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Abstract
In this work we demonstrate how one can improve the angular rate sensitivity of ring/disk
resonating gyroscopes by tailoring their nonlinear behavior by systematic shaping of the
gyroscope body and electrodes, and by the tuning of bias voltages on segmented electrodes. Of
specific interest are the drive and sense mode Duffing nonlinearities, which limit their dynamic
ranges, and the intermodal dispersive coupling between these modes that provides parametric
amplification of the sense mode output signal. These two effects have the same physical origins
and are in competition in terms of system performance, which naturally calls for optimization
considerations. The present analysis is based on a systematic modeling of the nonlinear
response of these devices by which we explore ways in which one can optimize the angular rate
sensitivity by manipulating the mechanical and electrostatic contributions to the nonlinearities.
In particular, non-uniform modifications of the gyroscope body thickness are employed to affect
the mechanical contributions to these parameters, while the electrostatic components are
manipulated via shaping of the resonator-electrode gap and by applying non-uniform bias
voltages among segmented electrodes around the gyroscope body. These models predict that
such relatively simple alterations can achieve improvements in gain by about an order of
magnitude when compared to devices with uniform layouts.

Keywords: MEMS rate gyroscope, gyroscope sensitivity, self-induced parametric amplification,
Duffing nonlinearity, modal coupling, shape optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

Micro-electromechanical (MEMS) vibratory gyroscopes are
appealing due to their size, high quality factors, low power
consumption, and compatibility with integrated circuits [1],

∗
Author to whom any correspondence should be addressed.

which make them favored in smartphone applications [2, 3],
electronic stability control systems for automotive safety
[4, 5], robotics [6], medical diagnostics [7], and military
applications [8]. This demand motivates an ongoing drive
for increased precision and lower cost. Here we describe
how one can make use of and optimize the intermodal
parametric pumping of the sense mode by the drive mode, as
reported in [9], and thereby significantly increase gyroscope
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sensitivity to an external angular rate. The approach is based
on the systematic nonlinear modeling of vibratory gyroscopes
described in [10].

Vibratory gyroscopes operate using the Coriolis effect,
which acts on objects that are moving radially in a rotat-
ing reference frame. MEMS vibratory gyroscopes are gen-
erally based on a micromechanical resonator that possesses
two vibration modes with equal frequencies, one of which, the
drive mode, is driven into resonance using an external periodic
forcing or in a self-sustained oscillator [11]. In the presence of
an external angular velocity Ω, the Coriolis effect couples the
two modes, resulting in a resonant response in the sense mode.
WhenΩ is much less than the gyroscope eigenfrequenices, and
the modes are operating in their linear range, the sense mode
amplitude is proportional to Ω and the external angular rate
can thus be estimated.

Good sensitivity to small angular rates is one of the most
important characteristics of modern MEMS gyroscopes. In
order to achieve high rate sensitivity one generally has to
solve multiple challenging problems, including matching the
frequencies of the drive and sense modes in degenerate-
mode gyroscopes [12–14], compensating the quadrature error
between the gyroscopic modes [15–17], and maximizing
modal quality factors, for example, by optimizing the geo-
metry of the resonator body [18, 19]. As a result, ring and disk
resonating gyroscopes are frequently chosen as ideal candid-
ates for degenerate-mode vibratory gyroscopes because of the
inherent symmetry of their flexural modes [15, 20–23]. How-
ever, until recently, most of the aforementioned methods and
techniques were designed and implemented in MEMS gyro-
scopes that operated in the linear resonant regime for both
vibratory modes.

Nonlinear operation of vibratory MEMS gyroscopes has
been receiving an increasing attention during the past decade.
In particular, the problem of improving the sensitivity of rate
gyroscopes by using parametric actuation [24–27] and com-
bined schemes of direct and parametric excitation [28, 29]
have been studied both theoretically and experimentally. It has
also been shown that nonlinear operation can be beneficial to
the performance of MEMS gyroscopes due to the wide fre-
quency range of the nonlinear resonant response [30]. Addi-
tionally, there has been progress in the tuning of individual
modal Duffing nonlinearities in a MEMS rate gyroscope, to
extend its linear dynamic range, by modifying the shape of
comb drive fingers [31]. The problem of tailoring nonlinear
response in coupled-mode systems by shape design has been
addressed very recently [32] but remains largely unexplored,
particularly for MEMS gyroscopes.

Recent experimental results demonstrated a substantial
increase in the rate sensitivity in a MEMS disk resonating
gyroscope when the drive mode operates in a nonlinear regime
[9]. In that work, the authors hypothesized that the observed
increase of the gyroscopic rate sensitivity is caused by a para-
metric amplification of the sense mode arising from nonlin-
ear elastic coupling between the drive and sense modes. It is
important to note that this additional gain comes with no addi-
tional complications, other than those related to the nonlinear
response. More recently, the hypothesis of this self-induced

parametric amplification has been confirmed by the detailed
modeling and analysis of the nonlinear vibrations of circu-
lar disk and ring rotating elastic structures in the presence of
electrostatic actuation/sensing schemes [10]. In particular, it
was shown that nonlinear dispersive modal coupling5 arises
naturally in ring/disk resonating gyroscopes due to nonlinear
mechanical and electrostatic effects. The strength of this coup-
ling is described in the present model by a coefficient κ. Due
to the degeneracy of the gyroscope drive and sense modes, it
was shown that the drive mode parametrically pumps the sense
mode with a strength∝ |κ|a2, where a is the non-dimensional
amplitude of the drive mode response. As a result, in order to
improve the gyroscope performance as a rate sensor, it is desir-
able to increase the strength of the dispersive modal coupling
|κ| and/or the drive mode amplitude a. Since it is preferen-
tial to operate the gyroscope in its linear range, the maximum
achievable amplitude a is limited by the Duffing nonlinear-
ity of the drive mode, which is described in the present model
by a coefficient γ. It is important to note that design changes
alter both of these coefficients in a coupled manner, and thus
their combined effects, and their tuning by design, must be
considered using a physics based model. Therefore, the prob-
lem of maximizing gyroscope sensitivity requires a systematic
study of nonlinear input/output characteristics of this coupled
mode system, as derived in [10].

In this work we examine ways in which one can use simple
design alterations to systematically manipulate themechanical
and/or electrostatic contributions to the aforementioned non-
linear effects in order to improve, and even optimize, gyro-
scope sensitivity. The approach taken is a simplified version
of the shape optimization techniques described in [32–34].
Specifically, since the devices of interest have circular sym-
metry and mode degeneracy must be maintained, non-uniform
shapes can be easily expressed in terms of Fourier coefficients,
making the approach less computationally intensive, even ana-
lytical for some geometrical modifications.

