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Abstract— This paper combines two control design aspects
for a class of infinite dimensional systems, and each of the
designs aims at significantly reducing the implementation com-
plexity and computational load. A functional observer, and
its extension of an unknown input functional observer, aims
to reconstruct a functional of the infinite dimensional state.
The resulting compensator only requires the solution to an
operator Sylvester equation plus one differential equation for
each dimension of the control signal, as opposed to an infinite
dimensional filter evolution equation and an associated operator
Riccati equation for the filter operator covariance. When the
functional to be estimated coincides with the expression of a
full state feedback control signal, then the functional observer
becomes the minimum order compensator. When the parabolic
system admits a decomposition whereby the system is decom-
posed into a lower finite dimensional subspace comprising the
unstable eigenspectrum and an infinite stable subspace, then
the functional observer-based compensator design becomes the
minimum order compensator for the finite dimensional sub-
system. This approach dramatically reduces the computation
for solving the ARE needed for the full state controller and
the associated Sylvester equation needed for the functional
observer. Numerical results for a parabolic PDE in one and
two spatial dimensions are included.

I. INTRODUCTION

This work incorporates two design methods used for
the efficient implementation of controllers for a class of
infinite dimensional systems. The first one considers infi-
nite dimensional systems that can be decomposed into two
subsystems with the following property: the first one is a
finite dimensional (slow) and possibly unstable subsystem
and the other one is an infinite dimensional stable (fast)
subsystem. One of the earliest works [1] examined the
theoretical framework and the requisite conditions for the in-
finite dimensional system to admit such a decomposition and
subsequently proposed a “modal” compensator by utilizing
controller design methods from finite dimensional theories.
Essential to this decomposition was the property of the state
operator, called the spectrum determined growth assumption
that relates the bound of the point spectrum to the bound of
the semigroup [2].

The other design method is concerned with estimates of
functionals of the state, termed functional observers. While
most of the work on functional observers has been done on
the finite dimensional setting, see the early work by Murdoch
[3], the series of works by Darouach [4], [5], [6] and the book
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[7]. Few works extended aspects of the functional observer
to the infinite dimensional case, see [8], [9], [10], [11], [12],
[13]. When the functional to be estimated coincides with
the full state feedback control term, where the operator is
the feedback operator, the functional observer essentially
estimates the control signal. This design requires the solution
to an operator Sylvester equation and a number of observer
states that are equal to the rank of the input operator. Such
design results in the minimum-order compensator and this
was first considered in [14].

To further simplify the design complexity and computa-
tional load, this paper combines the above two methods and
proposes a minimum-order finite dimensional compensator
for a class of infinite dimensional systems. The theoretical
underpinnings for the existence and well-posedness of such a
functional observer-based compensator for the finite dimen-
sional subspace of a class of infinite dimensional systems
are provided and a detailed numerical study for a parabolic
PDE in one and two spatial dimensions is included.

A. Contributions

The contributions of this paper are as follows

1) Construct a functional observer based on the finite
dimensional unstable subspace of the system operator.

2) Reduce the computation for solving the ARE and
Sylvester equation for A|D(A) to its restriction on the
finite dimensional, A|D(Au).

3) Extend the design to an Unknown Input Functional
Observer by imposing an additional operator identity
condition and relaxing the conditions on the unknown
temporal component of the disturbance signal.

4) Demonstrate on a diffusion PDE in 1D and 2D.

II. MATHEMATICAL FRAMEWORK

Let H be a real Hilbert space equipped with the scalar
product (·, ·) and norm || · ||H . Let U be a real Hilbert space
with the scalar product 〈·, ·〉 and norm || · ||U . Consider the
controlled evolution equation

ẋ(t) = Ax+Bu, (1)

x(0) = x0, (2)

with the following hypothesis.
Hypothesis 1: 1) the state operator A generates an an-

alytic C0-semigroup eAt of type ω0 (e.g. [15, p. 108]),
and λ0 is a real number in ρ(A) such that ω0 < λ0. The
resolvent (λ0I −A)−1 of A is compact in the Hilbert
space H.

