5
μm, thickness h = 0.7 nm, sti!ness keff = 0.0539 N/m, e!ective
mass meff = 1.68 × 10−18 kg, resonance frequency f 0 = 28.47
MHz, transduction responsivity 105 V/nm= , and Q =
82. Figure 2a depicts high amplitude driven resonance
responses, whereas Figure 2b demonstrates the calibrated
transmission and transduction responsivity (gain) of device 1
with increasing drive signal to the modulated laser. Such
calibration measurements of transmission and transduction
responsivity are detailed in Supporting Information S4 and S6.
As can be seen in Figure 2a, the resonance frequency decreases
with increasing drive amplitude as it goes into the nonlinear

Figure 2. Determining nonlinear damping and sti!ness coe"cients of a 1L MoS2 resonator. (a) Signal amplitude and peak displacement versus
frequency, including device image identified by optical microscopy (inset, scale bar: 2 μm). (b) Transmission and transduction responsivity (gain)
versus frequency. The dashed arrow indicates frequency pulling of the peak amplitude arising from nonlinear sti!ness and damping. The peak
transmission does not vary appreciably, indicating essentially linear damping. (c) Frequency versus peak displacement (backbone curve). The red
dashed line is a fit to eq 6. (d) Peak displacement versus modulated laser signal. The red dashed line is a fit to eq 7.
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regime. This signifies that the 1L MoS2 resonator (device 1)
shows a softening e!ect with increasing RF drive.
Figure 2c shows the backbone curve, and we observe that

the peak frequency of the 1L device drops as the displacement
amplitude increases due to the softening e!ect. The red line is
a curve fit to eq 6, and it well matches the experimental result.
For the fitting analysis, we have kept the e!ective mass meff and
eigenfrequency ω0 as fixed parameters. Based on the curve
fitting, a value is obtained for the Du"ng coe"cient, k3 =
−2.21 × 1013 N m−3, and the quintic sti!ness coe"cient k5 is
nearly zero. The negative Du"ng coe"cient represents a
softening e!ect. The softening nonlinearity can be attributed to
geometrical nonsymmetries such as uneven tension or
membrane bulging from the pressure di!erence between the
cavity and chamber. Also, the focused laser on the suspended
MoS2 flake could introduce resonance motion-dependent laser
heating, leading to a softening Du"ng nonlinearity (Support-
ing Information section S10). The temperature increase by
incident laser power generates thermal expansion and an
attendant force on MoS2 flake31 as Fext = β(ΔT405 + ΔT633),
where β converts the device temperature to thermal force.
ΔT633 and ΔT405 are the temperature increases due to the 633
nm laser and the 405 nm modulated laser irradiation,
respectively. The heating due to the 405 nm laser and the
633 nm probe laser are ΔT405(t) = a1P405 cos(ωt) and
ΔT633(z) = a2P633(z), respectively, where a1 and a2 convert the
laser power to temperature change, and z is the vertical
position of the membrane. The laser power spatial dependence
f o r t h e s t a n d i n g w a v e i s g i v e n b y

( )( )P z P R R( ) 1 2 cos z
633 0 Si Si

4= + , where P0, λ, and

RSi are the laser power, wavelength, and reflectivity of Si
surface, respectively. Performing a Taylor expansion on P633

(z) using Δz = z − z0 (z0 is the equilibrium position for the
membrane), one can obtain from eq 1
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where A, B, C, and D are the grouped coe"cients whose values
can be found in the Supporting Information (eq S20). For k3,eff
= (k3 − βa2D) < 0, the third order x3 term and also the x2
term32 both give softening nonlinearity in the 1L device.
With increasing input RF voltage, this device exhibits

bifurcations and hysteresis, as supported by theory.3 The
nonlinearities in both damping and sti!ness jointly a!ect the
dynamic response of the system, for instance, the occurrence of
hysteresis during frequency sweeps. For a system to exhibit
multistability, the e!ect of nonlinear sti!ness competes with
both linear and nonlinear damping. In the limit of weak linear
damping, if a given system can be adequately characterized
using only cubic nonlinearities, then k3/ζ3 > 2meffω0

2/√3 can
serve as a guide for the system’s capability to exhibit bistability
at su"ciently large amplitudes.1,17 While this inequality should
not be treated as an explicit criterion, since the system may be
subject to factors including dynamic range, mode coupling, and
other resonance, it is, however, able to provide a sensible
estimate. In similar fashion, as the present work also studies
quintic nonlinearities, another expression can be obtained
using the method provided in ref 33. This bistability condition,
which concerns quintic nonlinearities, is given by k5/ζ5 >
2meffω0

2/√5. For this 1L device, the nonlinear sti!ness
dominates the nonlinear e!ects, therefore, we observe
hysteresis and clear bifurcations.