Since electrostatic effects are known to typically domin-
ate nonlinear effects in MEMS gyroscopes, we first investig-
ate the dependence of electrostatic contributions, described by
coefficients κe for nonlinear inter-modal coupling and γe for
Duffing nonlinearity, that arise from a spatially non-uniform
bias voltage, VDC(θ), and a non-uniform electrode gap size,
∆(θ), which is parameterized by the circumferential angle θ
around the gyroscope body. We formulate conditions on the
non-uniformity of these parameters that preserve the degener-
acy of the gyroscopic modes and demonstrate how these non-
uniformities can be used to modify κe and γe and their effects
on the gyroscope sensitivity. Such optimization approaches
are of particular interest since they do not depend on the spe-
cific geometric features of the gyroscope body. We apply this
approach to a representative ring/disk resonating gyroscope
and show how certain modifications of the resonator-electrode
spacing and bias voltage distribution can result in an increase
of up to 3-fold of the intermodal coupling strength between

5 This type of coupling is referred to as dispersive since it reflects a change in
frequency of one mode due to the amplitude of vibration of another mode.
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the drive and sense modes, κe, and an attendant nearly 12-fold
increase of the angular rate sensitivity.

We also analyze how changes in the geometry of the reson-
ator body that maintain the required symmetry can be used to
alter the mechanical nonlinearities, expressed by coefficients
κm and γm. We illustrate the applicability of this approach by
its application to a thin rotating ring for which we allow the
radial ring thickness to vary along θ. The results show the
possibility of altering both κm and γm, which is relevant for
micromechanical gyroscopes with dominant mechanical non-
linearities. It should be noted that we consider simple design
alterations that can be expressed in terms of only a few coef-
ficients, which makes the problem analytically manageable,
but further improvements can likely be achieved using more
detailed, finite-element based models, as described in [32]. In
fact, a recent computational study shows that the two-mode
model employed herein matches results obtained for the non-
linear dynamics of a detailed finite element model of the sys-
tem, including extraneous modes, such as translational, rota-
tional and out-of-plane eigenmodes, [35]. Furthermore, such
approaches will be necessary for more complex geometries,
like disk resonator gyroscopes (DRGs) [9, 36].

The remainder of the paper is organized as follows. In
section 2 we present a summary of the modeling background
required for systematic tailoring of the gyroscope nonlinear
dynamic behavior. In section 3 we describe optimization of
the gyroscope sensitivity SΩ, achieved by the described alter-
ations of the gyroscope layout. The significance of our results
and their applicability to modern ring/disk resonating gyro-
scopes is described in section 4 and concluding remarks are
given in section 5.

2. Modeling and analytical framework

In this section we outline and extend the theoretical framework
developed in [10] to describe nonlinear behavior in ring/disk
resonating gyroscopes, with a focus on Duffing and dispers-
ive nonlinearities. The model and approach are generalized
to account for non-uniform geometries of the resonator body
and electrode gap so that these can be altered by design to
systematically improve the gyroscope response. The focus is
on demonstrating the applicability of the proposed optimiz-
ation methods for gyroscopes with rather simple geometries,
such as that described in [20], which do not require sophist-
icated numerical techniques for their analysis, so that one can
describe their geometric variations in terms of Fourier series
and use the Fourier coefficients for the optimization variables.
In section 4, we discuss how one would apply the proposed
tuning methods for gyroscopes with more complicated geo-
metries, such as DRGs [9, 36].

2.1. General approach

In what follows, we consider a model for a micromechanical
gyroscope composed of a thin ring of nominal radius R, nom-
inal radial thickness h, and uniform out-of-plane thickness b,

with h, b" R, which allows one to use shallow shell bend-
ing theory for the mechanics of the ring. The outer rim of the
ring is surrounded by cyclically placed segmented electrodes
with nominal gap ∆ between the ring and electrodes, with
∆" R, b, so that a parallel plate analysis can be employed
to model the electrostatic force from each electrode. Due to its
symmetry, the ring has a pair of in-plane degenerate elliptical
eigenmodes, whose dynamics we describe by modal coordin-
ates A and B and mode shapes expressed as ΦA(r,θ) = cos2θ
and ΦB(r,θ) = sin2θ, where r and θ are the radial and azi-
muthal polar coordinates respectively; see figure 1.

We further designate these gyroscopic modes as the drive,
A, and sense, B, modes, respectively, which have nearly equal
eigenfrequencies, ωA ≈ ωB (equal in the ideally symmetric
case). The ring vibration and motion are assumed to occur in
plane. The ring vibration is excited and detected by means of
an electrostatic actuation/sensing scheme that utilizes inter-
actions between the resonator body and the electrodes. We
also assume that the ring is spinning with a constant angu-
lar rate Ω about its axis of symmetry, resulting in Coriolis
coupling of the sense and drive modes during vibration and
spin. We assume that Ω" ωA,ωB, which is readily achieved
by design. The amplitudes of vibration are assumed to be
small compared to the gyroscope thickness and gap size, that
is |A|, |B|" h, ∆. Note that in this formulation both the thick-
ness and electrode gap vary, h(θ) and∆(θ), and that the stated
assumptions must hold throughout the resonator body. It is fur-
ther assumed that the gyroscope is made of a linear elastic iso-
tropic material with uniform mass density ρ6. We use finite
deformation kinematics in the following development, details
of which are given in [10]. Denoting u= u(θ, t) and v= v(θ, t)
as the radial and circumferential displacements of the ring, and
integrating over the body of the gyroscope, the kinetic energy
is expressed as

T=
ρb
2

¨
Sg
[(u̇− vΩ)2 +(v̇+(r+ u)Ω)2]rdrdθ (1)

and the elastic strain energy is given by

Um =
b
2

¨
Sg
(σrrεrr+σθθεθθ +σrθεrθ)rdrdθ, (2)

where εij and σij represent the mechanical strains and stresses
occurring in the ring body, respectively, which are related
through a linear Hooke’s law with modulus of elasticity E, and
the integration is carried out over the gyroscope area Sg per-
pendicular to Ω̄. The electrostatic potential arises from a DC
bias voltage VDC(θ) and an AC drive voltage VAC(θ, t) acting
between the electrodes and the outer gyroscope surface and is
expressed by expanding in u/∆, up to 4th order to be mathem-
atically consistent with our treatment of elastic strain energy,
and integrating over the circumference, yielding

6 Note that many gyroscopes are made from single crystal Si which is aniso-
tropic; this feature can be easily accounted for in a finite element version of
the proposed approach.
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Figure 1. Left: schematic representation of the micromechanical ring resonating gyroscope with the electrostatic actuation/sensing scheme
using segemented electrodes. Right: degenerate elliptical eigenmodes of the ring resonating gyroscope; dashed line is the nominal static
ring configuration, [10].

