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Abstract
This article proposes a new type of a consensus protocol for the synchroniza-
tion of distributed observers in systems governed by parabolic partial differential
equations. Addressing the goal of sharing useful information among distributed
observers, it delves into the details governing the modal decompositions of dis-
tributed parameter systems. Assuming that two different groups of sensors are
available to provide process information to the two distributed observers, the
proposed modal consensus design ensures that only useful information is trans-
mitted to the requisite modal components of each of the observers. Without
any consensus protocol, the observers capture different frequency content of the
spatial process in differing degrees, as it relates to the concept of modal observ-
ability. Their modal components exhibit different learning behavior toward the
process state. In the extreme case, it turns out that certain modal components of
the distributed observers occasionally behave as naïve observers. To ensure that,
both collectively and modal componentwise, the observers agree both with the
process state andwith each other, amodal component consensus protocol is pro-
posed. Such a consensus protocol is mono-directional and provides only useful
information necessary to the appropriate modal component of the distributed
filters that behaves as a naïve modal observer. This protocol, when abstracted
and applied to different state decompositions can be viewed asmono-directional
projections of information transmitted and received by the participating dis-
tributed observers. Detailed numerical studies of advection PDE in one and two
spatial dimensions are included to elucidate the details of the proposed modal
consensus observers.
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1 INTRODUCTION

The alternative to centralized filters for state reconstruction of dynamical systems, namely, distributed filters, brought
forth significant computational savings and design complexity simplifications. Distributed filters can collaborate, via an
appropriate information exchange, to reach agreement among their state estimates. The first paper to establish the link
between consensus and PDEs by modeling the average consensus algorithm as an advection-diffusion process govern-
ing the homogenization of fluid mixtures was Reference 1. Migrating to a different involvement of PDEs and consensus
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protocols,2 extended the consensus observers for networked agents, each of which was governed by an infinite dimen-
sional system.

In the case of spatially distributed systems, the distributed filters become literally distributed in space, wherein sen-
sors positioned within the spatial domain, can obtain information about the state of the spatially distributed process.
Earlier work consider different aspects of consensus filters for spatially distributed systems. One of the earliest works that
extended the concept of consensus in distributed filters was in Reference 2, which required themapping from the consen-
sus protocol of the distributed systems to the corresponding output to have a strictly positive real transfer function. The
architecture of the distributed filters followed the one proposed for the finite dimensional case.3-6 While requiring what
is essentially an all-to-all connectivity, it did however paved the way for optimization of the communication among the
agents by modifying the consensus operators so that only output signals (finite dimensional) are shared by the agents.
Another one was the use of adaptive consensus weights whereby the consensus weights were adapted in accordance to
the agreement of the state estimates of the distributed filters. The application of output feedbackwith consensus observers
was developed in Reference 7 in order to synchronize and control distributed systems governed by partial differential
equations. As a means to provide a spatial convergence, a special type of consensus protocol was proposed in Reference 8
where a spatial penalty was explicitly imposed on the disagreement of the distributed filters. An aspect closer to the pro-
posed work was the zonal consensus observers where the consensus of the state estimates was enforced only on a portion
of the spatial domain. The consensus weight was essentially a proportional weight defined on a part of the spatial domain.

The idea of consensus observers was extended to second-order distributed parameter systems in Reference 9 and the
combination of the adaptation of consensus weights in Reference 2 with the natural setting of observers for second-order
systems was examined in Reference 10. A version of consensus observers that introduced a concept of robustness of the
finite dimensional representation of dissipative PDEs andwhich took advantage of the state decompositionwas presented
in Reference 11. In a similar vein, working on the finite dimensional decomposition of infinite dimensional dissipa-
tive systems, an H∞ design was presented in Reference 12. Combining consensus controllers with iterative learning for
second-order distributed parameter systems was considered in Reference 13. Introducing the concept of a leader-follower
tracking in networked systems, each governed by a diffusion PDE was considered in Reference 14 and which utilized
boundary sensing in each agent. This was subsequently extended to account for boundary disturbances in Reference 15
and semilinear PDEs in Reference 16. A computational geometry concept was incorporated into the consensus problem
wherein the problem of information sharing and consensus when using centroidal Voronoi tessellations algorithm to
control a diffusion process was presented in Reference 17.

However, a characteristic of spatially distributed processes not found in lumped parameter systems, is the spatially
dependent nature and effects of sensors; sensors can obtain information that enable the associated filter to reconstruct
a portion of the state that is limited to a spatial region surrounding the sensor. A series of papers consider this aspect
of regional observability18-22 and examined the design of observers and the characterization of sensors to attain such a
regional observability. Another property is that sensors in different regions of the spatial domain, can obtain information
and reconstruct different frequency components (waveforms) of the spatially distributed process.

For the former case, the reconstructed state fromeach of the distributed filters can formapiece of the estimation puzzle
and when the individual state estimates are stitched together they can produce an estimate of the spatially distributed
state over the entire spatial domain. In the latter case, sensors and their associated filters can reconstruct a portion, in
the sense of the frequency spectrum of the process state, precisely due to their spatial location. The spatially distributed
filters can only tell a “piece of the story” and only when they are combined together will they provide the entire picture
of the spatially distributed state.

As expected, these component filters, can only collectively provide the estimate of the process state; alternatively, they
can also yield such a comprehensive estimate by the judicious sharing of information. A distributed filter that is successful
in reconstructing a specific frequency band of the distributed process can broadcast such an information to all other
sensors/filters, but would not need to receive any information on the process estimate from other filters if it relates to
the state estimate over precisely this specific frequency band. Similarly, if a sensor/filter can efficiently reconstruct the
process state over a specific subregion of the spatial domain, it does not need to receive any state estimate corresponding
to that spatial subregion; instead, it needs to be supplemented with a reconstruct of the spatial state over spatial regions
at which it cannot effectively reconstruct.

However, the type of information a sensor can receive and, the type and portion of the state its associated filter can
reconstruct, is not absolute; rather a sensor/filter can reconstruct a given frequency band better than it can reconstruct
other frequency bands. Thus one comes across the relative level of observability a given sensor/filter can attain. In par-
ticular, a given sensor may be able, through its associated filter, to observe a frequency band A at a level of 100% and a
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frequency band B at a level of 40%. Such sensor/filter need only receive information that pertains to the frequency band
B from other sensors/filters, and does not need any information that pertains to the frequency band A. Similarly, it need
only transmit its state estimate that pertains to frequency band A to all other sensors/filters. It does not need to trans-
mit its state estimate as it pertains to the frequency band B to all other sensors/filters since it is not doing a great job at
reconstructing the process state over this frequency band. Similar arguments can be made for sensors/filters capable of
reconstructing the process state over the spatial region ΩA with a regional observability level of 100% and process state
over the spatial region Ω ⧵ΩA with a spatial observability level of 20%. This sensor/filter will be transmitting its state
estimate that pertains to the spatial region ΩA to all other sensors/filters. It will need to receive information on the state
estimate that pertains to the spatial region Ω ⧵ΩA from some/all other sensors/filters.

Therefore, a judicious sharing of information among the distributed observers is warranted as a means to avoid trans-
mitting redundant and duplicate information; only useful information about the state reconstruct must be received by
a given sensor/filter and in turn, only useful information should this particular sensor/filter must transmit to the other
communicating sensor/filters. In a nutshell, this article answers to the following request between distributed observers:
don’t send me just any information, just send me the information I need!

Contribution: This article considers a spatially distributed process whose time evolution is described by a diffusion,
and in general parabolic, PDE. The premise is that two sensor groups are employed; each sensor group can effectively
reconstruct the process state, either in terms of frequency content or representing specific region of the spatial domain.
Instead of a general consensus protocol for information sharing between the sensor groups and their associated filters,
here a different information sharing protocol is proposed. This information sharing protocol termed themodal consensus
protocol, ensures that only the appropriate portion of the state estimate is transmitted to the other distributed filter. Thus,
the contribution of this article is fourfold:

• Proposes two distributed filters associated with each of the two sensor groups and summarizes their well-posedness.
• Computes the exact and useful information that a given modal observer must receive in order to agree with the other
observers and provides the useful information that a given modal observer must transmit to the other modal observer.
The result is that the consensus protocol ismonodirectionalwhereby only useful and needed information is transmitted
and received by the distributed filters.

• Introduces modification to the consensus protocol in order to minimize communications costs defrayed by the modal
consensus protocols.

• Enables the selection of convergence rate of the disagreement error between the twomodal observers, thereby ensuring
that the disagreement error can converge to zero faster than any of the two state estimation errors.

