

Arthritis Care & Research / Volume 74, Issue 5 / p. 799-808

Original Article

Novel Framework for Measuring Whole Knee Osteoarthritis Progression Using Magnetic Resonance Imaging

Jeffrey B. Driban , Lori Lyn Price, Michael P. LaValley, Grace H. Lo, Ming Zhang, Matthew S. Harkey, Amanda Canavatchel, Timothy E. McAlindon

First published: 17 November 2020

<https://doi.org/10.1002/acr.24512>

The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans Affairs or the NIH.

This article was prepared using an Osteoarthritis Initiative (OAI) public-use data set, and its contents do not necessarily reflect the opinions or views of the OAI Study Investigators, the NIH, or the private funding partners of the OAI. The OAI is a public–private partnership between the NIH (contracts N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262) and private funding partners (Merck Research Laboratories, Novartis Pharmaceuticals, GlaxoSmithKline, and Pfizer, Inc.) and is conducted by the OAI Study Investigators. Private sector funding for the OAI is managed by the Foundation for the NIH. The funding sources had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; nor in the decision to submit the article for publication.

Supported by a grant from the NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS; grant U01-AR-067168), from the NIH/National Center for Advancing Translational Sciences (grant UL1-TR-002544), and from resources at the Center for Innovations in Quality, Effectiveness and Safety (CIN 13-413; Veterans Affairs Health Services Research & Development Service). Dr. Lo's work was supported by the NIH/NIAMS (grant K23-AR-062127) with an NIH/NIAMS funded mentored award, which provided support for design and conduct of the study, analysis, and interpretation of the data. Dr. Harkey's work was supported by the NIH (grant 5-TL1-TR-454-3).

No potential conflicts of interest relevant to this article were reported.

Abstract

Objective

We developed and validated a set of composite scores that combine quantitative magnetic resonance imaging (MRI)–based measurements of hyaline cartilage damage, bone marrow lesions (BMLs), and effusion-synovitis into composite scores.

Methods

We selected 300 participants (n = 100 for development cohort; n = 200 for validation cohort) from the Osteoarthritis Initiative with complete clinical, radiographic, and MRI data at baseline and 24 months. We used semiautomated programs to quantify tibiofemoral and patellar cartilage damage, BML volume, and whole-knee effusion-synovitis volume. The candidate composite scores were formed by summing changes from baseline to 24 months based on prespecified methods. We evaluated the candidate composite scores for 1) the ability to differentiate groups with and without knee osteoarthritis progression (17 radiographic and patient-reported definitions), 2) sensitivity to change (standardized response means), and 3) relative performance relating to legacy outcome measures of knee osteoarthritis progression.

Results

Three of 13 developed composite scores qualified for testing in the validation cohort (ranked by sensitivity to change): whole-knee cumulative cartilage damage, unweighted total knee score, and BML plus effusion-synovitis volume. Change in cumulative cartilage damage associated with radiographic progression (Kellgren/Lawrence grade: odds ratio [OR] 1.84; joint space width progression: OR 2.11). Changes in the unweighted total knee score (OR 1.97) and BML plus effusion-synovitis score (OR 1.92) associated with Western Ontario and McMaster Universities Osteoarthritis Index knee pain progression.

Conclusion

Two composite scores emerged, reflecting discrete domains of knee osteoarthritis progression. First, cumulative damage, which is measured by a whole-knee cartilage damage score, reflects the damage accrued over time. Second, dynamic disease activity, which is measured by a BML plus effusion-synovitis score, relates to changes in a patient's state of disease and symptoms.

Supporting Information

Filename	Description
acr24512-sup-0001- TableS1.docx Word 2007 document , 90.2 KB	Supplementary Table 1 Ability of 13 candidate composite scores to differentiate groups defined by 17 measures of 3 constructs (radiographic progression, quality of life, and pain)

Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.

[Download PDF](#)

About Wiley Online Library

[Privacy Policy](#)[Terms of Use](#)[About Cookies](#)[Manage Cookies](#)[Accessibility](#)[Wiley Research DE&I Statement and Publishing Policies](#)[Developing World Access](#)

Help & Support

[Contact Us](#)[Training and Support](#)[DMCA & Reporting Piracy](#)

Opportunities

[Subscription Agents](#)[Advertisers & Corporate Partners](#)

Connect with Wiley

[The Wiley Network](#)[Wiley Press Room](#)