Ue ≈−ε0bR
2

4∑

n=0

ˆ 2π

0
dθ(VDC+VAC(θ, t))2

un(θ, t)
∆n+1 , (3)

where ε0 = 8.85 F/m is the vacuum permittivity. Note that
the electrostatic forces cause a circumferential expansion of
the ring, but this effect is negligible for realistic devices [10].
The potentials in this model each contribute nonlinearities that
have two ultimate effects: an effective Duffing coefficient for
each mode and coupling between the modes, of which the dis-
persive term is of present interest.

In order to investigate the dynamics of the modes of
interest, it is assumed that the radial displacement is expressed
in terms of the desired modes using modal coordinates
A and B as,

u(θ, t) = A(t)cos2θ+B(t)sin2θ+C(t), (4)

where the time-dependent term C(t)≈−(A2 +B2)/R is
included to satisfy periodicity of the gyroscope circumferen-
tial displacement, namely, v(θ+ 2 π, t) = v(θ, t). It is assumed
that the ring is inextensible in the circumferential direction,
which is valid if the wavelength of the bending vibration
modes is large compared to h [37, 38]. This imposes a kin-
ematic constraint that allows one to to express v in terms of
u, resulting in a formulation that depends on only the radial
displacement field u [10]. The energies are then expressed
in terms of the modal expansion, presented by equation (4),
and make use of the inextensibility constraint for v, and from
the resulting expressions the equations of motion are obtained
using a standard Lagrangian approach. In the formulation, it
is assumed that the AC drive voltage is aligned with the drive
mode cos2θ, as required for proper operation of the gyro-
scope. Finally, we must account for dissipation in the sys-
tem, which is provided by a phenomenological linear damping

model added to bothmodes, of the form ωA
QA
Ȧ and ωB

QB
Ḃ, or, equi-

valently, 2ΓAȦ and 2ΓBḂ, where the Q’s are the modal quality
factors and the Γ’s are the modal decay rates. For proper func-
tion of the gyroscope, the Q’s are large, or, equivalently, the
decay rates Γ are small compared to the vibration frequency,
that is, Γi " ωi.

The result of this process is a pair of complicated coupled
nonlinear differential equations in A and B (see the appendix)
that have a large number of terms, many of which can be
ignored by employing the above-stated assumptions. The out-
come of these approximations is that one can essentially
decouple the system and solve for the drive mode dynam-
ics while ignoring the influence of the sense mode, primarily
because its amplitude is significantly larger than that of the
sense mode. After obtaining an approximate solution of the
drive mode equation using perturbation techniques, the drive
response is used as input for the sense mode dynamics, which
is assumed to be in its linear range, that is, its Duffing effect is
negligible. However, coupling from the relatively large amp-
litude drivemode results in both direct and parametric resonant
driving of the sense mode. A summary of this process follows.

2.2. Drive mode dynamics

Following the general formulation and assumptions presen-
ted in the previous section, the simplified equation govern-
ing the drive mode, normalized by its effective mass, can be
expressed as

Ä
(
1+µ

A2

R2

)
+
ωA
QA

Ȧ+Aω 2
A +A

(
µ
Ȧ2

R2 +(γm+ γe)
A2

R2

)

= Fcos(ωt+φF), (5)

4
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where coefficient µ results from inertial nonlinearities and
coefficients γm (> 0) and γe (< 0) are hardening and soften-
ing Duffing effects from the mechanical deformation and elec-
trostatic potentials, respectively. Most terms in this equation
are affected by the DC voltage. The AC voltage at frequency
ω results in an effective drive amplitude F and phase φF. It
is important to note that this model ignores backaction of
the sense mode on the drive mode, including both the linear
coupling that is proportional to ΩḂ that arises from Coriolis
effects, as well as those that arise from nonlinear coupling,
such as dispersive coupling. This assumption must be care-
fully considered in systems with degenerate frequencies, and
is systematically justified for the present case in [10]. For the
near-resonance response, this equation is amenable to stand-
ard perturbation techniques. The method of averaging can be
used to obtain an approximate steady-state solution of the
form A(t) = aRcos(ωt+φ+φF), where the following impli-
cit relationship is determined between the normalized amp-
litude a= |A|/R of the drive mode and both the system and
drive parameters,

a2R2
{
ω4
A

Q2
A
+

(
2σωA−

3
4
γa2

)2}
= F2, (6)

where σ = ω−ωA is the deviation of the excitation frequency
from the drive mode eigenfrequency and γ = γm+ γe− 2

3µω
2
A

is the net Duffing coefficient of the drivemode, stemming from
elastic, electrostatic, and inertial sources, respectively. For a
simple thin ring, µ= 33

5 , γm = 2 ω 2
A , and γe is negative and

tunable with the DC voltage. Equation (6) is a cubic equation
in a2, which can be solved numerically to obtain frequency
response backbone curve of the drive mode under external
excitation. It is well-known that there exists a critical drive
level corresponding to the onset of nonlinear behavior in the
form of bistability, given by Fcr =

4ω3
A

3QA

√
2

QA|γ|
√

3
, for which

the system response is single-valued when F< Fcr and multi-
valued for F> Fcr, [39, 40]. An AC drive voltage correspond-
ing to F= Fcr results in a peak amplitude of acr = 2

√
2ωA√

3QA|γ|
√

3
,

and we use this amplitude as the desired operating level for
subsequent analysis. It is clear that reducing the Duffing non-
linearity γ allows for larger operation without bistability.

2.3. Sense mode dynamics

The sense mode is assumed to respond with a relatively small
amplitude such that it remains in its linear range. This assump-
tion is well-justified in the light of the present study. For
example, if the representative ring gyroscope from [20] is
exposed to the angular rate Ω∼ 1 Hz (typical value for the
rate grade gyroscopes [1]), and its drive mode is operated at
the onset of nonlinearity, the gyroscope sense mode vibration
amplitude satisfies b∼ 0.1acr, which indicates that the gyro-
scope sense mode remains in its linear regime. It is excited
by the drive mode response A(t) through both Coriolis (lin-
ear) terms and dispersive modal coupling. As such, the model

for the response of the sense mode, under the assumptions
provided above, is

B̈+ Ḃ
(
ωB
QB

+CΓ
AȦ
R2

)
+Bω 2

B +B
(
Cd
A2

R2 +C1
Ȧ2

R2 +C2
AÄ
R2

)

