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A B S T R A C T   

This paper considers a class of linear time invariant systems that describe the dynamics of me
chanical systems. Due to their algebraic structure, the dynamics of such systems are written in 
their natural second order framework in order to exploit this structure with the obvious 
computational benefits in controller and observer design. A functional observer along with an 
unknown input observer are combined and are presented for this class of systems. The additional 
advantage of this combined observer is that when certain conditions are imposed, it reduces to 
the standard natural second observer. This translates to guaranteeing that the derivative of the 
estimated position vector coincides with the estimate of the velocity vector, a case not always 
ensured when such system is brought in a first order realization. An added benefit resulting from 
the second order formulation is the minimum order compensator whose order is dictated by the 
rank of the control input matrix, when the proposed functional estimate is used in place of a full 
state control signal.   

1. Introduction 

Dynamical systems, written in vector second order form describe the dynamics of flexible structures and their control and esti
mation has been the topic of research for quite some time. When written in the second order setting, termed as the “natural setting”, 
offer certain algebraic advantages and retain a direct link with the physical variables (e.g. displacement, velocity and acceleration). 

When such systems are brought into a 1st order setting, in order to take advantage of system-theoretic results on estimation and 
control design, certain advantages are lost. One of these lost attributes has been pointed out first in [1] for single degree of freedom 
(SDOF) systems and in [2] for multi degree of freedom (MDOF) and infinite dimensional systems regarding the design of state esti
mators. The observer design for mechanical systems expressed in a 1st order setting result in a certain deficiency: the time derivative of 
the estimated position component of the state vector is not equal to the estimated velocity component. This issue was subsequently visited in 
[2,3] for distributed and lumped parameter systems; for the latter, the MDOF systems were considered with both position and velocity 
measurements. Consideration of acceleration measurements for the design of natural observers, along with an experimental verifi
cation was given in [4]. 

When a portion of the state is desired to be identified, as expressed via a linear functional of the state, one may use already 
established results [5] to design a functional observer of a mechanical system. However this entails the observer construction of a 1st 
order representation of the mechanical system. The algebraic advantages in such case are lost. To address this, a natural functional 
observer for mechanical systems expressed as vector second order systems is warranted. 
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In the event that one may want to implement a controller and a static output feedback controller is not applicable, then a dynamic 
compensator must be considered. However, this would require the reconstruction of the entire state. It is possible to utilize a functional 
observer, where the functional is identical to a full state controller and the functional observer essentially estimates the control input. 
As a result, the functional observer, under mild assumptions, can be used in lieu of a compensator, providing significant computational 
savings in the form of a minimum order compensator. 

This paper addresses the need for a natural functional observer (FO) and by imposing additional conditions, it also presents a natural 
unknown input functional observer (UIFO). Since the UIFO is the more general type of observer, it is examined first and via appropriate 
relaxations, it reduces to a FO, to an UIO or to a natural observer. Thus the reason to present an UIFO for vector 2nd order systems in 
the natural setting is to arrive at the most general observer that can revert to a natural observer when certain conditions are imposed/ 
relaxed. Such a feat is not possible when one considers the 2nd system in a 1st order setting, design the UIFO, and then impose the 
conditions to revert to an observer; such an observer will not be a natural observer! A special case of a functional observer for vector 
2nd systems which has 1st order observer dynamics is also considered. In all cases, by making appropriate assumptions, the natural 
UIFO is shown to reduce to either a natural FO or a natural UIO for vector 2nd systems. Extending the results to compensator design, 
the full state feedback takes the form of the functional to be identified, and thus the FO and UIFO are utilized for controller design, thus 
significantly reducing the computational burden and enabling the real time implementation of UIFO or FO-based feedback. 

Contributions: The contributions of this paper are threefold: (i) it modifies earlier UIO results for vector 2nd systems in [6] to include 
velocity measurements; (ii) proposes a natural UIFO for vector 2nd systems and shows how to recover a natural FO, a natural UIO and a 
natural observer, by relaxing appropriate conditions; (iii) presents a minimum-order compensator when the functional output co
incides with a full-state feedback controller. The proposed framework enables one to show that a natural UIO reverts to a natural 
observer, a natural FO reverts to a natural observer, and a natural UIFO reverts to a natural UIO or a natural FO. Special cases dealing 
with restrictive measurements and 1st order structure observers are provided. 