2) the input operator B ∈ L
(
U, [D(A∗)]′

)
.
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In fact, 2) of Hypothesis 1 can be stated in the following
equivalent way (see [15, (HP)1, p. 432]):

1) B is of the form B = (λ0I − A)D , and there exists
γ ∈ (0,1) such that D ∈ L

(
U,D((λ0I−A)γ)

)
. In other

words,

(λ0I −A)γ−1B ∈ L(U,H).

The operator B is called admissible if all mild solutions
of the system (1)–(2) are continuous H-valued functions.
Let us first recall the well-known Riesz-Schauder-Fredholm
theorem (see [16, Theorem 2, p. 284] or [17, Theorem 6.29,
Chapter III, p. 187]) concerning the spectral properties of
an operator with compact resolvent. This result provides
the essential structure for us to construct finite dimensional
functional observer in Section III.

In the sequel, the symbol C denotes a generic positive
constant, which is allowed to depend on the indicated pa-
rameters.

Theorem 2: Let H be a Hilbert space and let A : D(A)→H
be a closed linear operator with compact resolvent (λI−A)−1

for some λ ∈ ρ(A). Then

1) the spectrum of A consists of an at most countable set
of points of the complex plane which has no point of
accumulation except possibly λ = ∞,

2) every number in the spectrum of A is an eigenvalue of
A of finite multiplicity, and

3) λ 6= 0 is an eigenvalue of A if and only if it is an
eigenvalue of A∗.

Based on Theorem 2, an operator A satisfying Hypothesis 1
(H1) has a countable set of eigenvalues λ j and corresponding
eigenvectors ϕ j, so that

Aϕ j = λ jϕ j, j = 1,2, . . . .

Since A is an infinitesimal generator of an analytic C0-
semigroup, the resolvent set of A contains a sector (e.g. [15]).
Therefore, there are only a finite number of eigenvalues of A
in the right complex half-plane {λ∈C : Reλ≥ 0}. We denote
by ΣN = {λ1,λ2, . . . ,λN} the set of (unstable) eigenvalues
repeated according to their algebraic multiplicity ma j so that

· · ·ReλN+1 < 0 ≤ ReλN ≤ ·· · ≤ Reλ1.

Let M denote the number of distinct unstable eigenvalues
and let Γ j be a positively oriented curve enclosing λ j, but
no other point of σ(A). Define the eigenprojection PN, j (see
[17], p. 178)

PN, j =− 1
2πi

∫
Γ j

(λI −A)−1dλ, j = 1,2, · · · ,M.

The space XN, j = Ran(PN, j), the range of PN , is called
the algebraic eigenspace for the eigenvalue λ j, and ma j =
dimXN, j is the algebraic multiplicity of λ j so that

ma1 +ma2 + · · ·+maM = N.

Any nonzero element of XN, j is called a generalized eigen-
function for λ j. Recall that (see [17], p. 181)

XN, j = Ker(λ j −A)ma j , j = 1,2, · · · ,M.

We denote by {ψ j,k}
ma j
k=1 the (normalized) linearly inde-

pendent generalized eigenfunctions corresponding to each

unstable distinct eigenvalue λ j of A. Denote by PN the
projection, explicitly given as a contour integral and similarly
its adjoint P∗

N as

PN =− 1
2πi

∫
Γ
(λI −A)−1dλ; P∗

N =− 1
2πi

∫
Γ
(λI −A∗)−1dλ,

where Γ and its conjugate Γ are the positively oriented curves
enclosing ΣN and separate the unstable spectrum of operator
A and its adjoint operator A∗ from the stable spectrum,
respectively.

Since some of the eigenvalues λ j might be complex, it will
be convenient in the sequel to view A as a linear operator
(again denoted by A) in the complex space H̃ = H ⊕ iH.
Therefore H̃ can be decomposed (see [17, p. 178]) as

H̃ = X̃u ⊕ X̃s,

where

X̃u = PNH̃ =
M⊕

j=1

X̃ j, dimX̃u = N

and

X̃s = (I −PN)H̃.