Contents: A demonstration of the effects of sensor location on the amount and type of information about the spatially
distributed process is demonstrated in Section 2 as a means of familiarizing the reader with the effects of sensor locations
on the level of observability imparted by a specific sensor. Subsequently, a simple example of a spatially distributed process
which admits a solution that includes only a specific frequency content, also known as the modes, is presented in a tuto-
rial style. A sensor placed at specific spatial location, with this particular case being the zeros of certain eigenfunctions
associated with the spatial operator, results in certain frequencies being absent in the output. When a combination of the
input signal and initial conditions is used, the process state exhibits a nonzero spatiotemporally varying solutionwhile the
sensor output provides a zero reading! Continuing, the use of two sensors is examined whereby one sensor can provide
state information over a particular modal range, while the other sensor can obtain process state information representing
the orthogonal complement of the modal content of the process state. Each sensor and its associated filter cannot individ-
ually and single-handedly provide process state information.When the appropriate information sharing, via the proposed
modal consensus protocol, is enacted then both distributed filters are synchronized and provide a high-fidelity estimate of
the process state. This is generalized for a class of Riesz-spectral systems in Section 3. Instead of providing a generic con-
sensus protocol, themain result in Section 3 provides an efficient and relevant information sharing among the distributed
sensors/filters. Each filter receives information about the frequency or spatial region of the process state that it cannot
have, and in turn, transmits information that the other spatially distributed sensor/filter does not have. Such a modal
consensus protocol can be abstractly thought of as a projection of valuable information into the appropriate subspace. An
extension of the modal consensus protocol regarding the information sharing is presented as a means to minimize the
communication load. A detailed numerical example is provided in Section 4 as a means to highlight the particulars of the
modal consensus filters for diffusion PDEs in one and two spatial dimensions, with conclusions following in Section 5.
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2 MOTIVATING EXAMPLE AND PROBLEM FORMULATION

Consider the 1D diffusion PDE with state x(t, 𝜉)

𝜕x
𝜕t

= 𝜅
𝜕2x
𝜕𝜉2

+ 𝛽(𝜉)u(t) (1)

having Dirichlet boundary conditions x(t, 0) = x(t,𝓁) = 0, and initial condition x(0, 𝜉) = x0(𝜉). The spatial domain is Ω =
[0,𝓁], 𝜅 is the thermal diffusivity and 𝛽(𝜉)u(t) denotes the input with 𝛽(𝜉) the spatial distribution and u(t) its scalar
temporal component. The homogeneous PDE (i.e., u = 0) has a solution

x(t, 𝜉) =
∞∑
i=1

𝛼i(t)𝜙i(𝜉), (2)

where the spatial trial functions 𝜙i(𝜉) are termed themodes (or modal functions). It is easy to compute the modes for (1)
with Dirichlet boundary conditions,23 given here by

𝜙i(𝜉) =
√

2
𝓁
sin

(
i𝜋𝜉
𝓁

)
, i = 1,… ,∞. (3)

For the particular case of 𝛽(𝜉) = 𝜙k1(𝜉) with k1 any integer, the solution (2) substituted into (1) results in

∞∑
i=1

𝛼̇i(t)𝜙i(𝜉) =
∞∑
i=1

𝛼i(t)
(
−𝜅

( i𝜋
𝓁

)2)
𝜙i(𝜉) + 𝜙k1(𝜉)u(t).

When viewed in weak form and defining 𝜆i = −𝜅
(
i𝜋
𝓁

)2
∞∑
i=1

𝛼̇i(t)∫
𝓁

0
𝜙i(𝜉)𝜙j(x) d𝜉 =

∞∑
i=1

𝛼i(t)𝜆i∫
𝓁

0
𝜙i(𝜉)𝜙j(𝜉) d𝜉 +

∞∑
i=1

∫
𝓁

0
𝜙k1(𝜉)𝜙j(𝜉) d𝜉u(t),

for all test functions 𝜙j(𝜉), j = 1,… ,∞. When j = k1, then due to the orthogonality of the eigenfunctions, we arrive at

𝛼̇k1(t) = 𝜆k1𝛼k1(t) + u(t), (4)

and for all other values of j, one has the homogeneous equations for 𝛼i(t). Further assuming that the initial condition
x0(𝜉) = 𝜙k1(𝜉), the homogeneous equation yields the trivial solution and (4) has 𝛼k1(0) = 1. Finally, with u(t) = u0, (4) has
solution

𝛼k1(t) = e𝜆k1 t + e𝜆k1 t − 1
𝜆k1

u0,

and the solution to (1) becomes

x(t, 𝜉) =
(
e𝜆k1 t + e𝜆k1 t − 1

𝜆k1
u0

)√
2
𝓁
sin

(
k1𝜋𝜉
𝓁

)
. (5)

Assuming that a pointwise-in-space sensor is available to obtain measurements of (1)

y(t) = ∫
𝓁

0
𝛿(𝜉 − 𝜉s)x(t, 𝜉) d𝜉 = x(t, 𝜉s), (6)

where 𝜉s ∈ (0,𝓁) is the sensor location. Using (5) in (6), the scalar measurement is now given by

y(t) =
(
e𝜆k1 t + e𝜆k1 t − 1

𝜆k1
u0

)√
2
𝓁
sin

(
k1𝜋𝜉s
𝓁

)
.
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Notice that if 𝜉s is equal to any of the zeros of the k1th eigenfunction 𝜙k1(𝜉) (i.e., 𝜉s = m𝓁∕k1,m ∈ Z+,m ≥ k1), then

y(t) ≡ 0, ∀t ≥ 0.

In other words, the state x(t, 𝜉) in (5) is nonzero, yet the measurement y(t) is identical to zero for all times! Any observer
for (1) with output (6) is rendered a naïve observer.

The above demonstration points to the realization that under certain conditions (inputs and initial conditions), it is
possible that a single sensor placed at particular spatial locations can be ineffective in obtaining process information and
any observer designed for such a process is useless.

A single sensor can be rendered ineffective in reconstructing the state of a PDE like (2). Consider now two sensors
being available; such sensors can be placed in different regionswithin the spatial domainΩ. At this stage, one can consider
either a single centralized observer using both sensors, or two collaborating observers using a sensor each. For the latter
case, one does not expect that each of the two distributed observers will produce an identical estimate of the state x(t, 𝜉).
In fact, it will be demonstrated below, that each observer will be able to reconstruct “part” of the state. This portion of the
state can be quantified in terms of themodes, or frequency content, present in the state estimates. Subsequent comparison
via an appropriate consensus protocol will enable one to arrive at a state estimate which contains allmodal information.

Toward this, consider the following case: the disturbance input excites two natural frequencies of (1) with the input
term 𝛽(𝜉)u(t) given by

𝛽(𝜉)u(t) = 𝜙k1(𝜉)u1 + 𝜙k2(𝜉)u2, k1, k2 ∈ Z
+,

where u1,u2 are the constant amplitudes of the disturbance input terms. Using an initial condition x0(𝜉) = x1𝜙k1(𝜉) +
x2𝜙k2(𝜉), the solution to (1) is given by the truncated expansion (cf. (2))

x(t, 𝜉) = 𝛼k1(t)𝜙k1(𝜉) + 𝛼k2(t)𝜙k2(𝜉), (7)

where the two modal states 𝛼k1 , 𝛼k2 satisfy

𝛼̇k1(t) = 𝜆k1𝛼k1(t) + u1, 𝛼k1(0) = x1,
𝛼̇k2(t) = 𝜆k2𝛼k2(t) + u2, 𝛼k2(0) = x2. (8)

Their solution is given by

𝛼k1(t) = e𝜆k1 tx1 +
e𝜆k1 t − 1

𝜆k1
u1, 𝛼k2(t) = e𝜆k2 tx2 +

e𝜆k2 t − 1
𝜆k2

u2.

Two pointwise sensors are assumed available to provide process information, and using (7), we have

y1(t) = ∫
𝓁

0
𝛿(𝜉 − 𝜉1)x(t, x) d𝜉 = 𝛼k1(t)𝜙k1(𝜉1) + 𝛼k2(t)𝜙k2(𝜉1),

y2(t) = ∫
𝓁

0
𝛿(𝜉 − 𝜉2)x(t, x) d𝜉 = 𝛼k1(t)𝜙k1(𝜉2) + 𝛼k2(t)𝜙k2(𝜉2).

If the first sensor is placed at a location 𝜉1 which is a zero of 𝜙k2(𝜉) (implying 𝜙k2(𝜉1) ≡ 0), then

y1(t) ≡ 𝛼k1 (t)𝜙k1(𝜉1).

Similarly, if the second sensor is placed at a location 𝜉2 which is a zero of 𝜙k1(𝜉) (with 𝜙k1(𝜉2) ≡ 0), then

y2(t) ≡ 𝛼k2 (t)𝜙k2(𝜉2).

In other words, each sensor obtains state information representing a particular mode. Neither of the two sensors can
single-handedly obtain process information containing both modes. Collectively though, either in a centralized filter or
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via two collaborating distributed filters, they can reconstruct the process state. If in a centralized architecture, they result
in a modal observer as was first presented in Reference 24.