The remainder of this paper is as follows: Section 2 summarizes prior results on UIFO as they pertain to 1st order systems. 
Additionally, the conditions for UIFO to become either an FO or an UIO are examined. Section 3 introduces the vector 2nd systems 
under consideration, and the natural UIO design for vector 2nd are summarized in Section 3.1. The proposed natural UIFO for vector 
2nd systems is presented in Section 4 and is shown to revert to a natural FO, a natural UIO and a natural observer. An alternate FO for 
vector 2nd systems is presented in Section 5, which produces a 1st order FO. The use of the estimated functional as the full-state control 
input is given in Section 6. An example implementing an UIFO compensator for a 3 DOF system is presented in Section 7 and con
clusions follow in Section 8. 

2. Summary of UIFO’s, UIO’s and FO’s for 1st order systems 

The class of systems considered is described by the following LTI system 

ẋ = Ax + Bu + Fd,

y = Cx,

z = Lx, (1)  

where x ∈ Rn denotes the state signal, u ∈ Rm denotes the control signal, d ∈ Rq is the unknown input, y ∈ Rp is the measured output 
and z ∈ Rr with r⩽n is the vector to be estimated. The matrices A, B, F, C, L are known constant matrices of appropriate dimensions. The 
associated UIFO proposed for (1) by Darouach [7] with the notation adopted from the earlier work [5], is given by 

{

ẇ = Nw + Jy + Hu, ẑ = w + Ey, (2)  

where one imposes the following matrix identities 

P ≜ L − EC, PA − NP − JC = 0r×n, PF = 0r×q, H = PB. (3)  

The estimate of z is ̂z and w is the state of the observer. The above result in asymptotically stable dynamics for the r-dimensional error 
e = z −ẑ, given by ė = Ne. The following pseudo-algorithm, which forms the basis for the design algorithms in Sections 3–5, is based on 
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[7], but adapted to the notation in [5].  
Algorithm 1: Designing UIFO observers for 1st order systems using (2) 

1: Multiply PA −NP −JC = 0 by [L† (In×n −L†L)] to obtain  

N = PAL† +

(

NE − J
)

CL† ⇒ N = LAL† − [ E (J − NE) ]

[
CAL†

CL†

]

[ E (J − NE) ]

[
CA(In×n − L†L)

C(In×n − L†L)

]

= LA
(

In×n − L†L
)

2: Incorporate the constraint PF = 0r×q in above, to obtain  

[ E (J − NE) ]

[
CA(In×n − L†L) CF
C(In×n − L†L) 0p×q

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟Σ

= [ LA(In×n − L†L) LF ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟G     

3: Solve [E (J −NE)]Σ = G to obtain [E (J −NE)] = GΣ† + Z(I2p×2p −ΣΣ†)

4: Update N to  

N = LAL† − GΣ†

[
CAL†

CL†

]

− Z
(

I2p×2p − ΣΣ†

)[
CAL†

CL†

]

5: Use pole placement techniques to select Z in step 4 and compute N  
6: Use Z from step 5 to solve for [E (J −NE)]from step 3 and extract E  
7: Using E from step 6, solve for P using P = L −EC, then solve for J using J = NE +(J −NE) and set H = PB  
8: Use the computed N, J, H, E to implement the UIFO in (2)   

2.1. Reduction of the 1st order UIFO in (2), (3) to UIO, FO and Luenberger observer 

One may impose additional conditions that reduce the UIFO in (2) to either an UIO or FO and subsequently to a Luenberger 
observer. In fact these conditions will be used as a criterion to design natural observers for vector 2nd order systems. Basically, these 
are as follows:  

1. When the vector z is the entire state x, i.e. z = x with L ≡ In×n and d ∕= 0q×1, then the UIFO should coincide with the UIO with x̂ ≡ ẑ.  

2. When the vector z is the entire state x and d = 0q×1, then the UIFO should reduce to the Luenberger observer with x̂ ≡ ẑ .  