The subspaces X̃u ⊂ D(A) and X̃s ∩D(A) are invariant under
A. X̃u and X̃s are also invariant under the C0-semigroup eAt

generated by A. Moreover, it is well known that the spectrum
of A∗ is exactly the complex conjugate of the eigenvalues of
A (see [17], Chapter 3, Theorem 6.22, p. 184). Also, H̃ can
be decomposed as a direct sum of two invariant subspaces
of A∗ given by

H̃ = X̃∗
u ⊕ X̃∗

s ,

where X̃∗
u = P∗

NH̃ =
⊕M

j=1 X̃∗
j ,dimX̃∗

u = N and X̃∗
s = (I −

P∗
N)H̃. Here, X̃∗

j = Ker(λ j −A∗)ma j , j = 1,2, · · · ,M.

Let X̃⊥
u and X̃∗⊥

u denote the orthogonal spaces of X̃u and
X̃∗

u , respectively. It follows that

X̃⊥
u = X̃∗

s and X̃∗⊥
u = X̃s.

Since Re(H̃) = H, we introduce the subspace X s = Re(X̃ s)
and Xu = Re(X̃u). Then

H = Xs ⊕Xu.

Moreover, Xs ∩D(A) is invariant under A so is Xu = Xu ∩
D(A).

Note that the duals of Xu and Xs can be identified with
X∗

u and X∗
s , respectively, (see [18, Corollary 3.14]). This

result can be used to decompose our infinite dimensional
problem into a finite dimensional unstable system and a
stable infinite dimensional system. This decomposition is the
key to properly selecting the control input functions.

Now we set

Au = PNA = A|Xu : Xu → Xu,

and

As = (I −PN)A = A|D(A)∩Xs : D(A)∩Xs → Xs

to be the restrictions of A to Xu and Xs, respectively. The
projections PN and I−PN commute with A. The spectra of A
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on Xu and Xs coincide with {λ j}N
j=1 and {λ j}∞

j=N+1, so that

σ(Au) = {λ j}N
j=1 and σ(As) = {λ j}∞

j=N+1.

Thus, Au is bounded and of finite dimensional rank. Further-
more, since A generates an analytic C0-semigroup on H, its
restriction As to Xs also generates an analytic C0-semigroup
on Xs. This implies that the fractional powers of −As are well
defined. Moreover, As satisfies the spectrum growth condition
on Xs (see [19]), and hence

||eAst ||L(H) ≤Cωe−ωt , t ≥ 0,

and

||(−As)
θeAst ||L(H) ≤

Cωe−ωt

tθ , t > 0, 0 < θ ≤ 1, (3)

for any ω ≥ |ReλN+1|. Here, Cω is a constant that depends
on ω.

In order to apply PN and I −PN to (1) we first need to
extend their definitions. Notice that P∗

N is bounded from H
to D(A∗) and hence PN can be uniquely extended as bounded
operator from [D(A∗)]′ to H by:

(PNϕ,φ)H = (ϕ,P∗
Nφ)[D(A∗)]′,D(A∗), ∀(ϕ,φ) ∈ [D(A∗)]′×D(A∗).

In addition, since PNXs = 0, it follows that PN ∈
L([D(A∗)]′,Xu). Moreover,

D(A∗) = D(A∗)∩H

= [D(A∗)∩X∗
u ]⊕ [D(A∗)∩X∗

s ]

= X∗
u ⊕ [D(A∗)∩X∗

s ],

thus

[D(A∗)]′ = (X∗
u )

′⊕ [D(A∗)∩X∗
s ]

′

= Xu ⊕ [D(A∗)∩X∗
s ]

′. (4)

The second equality in (4) holds because (X∗
u )

′ can be
identified with (X∗

u )
∗, where (X∗

u )
∗ = Xu. A proof of equal-

ity (4) is also given in [18]. Consequently, I − PN ∈
L([D(A∗)]′, [D(A∗) ∩ X∗

s ]
′) and the system (1)–(2) can be

decomposed as

x = xu + xs, xu = PNx, xs = (I −PN)x. (5)