Figure 3. Determination of nonlinear damping and sti!ness coe"cients of a 2L MoS2 resonator. (a) Signal amplitude and displacement with
respect to frequency including device image identified by optical microscopy (inset, scale bar: 3 μm). (b) Transmission and transduction
responsivity (gain) versus frequency. The dashed arrow indicates frequency pulling of the peak amplitude arising from nonlinear sti!ness and
damping. The peak transmission varies appreciably, indicating essentially nonlinear damping. (c) Frequency with respect to peak displacement
(backbone curve). The red dashed line is a fit to eq 6. (d) Peak displacement versus modulated laser signal. The red dashed line is a fit to eq 7.
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We have calibrated the amplitude of modulated laser signal
(see Supporting Information, Figure S2) and then measured
nonlinear responses of the device. Due to the low level of
nonlinear damping in the 1L device, its peak displacement
grows almost linearly with increasing modulated laser drive, as
seen in Figure 2d. The red dashed line is a curve fit to eq 7,
which is consistent with experimental data. For curve fitting of
the data, we first keep the values of ζ1, meff, and ω0 as fixed
parameters. Then we perform the fitting and obtain a value of
the third order nonlinear damping coe"cient of ζ3 = 3.41 ×
1012 m−2, whereas ζ5 is found to be negligible and is assumed
to be zero.
Figure 3 shows resonance response data measured from a 2L

MoS2 resonator (device 2) with large amplitude driven
response, transmission, transduction responsivity, backbone

curve, and curve fitting analysis. The device has d = 1.5 μm, h =
1.4 nm, keff = 1.07 N/m, meff = 3.37 × 10−18 kg, f 0 = 89.9 MHz,

174 V/nm= , and Q = 38. The softening e!ects observed
in Figure 3a and 3b are similar to that shown in Figure 2.
Figure 3c depicts the data and the curve fit for the sti!ness
coe"cients from which it is determined that the value of
Du"ng coe"cient is k3 = −1.09 × 1014 N m−3 and the quintic
coe"cient is k5 = 7.12 × 1028 N m−5. From eq 8, it can be
explained that the negative third-order sti!ness and positive
fifth-order sti!ness (quintic) could lead to a mixed softening-
hardening nonlinear behavior. For this 2L device (device 2),
k3/ζ3> 2meffω0

2/√3 and k5/ζ5 > 2meffω0
2/√5, so we observe

hysteresis and evident bifurcations that are qualitatively the
same as for the 1L device (device 1). Increasing the modulated
laser signal results in a decrease in peak displacement

Figure 4. Determination of the nonlinear damping and sti!ness coe"cients of a 3L MoS2 resonator. (a) Signal amplitude and displacement versus
frequency with device image identified by optical microscopy (inset, scale bar: 2 μm). (b) Transmission and transduction responsivity (gain) versus
frequency. The dashed arrow indicates frequency pulling of the peak amplitude arising from nonlinear sti!ness and damping. The peak transmission
varies appreciably, indicating essentially nonlinear damping. (c) Frequency with respect to peak displacement (backbone curve). The red dashed
line is a fit to eq 6. (d) Peak displacement versus modulated laser signal. The red dashed line is a fit to eq 7.

Table 1. Measured and Extracted Device Parameters and Coe!cients

1Ldevice 1 2Ldevice 2 2Ldevice 3 2Ldevice 4 2Ldevice 5 3Ldevice 6
h (nm) 0.70 1.40 1.40 1.40 1.40 2.10
d (μm) 1.5 1.5 1.5 1.5 1.5 1.5
f 0 (MHz) 28.5 90.0 77.7 78.4 80.5 27.1
Q 82 38 42 42 51 70
(μV/nm) 105 174 195 198 200 284

dynamic range (dB) 81 111 95 96 96 80
built-in tension, γ (N/m) 0.011 0.219 0.164 0.167 0.176 0.030
critical amplitude, xc (nm) 5.7 17 3.5 3.8 4 3
meff (kg) 1.68 × 10−18 3.37 × 10−18 3.37 × 10−18 3.37 × 10−18 3.37 × 10−18 5.05 × 10−18

keff(N/m) 0.05 1.07 0.80 0.82 0.87 0.17
k3(N m−3) −2.24 × 1013 −1.09 × 1014 −3.22 × 1015 −2.22 × 1015 −9.09 × 1014 3.34 × 1014

k3xc3/keffxc 1.5% 3.0% 4.9% 3.9% 1.7% 1.8%
k5(N m−5) 0 7.12 × 1028 4.41 × 1031 1.84 × 1031 2.83 × 1030 0
k5xc5/k3xc3 0 18.9% 16.8% 12.0% 5.0% 0
ζ1 6.09 × 10−4 1.32 × 10−2 1.2 × 10−2 1.19 × 10−2 9.80 × 10−3 7.14 × 10−3

ζ3 (m−2) 3.41 × 1012 3.08 × 1013 1.81 × 1015 9.06 × 1014 6.21 × 1014 1.08 × 1015
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amplitude when compared with the linear response, as shown
in Figure 3d. In the 2L device (device 2), the nonlinear
damping e!ect is more dominant than in the 1L device (device
1). We perform a curve fit analysis to obtain a value of ζ3 =
3.08 × 1013 m−2 (one order higher in magnitude than for the
1L device), and again ζ5 is found to be e!ectively zero.
We have also measured three other 2L devices (devices 3−