= CΩΩȦ, (7)

which is a linear equation in B(t) with both direct and para-
metric excitation from A(t). In the above equation, coefficients
Ci are numerical constants that depend on the resonator geo-
metry; for a simple ring, the reader can find their values in
the appendix. Note that the direct excitation is from Coriolis
effects (the usual input to the sense mode) and is at frequency
ω while the parametric driving is expressed in several terms
that arise from nonlinear modal coupling, all of which result
in parametric excitation at frequency 2 ω from the drive mode,
as required for parametric amplification. The method of aver-
aging can again be employed to obtain an expression for the
normalized sense mode amplitude b= |B|/R in terms of the
system parameters and the drive mode amplitude a, as follows

|b|= |CΩ|ΩaQB
ω

2

√
ω 2ω 2

B +Q2
B(ω

2
n −ω 2 +λ)2

|ω 2ω 2
B +Q2

B(ω
2
n −ω 2)2 −λ2Q2

B|
, (8)

where ωn =
√
ω 2
B +

1
2a

2(Cd+ω 2(C1 −C2)) is the natural
frequency of the sense mode shifted from its nominal value
ωB due to the coupling to the drive mode and λ= 1

4a
2(Cd+

ω 2(CΓ −C1 −C2)) is the strength of parametric pumping
from the drivemode. For a representative ring resonating gyro-
scope, such as that described in [20], |Cd|/ω 2

B ≡ |κ|/ω 2
B (

|C1|, |C2|, |CΓ|, which allows us to neglect these small terms
when considering dynamics of the sense mode. Importantly,
the vibration amplitude of the sense mode can be expressed
in terms of the gain provided by the parametric pumping from
the drive mode which amplifies the sense mode signal com-
pared to it value from Coriolis effects alone. While detailed
examples are worked out in [10], demonstrating and quanti-
fying the desired effect, here the focus is on enhancing and
optimizing this effect.

2.4. Objective function

In this section we generalize the approach presented in [10]
to allow for non-uniformities in the design of the ring and
the electrodes. Specifically, we allow parameters h and ∆ to
depend on θ and then use the mode shapes of the uniform
device to project the energies onto modal amplitudes A and
B. As stated in section 1, we are interested in manipulating
two specific coefficients in the gyroscope equations of motion:
the dispersive inter-modal coupling strength κwith the goal of
maximizing it, and the drivemodeDuffing nonlinearity γ, with
the objective to minimize it. These coefficients define general
anharmonic terms in the overall gyroscope potential energy,

5
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which when written in terms of the modal coordinates A and
B, can be expresses as,

U(A,B) =
1
2
k(A2 +B2)+

1
4
γ ′(A4 +B4)+

1
2
κ ′A2B2, (9)

where all coefficients depend on both elastic and electrostatic
effects. It is important to reiterate that the proposed altera-
tions have the important feature of not breaking the symmetry
of the gyroscopic drive and sense modes, so that the stiff-
ness parameters, including the Duffing coefficients, are the
same for both modes, i.e. kA = kB = k (linear stiffness coef-
ficient) and γ ′

A = γ ′
B = γ ′ (Duffing term). While the modal

mass affects the coefficients of interest in the full model, we
focus our analysis on the normalized κ and γ coefficients in
the gyroscope potential energy, given in sections 3.1 and 3.2,
since it is found that the contributions from inertial nonlin-
earities are quite insensitive to the considered alterations in
the gyroscope geometry and are clearly independent of the
gyroscope electrostatic setup [10]. Finally, in section 3.3 we
consider the effective modal mass in the optimization pro-
cess, defined as the coefficient of the term ∝ Ȧ2 in the gyro-
scope kinetic energy, which, as expected, also depends on the
gyroscope geometry.

Due to the dispersive nature of the coupling between the
gyroscopic drive and sense modes, the gyroscope sense mode
response depends on both κ and γ, and this dependence gener-
ally has a complicated form even in the approximation of linear
sense mode response, see equation (8), where the dependence
on γ is implicit through the vibration amplitude of the drive
mode a. Given our goals of simultaneously maximizing the
gyroscope angular rate sensitivity and the gyroscope dynamic
range, which are competing nonlinear effects, we define the
objective function for our optimization problem to be the gyro-
scope output sensitivity to the external angular rate

SΩ =
|b|
Ω

∣∣∣∣
a=acr

(10)

when the gyroscope drive mode is operated at the acr ∝
|γ|−1/2 condition on its frequency response, that is, at the
onset of nonlinearity [39, 41]. While this may not be the pre-
ferred operating condition for some gyroscopes, it provides a
meaningful and physically intuitive constraint for the present
optimization problem. For real-world applications, a reason-
able alternative may be to operate at some level less than, and
proportional to, acr.

For gyroscopes where the dominant nonlinear effects are
electrostatic, i.e. γ < 0, such as the case in [20], we pro-
ceed by using equation (8) along with the drive mode
operating conditions:

a= acr =
2
√
2ωA√

3QA|γ|
√
3
,

ω = ωcr = ωB

(
1−

√
3

2QB

)
, QB ( 1, (11)

and arrive at the following expression for the objective
function

SΩ =
16

5
√

6
√
3

√
QB

|γ|

√

1+
(√

3− 2K√
3

)2

∣∣∣∣1+
(√

3− 4K
3
√

3

)2

− 4
27K

2

∣∣∣∣

, (12)

whereQB is the sensemode quality factor (assumed to be equal
to the drive mode quality factor QA due to modal symmetry),
K= |κ ′/γ ′|= |κ/γ| is the ratio of nonlinear stiffness terms,
and γ = γ ′R2/k, κ= κ ′R2/k are nondimensional nonlinear
stiffness coefficients. Figure 2 illustrates an example of the
gyroscope angular rate sensitivity SΩ as a function of nonlin-
ear stiffness coefficients γ and κ.

Analysis of equation (12) reveals that SΩ →∞ for K∗ = 3,
denoted by the red line in figure 2. Physically, this corresponds
to the case where sense mode response becomes unstable due
to parametric excitation coming through dispersive coupling
to the drive mode. However, this is an artifact of the model
used in section 2.3, where the sense mode dynamics was rep-
resented by that of a linear system. In particular, the expres-
sion for SΩ shown in equation (12) has been obtained follow-
ing the assumption that the external angular rate Ω" ωB and,
as a result, the gyroscope sense mode operates in its linear
regime. In practice, however, when K→ K∗, the sense mode
amplitude grows beyond its value at the onset of nonlinearity,
bcr = acr, and equation (8) is no longer a valid representation
of the sense mode dynamics. In the light of our goal (max-
imizing the gyroscope rate sensitivity), we assume that the
gyroscope is exposed to an external angular rate that results
in the gyroscope sense mode vibration amplitude to be below
its critical value. It is also important to highlight that equation
(12) and, thus, K∗ = 3 were obtained under the assumption
QB ( 1.While this is a very reasonable assumption for high-Q
resonant systems, it is critical that any finiteQB will still result
in SΩ →∞ for some finite value ofK; for example,QB = 1200
[20] results in K∗ = 2.96,3.04, thus allowing us to apply the
subsequent analysis with this high-Q approximation in mind.