3. When d = 0q×1 and L is any r × n matrix with r⩽n, then the UIFO should become the standard FO. 

We revisit the UIFO given in [7] and examine the above three conditions. In order to do so, we rewrite the proposed UIFO in Eq. 2, in 
terms of the ẑ state, which is only used for analysis purposes and is given by 

˙̂z = ẇ + Eẏ = Nw + Jy + Hu + EC(Ax + Bu + Fd) = N ẑ + ( − NEC + JC + ECA)x + (H + ECB)u + ECFd

= N ẑ + (LA − NL)x + LBu + LFd. (4)  

One can clearly see that equation Eq. 4 (cf Eq. 2) cannot be implemented as it requires knowledge of the unknown input d and process 
state x. However, in the ensuing analysis, it will help verify the above conditions.  

1. When z = x and d ∕= 0q×1, the UIFO in Eq. 2 becomes 

ẑ = x̂ = w + Ey, ẇ = Nw + Jy + PBu,

with the following matrix identities (cf Eq. 3) P = In −EC,PA −NP −JC = 0,PF = 0,H = PB, which is the UIO described in Chen and 
Patton [8]. Additionally, when one sets F = 0n×q, the UIO yields P = In with N = A −JC and H = B. This now coincides with the 
standard Luenberger observer [9].  

2. When z = x and d = 0q×1 (equivalently F = 0n×q), then the observer given by Eq. 4 in terms of ẑ is 

˙̂z = N ẑ +
(

LA − NL
)

x + LBu + LFd 

= N ẑ + (A − N)x + Bu,

where now PA −NP −JC = 0, with P = In,E = 0n×p, yields 

0 = PA − NP − JC = (In − EC)A − N(In − EC) − JC = A − N − JC ⇒ N ≡ A − JC.

In this case, the proposed observer with x̂ = ẑ reduces to 
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˙̂z = N ẑ +
(

A − N
)

x + Bu =
(

A − JC
)

ẑ + JCx + Bu =
(

A − JC
)

ẑ + Jy + Bu,

which is the familiar Luenberger observer. The state estimation error e = z −ẑ = x −x̂ is governed by ė = (A −JC)e, with (A −JC)

being Hurwitz.  
3. When d ≡ 0q×1, then the UIFO in (2) is now given by 

ẑ = w + Ey, ẇ = Nw + Jy + PBu,

with the following matrix identities P = L −EC,PA −NP −JC = 0,H = PB, which is the FO proposed by Darouach in [5]. When one 
further chooses L = In, then P = In and N = A −JC with H = B. Further examination reveals that this is the standard Luenberger 
observer [9].  

Remark 2.1. One may enforce the condition PF = 0r×q in order to obtain E via E = (LF)(CF)
† and then select the matrices N and J 

with N Hurwitz so that the Sylvester equation PA −NP −JC = 0r×n holds. This may not be always feasible, but if it is, it results in a 
minimum complexity design. In fact, this was used for the design of natural UIO for vector 2nd systems in [6]. 

2.2. UIFO and FO of order larger than r 

In a recent work by [10], an interesting aspect of the above UIFO was set forth, namely in addressing the case where the rank 
conditions for existence are not satisfied, or the resulting observer is not satisfying the Sylvester equation. The latter issue is important 
when the FO or UIFO is used as a compensator and it can destabilize the resulting closed-loop system [11]. 

Conditions for the existence of a FO of order larger than r were examined and the procedure for constructing FO was provided in 
[11]. In summary the UIFO (2) is replaced by 

{

ẇ = Nw + Jy + Hu, ẑ = Qw + Ey, (5)  

where dim(w) = r + χ, with 0⩽χ⩽n −r −p. The matrix Q ∈ Rr×(r+χ) with P ∈ R(r+χ)×r is defined via QP = L −EC, and now one imposes 
the following (modified) matrix identities (cf (3)) 

QP = L − EC, Q
(
PA − NP − JC

)
= 0r×n, QPF = 0r×q, Q

(
PB − H

)
= 0r×m. (6)  

As part of the construction, one augments the L matrix by additional rows so that it becomes full row rank matrix. The additional rows 
are needed to ensure that the two rank conditions in [7] are satisfied. The construction procedure in this case is essentially the same as 
the one in Algorithm 1, see also [12]. 