5) where these are found to have quintic coe"cient values of
k5 of 4.41 × 1031, 1.84 × 1031, and 2.83 × 1030 N m−5,
respectively. The nonlinear damping coe"cients of these
devices are in the range of 1014−1015 m−2, which are 1−2
orders of magnitude larger than the values for the 2L device 2.
The quintic force of the 2L device 2 is around 20% of its
Du"ng force at displacement greater than 20 nm, so quintic
coe"cients cannot be neglected for these devices.
Figure 4 demonstrates resonance response data measured

from a 3L MoS2 resonator (device 6), with d = 1.5 μm, h = 2.1
nm, keff = 0.17 N/m, meff = 5.05 × 10−18 kg, f 0 = 27.1 MHz,

284 V/nm= , and Q = 70. The data in Figure 4a reveals a
hardening e!ect caused by membrane tensioning. As a result,
in device 6, we observe that the sti!ening Du"ng nonlinearity
dominates any softening e!ects present in this device. From
Figure 4c, we determine k3 = 3.34 × 1014 N m−3 and k5 ≈ 0. In
3L device 6, k3/ζ3> 2meffω0

2/√3, so we observe hysteresis and
clear bifurcations, similar to the 1L and 2L devices. Like the 2L
devices (devices 2−5), Figure 4d indicates the e!ects of
nonlinear damping in the 3L device. The curve fit yields ζ3 =
1.08 × 1015 m−2 and ζ5 ≈ 0.
Table 1 summarizes all measured and extracted parameters

for the 1L, 2L, and 3L devices. In all cases, ζ5 is negligible. The
fitting lines well match the experimental data in all devices. We
have found that quintic sti!ness nonlinearity k5 is needed to
match eq 6 for all the 2L devices but not the 1L or 3L devices.
This is the first direct measurement and analysis to confirm
quintic sti!ness nonlinearity in 2D NEMS resonators.
The Du"ng coe"cient for a circular membrane can be

written as k hE
d3

6.24 13 21 4
30(1 )

Y
2

2

= +
+ , where h, d, EY, and ν are

thickness, diameter, Young’s modulus, and Poisson’s ratio for
2D MoS2.40 Accordingly, the Du"ng coe"cient is propor-
tional to the thickness and thus the number of layers of the
MoS2 device. In our experiments, however, we have both
hardening due to membrane tensioning and softening from
laser heating e!ects or asymmetric device parameters, so we
have not found a systematic layer dependency in k3. The
mechanisms for other nonlinear coe"cients in 2D NEMS (e.g.,
the quintic coe"cient k5 and nonlinear damping coe"cients ζ3,
ζ5) have not been explored yet, and the correlation between
these parameters and the number of layers remains for future
studies. In comparison with 1D nanotube and 1L graphene
resonators,16 note that the Du"ng coe"cient of a nanotube is
k3 = 4.80 × 1012 N m−3 and for a graphene resonator, k3 = 1.40
× 1016 N m−3. The 1L MoS2 device here has a larger Du"ng
coe"cient than that of the nanotube resonator, which is also
shown in a previous study.27
To compare the nonlinear damping coe"cient with prior

results in the literature, we introduce the convenient parameter
η for nonlinear damping, where η = 2ζ3ω0meff. The nanotube
and 1L graphene resonators16 have values of η=7.90 × 105 kg
m−2 s−1 and 1.50 × 107 kg m−2 s−1, respectively, whereas our
1L (device 1), 2L (device 2), and 3L (device 6) devices have
values of η = 2.05 × 103 kg m−2 s−1, 1.17 × 105 kg m−2 s−1, and
2 × 106 kg m−2 s−1, respectively. In comparison to 1L graphene

devices, the 1L MoS2 device has a lower level of nonlinear
damping. This could be due to geometric e!ects since our
device is a circular membrane while the graphene device is a 1L
rectangular sheet. Geometric parameters, such as cross-
sectional area, moment of inertia, and Q factor can influence
the nonlinear damping coe"cient.17 Another reason for the
lesser nonlinear damping could be that our experiments have
been carried out at room temperature, while the experiments in
ref 16 were conducted at 4 K, and the value of the nonlinear
damping coe"cient decreases with rising temperature.34 The
intrinsic dissipation of 1L MoS2 under axial and flexural modes
of deformation can be determined from Akhiezer damping
using molecular dynamics simulations, and it is found to be
nonlinear and results from coupling between out-of-plane
motion and in-plane stretching.39 Whatever its source, the
lower levels of nonlinear damping should be beneficial in 1L
devices, corresponding to reduced frequency noise while
vibrating at large amplitudes.38
In conclusion, we have presented an experimental

demonstration of nonlinear damping, along with Du"ng and
quintic nonlinearities, in atomically thin MoS2 nanomechanical
resonators, and extracted the nonlinear sti!ness and damping
coe"cients from resonance measurements. While nonlinearity
imposes limits on dynamic range, it can also be employed in
constructive ways, e.g., for reducing phase noise in oscillators,35
developing improved threshold sensors,36 and engineering
transient responses.37 In all cases, these nonlinear e!ects must
be acknowledged and understood to utilize these devices in
various emerging applications.
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