In summary, from figure 2 it follows that our goal is to
alter the ring geometry and/or electrostatic setup in such a way
that resonator nonlinear parameters move from the ‘black dia-
mond’ towards the red line, that is, to higher angular rate sens-
itivity. Of course, how the design moves in this space depends
on the physical model and what alterations are being made.
This is considered next.

3. Mechanical and electrostatic optimization
methods for tailoring gyroscope nonlinearities

In this section we analyze three different approaches for
manipulating the magnitude of nonlinear dispersive coupling
|κ| and themodal Duffing nonlinearity |γ|with the objective to
maximize the sensitivity SΩ of a micromechanical gyroscope
with respect to the external angular rate. Specifically, in the
following subsections we consider tailoring of the aforemen-
tioned gyroscope nonlinearities via a non-uniform distribution
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Figure 2. Gyroscope angular rate sensitivity normalized with respect to its nominal value obtained for the uniform ring with κ= γ ≈−105

(black diamond); quality factors of the gyroscope drive and sense modes are assumed QA = QB = 1200 [20]. The red line corresponds to the
case when SΩ →∞, that is, the parametric instability according to the linear approximation for the gyroscope sense mode adopted in
section 2.3. The black dashed line is the locus of points where κ= γ, that is, K= 1. The magenta region is the κ− γ range that is accessible
via modifications in the gyroscope biasing scheme and electrode shape, as detailed in sections 3.1 and 3.2. The blue and green diamonds
represent cases of maximizing |κ| while maintaining gyroscope dynamic range (γ) via alternations in the gyroscope biasing scheme
(section 3.1) and electrode uniformity (section 3.2), respectively. The combination of these two adjustments in the gyroscope configuration
results in nearly 12-fold increase in the gyroscope angular rate sensitivity without sacrificing its dynamic range, as depicted by the
red diamond.

of the bias voltage VDC among the gyroscope electrodes, by an
angle-dependent electrode gap width ∆(θ), and by an angle-
dependent thickness of the gyroscope ring h(θ), respectively.
Note that in all these methods we only consider modifications
that have at least 8-fold rotational symmetry relative to the
z−axis of the gyroscope. As we mentioned above, this essen-
tial constraint ensures the inherent symmetry of the gyroscopic
vibrational modes, which allows one to avoid additional prob-
lems associated with matching the modal natural frequencies.
It also maintains symmetry in the Duffing nonlinearities.

3.1. Nonlinear electrostatic tuning by a non-uniform bias
voltage

We start with a relatively simple method of electrostatic tun-
ing, which is frequently used for modifying the vibration fre-
quency and/or motional impedance of electrostatic MEMS
resonators by controlling the bias voltage. In the present case,
however, we are interested in modifying the gyroscope nonlin-
ear parameters κ and γ. Without any alterations of the gyro-
scope electrostatic actuation/sensing geometrical setup, κ and
γ for a thin ring gyro are found to be, see appendix,

κ= γ =
6R2

5ρ

(
Eh2

R6 − ε0V2
DC

h∆5

)
, (13)

where E is the Young’s modulus of the gyroscope mater-
ial and the rest of parameters are defined in section 2. From
equation (13) it follows that a uniform increase/decrease of
the bias voltage changes both coefficients simultaneously.
From figure 2, however, it follows that the κ= γ condition
can provide only minor increase of the gyroscope sensitivity
by a uniform decrease of VDC since SΩ scales as |γ|−1/2 in
this case, see equation (12). Furthermore, lowering the bias

voltage results in a decrease of the gyroscope sense current
that, in turn, reduces the gyroscope signal-to-noise ratio. In
contrast, our goal is to maximize SΩ, which is accomplished
by increasing |κ|whileminimizing |γ|, therebymoving toward
the lower right corner in figure 2. As such, we attempt to
achieve |κ|≥ |γ|, i.e. below the black dashed line on figure 2,
when considering the case of a non-uniform bias voltage, i.e.
VDC = VDC(θ).

Frequently, MEMS ring/disk resonating gyroscopes are
designed to have 8N electrodes (N≥ 1) along the circumfer-
ence in order to be able to support and monitor sin2θ and
cos2θ in-plane elliptical vibrational modes. In this case, the
nonlinear electrostatic tuning method, assuming that modal
frequencies are already matched, results in different values of
bias voltage applied to different electrodes, i.e. VDC = VDC(k),
where k is the electrode number. Keeping in mind the sym-
metry of the gyroscopic modes, it becomes clear that the 8-
electrode configuration can support only uniform distribution
of the bias voltage VDC, which, as we discussed above, is
of limited interest. Therefore, in order to show the effect of
VDC(k) on resonator nonlinearities, we assume that the gyro-
scope design has 8N segmented electrodes (N≥ 2), in which
case the electrostatic potential energy, defined in equation (3)
can be rewritten as

Ue ≈−ε0bR
2

8N∑

k=1

4∑

n=0

ˆ θk+ψ

θk−ψ
dθV2(k, t)

un(θ)
∆n+1 , (14)

where θk is the angular position of the kth electrode center, 2ψ
is the circumferential length of each electrode (in radians), and
V(k, t) = VDC(k)+VAC(k, t)where both VDC and VAC are now
functions of the electrode number.

Clearly, a non-uniform DC bias voltage distribution only
affects κ and γ through their electrostatic contributions, κe and
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Figure 3. Dependence of the electrostatic components of the
dispersive coupling strength κe (dashed curve), the Duffing
nonlinearity γe (solid black curve), and the normalized objective
function S(DC)Ω /S(0)Ω (solid blue curve) as functions of the
non-uniformity in the bias voltage as represented by rDC. The blue
diamond represents the case of maximizing |κ| while maintaining
gyroscope dynamic range, i.e. γ(DC)

e ≤ γ(0)
e , and corresponds to the

similar point indicated in figure 2.

γe, determined by the coefficients of the terms ∝ A2B2 and
∝ A4 in equation (14). In order to illustrate the nonlinear elec-
trostatic tuning method using these electrodes, we consider the
specific case when N= 2, as in [14], and assume the following
distribution of the bias voltage

VDC(k) = VDC(1+(−1)krDC), k= 1, . . . ,16. (15)

Restricting ourselves to the case of the commonly used uni-
form electrode gap size, we obtain

κ(DC)e

κ(0)e

≈ 1− 4
π
rDC+ r2DC, (16a)

γ(DC)e

γ(0)e

≈ 1+
4
3π

rDC+ r2DC, (16b)

where κ(0)e = γ(0)e are the nominal values of the coupling
strength and Duffing nonlinearity when rDC = 0. Note that
the magenta region of figure 2 is determined by bounding
non-uniformity parameters, including −1< rDC < 1 (plus a
bound on another parameter introduced in the next section).
The dependence of κe and γe on the variation in the gyro-
scope bias voltage rDC are represented in equations (16a) and
(16b) and the corresponding behavior of these quantities and
the resulting sensitivity SΩ as a function of rDC are shown
in figure 3.