3. Problem formulation and summary of earlier works on natural UIOs 

The class of systems under consideration is governed by the vector 2nd order system 

Mẍ(t) + Dẋ(t) + Kx(t) = B0u(t) + F0d(t), (7a)  

y
(

t
)

=

[
yp

(
t
)

yv
(
t
)

]

=

[
Cp x(t)
Cv ẋ

(
t
)

]

=

[
Cp 0p1×n
0p2×n Cv

][
x(t)
ẋ(t)

]

, (7b)  

z
(
t
)

= Lpx(t) + Lvẋ(t), (7c)  

where x(t) ∈ Rn is the position vector, ẋ(t) ∈ Rn is the velocity vector and the n × n matrices M, D, K denote the mass, damping and 
stiffness matrices respectively. The mass and stiffness matrices, M and K, are assumed to be symmetric and positive definite. To allow 
for a larger class of mechanical systems, it is assumed that D⩾0, i.e. possibly consider non-gyroscopic systems with D = −DT, [13]. The 
(p1 + p2)-dimensional measurement vector y(t) in (7b) has both position and velocity components yp(t) and yv(t), with the associated 
observation matrices Cp, Cv having dimensions p1 × n and p2 × n, respectively. The control input vector u(t) is assumed to be an m- 
dimensional vector with B0 an n × m control influence matrix. The q-dimensional unknown input signal is denoted by d(t) and its n × q 
distribution matrix is denoted by F0. 

The r-dimensional vector z(t) in (7c), comprising the functional form of the state position and velocity vectors, is desired to be 
estimated using only input/output information. The associated r × n known constant matrices Lp, Lv are in fact the weight matrices that 
form the state functional to be estimated. 

Problem statement: it is desired to use the measurement outputs (position yp, or velocity yv or both yp and yv) of (7a) to estimate a 
linear functional z ∈ Rr of the position and velocity states given by (7c). 

One approach is to write the 2nd order system (7) into its 1st order form 
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Ẋ(t) =

[
0n×n In

−M−1K −M−1D

]

X(t) +

[
0n×m

M−1B0

]

u(t) +

[
0n×q

M−1F0

]

d(t) = AX(t) + Bu(t) + Fd(t), y
(
t
)

=

[
Cp 0p1×n

0p2×n Cv

]

X(t) = CX(t), X(t)

=

[
x(t)
ẋ(t)

]

∈ R2n,

(8)  

and take advantage of existing results for full order, reduced order or functional observers [12]. Similar to that, is to consider (7) in first 
order descriptor form 

[
K 0n×n

0n×n M

]

Ẋ (t) =

[
0n×n K
−K −D

]

X(t) +

[
0n×m
B0

]

u(t) +

[
0n×q
F0

]

d(t), y(t) = CX(t). (9)  

and use the results by Darouach for observer design in descriptor form in [14,15]. 
For the case of a full order observer, there are computational advantages in considering an observer in a natural setting, i.e. 

consider an observer in a vector 2nd order form [3]. Due to the sparsity of the state matrix, one should be able to see the possible 
reduction in computations when considering the 2nd order setting. In the specific case of the system corresponding to an approxi
mation of an elastic structure as for example a cable, the use of finite element approximation results in tri-diagonal matrices M, D and K, 
[16]. Bringing it in the first order setting would destroy the tri-diagonal structure via the multiplications M−1D and M−1K, unless of 
course one considers observer design in the descriptor form (9). In addition to the computational benefits, a natural observer ensures 
that the derivative of the estimated position is indeed the estimated velocity; in contrast, an observer for a system in the 1st order form 
(8), has the following form for the estimated position 

˙̂x = v̂ + G1p

(
yp − Cp x̂

)
+ G1v

(
yv − Cv v̂

)
,

where ̂v is the velocity estimate, x̂ is the position estimate and G1p, G1v are the position filter gains, and which cannot guarantee d
dt x̂(t