If applying PN and I −PN to system (1)–(2), respectively,
and letting

Bu = PNB and Bs = (I −PN)B,

we obtain

ẋu = Auxu +Buu ∈ Xu, (6)

xu(0) = PNx0 ∈ Xu, (7)

and

ẋs = Asxs +Bsu ∈ [D(A∗)∩X∗
s ]

′, (8)

xs(0) = (I −PN)x0 ∈ Xs. (9)

Correspondingly, the control spaces are given by

Uu = {B∗ϕ : ϕ ∈ Xu} and (10)

Us = {B∗ψ : ψ ∈ [D(A∗)∩X∗
s ]}. (11)

System (6)–(9) is the decomposition of the abstract system
(1)–(2). Recall that A generates an analytic C0-semigroup on
H and σ(As)⊂ {λ : Reλ ≤ ReλN+1 < 0}, thus its restriction
As to X s also generates an analytic C0-semigroup on Xs, and

hence

||eAst ||L(H) ≤Cωse
−ωst , t ≥ 0,

where ωs = −sup{Reλ : λ ∈ σ(As)} = −ReλN+1 > 0. In
addition, one can always make ωs arbitrarily large by setting
Γ enclosing eigenvalues with real components smaller than
−ωs.

As a result, to stabilize system (1)–(2), it suffices to
stabilize the subsystem (6)–(7) by constructing u ∈ Uu (see
[20]). Assume that (Au,Bu) is feedback stabilizable, then
the feedback operator Ku can be solved from a feedback
Algebraic Riccati equation (ARE) such that Au +BuKu gen-
erates an exponentially stable C0-semigroup on Xu. In fact,
Ku = −Bu∗Πu, where Πu can be solved from the following
ARE

A∗
uΠu +ΠuAu −ΠuBuB∗

uΠu + IN×N = 0 on Xu, (12)

In this case Ku ∈ L(Xu,X∗
u ), where X∗

u has been identified
as its dual. Moreover, Au +BuKu generates an exponentially
stable C0-semigroup on Xu such that

‖xu(t)‖H ≤Cue−αt‖PNx0‖H , (13)

for some α > 0 and Cu > 0. Now set the feedback operator
K = (Ku,0|[D(A∗)∩X∗

s ]
′). Then

‖u(t)‖U = ‖Kx(t)‖U = ‖Kuxu(t)‖U ≤C1e−αt‖x0‖X . (14)

One can show that As −BsB∗
uΠu generates an exponentially

stable C0-semigroup on X . Applying the variation of param-
eters formula to (8)–(9) follows

xs(t) =eAst(I −PN)x0 −
∫ t

0
eAs(t−τ)Bsu(τ)dτ. (15)

Recall by Hypothesis 1. 1) we have (λ0I−A)γ−1B∈ L(U,H).
Moreover, (λ0I −As)

1−γ = (I −PN)(λ0I −A)1−γ for any γ ∈
(0,1), hence

Bs = (I −PN)B = (λ0I −As)
1−γ(I −PN)(λ0I −A)γ−1B

and

‖eAstBsu(t)‖H =‖(λ0I −As)
1−γeAst(I −PN)(λ0I −A)γ−1Bu(t)‖H

≤C2
e−ωst

t1−γ ‖u‖U . (16)

Therefore, combining (15) with (14) and (16) yields

‖xs(t)‖H ≤Cωse
−ωst‖(I −PN)x0‖H

+C3

∫ t

0

e−ωs(t−τ)

(t − τ)1−γ e−ατ‖x0‖H dτ

≤max{Cω,C3}(e−ωst + e−αt
∫ t

0

e−(ωs−α)(t−τ)

(t − τ)1−γ dτ)‖x0‖H .

One can always adjust α and ωs such that 0 < α < ωs,
and hence

∫ t
0

e−(ωs−α)(t−τ)

(t−τ)1−γ dτ < ∞ for any t > 0. As a result,

we have ‖xs(t)‖H ≤C4e−αt‖x0‖X for some constant C4 > 0.
Combining this with (13) gives

‖x(t)‖H ≤C5e−αt‖x0‖X . (17)

for some constant C5 > 0.