In ring resonating gyroscopes, the electrostatic forces from
the actuation/sensing scheme frequently dominate the nonlin-
ear dynamic behavior of the gyroscopic vibrational modes, so
that κ≈ κe and γ ≈ γe. In this case, figure 3 clearly shows
that when rDC < 0, one can achieve up nearly 4-fold increase

in SΩ. Also note that |γ| decreases for rDC ∈ (−4/3π,0), but
increases, although slower than |κ|, for rDC ∈ (−1,−4/3π).
Assuming, for instance, that we choose rDC =−4/3π, which
maintains γe and, thus, the gyroscope dynamic range, we
achieve an approximately 72% increase of the modal coupling
strength and, as a result, more than 2-fold increase of the gyro-
scope sensitivity. Note that the electrostatic tuning method
described here also shifts the natural frequencies of the gyro-
scopic vibrational modes. However, since the gyroscope linear
stiffness is dominated by the mechanical elastic effects, this
correction to the modal frequencies is rather small. In fact, the
electrostatic correction to the modal linear stiffness is ∝ r2DC
and, importantly, is the same for both modes. A recent finite
element study by the authors for a particular ring geometry has
confirmed the quantitative accuracy of these curves, lending
credence to the approach [35]. We next consider the effects of
geometric alterations to the gyro body and the electrode gap.

3.2. Effects of a non-uniform electrode gap size

In this section we assume that VDC = const across all the gyro-
scope electrodes and consider the effects of a non-uniform
electrode gap size on the magnitudes of κ, γ, and SΩ. In con-
trast to bias-based tuning using segmented electrodes, the elec-
trode gap size can be varied in a continuous fashion along
the gyroscope circumference, i.e. ∆=∆(θ), as depicted in
figure 4(b). In this case the gyroscope electrostatic potential
energy becomes

Uel ≈−ε0bR
2

V2
DC

4∑

n=0

ˆ 2π

0
dθ

un(θ)
∆n+1(θ)

. (17)

As mentioned above, the variation in the electrode gap size
should also possess at least 8-fold rotation symmetry in θ in
order to ensure that the gyroscopic modes remain degenerate,
so that we express the gap as

∆(θ) =
∞∑

k=0

∆k cos(8kθ), (18)

where ∆k are Fourier coefficients that become design space
variables. In this work, in order to demonstrate the applicab-
ility of the method we consider the simplest case that yields a
non-trivial result:

∆(θ) =∆0(1+ r∆ cos(8θ)). (19)

Of course, this harmonic will offer the dominant effect pos-
sible by the use of a single harmonic. From a physical stand-
point, the variation r∆ must satisfy |r∆|< 1. In practice,
however, the constraint on |r∆| becomes even stronger due to
constraints imposed by the chosenmicrofabrication process, in
order to ensure successful release of the resonator and avoid
resonator failure due to stiction and/or electrostatic pull-in. In
the present study we restrict −0.2< r∆ < 0.2, which is used,
along with bounds on rDC, to determine the magenta (feas-
ible) region shown in figure 2. Assuming that the gaps between
individual electrodes are small, we expand the denominator in
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Figure 4. Manipulating gyroscope nonlinearities via a non-uniform electrode gap size. (a) Dependence of the electrostatic components of
the dispersive coupling strength κe (dashed curve),the Duffing nonlinearity γe(solid black curve), and the normalized objective function
S(∆)
Ω /S(0)Ω (solid blue curve) as functions of the variation in the electrode gap size r∆. The green diamond represents the case of maximizing

|κ| while maintaining gyroscope dynamic range, i.e. γ(∆)
e ≤ γ(0)

e , and corresponds to the similar point indicated in figure 2. (b) Schematic
representation of a ring resonating gyroscope with a nonuniform electrode gap size with r∆ = 0.4. The solid circle represents the outer
boundary of the gyroscope body; the dashed curve represents the inner boundary of the attendant electrodes.

equation (17) in Taylor series up to the second order in r∆ and
obtain corrections to the coefficients of the electrostatic dis-
persive coupling and Duffing nonlinearity in the form

κ(∆)
e

κ(0)e

≈ 1+
5
2
r∆ +

15
2
r2∆, (20a)

γ(∆)
e

γ(0)e

≈ 1− 5
6
r∆ +

15
2
r2∆. (20b)

The dependence of κe and γe on the variation in the elec-
trode gap size r∆ and the corresponding behavior of SΩ are
shown in figure 4(a). From this figure it immediately fol-
lows that the case with r∆ > 0 becomes of significant import-
ance for gyroscopes whose dynamic behavior in the nonlin-
ear regime is dominated by electrostatic effects. Indeed, when
r∆ > 0, the dispersive coupling strength |κe| grows faster than
the Duffing nonlinearity |γe|. Furthermore, γ(∆)

e /γ(0)e < 1 for
r∆ ∈ (0, 1/9). Assuming, as before, that one desires to main-
tain the dynamic range of the uniform case, we choose r∆ =
1/9 and achieve an increase in |κe| of≈ 37% by a simple alter-
ation of the shape of the gyroscope electrodes at the design
stage, as depicted in figure 4(b). As follows from figure 2, this
increase of the coupling strength should lead to an approxim-
ately 32% increase of the sensitivity when the gyroscope drive
mode is operated at the onset of the Duffing nonlinearity. It is
worth noting, however, that uncertainties in microfabrication
process are expected to limit benefits provided by alteration
of the electrostatic gap due to the fact that there is a natural
variation of electrostatic gap along the resonator body. Avoid-
ing this limitation might be a non-trivial challenge forcing
designers to increase r∆ beyond 1/9 at the expense of reducing
the gyroscope dynamic range and, thus, revisiting tradeoffs in
device performance.