If we associate a state estimate x̂1(t, x) to y1(t), then

𝜕x̂1
𝜕t

= 𝜅
𝜕2x̂1
𝜕𝜉2

+ 𝛽(𝜉)u(t) + L1(𝜉)
(
y1(t) − ∫

𝓁

0
𝛿(𝜉 − 𝜉1)x̂1(t, 𝜉) d𝜉

)
, (9)

where L1(𝜉) is the kernel of the adjoint of the observer gain for the first observer. The observer state admits a similar
expansion

x̂1(t, 𝜉) = 𝛼1k1
(t)𝜙k1(𝜉) + 𝛼1k2

(t)𝜙k2(𝜉). (10)

Closer examination of the innovation term y1(t) − ∫ 𝓁
0 𝛿(𝜉 − 𝜉1)x̂1(t, 𝜉) d𝜉, reveals that

𝜀1(t) = y1(t) − ∫
𝓁

0
𝛿(𝜉 − 𝜉1)x̂1(t, 𝜉) d𝜉 = 𝛼k1(t)𝜙k1(𝜉1) − 𝛼1k1

(t)𝜙k1(𝜉1). (11)

Using (9), (10), and (11) and selecting the test function first as 𝜙k1(𝜉) and then as 𝜙k2(𝜉), the state observer associated
with y1(t) can be decomposed into

̇̂𝛼
1
k1(t) = 𝜆k1𝛼

1
k1
(t) + 𝜀1(t)∫

𝓁

0
L1(𝜉)𝜙k1(𝜉) d𝜉, (12a)

̇̂𝛼
1
k2(t) = 𝜆k2𝛼

1
k2
(t) + 𝜀1(t)∫

𝓁

0
L1(𝜉)𝜙k2(𝜉) d𝜉. (12b)

At this stage, one can consider a simplification in the design of the filter gain kernel L1(𝜉). If one sets

∫
𝓁

0
L1(𝜉)𝜙k2(𝜉) d𝜉 = 0,

that is, L1(𝜉) is designed to be orthogonal to 𝜙k2(𝜉), then (12) simplifies to

̇̂𝛼
1
k1(t) = 𝜆k1𝛼

1
k1
(t) + 𝜀1(t)∫

𝓁

0
L1(𝜉)𝜙k1(𝜉) d𝜉,

̇̂𝛼
1
k2(t) = 𝜆k2𝛼

1
k2
(t). (13)

The interpretation is that the observer associated with y1(t) can only learn about the frequency content of the state
x(t, 𝜉) associated with the mode 𝜙k1(𝜉) and thus is running a naïve observer for mode 𝜙k2(𝜉). If one imposes a similar
condition for the observer associated with y2(t), then each of the two observers will be able to learn only of the mode
associated with its own sensor. The result is to have a number of independent modal observers.

In a similar fashion, we associate a state estimate x̂2(t, 𝜉) with y2(t), then

𝜕x̂2
𝜕t

= 𝜅
𝜕2x̂2
𝜕𝜉2

+ 𝛽(𝜉)u(t) + L2(𝜉)
(
y2(t) − ∫

𝓁

0
𝛿(𝜉 − 𝜉2)x̂2(t, 𝜉) d𝜉

)
, (14)

where L2(𝜉) is the kernel of the adjoint of the observer gain for the second observer. The observer state x̂2(t, 𝜉) associated
with (14) admits the expansion

x̂2(t, 𝜉) = 𝛼2k1
(t)𝜙k1(𝜉) + 𝛼2k2

(t)𝜙k2(𝜉). (15)

The innovation term in (14) is denoted as

𝜀2(t) = 𝛼k2(t)𝜙k2(𝜉2) − 𝛼2k2
(t)𝜙k2(𝜉2), (16)
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and the observer associated with y2(t) has the decomposition

̇̂𝛼
2
k1(t) = 𝜆k1𝛼

2
k1
(t) + 𝜀2(t)∫

𝓁

0
L2(𝜉)𝜙k1(𝜉) d𝜉, (17a)

̇̂𝛼
2
k2(t) = 𝜆k2𝛼

2
k2
(t) + 𝜀2(t)∫

𝓁

0
L2(𝜉)𝜙k2(𝜉) d𝜉. (17b)

Similar to the first observer, a further simplification via the assumption that L2(𝜉) is orthogonal to 𝜙k1(𝜉), leads to

̇̂𝛼
2
k1(t) = 𝜆k1𝛼

2
k1
(t),

̇̂𝛼
2
k2(t) = 𝜆k2𝛼

2
k2
(t) + 𝜀2(t)∫

𝓁

0
L2(𝜉)𝜙k2(𝜉) d𝜉, (18)

and which shows that an observer associated with y2(t) can only learn about the frequency content of the state x(t, 𝜉)
associated with the mode 𝜙k2(𝜉) and thus is running a naïve observer for the mode 𝜙k1(𝜉).

The two observers (13) and (18) can collectively learn about the process state (7), but neither of them can individually
learn completely the process state (7). These observers are also heterogeneous, in the sense that only the first component
of the observer associated with sensor group #1 is learning about the k1th mode of the process (7), (8) while its second
component is running a naïve observer. Similarly, the observer associated with sensor group #2 has its second component
learning about the k2th mode of the process (7), (8) while its first component is running a naïve observer.

The synchronization task at hand is to modify (13) so that 𝛼1k2 can follow 𝛼2k2
in (18). Similarly, (18) must be modified

so that 𝛼2k1 can follow 𝛼1k1
in (13).

2.1 Error analysis

Subtracting the first component (12a) of (12) from the first component of (8), one arrives at the k1thmodal estimation error

d
dt

(
𝛼k1 − 𝛼1k1

)
=

(
𝜆k1 − 𝜙k1(𝜉1)∫

𝓁

0
L1(𝜉)𝜙k1(𝜉) d𝜉

)
×
(
𝛼k1 − 𝛼1k1

)
. (19)

If one selects the filter operator gain (operator associated with the kernel L1(𝜉)) to be equal to a constant multiple of
the adjoint of the output operator for y1(t), then

∫
𝓁

0
L1(𝜉)𝜙k1(𝜉) d𝜉 = ∫

𝓁

0
m1𝛿(𝜉 − 𝜉1)𝜙k1(𝜉) d𝜉 = m1𝜙k1(𝜉1),

simplifying (19) to

d
dt

(
𝛼k1 − 𝛼1k1

)
=

(
𝜆k1 −m1𝜙

2
k1
(𝜉1)

)(
𝛼k1 − 𝛼1k1

)
. (20)

In the absence of inputs, one can establish the exponential convergence of the modal error 𝛼k1 − 𝛼1k1
to zero. Similarly,

when the kernel L2(𝜉) is equal to a constant multiple of the adjoint of the output operator for y2(t), then

∫
𝓁

0
L2(𝜉)𝜙k2(𝜉) d𝜉 = m2𝜙k2(𝜉2).

The above when used with the second component (12b) of (12) and the second component of (8), produces the evolution
of the k2th modal estimation error

d
dt

(
𝛼k2 − 𝛼2k2

)
=

(
𝜆k2 −m2𝜙

2
k2
(𝜉2)

)(
𝛼k2 − 𝛼2k2

)
. (21)
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It is easily seen that the modal estimation errors (20), (21) converge to zero. The first observer (9), or its modal decom-
position (12), partially reconstructs the state x(t, x) of (1). In fact, it captures all the state characteristics associated with
the first mode 𝜆k1 only. Similarly, the second observer (14), or its modal decomposition (17), captures all the state charac-
teristics associated with the second mode 𝜆k2 only. Each observer captures half of the state information, but not the same
half. The second half of the first observer, given by (12b), and the first half of the second observer given by (17a), cannot
provide any estimates of their respective modal component.

To address this, a modification is proposed in (12b) and (17a), and which takes the form of a consensus protocol.
Equation (12b) is now modified to include a penalty on the difference 𝛼2k2 − 𝛼1k2

and whose goal is to ensure that (12b)
learns about the second modal component from the successful observer (17b). It now becomes

̇̂𝛼
1
k2(t) = 𝜆k2𝛼

1
k2
(t) + 𝜀1(t)∫

𝓁

0
L1(𝜉)𝜙k2(𝜉) d𝜉 + f21, (22)

where the term f21 is to be selected in order for the difference 𝛼2k2 − 𝛼1k2
to converge to zero. Subtracting (22) from (17b)

d
dt

(
𝛼2k2

− 𝛼1k2

)
= 𝜆k2

(
𝛼2k2

− 𝛼1k2

)
− f21 + 𝜀2(t)∫

𝓁

0
L2(𝜉)𝜙k2(𝜉) d𝜉 − 𝜀1(t)∫

𝓁

0
L1(𝜉)𝜙k2(𝜉) d𝜉

=
(
𝜆k2 −m2(𝜙k2(𝜉2))

2) (𝛼2k2 − 𝛼1k2

)
− f21 +

(
𝛼k2 − 𝛼1k2

)
𝜙k2(𝜉2)∫

𝓁

0
L2(𝜉)𝜙k2(𝜉) d𝜉 − 𝜀1(t)∫

𝓁

0
L1(𝜉)𝜙k2(𝜉) d𝜉.

Let us examine the terms above in order to select f21 accordingly. The term (𝛼k2 − 𝛼1k2
)𝜙k2(𝜉2)∫ 𝓁

0 L2(𝜉)𝜙k2(𝜉) d𝜉 is
simplified

(
𝛼k2 − 𝛼1k2

)
𝜙k2(𝜉2)∫

𝓁

0
L2(𝜉)𝜙k2(𝜉) d𝜉 =

(
𝛼k2 − 𝛼1k2

)
𝜙k2(𝜉2)m2𝜙k2(𝜉2).

The term 𝛼k2𝜙k2(𝜉2) = y2(t) and the term 𝛼1k2
𝜙k2(𝜉2) = C2x̂1. If L1(𝜉) is normal to 𝜙k2(𝜉), then the obvious choice for

f21 is

f21 =
(
y2(t) − C2x̂1(t, 𝜉)

)
+ q21

(
𝛼2k2

− 𝛼1k2

)
, ∫

𝓁

0
L1(𝜉)𝜙k2(𝜉) d𝜉 = 0, (23)

and which results in

d
dt

(
𝛼2k2

− 𝛼1k2

)
=

(
𝜆k2 −m2(𝜙k2(𝜉2))

2 − q21
) (

𝛼2k2
− 𝛼1k2

)
.