Next consider that u is a linear combination of m vectors:

u(x, t) =
m

∑
i=1

bi(x)ui(t), (18)
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for m ≤ N, where ~u = (u1,u2, . . . ,um)
T ∈ L2(Rm), and ~b =

(b1,b2, . . . ,bm)
T ∈ Uu, is chosen such that (Au,Bu) is con-

trollable. The necessary and sufficient condition for such ~b
has been addressed in [20] based on the Popov-Belevitch-
Hautus (PBH) controllability test. Define the operator Bm :
R

m → [D(A∗)]′ by

Bm = B(b1,b2, . . . ,bm).

Let Bmu =PNBm and Bms = (I−PN)Bm. Then we can rewrite
(6)–(9) as

ẋu(t) = Auxu(t)+Bmu~u ∈ Xu, (19)

xu(0) = PNx0 ∈ Xu, (20)

and

ẋs(t) = Asxs(t)+Bms~u(t) ∈ [D(A∗)∩X∗
s ]

′, (21)

xs(0) = (I −PN)x0 ∈ Xs. (22)

The detailed discussion can be found in [20].

III. MAIN RESULTS: FO FOR INFINITE DIMENSIONAL

SYSTEMS

Now consider the functional observer design for system
(6)–(9) with disturbance d(t)

ẋu(t) = Auxu(t)+Bmu~u(t)+Fud(t) ∈ Xu,

xu(0) = PNx0 ∈ Xu,

ẋs(t) = Asxs(t)+Bms~u(t)+Fsd(t) ∈ [D(A∗)∩X∗
s ]

′,

xs(0) = (I −PN)x0 ∈ Xs,

y(t) =Cx(t),

z(t) = Kx.

(23)

where Fu = PNF , Fs = (I−PN)F , C = (Cu,0
∣∣∣
[D(A∗)∩X∗

s ]
′
), and

K = (Ku,0|[D(A∗)∩X∗
s ]

′). In this case,

y(t) =Cuxu(t) and z(t) = Kuxu(t). (24)

If the operator F is not known, one may still design a
functional observer that will ensure the error e(t)= z(t)− ẑ(t)
converging to zero in the appropriate norm. The functional
observer that estimates z(t) = Kx(t) in (23) is given by

ẇ(t) = Nw(t)+ Jy(t)+H~u(t),

ẑ(t) = w(t)+Ey(t).
(25)

Assume that the derivative of the output satisfies

ẏ(t) =Cuẋu(t). (26)

Combining (23),(25) and using (26) one arrives at

d
dt




xu(t)

xs(t)

e(t)


=




Au 0 0

0 As 0

0 0 N







xu(t)

xs(t)

e(t)




+




Bmu

Bms

0r×m


~u(t)+




Fu

Fs

PFu


d(t).

(27)

When the control is taken as ~u(t) = ẑ(t), then (27) becomes

d
dt




xu(t)

xs(t)

e(t)


= A




xu(t)

xs(t)

e(t)


+




Fu

Fs

PFu


d(t), (28)

where the state operator A is given by

A=




Au +BmuKu 0 −Bmu

0 As +BmsKu −Bms

0 0 N


 . (29)

Both the open loop (27) and closed-loop (28) systems require
the solution to the operator equalities

PAu −NP = JCu, PBmu = H, (30)

where the solution to the Sylvester operator equation P =
Ku −ECu : Xu → R

r, J is an r × q matrix, H is an r ×m
matrix and E is an r×q matrix. If the control is selected as
the estimated functional u(t) = ẑ(t), then r = m.

Lemma 1: If the pair (Au,Bmu) is feedback stabilizable,
the output y(t) satisfies (26), d ∈ L2(0,∞;X) and the
Sylvester equation (29) is satisfied, then the FO in (27) is
well-posed and for u ∈ L2(0,∞;Uu) the state x is bounded
with

lim
t→∞

|e(t)|Rm = 0.