3.3. Shape optimization of the gyroscope body

Lastly, we show how one can alter the mechanical contri-
butions to κ and γ in micromechanical ring/disk resonating
gyroscopes by modifying the shape of the gyroscope body.
Here we illustrate this technique by manipulating the nonlin-
ear stiffness parameters of a thin spinning ring, discussed in
section 2, by modifying the ring radial thickness along the
gyroscope circumference. Similar to the electrode gap size
variation described in section 3.2, we require that the ring
radial thickness be periodic in θ, with the period being at most
π/4 in order to preserve the symmetry of the drive and sense
modes. Mathematically we express h(θ) as

h(θ) =
∞∑

k=0

hk cos(8kθ), (21)

where hk are Fourier coefficients chosen to meet the desired
optimization goal. Of course, the ring thickness must satisfy
fabrication and other restrictions, which will be satisfied here
by assuming hk " h0 for k > 1. Incorporation of h(θ) in the
dynamic model for the ring resonating gyroscope modifies
the expressions obtained earlier for the gyroscope kinetic and
mechanical potential energies, as follows

T=
ρbR
2

ˆ 2π

0
dθ[(u̇− vΩ)2 +(v̇+(r+ u)Ω)2]h(θ), (22a)

Um =
Eb

24R3

ˆ 2π

0
dθ
[
u+

∂ 2u
∂θ 2 −

1
2R

(
∂u
∂θ

)2]2

h(θ)3. (22b)

As noted in section 2, modifications in the resonator geo-
metry affect κ and γ in two ways. First, as follows from
equation (22a), the non-uniformity of the ring radial thick-
ness affects the effective modal mass, that is, the coefficient
of the term ∝ Ȧ2 in the gyroscope kinetic energy projected
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Figure 5. Manipulating nonlinear parameters of a thin spinning ring by varying the radial ring thickness h(θ). (a) Dependence of the
mechanical components of the dispersive coupling strength κm (dashed curve), the Duffing nonlinearity γm (solid black curve), and the
normalized objecive function S(h)Ω /S(0)Ω (solid blue curve, under the assumption that mechanical nonlinearities are dominant) on the ring
thickness non-uniformity parameter rh. (b) Representative geometry of the ring resonating gyroscope with the nonuniform radial thickness
with rh < 0. Electrodes, which have uniform gap and are therefore similarly wavy, are omitted for clarity.

onto vibrational modes. Additionally, h(θ) changes the stiff-
ness coefficients of the terms ∝ A2B2 (dispersive coupling)
and ∝ A4 (Duffing) in the gyroscope potential energy due to
elastic deformations of the ring. By accounting for these two
effects, we can express these contributions to the mechanical
components of κ and γ as

κm =
2E
ρR6

ˆ 2π

0
dθ(1+ sin2 4θ)h3(θ)

ˆ 2π

0
dθ(1+ 3cos2 2θ)h(θ)

, (23a)

γm =
2E

3ρR6

ˆ 2π

0
dθ(1+ 4sin2 2θ+ 4sin4 2θ)h3(θ)
ˆ 2π

0
dθ(1+ 3cos2 2θ)h(θ)

, (23b)

from where it immediately follows that if the ring
radial thickness is constant, i.e. h(θ) = h0, then κm = γm,
as expected.

To demonstrate the effect of a non-uniform ring radial
thickness, we consider the simple single harmonic case for
which hk = 0 for k≥ 2 in equation (21). In this case we define
rh = h1/h0 < 1 and expand equations (23a) and (23b) in a
Taylor series in rh, yielding

κ(h)m

κ(0)m

≈ 1− 1
2
rh+

3
2
r2h −

1
8
r3h, (24a)

γ(h)m

γ(0)m

≈ 1+
1
6
rh+

3
2
r2h +

1
24
r3h. (24b)

Figure 5(a) illustrates the dependence of κm, γm, and
S(h)Ω /S(0)Ω on rh under the assumption that mechanical nonlin-
earities are dominant, which could be the case for resonators

that employ alternative transduction methods, e.g. piezoelec-
tricity. From figure 5(a), it also follows that improvement in
the gyroscope angular rate sensitivity can be achieved if we
modify the ring radial thickness with rh < 0; see figure 5(b).
Physically, this case corresponds to thinning the segments of
the ring that experience the largest deflections in the radial dir-
ection as it vibrates in the drive and sense modes and adding
material between those segments. Specifically, following the
same line of thought as in sections 3.2 and 3.1, choosing
rh = −2/(9+4

√
2) preserves the value of γm, thus, maintaining

the gyroscope dynamic range and increases κm by approx-
imately 7% leading to the overall improvement in the gyro-
scope sensitivity by only 4%. While these results are clearly
less impressive than those obtained from electrostatic tuning
methods, this mechanical optimization approach should not
be overlooked when optimizing gyroscopes with relatively
simple geometries of the resonator body, since they are simple
to implement [20]. Also, such mechanical effects may domin-
ate for other geometries, such as disks.

3.4. Combining the approaches

The three optimization methods discussed above can be used
simultaneously in order to further optimize the performance of
the ring/disk resonating gyroscope. Assuming, for example,
that the nonlinear behavior of the gyroscope is primarily
determined by electrostatic forces (which is frequently the
case), i.e. |κe|( |κm| and |γe|( |γm|, one can apply both
modification of the electrode gap size and the bias voltage
along the gyroscope circumference. Figure 6 depicts a situ-
ation where both effects are taken into account. Specifically,
following the results of sections 3.1 and 3.2, one should be
able to preserve the gyroscope dynamic range while achieving
nearly 12-fold increase of the gyroscope sensitivity. On the
other hand, by sacrificing the gyroscope dynamic range just a
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Figure 6. Improvement in the angular rate sensitivity SΩ of a free
spinning ring as a function of the bias voltage and electrode gap
modifiers. The red curve represents the critical case (SΩ →∞). The
black solid and dashed curves are the loci of the points where
γ = γ(0) and γe = 1.05γ(0)

e , respectively. Black, blue, green, and
red diamonds represent, respectively, the following modifications in
the gyroscope electrostatic setup: no modifications (uniform case),
bias voltage modification only, gap size alteration only, and
combination of both electrostatic optimization methods.

bit (≈2.5% reduction of the critical vibration amplitude), one
can improve the gyroscope angular rate sensitivity almost by
a factor of 30.

Note that this figure maps the effects of physical design
parameters on the sensitivity, in contrast to figure 2, which
maps the effects of the nonlinear coefficients on the sensit-
ivity. Of course, the figures are related through the effects that
the design parameters have on the nonlinear coefficients, as
described in figures 3, 4(a) and 5(a).

This example clearly illustrates the impact of optimization
methods on the dynamic performance of MEMS gyroscopes
and provides additional motivation for their further explora-
tion in other types of MEMS resonators.

4. Discussion

We have illustrated the ability to modify mechanical and elec-
trostatic contributions to the nonlinear stiffness parameters,
both Duffing and mode coupling coefficients, of a thin spin-
ning ring in a systematic manner. Our results suggest that the
nonlinear tuning techniques discussed above can be equally
applied to ring/disk resonating gyroscopes with more sophist-
icated geometries, such as those reported in [9, 14]. Import-
antly, the general expressions for the gyroscope kinetic and
potential energies presented in equations (1)–(3) remain the
same. However, the functional form of the radial displacement
u(r,θ, t), presented in equation (4) for a thin ring, depends
on the geometry of the vibrating body. After being calcu-
lated numerically using, for example, finite element methods,
u(r,θ, t) and v(r,θ, t) can then be used in equations (1)–(3) in
order to compute the linear and nonlinear modal parameters
of interest. An example of such a computational analysis for

the case of a uniform ring and electrode gap but non-uniform
DC bias is presented in [35]. In addition, that study validates,
for the case of uniform ring with segmented electrodes, the
present approach in which we consider only the lowest-order
elliptical modes with their dispersive coupling, and for which
we omit any coupling to extraneous modes (translational, rota-
tional, etc). Inclusion of such coupling essentially introduces
small noise to the dynamics of the drive/sense modes, espe-
cially in the case of light damping.