This provides the desired convergence of 𝛼1k2 to 𝛼
2
k2
and subsequently to 𝛼k2 since |𝛼k2 − 𝛼1k2

| ≤ |𝛼k2 − 𝛼2k2
| + |𝛼2k2 − 𝛼1k2

|. It
should be noted that the convergence rate of the disagreement error 𝛼2k2 − 𝛼1k2

, via the choice of q21 is larger than the
convergence rate of the modal estimation error 𝛼k2 − 𝛼2k2

in (21).
In a similar fashion, the modal consensus observer is implemented for (17a). This observer is modified to

̇̂𝛼
2
k1(t) = 𝜆k1𝛼

2
k1
(t) + 𝜀2(t)∫

𝓁

0
L2(𝜉)𝜙k1(𝜉) d𝜉 + f12, (24)

where

f12 =
(
y1(t) − C1x̂2(t, x)

)
+ q12

(
𝛼1k1

− 𝛼2k1

)
, ∫

𝓁

0
L2(𝜉)𝜙k1(𝜉) d𝜉 = 0. (25)

As was similarly noted above, the convergence rate of the disagreement error 𝛼2k1 − 𝛼1k1
, via the choice of q12 is larger

than the convergence rate of the modal estimation error 𝛼k1 − 𝛼1k1
in (17).

Summarizing the above by updating (12) and (17) using (23), (25) we have
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⎧⎪⎨⎪⎩
̇̂𝛼
1
k1(t) = 𝜆k1𝛼

1
k1
(t) + 𝜀1(t)∫

𝓁

0
L1(𝜉)𝜙k1(𝜉) d𝜉,

̇̂𝛼
1
k2(t) = 𝜆k2𝛼

1
k2
(t) +

(
y2(t) − C2x̂1(t, x)

)
+ q21

(
𝛼2k2

− 𝛼1k2

)
,

(26)

and

⎧⎪⎨⎪⎩
̇̂𝛼
2
k1(t) = 𝜆k1𝛼

2
k1
(t) +

(
y1(t) − C1x̂2(t, x)

)
+ q12

(
𝛼1k1

− 𝛼2k1

)
,

̇̂𝛼
2
k2(t) = 𝜆k2𝛼

2
k2
(t) + 𝜀2(t)∫

𝓁

0
L2(𝜉)𝜙k2(𝜉) d𝜉.

(27)

Both (26) and (27)must bewritten in terms of the PDEs (9) and (14) and not theirmodal components. This is presented
in the next section for the more general class of PDEs described by Riesz-spectral systems.

3 GENERALIZATION TO RIESZ-SPECTRAL SYSTEMS

To consider a family of PDEs that exhibit similar behavior to the above diffusion PDE, we view these PDEs as evolution
equations in an appropriate Hilbert space. The interplay and relationships between the time derivative of the state and
the various spatial derivatives will be absorbed into the definition of the state operator which will absorb the boundary
conditions through the definition of its domain. The premise in this case is that two clusters, or groups, of sensors are
available to provide process information. The first sensor group can collectively obtain process information over a partic-
ular modal content; similarly, the second sensor group can collectively obtain process information over a different modal
content. Such amodal contentmay ormay not be the complement of the frequency content of the first sensor group. These
sensor groups may be selected to contain frequency content or frequency range, for example, the first sensor group may
contain frequencies below a threshold and the second sensor group may contain frequencies above the frequency thresh-
old. Or, the first sensor group may contain the frequencies of the even-numbered eigenfunctions and the second sensor
group may contain the frequencies of the odd-numbered eigenfunctions, and so forth. Additionally, the first group may
be able to observe “more” one frequency band and observe “less” another frequency band. The reverse can be assumed
for the second sensor group and the difference on their process state information is on the relative observability. Neither
of the two sensor groups will solely have a 100% observability over one frequency content and 0% over a different fre-
quency content. The difference of the sensor groups is that one sensor group can attain higher observability levels over
certain frequency content compared with the other sensor group. This concept of the level ofmodal observability will be
clarified below. It essentially follows the definitions of modal observability first appeared in References 25,26 for flexible
structures and then applied to parabolic PDEs in References 27.

We consider PDEs, like the one in (1), written as evolution equations in a Hilbert space X

ẋ(t) = Ax(t) + Bu(t),

y(t) =

[
y1(t)
y2(t)

]
=

[
C1x(t)
C2x(t)

]
, (28)

where the output operators C1,C2 represent multidimensional measurements associated with group #1 and group #2
of the eigenfunctions of the operator A. To allow for a more general class of input and primarily output operators, we
consider the Gelfand space triple V → X → V∗ with the state operator A ∈ (V ,V∗) and C1 ∈ (V ,Y1), C2 ∈ (V ,Y2),
where Y1,Y2 are the Euclidean output spaces of dimensions n1 and n2, respectively. These dimensions may or may not be
the same, but both n1,n2 ≥ 1.

The PDE in (1), as written as an evolution equation (28), can be solved independently in terms of the modes by taking
advantage of the orthogonality property of the eigenfunctions (i.e., modes) of the spatial operator A in (28).23 The Hilbert
space X , equipped with the inner product

⟨𝜙1, 𝜙2⟩ = ∫Ω
𝜙∗
1(𝜉)𝜙2(𝜉) d𝜉,
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yields ⟨
𝜙i,A𝜙j

⟩
= ∫Ω

𝜙∗
i (𝜉)A𝜙j(𝜉) d𝜉 = 𝜆j𝛿ij,

where 𝛿ij denotes the Kronecker delta, and 𝜆j the jth eigenvalue, cf. 𝜆i in (3), (4). When the eigenfunctions are used as a
basis function set for the Hilbert space X , the spatially varying solution to an equation of the form (28) can be written as

x(t, 𝜉) =
∞∑
i=1
xi(t)𝜙i(𝜉).

These two sensor groups represent two bands of frequencies. The first group of frequencies is associated with the output
operator C1 and is such that the level of modal observability of the sensors in group #1 is significantly above a certain
modal observability threshold. Similarly, the second group of frequencies is associated with the output operator C2 and
is such that the level ofmodal observability of the sensors in group #2 is significantly above a certain modal observability
threshold. However, it should be emphasized again that both groupsmay observe (almost) all frequencies but their level of
modal observability may not necessarily exceed the threshold; each sensor groupmay observe certain frequencies “more”
than other frequencies and this is quantified in terms of the level of modal observability defined below.

To better understand the effects of sensor locations on the ability of a sensor to measure a givenmode and the amount
at which it can measure a given mode, we first visit certain definitions from Reference 27. The two sensor groups in (28)
are given in detail

yi(t) =

⎡⎢⎢⎢⎢⎢⎣
∫Ω
ci,1(𝜉)x(t, 𝜉) d𝜉

⋮

∫Ω
ci,ni (𝜉)x(t, 𝜉) d𝜉

⎤⎥⎥⎥⎥⎥⎦
, i = 1, 2,

where ci,j(𝜉) is the spatial distribution of the jth sensor of the ith sensor group, j = 1,… ,ni, i = 1, 2. With regard to (6),
we identify c1,1(𝜉) = 𝛿(𝜉 − 𝜉s). To quantify howmuch a given sensor, described by ci,j(𝜉), can measure a specific mode, we
borrow some definitions on modal observability from Reference 27. However, the concept of H2 spatial observability is
not considered and instead a slightly different definition of modal observability is presented.

To distinguish between the collective notion of observability of a sensor group and the observability of a given sensor
within the sensor group, the spatial distribution of the sensing devices is further parameterized by the sensor locations.
Thus the spatial functions ci,j(𝜉) are further parameterized by the sensor locations and the process measurements are
written as

yij(t; 𝜉sj) = ∫Ω
ci,j(𝜉; 𝜉sj)x(t, 𝜉) d𝜉, j = 1,… ,ni, i = 1, 2.

The vector of sensor locations is denoted by 𝝃si = {𝜉s1,… , 𝜉sni} ∈ Ωsi, i = 1, 2, where the domain of admissible sensor
locations is Ωsi ⊂

∏niΩ.
The first definition quantifies the ability of a sensor, described by ci,j(𝜉; 𝜉s) to effectively measure a specific mode of

(28). For the ith sensor group and the kth mode, define

f ik(𝜉s) =

‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎝
∫Ω
ci,1(𝜉; 𝜉s1)𝜙k(𝜉) d𝜉

⋮

∫Ω
ci,ni(𝜉; 𝜉sni)𝜙k(𝜉) d𝜉

⎞⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖
, i = 1, 2.

The jth component of f ik(𝝃s) is given by

f ik,j(𝜉sj) =
||||∫Ω

ci,j(𝜉; 𝜉sj)𝜙k(𝜉) d𝜉
|||| , i = 1, 2,
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and it is easily established that for the kth mode we have

f ik(𝝃s) =

√√√√ ni∑
j=1

(f ik,j(𝜉sj))
2, i = 1, 2.

Now, to have an assessment of the measuring ability of a given sensor group over a specific mode, we consider themodal
observability.

Definition 1 (k th modal observability). The k th modal observability of the i th sensor group at the sensor location 𝝃s
is defined as

i
k(𝝃s) =

f ik(𝝃s)

max
𝜉∈Ωsi

f ik(𝝃)
, i = 1, 2, k = 1, 2,… .

Themodal observability describes the ability of the ith sensor group that is placed at the sensor location 𝝃s, to measure
the kth mode.