Further, if the controller is selected as u(t) = ẑ(t), then the
closed-loop system (28) is well-posed and

lim
t→∞

‖x(t)‖= 0, lim
t→∞

|e(t)|Rm = 0. (31)

Proof The state operator A in (29) generates an exponentially
stable C0-semigroup on X ×R

m since N is Hurwitz and A+
Bmu K generates an exponentially stable C0 semigroup shown
in (17) (see [21]). Using the fact that d ∈ L2(0,∞;X), then
the perturbed system (28) is stable leading to (31). ✷

Remark 1: If Fu is known, then one can implement an
unknown input functional observer (UIFO) by supplementing
(25), (30) with the following condition

PFu = 0 (32)

and which ensures that despite the presence of the unknown
input in (23), the observer (25) can still estimate Kx(t). The
conditions on d(t) are relaxed to the minimum needed to
ensure the existence of solutions to the plant equations.

IV. NUMERICAL RESULTS

Two different examples that fit into the framework pro-
posed, are considered.

A. Advection-reaction in 1D

First, we consider the 1D diffusion-reaction PDE over the
interval [0, ℓ] = [0,1], given by

∂
∂t

x(t,ξ) = a
∂2

∂ξ2 x(t,ξ)+ cx(t,ξ)+b(ξ)u(t)+ f (ξ)d(t)

x(t,0) = x(t,1) = 0,

x(0,ξ) = sin(πξ)+3sin(2πξ)+6sin(4πξ)

y(t) =
∫ ℓ

0
δ(ξ−0.625)x(t,ξ)dξ.

The eigenvalues and eigenvectors are given by

λi =−a

(
iπ
ℓ

)2

+ c, φi(ξ) =
√

2sin(iπξ), i = 1,2, . . . ,∞.

The reaction constant is selected so that the first two eigen-
values are positive c = 5a

(π
ℓ

)2
. The input and disturbance
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Fig. 1: 1D case: evolution of state norms.

spatial functions were selected as

b(ξ) =

{
1

2εb
if ξa − εb ≤ ξ ≤ ξa + εb

0 otherwise
, εb = 0.05ℓ,

f (ξ) =

{
1

2ε f
if ξd − ε f ≤ ξ ≤ ξd + ε f

0 otherwise
, ε f = 0.1ℓ,

with ξa = 0.413ℓ, ξd = 0.6ℓ. The resulting matrices associ-
ated with xu, namely Au,Bu,Fu,Cu are given by

Au =

[
1.97 0

0 0.49

]
, Bu =

[
1.49

0.81

]
, Fu =

[
1.33

−0.78

]

The stabilizing feedback gain Ku =
[

5.6240 −3.2542
]

shifting the two unstable eigenvalues to −2.531,−0.7943.
The solution to the Sylvester equation was P =[
−0.7096 −1.2079

]
and which ensured that PFu = 0.

The functional observer error pole was N = −0.5 and
the initial condition for ẑ(t) was ẑ(0) = 0, resulting in
e(0) =−KuXu(0) =−4.1386.

case norm

full-state controller 6.057

UIFO-based feedback 6.536

Table 1. 1D case: L2 state norms.

To simulate the system, a total of 100 spectral elements
were used to discretize the PDE in space. The resulting
differential equations were integrated in the time interval
[0,10]s using the ODE solver from the Matlabr ODE library,
routine ode45, a 4th order Runge-Kutta scheme.

Figure 1 depicts the evolution of the L2 state norm for
the proposed case using the UIFO-based compensator, and
also the case of a full-state feedback controller u = Kx.
As expected, the full-state feedback controller exhibits a
better performance over the UIFO-based compensator. The
cumulative L2(0,10,L2([0, ℓ])) norm given by

‖x‖2
L2 =

∫ t

0

∫ ℓ

0
x2(τ,ξ)dξ dτ

is summarized in Table I and which also points to com-
parable performance. Both controllers exhibit comparable
performance, but the full-state feedback one cannot be imple-
mented since it requires the full state, which is not available.
The alternative is to implement a state observer, which as
mentioned in the introduction, significantly increases the
computational load.