It is important to mention that while we have successfully
demonstrated the applicability of the nonlinear tuning meth-
ods using rather simple modifications of VDC, ∆, and/or h,
the analysis remains essentially identical if one would like
to account for larger number of electrodes in equation (14)
or additional terms (e.g. higher harmonics) in equations (18)
and (21), although the additional benefits are expected to
be minimal.

From a methodological standpoint, the electrostatic tuning
methods discussed in sections 3.1 and 3.2 are independent of
the gyroscope geometry. For example, in order to take advant-
age of the non-uniform distribution of the bias voltage, one still
needs at least 16 driving/sensing electrodes around the gyro-
scope circumference. Furthermore, as follows from equation
(3), the functional expressions for the electrostatic contribu-
tions to κ and γ depend on the particular form of u(R,θ, t),
which is expected to be very similar to the one represented
by equation (4). As a result, the dependencies of the electro-
static contributions to κ and γ on variations of the bias voltage
and/or electrode gap size described by equations (16a), (16b),
(20a) and (20b) are expected to be reasonably accurate for
more complex geometries, e.g. DRGs. However, it is import-
ant to note that while we have shown that modifications in the
electrostatic setup of ring gyroscopes should lead to consid-
erable improvements in the gyroscope sensitivity, the same
design changes may have less dramatic effect in gyroscopes
with stiffer geometries, such as DRGs, where mechanical con-
tributions to nonlinear coefficients are expected to be larger.

The mechanical tuning method presented in section 3.3,
unlike its electrostatic counterparts, strongly depends on the
gyroscope geometry. While the ring geometry is essentially
defined by two parameters, its midline radius and radial thick-
ness, the dimension of the parameter space for gyroscopes
reported in [14, 42] is much higher. In this case, unfortu-
nately, it is no longer possible to perform simple analyt-
ical calculations for the linear and/or nonlinear parameters of
interest. Instead, one has to employ numerical shape optimiz-
ation techniques, such as those described in [32], in order to
tailor the gyroscope nonlinear dynamic behavior and improve
its performance as a rate sensor. The latter approach, how-
ever, can take into account a larger number of design para-
meters and geometric features of the gyroscope body and
may yield more substantial results as compared with those
obtained for the ring gyroscope. Results from a study of a
ring with variable DC bias on the electrodes that compares
detailed calculations of nonlinear coefficients and system
response obtained using finite element software with results
from a two mode model, offers evidence that such approaches
hold promise [35].
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5. Conclusion

In this work we have demonstrated design approaches that
allow one to tune nonlinear stiffness parameters of ring/disk
resonating gyroscopes in a systematic manner in order to
improve their performance as a rate sensor. Two of these
methods involve modifications in the gyroscope electrostatic
actuation setup and the other deals with geometrical
(inertia and mechanical stiffness) modifications of the
gyroscope body.

Our main goal was to maximize the intermodal dispers-
ive coupling strength between the drive and sense modes in
order to enhance self-induced parametric amplification, which
increases the gyroscope rate sensitivity SΩ [9], while sim-
ultaneously improving linear dynamic range by suppressing
the drive mode Duffing nonlinearity. Specifically, we showed
that if the gyroscope actuation/sensing scheme has at least
16 electrodes, it becomes possible to modify the intermodal
coupling strength and the modal Duffing constant by applying
a non-uniform distribution of the bias voltage. Additionally,
we demonstrated that a non-uniform electrode gap size also
affects the magnitude of the gyroscope nonlinear coefficients
and can be used to tailor the gyroscope nonlinear dynamic
behavior. Finally, we illustrated the applicability of shape
optimization methods in manipulating the nonlinear stiffness
parameters of a thin spinning ring by altering the ring radial
thickness along the ring circumference. By illustrating these
approaches using a thin spinning ring as an example, we have
shown that while the last optimization approach yielded relat-
ively small increase of nonlinear coefficients, the electrostatic
in combination, can result in more than an order of magnitude
improvement of the ring gyroscope sensitivity. Of course, for
DRGs and other mechanically stiff resonators, the mechanical
effects will be larger and a combined optimization approach
will no doubt offer even more benefit.

In the light of these results, future efforts can be focused on
(i) experimental implementation of these ideas on a ring res-
onator and (ii) adapting the tuning methods presented here for
application in more general ring/disk geometries in an attempt
to improve their angular rate sensitivity. These approaches will
likely involve detailed computational approaches such as those
described in [32–35].
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Appendix

In this section we present a system of fully coupled equations
of motion derived for a simple ring, [10], rotating with
an external angular rate Ω. These equations of motion are
expressed in terms of the modal coordinates A and B for the
drive and sense mode, respectively, and read

Ä
[
1+

3
5R2

(
11A2 +B2

)]
+ Ȧ

[
2ΓA+

6
5
BḂ
R2

]
+Aω 2

0

+A
[
Ω2

(
11
5

− 37B2

10R2

)
+κ

B2

R2 +
33Ȧ2

5R2 +
31Ḃ2

5R2 +
34ḂB
5R2

]

+
A3

R2

[
γ− 33

10
Ω2

]
− 16Ḃ

5R2ΩA
2 =

8
5
ΩḂ

[
1− 2

B2

R2

]

+FA(A,B, t),
(25)

B̈
[
1+

3
5R2

(
11B2 +A2

)]
+ Ḃ

[
2ΓB+

6
5
AȦ
R2

]
+Bω 2

0

+B
[
Ω2

(
11
5

− 37A2

10R2

)
+κ

A2

R2 +
33Ḃ2

5R2 +
31Ȧ2

5R2 +
34ȦA
5R2

]

+
B3

R2

[
γ− 33

10
Ω2

]
− 16Ȧ

5R2ΩB
2 =−8

5
ΩȦ

[
1− 2

A2

R2

]

+FB(A,B, t),
(26)

where

ω 2
0 =

1
5ρ

[
3
Eh2

R4 − 4
ε0V2

DC

h∆3

]
,

γ = κ=
6R2

5ρ

[
Eh2

R6 − ε0V2
DC

h∆5

]
,

FA(A,B, t) =
ε0VDCVAC(t)

5ρh∆2

[
4+ 3

B2

∆2 + 9
A2

∆2

]
,

FB(A,B, t) =
ε0VDCVAC(t)

5ρh∆4 AB. (27)
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