A value of 1, or 100%, for a given i
k(𝝃s) indicates that the ith sensor group, placed at location 𝝃s, can measure the

kth mode completely. Such a measurement of the kth mode is collectively and is not necessarily attributed to a particular
sensor within the sensor group.

A related definition considers the component of the sensor group, that is, a particular sensor, and its ability tomeasure
a specific mode.

Definition 2 (kth modal observability of jth sensor). The k th modal observability of the jth sensor at location 𝜉sk within
the i th sensor group is defined as

i
k,j(𝜉sj) =

f ik,j(𝜉sj)

max
𝜉∈Ω

f ik,j(𝜉)
, i = 1, 2, k = 1, 2,… .

It is easily established by the definition of the Euclidean norm in Rni that

f ik(𝜉s) =

√√√√ ni∑
j=1

(
f ik,j(𝜉sj)

)2
, i = 1, 2.

One can view the definition of kth Modal Observability as the summation of the kth modal observability of jth sensor
over all sensors within the sensor group. One can subsequently consider a summation of any of the above two quantities
over all modes.

Since we will be predominantly working with a finite set of modes, as they represent the salient dynamics of the
process, then a measure of how a sensor within a sensor group or, a how sensor group can measure these modes is
necessitated.

Definition 3 (cumulative spatial observability). The cumulative spatial observability of the ith sensor group is defined
for the first N modes and is given by

 i
N(𝝃s) =

√∑N
k=1

(
f ik(𝝃s)

)2
max
𝝃∈Ωsi

√∑N
k=1

(
f ik(𝝃)

)2 , i = 1, 2.

In a similar fashion, one can define the component spatial observability which corresponds to the observability of
a single sensor at a spatial location 𝜉sj over the first N modes. It is the normalized sum of squares of the kth modal
observabilities of jth sensor over the first N modes.

Remark 1. In the above definition of cumulative spatial observability, one can define it over a specific set of modesi. In
this case, the associated cumulative spatial observability is given by
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i
(𝝃s) =

√∑
k∈i

(
f ik(𝝃s)

)2
max
𝜉∈Ωsi

√∑
k∈i

(
f ik(𝝃)

)2 , i = 1, 2.

Example 1. Consider the diffusion equation (1) in [0,𝓁] = [0, 1] with eigenfunctions (3). If a single (j = 1 = n1 = n2)
pointwise sensor is placed at the location 𝜉s = 0.5, then

C𝜙k = ∫
1

0
𝛿(𝜉 − 0.5)𝜙k(𝜉) d𝜉 = 𝜙k(0.5).

In this case fk,1(𝜉s,1) =
|||𝜙k(0.5)|||, and

O1
k,1(𝜉s,1) =

fk,1(𝜉s,1)
max
𝜉s∈[0,1]

fk,1(𝜉s)
=

|||𝜙k(0.5)|||
max
𝜉s∈[0,1]

|||𝜙k(𝜉s)||| .
When only the first N = 4 modes are of interest, then the cumulative spatial observability is

1
4 (𝜉s) =

√∑4
k=1

|||𝜙k(𝜉s)|||2
max
𝜉∈Ω

√∑4
k=1

|||𝜙k(𝜉)|||2
=

√|||𝜙1(𝜉s)|||2 + |||𝜙2(𝜉s)|||2 + |||𝜙3(𝜉s)|||2 + |||𝜙4(𝜉s)|||2
max
𝜉∈[0,1]

√|||𝜙1(𝜉)|||2 + |||𝜙2(𝜉)|||2 + |||𝜙3(𝜉)|||2 + |||𝜙4(𝜉)|||2
.

When the sensor location is 𝜉s = 0.25, then 1
4 (0.25) = 0.8669, whereas 1

4 (0.50) = 0.8513. This is depicted graphically in
Figure 1, where the cumulative spatial observability  (𝜉s) (=1

4 (𝜉s)), is plotted versus the sensor location 𝜉s ∈ (0, 1). The
highest value occurs at 𝜉s = 0.16 and 𝜉s = 0.84, meaning that a sensor placed in either location will have the highest value
of the cumulative spatial observability for all four modes. If there is only a single sensor group having a single sensing
device with = {𝜙1, 𝜙2, 𝜙3, 𝜙4}, then the best location for 𝜉s will be either of the two values.

Next, two sensor groups are considered containing differentmodes. First, group #1 having a single sensor is associated
with the first two modes 1 = {𝜙1, 𝜙2} and group #2 also having a single sensor is associated with the modes 2 =
{𝜙3, 𝜙4}. The associated cumulative spatial observability for these two sets i

(𝜉s) is plotted against the sensor location 𝜉s
and presented in Figure 2 along with a desired threshold of 85%; that is, consider sensor locations that ensure i

(𝜉s) ≥
0.85. For the first sensor group, the best sensor location is at 𝜉s = 0.29 (and also 𝜉s = 0.71), since1

(0.29) = 1. Thismeans
that if one wants to observe modes 𝜙1 and 𝜙2 by a single sensor, the best possible location is 𝜉s = 0.29. For group #2,
the best sensor location is 𝜉s = 0.14 (and also 𝜉s = 0.86) since 2

(0.14) = 1. A sensor placed at 𝜉s = 0.14 will have the
highest modal observability of modes 𝜙3 and 𝜙4; if these two modes are dominant, then the associated filter gain will be
the smallest possible of all sensor locations. Notice that such a sensor will also be able to observe the other two modes,
𝜙1, 𝜙2 since 1

(0.14) = 0.65.
When the sets i are changed, then different spatial locations appear to be better suited for each new i, i = 1, 2.

Figure 3 depicts the cumulative spatial observability for1 = {𝜙1, 𝜙3} and2 = {𝜙2, 𝜙4} versus the sensor location 𝜉s.
The highest cumulative spatial observability for1 is at 𝜉s = 0.5 having 1

(0.5) = 1. This means that an observer for
a system with 𝜙1, 𝜙3 being the dominant modes, will be able to reconstruct them completely with the smallest possible
filter gain. Similarly, the highest cumulative spatial observability for2 is at 𝜉s = 0.15 (also at 𝜉s = 0.35, or 𝜉s = 0.65 and
𝜉s = 0.85) having 2

(0.15) = 1. If the system is exited by the even-numbered modes, then this sensor location is the best
ever to reconstruct these two modes.

When each mode is considered individually, as depicted in Figure 4, one considers the case of having four sensor
groups with a single sensor in each with1 = {𝜙1},2 = {𝜙2},3 = {𝜙3}, and4 = {𝜙4}. An optimal sensor location
for one group may be the worst for another group; for example, at 𝜉s = 0.5, the modes 𝜙1 and 𝜙3 have the best modal
observability, but at the same time represents a zero observability for the modes 𝜙2 and 𝜙4.

As it turns out, one can group the modes in different sets (e.g., the first two and last two, or odd-numbered and
even-numbered modes) and select the sensor location, or locations, that have a desired level of modal observability for
that modal group. In this particular example, it appears that grouping them into the odd-numbered and even-numbered
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F IGURE 1 Cumulative spatial observability for N = 4 modes with1 = {𝜙1, 𝜙2, 𝜙3, 𝜙4}
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F IGURE 2 Cumulative spatial observability for N = 4 modes with1 = {𝜙1, 𝜙2} and2 = {𝜙3, 𝜙4}

modes is the better policy since the even-numbered and odd-numbered modes share their zeros. Following Figure 3, a
sensor placed at 𝜉s = 0.5 can handle the odd-numbered modes and another sensor placed at 𝜉s = 0.15 (or at 0.35, 0.65,
0.85) can handle the even-numbered modes. Examining Figure 4, a sensor placed at 𝜉s = 0.5 will be able to reconstruct
all odd-numbered modes for this process. If the appropriate conditions are present, for example, initial conditions and
spatial distribution of input/disturbance, results in a response containing only the odd-numberedmodes, then this sensor
can reconstruct all of them. However, if the conditions are such that only the even-numbered modes appear in the state
response, then the sensor placed at 𝜉s = 0.5 will be ineffective.

We let P1 ∶ X → X1 be the orthogonal projection operator associated with the first sensor group, represented by
C1. Similarly, we define P2 ∶ X → X2 be the orthogonal projection operator associated with the second sensor group,
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represented by C2. The state x ∈ X admits the following decomposition x = P1x + P2x = x1 + x2. The projection operators
have the following properties

• C1(P1x) = C1x1
• ⟨P1x,Φ⟩ = ⟨x1Φ1⟩ = ⟨x,Φ1⟩

and

• C2(P2x) = C2x2
• ⟨P2x,Φ⟩ = ⟨x2,Φ2⟩ = ⟨x,Φ2⟩
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Remark 2. Please note that the above do not imply that C1x2 = 0 and C2x1 = 0. Through the relevant definitions of modal
observability, it will be shown that C1x1 is “larger” than C2x1 in an appropriate sense; similarly C2x2 is “larger” than
C1x2.