B. Advection-reaction in 2D

The PDE is given by

∂
∂t

x(t,ξ,ψ) = a

(
∂2

∂ξ2 x(t,ξ,ψ)+
∂2

∂psi2
x(t,ξ,ψ)+ cx(t,ξ,ψ)

)

+b(ξ,ψ)u(t)+ f (ξ,ψ)d(t)
x(t,0,ψ) = x(t,1,ψ) = 0 = x(t,ξ,0) = x(t,ξ,1),

y(t) =
∫ ℓ

0
δ(ξ−0.625)x(t,ξ)dξ.

where

a = 2×10−2, c = 1.2

((
π
Lξ

)2

+

(
π

Lψ

)2
)

The eigenvalues are given by

λi j = −a

((
iπ
Lξ

)2
+
(

jπ
Lψ

)2
)
+ac

= −a

((
iπ
Lξ

)2
+
(

jπ
Lψ

)2
−1.2

((
π
Lξ

)2
+
(

π
Lψ

)2
))

for i, j = 1, . . . ,∞. It is seen that for Lξ = Lψ, one has that
the first eigenvalue λ11 is positive with all other negative.
The associated eigenfunctions are

φi j = 2sin(
iπξ
Lξ

)sin(
jπψ
Lψ

)

The input function b(ξ,ψ) = b1(ξ)b2(ψ) and the disturbance
function f (ξ,ψ) = f1(ξ) f2(ψ) are given by the 2D boxcar
functions centered at (0.251Lξ,0.361Lψ) for the actuator
and at (0.563Lξ,0.283Lψ) for the disturbance. The support
for these two functions is the same as the 1D case. Here
Au = 0.0790, Bu = 1.2893 and Fu = 1.4707 and the controller
is Ku = 1.0631 which shifts the unstable eigenvalue from
+0.0790 to −1.2917. The functional observer pole was
N = −0.25 and the initial condition for ẑ(0) = 0, resulting
in e(0) = 2.6578. The disturbance signal was selected as
w(t) = 5×10−2e−t and the initial condition was

x(0,ξ,ψ) = 5
(
sin(πξ/Lξ)+ sin(2πξ/Lξ)

)
×(

sin(πψ/Lψ)+ sin(2πψ/Lψ)+ sin(3πψ/Lψ)
)

To simulate the system, a total of 40×40 spectral elements
were used to discretize the PDE in space. The resulting
differential equations were integrated in the time interval
[0,20]s using the Matlabr ODE solver ode45.

Figure 2 depicts the evolution of the state L2 norm for
the full state controller and the FO-based feedback. Similar
to the 1D case, the performance of the full-state feedback
surpasses that of the FO-based feedback but at a consider-
able expense in state information. Table II summarizes the
results for the two cases. Similar to the 1D case, a full-
state feedback controller cannot be realized and instead an
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Fig. 2: 2D case: evolution of state norms.

observer-based feedback must be implemented, requiring the
real-time integration of an infinite dimensional state observer
x̂(t) in order to realize the controller u(t) =−Kx̂(t). On the
contrary, the UIFO-based controller, for this particular case
requires the real-time integration of the scalar w(t) in (25).

case norm

full-state controller 4.34853

UIFO-based compensator 6.90367

Table 2. 2D case: L2 state norms.

V. CONCLUSIONS

A functional observer was proposed to reconstruct a func-
tional of the state of a parabolic PDE as a means of reducing
the computational load associate with the implementation
of an observer-based feedback. The functional reconstructed
by the observer coincided with the full state feedback sig-
nal and this the functional observer produced an estimate
of the control signal. This resulted in a minimum-order
compensator. Reducing further the computational costs, the
functional observer was applied a a class of parabolic PDEs
that can be decomposed into a finite dimensional unstable
subsystem and a stable infinite dimensional subsystem. The
resulting functional observer was then requiring the solution
to a finite dimensional Sylvester equation, as opposed to an
operator Sylvester equation required for a functional observer
applied to a general parabolic PDE system.

An extension was also considered in which the unknown
input signal has its input operator known and thus, by
including an additional condition on the matrix identities
imposed on the functional observer, the resulting UIFO was
able to reconstruct the functional to be used for control
design. Such a condition enlarged the class of systems with
unknown disturbances that can use a functional observer-
based feedback in place of a full state feedback.
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