Examining the above system in weak form, with the test functions Φ = Φ1 + Φ2, we have that (28) is equivalently
written as

⟨ẋ1,Φ1⟩ = ⟨Ax1,Φ1⟩ + ⟨Bu,Φ1⟩ , (29a)

y1 = C1x, (29b)

⟨ẋ2,Φ2⟩ = ⟨Ax2,Φ2⟩ + ⟨Bu,Φ2⟩ , (29c)

y2 = C2x. (29d)

The first observer, associated with the state x1(t) in (29a) and output y1(t) in (29b), is

̇̂x1 = Ax̂1 + L1
(
y1 − C1x̂1

)
+ Bu, (30)

which is subsequently decomposed into the two components⟨
̇̂x1,1,Φ1

⟩
=

⟨
Ax̂1,1,Φ1

⟩
+

⟨
L1

(
y1 − C1x̂1,1

)
,Φ1

⟩
+ ⟨Bu,Φ1⟩ , (31a)⟨

̇̂x1,2,Φ2
⟩
=

⟨
Ax̂1,2,Φ2

⟩
+

⟨
L1

(
y1 − C1x̂1,2

)
,Φ2

⟩
+ ⟨Bu,Φ2⟩ . (31b)

Similarly, the second observer, associated with the state x2(t) in (29c) and output y2(t) in (29d), is given by

̇̂x2 = Ax̂2 + L2
(
y2 − C2x̂2

)
+ Bu, (32)

which is subsequently decomposed into the two components⟨
̇̂x2,1,Φ1

⟩
=

⟨
Ax̂2,1,Φ1

⟩
+

⟨
L2

(
y2 − C2x̂2,1

)
,Φ1

⟩
+ ⟨Bu,Φ1⟩ , (33a)⟨

̇̂x2,2,Φ2
⟩
=

⟨
Ax̂2,2,Φ2

⟩
+

⟨
L2

(
y2 − C2x̂2,2

)
,Φ2

⟩
+ ⟨Bu,Φ2⟩ . (33b)

To better understand the selection of the operator filter gainsL1,L2 and the subsequentmodifications formodal consensus
terms, consider the first part of the first observer, given by (31a). Comparing it with (29a), we have

⟨ d
dt

(
x1 − x̂1,1

)
,Φ1

⟩
=

⟨
(A − L1C1)

(
x1 − x̂1,1

)
,Φ1

⟩
.

This immediately provides the first condition imposed on the filter operator L1: it should be such that A − L1C1 generates
an exponentially stable C0 semigroup on X . This is attained by requiring the pair (A,C1) be approximately observable.28
Thus, the first part of the first observer (30) is able to reconstruct the first part of the state, as described by (29a). The
second part of the observer (30), as given by (31b) will not be able to reconstruct the second part x2 of the process state
in (29c). In a similar fashion to the example in Section 2, it will be augmented with a consensus protocol in order to
synchronize with x̂2,2.

Now, we move to the second observer (32). Comparing (33b) with (29c), we have⟨ d
dt

(
x2 − x̂2,2

)
,Φ2

⟩
=

⟨
(A − L2C2)

(
x2 − x̂2,2

)
,Φ2

⟩
.

It is obvious that imposing (A,C2) be approximately observable, the operator A − L2C2 will generate an exponentially
stable C0 semigroup on X and thus the difference (x2 − x̂2,2) will converge (in norm) to zero asymptotically. The first part
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TABLE 1 Convergence properties
of modal observers (31) and (33)

Observer (31) Observer (33)

x̂1,1 → x1 x̂2,1 ∕−→ x1

x̂1,2 ∕−→ x2 x̂2,2 → x2

of the observer (32), as given by (33a) will not be able to reconstruct the first part x1 of the process state in (29a). However,
it will be augmented with a consensus protocol in order to synchronize with x̂1,1.

Summarizing, we have Table 1 which lead to the particular consensus design requirements:

• the design must ensure x̂1,2 is synchronized with x̂2,2,
• the design must ensure x̂2,1 is synchronized with x̂1,1.

These requirements are one-directional: x̂2,2 does not need to follow x̂1,2, and x̂1,1 does not need to follow x̂2,1. Such
modal consensus couplings are viewed as carefully projected consensus protocols that ensure the monodirectional
synchronization, and are presented next.

3.1 Deriving modal consensus protocols

To derive the additional terms needed in (31b) to attain the necessary synchronization (x̂1,2 → x̂2,2), we com-
pare (33b) to (31b) where we also include the unknown modal consensus term f12 in the right-hand side
of (31b)⟨

̇̂x2,2 − ̇̂x1,2,Φ2
⟩
=

⟨
A(x̂2,2 − x̂1,2),Φ2

⟩
+

⟨
L2

(
y2 − C2x̂2,2

)
,Φ2

⟩
−

⟨
L1

(
y1 − C1x̂1,2

)
,Φ2

⟩
− ⟨f21,Φ2⟩

=
⟨
(A − L2C2)(x̂2,2 − x̂1,2),Φ2

⟩
+

⟨
L2(y2 − C2x̂1,2),Φ2

⟩
−

⟨
L1

(
y1 − C1x̂1,2

)
,Φ2

⟩
− ⟨f12,Φ2⟩ .

In the above, we have

• the termL2(y2 − C2x̂1,2) is available, since y2 is the output from sensor group# 2. The termC2x̂1,2 is artificial but available
since it is equal to the second component of the first observer (30) evaluated at the sensor locations of group #2. This of
course requires that the observer associated with sensor group #1 be aware of the output matrix C2 of sensor group #2.

• the operator A − L2C2 generates an exponentially stable C0 semigroup since the pair (A,C2) is approximately observ-
able.

• the term L1
(
y1 − C1x̂1,2

)
can be made available since it is equal to a weighted multiple (by the operator L1)

of the difference (innovation) y1 − C1x̂1,2. Alternatively, if the design of L1 permits it, it can be selected so that⟨L1,Φ2⟩ = 0.

The above considerations prompt the selection of the term f12 above as

⟨f12,Φ2⟩ = ⟨
L2(y2 − C2x̂1,2),Φ2

⟩
−

⟨
L1

(
y1 − C1x̂1,2

)
,Φ2

⟩
−

⟨
F12(x̂2,2 − x̂1,2),Φ2

⟩
,

or if the design of L1 permits it, as

⟨f21,Φ2⟩ = ⟨
L2(y2 − C2x̂1,2),Φ2

⟩
−

⟨
F12(x̂2,2 − x̂1,2),Φ2

⟩
. (34)

In either expression, the consensus operator F12 is selected so that the resulting modal disagreement error⟨
̇̂x2,2 − ̇̂x1,2,Φ2

⟩
=

⟨
(A − L2C2 − F12)(x̂2,2 − x̂1,2),Φ2

⟩
, (35)
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not only converges to zero asymptotically, but does so with a rate higher than that of the operator A − L2C2. This will
ensure that the difference x̂2,2 − x̂1,2 converges to zero faster than the difference x2 − x̂2,2 does.

Remark 3. The above consensus protocol (34) imposes a heavy communication load from the second observer (32) to the
first observer (30). In particular, the observer (33b) must transmit its state x̂2,2 to the observer (31b) in order to realize the
coupling

⟨
F12(x̂2,2 − x̂1,2),Φ2

⟩
. An alternate is so assume the specific structure of F12 = F1C2 and in this case the coupling

term requires only the n2-dimensional measurement C2x̂2,2 to be realized and transmitted, thus resulting in⟨
̇̂x2,2 − ̇̂x1,2,Φ2

⟩
=

⟨
(A − L2C2 − F1C2)(x̂2,2 − x̂1,2),Φ2

⟩
. (36)

The updated observer (31), which now includes a consensus protocol needed to ensure that only x̂1,2 follows x̂2,2, is
given by ⟨

̇̂x1,1,Φ1
⟩
=

⟨
Ax̂1,1,Φ1

⟩
+

⟨
L1

(
y1 − C1x̂1,1

)
,Φ1

⟩
+ ⟨Bu,Φ1⟩ (37a)⟨

̇̂x1,2,Φ2
⟩
=

⟨
Ax̂1,2,Φ2

⟩
+

⟨
L1

(
y1 − C1x̂1,2

)
,Φ2

⟩
+

⟨
L2(y2 − C2x̂1,2),Φ2

⟩
−

⟨
L1

(
y1 − C1x̂1,2

)
,Φ2

⟩
+ ⟨Bu,Φ2⟩ − ⟨

F1(C2x̂1,2 − C2x̂2,2),Φ2
⟩
. (37b)

The above modification in (37b) ensures that x̂1,1 → x1 and x̂1,2 → x̂2,2 → x2. However, the entire expression (37) must be
written in the single-observer form of (30). With the aid of the projection operators, this is given by

̇̂x1 = Ax̂1 + L1
(
y1 − C1x̂1

)
+ Bu + P2r1 , (38)

where the modal consensus signal is given by

r1 = L2(y2 − C2x̂1,2) − L1
(
y1 − C1x̂1,2

)
− F12(x̂1,2 − x̂2,2). (39)

Please note that P2r1 only contributes to the second component of x̂1 as given by (37b). It has no contribution to the
first part given by (37a).

In a similar fashion, one can update the observer (33) associated with sensor group #2 to⟨
̇̂x2,1,Φ1

⟩
=

⟨
Ax̂2,1,Φ1

⟩
+

⟨
L2

(
y2 − C2x̂2,1

)
,Φ1

⟩
+

⟨
L1(y1 − C1x̂2,1),Φ1

⟩
−

⟨
L2

(
y2 − C2x̂2,1

)
,Φ1

⟩
,

+ ⟨Bu,Φ1⟩ − ⟨
F2(C1x̂2,1 − C1x̂1,1),Φ1

⟩
, (40a)⟨

̇̂x2,2,Φ2
⟩
=

⟨
Ax̂2,2,Φ2

⟩
+

⟨
L2

(
y2 − C2x̂2,2

)
,Φ2

⟩
+ ⟨Bu,Φ2⟩ . (40b)

In a single-observer form, it is given by

̇̂x2 = Ax̂2 + L2
(
y2 − C2x̂2

)
+ Bu + P1r2 , (41)

where the modal consensus signal is given by

r2 = L1
(
y1 − C1x̂2,1

)
− L2

(
y2 − C2x̂2,1

)
− F21

(
x̂2,1 − x̂1,1

)
. (42)

Once again, we note that P1r2 only contributes to the first component of x̂2 as given by (40a). It has no contribution to
the second part given by (40b).

3.2 Design procedure

The modal observers (37) and (40) ensure that with the appropriate design of the filter gains L1 and L2, one has x̂1,1 → x1
and x̂2,2 → x2 as t → ∞. Through the additional modal consensus protocols given in (38), (39) and (41), (42), one has
x̂1,2 → x̂2,2 and x̂2,1 → x̂1,1 as t → ∞.
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This means that through the selective consensus protocols given by the modal consensus terms (39) and (42) one has
that the two observers (38) and (41) can reconstruct the process state. Now it remains to provide the details leading to the
design of (38) and (41). We denote by1 to be the set of modes associated with group #1 and by2 to be the set of modes
associated with group #2; in other words 1 = {𝜙i ∶ P1𝜙i = 𝜙i, i = 1, 2,… , } with 2 similarly defined. The vector of
sensor locations associated with sensor group #1 is denoted by 𝝃s1 =

[
𝜉s11, 𝜉s12,… , 𝜉s1n1

]
and the vector of sensor locations

associated with sensor group #2 is denoted by 𝜉s2 =
[
𝜉s21, 𝜉s22,… , 𝜉s2n2

]
.

1. Given (31), decompose themodes into group #1 and group #2. Any elementΦ of the state spaceX = X1
⨁

X2 is written
as Φ = Φ1 + Φ2, with Φ1 ∈ X1 and Φ2 ∈ X2. Group #1 of modes ensures that the output operator C1 has a cumulative
spatial observability with a prescribed threshold O1, that is,

1
(𝝃s1) ≥ O1, 2

(𝝃s1) ≪ O1. (43)

Equivalently stated, one selects the sensor locations for group #1 so that the output operator C1 is such that the pair
(A,C1) is approximately observable and (43) is satisfied. Similarly, group #2 of modes ensures that the output operator
C2 has a modal observability with a prescribed threshold O2, that is,

2
(𝝃s2) ≥ O2, 1

(𝝃s2) ≪ O2. (44)

2. Given the pairs (A,C1) and (A,C2), design the filter operator gains L1 and L2 such that A − L1C1 and A − L2C2 are the
generators of exponentially stable C0 semigroups on X .

3. Set up the modal consensus observers (38) and (41) using (39) and (42) to compute the consensus coupling.
To realize the term C2x̂1,2 in (37b), the output operator (equivalently the sensor locations) of group #2 must be
made available to sensor group #1. Similarly, to realize the term C1x̂2,1 in (40a), the output operator of group #1
must be made available to sensor group #2. To reduce communication costs, the consensus operator F12 can be
selected as

F12 = F1C2, (45)

with the property that the spectrum bound of the semigroup generated by A − L2C2 − F1C2 is larger than the
spectrum bound of the semigroup generated by A − L2C2. Similarly, the consensus operator F21 can be selected
as

F21 = F2C1, (46)

with the property that the spectrum bound of the semigroup generated byA − L1C1 − F2C1 is larger than the spectrum
bound of the semigroup generated by A − L1C1.

The modal consensus observers are summarized in Table 2.

TABLE 2 Summary of modal consensus observers

Sensor groups Modal consensus observer equations

Sensor group #1 ̇̂x1 = Ax̂1 + L1
(
y1 − C1x̂1

)
+ Bu + P2r1

r1 = L2(y2 − C2x̂1,2) − L1
(
y1 − C1x̂1,2

)
− F12(x̂1,2 − x̂2,2)

F12 = F1C2 ∶ A − L2C2 − F1C2 “more” stable than A − L2C2

Sensor group #2 ̇̂x2 = Ax̂2 + L2
(
y2 − C2x̂2

)
+ Bu + P1r2

r2 = L1(y1 − C1x̂2,1) − L2
(
y2 − C2x̂2,1

)
− F21(x̂2,1 − x̂1,1)

F21 = F2C1 ∶ A − L1C1 − F2C1 “more” stable than A − L1C1
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3.3 Well-posedness and convergence

One starts with the assumption that the process state (29) can be decomposed into (30) and that it is well-posed. Both
the well-posedness of the modal observers (38), (39) and (41), (42) and the resulting convergence to the process state
(29a)–(29d) easily follow from basic theory of evolution equations of systems governed by state operators generating
exponentially stable semigroups and is thus presented without a formal theoretical statement. The theoretical results are
simply stated as a lemma at the end of this section.

First, the well posedness of the two components of the modal observers (37a) and (40b) is considered. Define the
following modal errors as follows

e1,1 = x1 − x̂1,1, e2,2 = x2 − x̂2,2. (47)

Using (30) and (37a), (40b), we have

⟨ė1,1,Φ1⟩ = ⟨(A − L1C1)e1,1,Φ1⟩ , (48)

and

⟨ė2,2,Φ2⟩ = ⟨(A − L2C2)e2,2,Φ2⟩ . (49)

The above two error equations are well-posed if x̂1,1(0) ∈ X1 and x̂2,2(0) ∈ X2 with the errors converging weakly to zero
due to the exponential stability of the semigroups generated by A − L1C1 and A − L2C2 on X1 and X2, respectively.

Now, to consider the remaining two modal components, define the remaining modal errors as follows

e1,2 = x2 − x̂1,2, e2,1 = x1 − x̂2,1. (50)

Using (47), (50), we have

e1,2 = x2 − x̂1,2 = (x2 − x̂2,2) + (x̂2,2 − x̂1,2)
= e2,2 + (x̂2,2 − x̂1,2).

Using (49) and (35), (45) (or (36)), along with the well-posedness of the process state (30), we can immediately obtain
the well-posedness of (37b) with limt→∞ ||e1,2|| = 0. Similarly, using (47), (50), we have the identity

e2,1 = x1 − x̂2,1 = (x1 − x̂1,1) + (x̂1,1 − x̂2,1)
= e1,1 + (x̂1,1 − x̂2,1).

Using the remaining modal observer equations (37a) and (40a) along with (30), (46), one arrives at (cf. (36))⟨
̇̂x1,1 − ̇̂x2,1,Φ2

⟩
=

⟨
(A − L1C1 − F2C1)(x̂1,1 − x̂2,1),Φ2

⟩
. (51)

Following (48), themodal error e1,1 converges to zero due to the observer design, and the disagreement error x̂1,1 − x̂2,1
governed by (51) converges to zero due to the modal consensus protocol designed. Thus, the error e2,1 also converges to
zero and therefore the proposed modal consensus observers (38) and (41) converge to the process state (31).

The above results are summarized in the lemma below.

Lemma 1. Given the infinite dimensional system (28) decomposed into the two subsystems (29a)–(29d). Assume that the
sensor locations in each sensor group are such that inequalities (43), (44) are satisfied for some prescribed user-defined
observability thresholds O1,O2. Further assume that the pairs (A,C1) and (A,C2) are approximately observable and
such that there exists filter gains L1 and L2 such that the operators A − L1C1 and A − L2C2 generate exponentially
stable C0 semigroups on X. Then the modal consensus observers given by (37) and (40), or by their compact for-
mulations (38) and (41), along with the modal consensus protocols r1, r2, given by (39) and (42) are well-posed
with
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lim
t→∞

||x(t) − x̂1(t)|| = 0, lim
t→∞

||x(t) − x̂2(t)|| = 0.

Additionally, the modal pairs x̂1,1, x̂2,1 and x̂2,2, x̂1,2 attain exponential synchronization in the sense of

lim
t→∞

||x̂1,1 − x̂2,1|| = 0, lim
t→∞

||x̂2,2 − x̂1,2|| = 0,

with rate given by the spectrum bound of the semigroup generated by the operators A − L1C1 − F2C1 and A − L2C2 − F1C2,
and which is larger than the spectrum bound of the semigroups generated by the operators A − L1C1 and A − L2C2,
respectively.

Remark 4 (communication cost reduction). Following Table 1, the modal disagreement errors x̂1,1 − x̂2,1 and x̂2,2 − x̂1,2
must converge to zero in order to achieve modal synchronization. Through the modal consensus protocols in (38), (39)
and (41), (42) this was made possible. The additional requirement is that the consensus gains F12 in (45) and F21 in (46)
can be selected so that the rate given by the spectrum bound of the semigroup generated by the operatorsA − L1C1 − F2C1
and A − L2C2 − F1C2, be made larger than the spectrum bound of the semigroups generated by the operators A − L1C1
and A − L2C2, respectively. Such a design minimizes the communication costs since in (38) the modal component x̂2,2
from sensor group #2 must be transmitted to the modal observer associated with sensor group #1. If the decomposition
(45) can be realized, then only an n2 dimensional signal must be transmitted. If this decomposition is not feasible, one
must still impose the requirement that the spectrum bound from A − L2C2 − F12 is larger than the spectrum bound from
A − L2C2. In this case, the communication cost increase since now the entire state estimate x̂2,2 must be transmitted to
the modal observer (37). A similar requirement is imposed on the gain F21 where either an n1 dimensional signal is
transmitted frommodal observer #1 to modal observer #2 or the entire modal estimate x̂1,1 must be transmitted to modal
observer #2.

4 NUMERICAL STUDIES

4.1 1D PDE

We consider the PDE in (1) over the spatial domain [0,𝓁] = [0, 1] and use the appropriate conditions to ensure that only
the first four modes are present in the system response, as considered in Example 1. A thermal conductivity was used
with a value 𝜅 = 10−3.

The two sensors were selected so that one can cater to the odd-numbered eigenmodes sin( (2j+1)𝜋𝜉
𝓁

), j = 0, 1,… and
the other one to favor the even-numbered eigenmodes sin( 2j𝜋𝜉

𝓁
), j = 1, 2,…, that is, n1 = 1, n2 = 1. Following Example 1,

and in particular Figure 3, the location 𝜉s1 = 0.50𝓁 was selected for group#1 and which provided a cumulative spatial
observability level of 1, and the location 𝜉s2 = 0.15𝓁 was selected for group#2 and which provided a cumulative spatial
observability level of 1.

The initial condition for the process (1) was selected as

x(0, 𝜉) = sin
(
𝜋𝜉

𝓁

)
+ 3 sin

(
2𝜋𝜉
𝓁

)
+ 6 sin

(
3𝜋𝜉
𝓁

)
+ 7 sin

(
4𝜋𝜉
𝓁

)
,

and the spatial distribution of the input was

𝛽(𝜉) = sin
(
𝜋𝜉

𝓁

)
+ sin

(
2𝜋𝜉
𝓁

)
+ sin

(
3𝜋𝜉
𝓁

)
+ sin

(
4𝜋𝜉
𝓁

)
.

To facilitate the consensus design, the filter gains were selected as L1 = P1
(
20C∗

1
)
and L2 = P2

(
20C∗

2
)
. This simpli-

fied the consensus terms r1 and r2 in (39), (42), since P1L2 = 0 and P2L1 = 0. These two modal consensus terms were
selected as

r1 = L2
(
y2 − C2x̂1,2

)
− 20

(
x̂1,2 − x̂2,2

)
, r2 = L1

(
y1 − C1x̂2,1

)
− 20

(
x̂2,1 − x̂1,1

)
,
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F IGURE 5 1D case: Evolution of estimation errors ||x − x̂i||

with the consensus gains F12 = F21 = 20I. Please note that as per Remark 4, this selection does not minimize the
communication costs; however, the communication burden is not large since each modal observer must transmit a
two-dimensional state to each other, as opposed to a scalar signal.

Figure 5 depicts the L2 error norms ||x − x̂i||, i = 1, 2 for the case with consensus and the case without any consensus
terms (i.e., r1 = 0, r2 = 0 in (39), (42)). The inclusion of the consensus terms in (38) and (41) shows a slight improvement,
especially for the second observer x̂2. However, themain thrust of this article is on the agreement of the two state estimates
x̂1 and x̂2. Figure 6 demonstrates the success of the proposed modal consensus observers by depicting the evolution of the
norm ||x̂1 − x̂2|| representing the disagreement error, with and without consensus terms in (38) and (41). As expected, the
use of consensus protocols, and in particular the modal consensus protocol, has a superior performance over the case of
the observers without consensus. Finally, the spatial evolution of the disagreement error x̂1(t, 𝜉) − x̂2(t, 𝜉) is depicted in
Figure 7, where it is also observed that the disagreement has a faster pointwise convergence when a modal consensus
protocol is implemented.

4.2 2D PDE

The diffusion PDE with state x(t, 𝜉, 𝜓) in the 2D domain Ω = [0,𝓁X ] × [0,𝓁Y ] = [0, 1] × [0, 1] is given by

𝜕x
𝜕t

= 𝜅

(
𝜕2x
𝜕𝜉2

+ 𝜕2x
𝜕𝜓2

)
+ 𝛽(𝜉, 𝜓)u(t), yi(t) =

⎡⎢⎢⎢⎢⎢⎣
∫Ω
ci,1(𝜉, 𝜓)x(t, 𝜉, 𝜓) d𝜓d𝜉

⋮

∫Ω
ci,ni(𝜉, 𝜓)x(t, 𝜉, 𝜓) d𝜓d𝜉

⎤⎥⎥⎥⎥⎥⎦
, i = 1, 2.

The mode shapes in this case are given by

𝜙ij(𝜉, 𝜓) =
√

2
𝓁X

sin
(
i𝜋𝜉
𝓁X

)√
2
𝓁Y

sin
(
j𝜋𝜉
𝓁X

)
,
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F IGURE 6 1D case: Evolution of disagreement error ||x̂1 − x̂2||

F IGURE 7 1D case: Distribution of estimation disagreement

with i, j = 1, 2,…. For the particular study, it is assumed that the modes for i = 1, 2 and j = 1, 2, 3 are the dominant
ones; that is, 𝜙11(𝜉, 𝜓), 𝜙12(𝜉, 𝜓), 𝜙13(𝜉, 𝜓), 𝜙21(𝜉, 𝜓), 𝜙22(𝜉, 𝜓), and 𝜙23(𝜉, 𝜓). These are depicted in Figure 8. The modal
response is ensured by using the following input spatial distribution

𝛽(𝜉, 𝜓) = sin(𝜋𝜉∕𝓁X ) sin(2𝜋𝜓∕𝓁Y ) + sin(2𝜋𝜉∕𝓁X ) sin(𝜋𝜓∕𝓁Y ),

and initial condition
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F IGURE 8 2D case: Modes for the 2D PDE
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F IGURE 9 2D case: Evolution of disagreement error

x0(𝜉, 𝜓) = (sin(𝜋𝜉∕𝓁X ) + sin(2𝜋𝜉∕𝓁X )) (sin(𝜋𝜓∕𝓁Y ) + sin(2𝜋𝜓∕𝓁Y ) + sin(3𝜋𝜓∕𝓁Y )) .

Using the 1D expressions for the cumulative spatial observability in each direction separately is not a suitable measure
for sensor location, precisely because of the dependence of the modes on two spatial variables. Using the 2D version of
the cumulative spatial observability for the two sets1 = {𝜙11, 𝜙12, 𝜙13} and2 = {𝜙21, 𝜙22, 𝜙23} with

1
(𝜉s1, 𝜓s1) =

√|𝜙11(𝜉s1, 𝜓s1)|2 + |𝜙12(𝜉s1, 𝜓s1)|2 + |𝜙13(𝜉s1, 𝜓s1)|2
max

𝜉∈[0,1],𝜓∈[0,1]

√|𝜙11(𝜉, 𝜓)|2 + |𝜙12(𝜉, 𝜓)|2 + |𝜙13(𝜉, 𝜓)|2 ,
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F IGURE 10 2D case: Evolution of disagreement error

F IGURE 11 2D case: Spatial evolution of disagreement

2
(𝜉s2, 𝜓s2) =

√|𝜙21(𝜉s2, 𝜓s2)|2 + |𝜙22(𝜉s2, 𝜓s2)|2 + |𝜙23(𝜉s2, 𝜓s2)|2
max

𝜉∈[0,1],𝜓∈[0,1]

√|𝜙21(𝜉, 𝜓)|2 + |𝜙22(𝜉, 𝜓)|2 + |𝜙23(𝜉, 𝜓)|2 ,
the sensor location for group #1 was selected at (𝜉s1, 𝜓s1) = (0.5𝓁X , 5𝓁Y∕12) and the sensor location for group #2 was
selected at (𝜉s2, 𝜓s2) = (0.1𝓁X , 5𝓁Y∕6).

Figure 9 depicts the evolution of the disagreement error ||x̂1 − x̂2|| where it is once again observed that the proposed
modal consensus (39), (42) ensures agreement between the estimates x̂1 and x̂2.
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In particular, the modal components of the disagreement errors x̂1,1 − x̂2,1 governed by (51) and x̂1,2 − x̂2,2 governed
by (35) are depicted in Figure 10, and which provide an insight on the agreement of the modal components. Continuing,
the spatial evolution at the final time tf = 20 s is presented in Figure 11, where it is observed that inclusion of modal
consensus significantly improves the agreement of the distributed observers.

5 CONCLUSIONS AND OUTLOOK

This article addressed the problem of quality versus quantity of information exchanged among spatially distributed
observers for partial differential equations. For infinite dimensional systems admitting a modal decomposition, the
observers associated with different sensor groups can reconstruct the various modal components of the process state with
different accuracy. This was precisely addressed in the design of the modal consensus observers whereby the appropri-
ate information was judiciously transmitted from one modal observer to another in order for the modal components of
the observer to agree with the corresponding modal components of the other distributed observer. Extensions enabled
the reduction of communication costs among the modal observers by transmitting finite dimensional output signals as
opposed to infinite dimensional state estimates.

The proposed modal consensus protocols were viewed as orthogonal projections of various consensus terms onto
the appropriate subspaces related to the unobservable modes of the spatially distributed process. Continuing with pos-
sible extensions is to consider multiple distributed observers with a prescribed communication topology and the task at
hand is to derive the appropriate modal consensus protocols for each of the modal observers within the confines of the
communication topology.
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