)

will be equal to v̂(t) for t⩾0, unless G1pCp = 0n×n,G1vCv = 0n×n, see [4]. However, one cannot recover the natural observer. 
Let us examine an UIFO for the vector 2nd system in the form (8) using the 1st order UIFO (2), (3). Following the remarks in Section 

2.1 and using dim(X) = 2n, by setting d = 0q×1,P = I2n,L = I2n, and Ep = 02n×p1 , Ev = 02n×pv one arrives at 

H =

[
0n×m

M−1B0

]

,

and the 2n × 2n state observer matrix N = A −JC, with J ∈ R2n×(p1+p2) is given by 

N = A − JC =

[
0n×n In

−M−1K −M−1D

]

−

[
Jpp Jpv
Jvp Jvv

][
Cp 0p1×n

0p2×n Cv

]

=

[
−JppCp In − JpvCv

−M−1K − JvpCp −M−1D − JvvCv

]

,

with the matrices Jpp,Jvp ∈ Rn×p1 ,Jpv,Jvv ∈ Rn×p2 . Further examination of the above reveals that for the state of the observer w = (w1,

w2), one has 

ẇ1 = −JppCpw1 +
(
In×n − JpvCv

)
w2 + Jppyp + Jpvyv ˙

w2 =
(

− M−1K − JvpCp
)
w1 +

(
− M−1D − JvvCv

)
w2 + Bu + Jvpyp + Jvvyv,

which is not a natural observer! Considering the estimation errors, define e1 = x −w1 and e2 = ẋ −w2; then 

ė1 = e2 − JppCpe1 − JpvCve2 ˙

e2 =
(

− M−1K − JvpCp
)
e1 +

(
− M−1D − JvvCv

)
e2,

which also demonstrates that unless one constrains Jpp = 0n×p1 , Jpv = 0n×p2 (or JppCp = 0n×n,JpvCv = 0n×n), the UIFO in (2), (3) applied 
to vector 2nd systems in the form (8) will never reduce to a natural observer. 

For reduced order observers, one has to find estimates x̂ and ̂̇x of x and ẋ and then take ̂z = Lp x̂ +Lv ̂̇x as the estimate of the signal z. 
However, one must ensure that the derivative of the position estimate is indeed the velocity estimate, i.e. to ensure that d

dtx̂ = ̂̇x. The 
best approach in this case is to consider a reduced order natural observer as well. 

When considering functional observers, one comes across the solution of an associated Sylvester equation. Once again, to minimize 
unnecessary computations and take advantage of the algebraic structure of the matrices in their natural setting, we design UIOs for (7) 
instead of (8), [14]. The computational savings take the form of solving for n × n dimensional Sylvester equations instead of 2n × 2n 
dimensional ones. 

We will consider the more general case of designing a FO for Lpx +Lvẋ using both position and velocity measurements yp and yv. Any 
other combination with different measurements and functional outputs can be shown to be special cases of the general case. The 
exception is when one has only position measurements yp and it is desired to design a position functional observer, i.e. estimate z =
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Lpx. This is a degenerate case and one must then consider a special functional observer in a 2nd order setting as well. 
Prior to the description of the observer designs, we summarize a result on the solution to matrix equations. 

Lemma 3.1. ([17]) Given matrices X, A, B of appropriate dimensions, XA = B has a solution if and only if B(I −A†A) = 0, where A†

denotes the Moore–Penrose inverse of A. The latter is equivalent to rank
(

B
A

)

= rank(A
)

, and the corresponding solution is X =

BA† +Z(I −AA†) where Z is an arbitrary matrix. Similarly, AX = B has a solution if and only if (I −AA†)B = 0, and it is given by X = A†B +

(I −A†A)Z. 

3.1. Natural UIOs for vector 2nd order systems with position and velocity measurements 

We summarize the UIO for 2nd order systems considered in [6]. Here, a modification not published elsewhere, is included in order 
to allow for velocity measurements. This modification removes the need to take the time derivative of position measurements yp and 
uses both yp and yv. The proposed natural UIO for (7) with z = (x, ẋ)

T, which requires p1 = p2 = p (equal number of position and 
velocity measurements), is 

{

Mẅ + D1ẇ + K1w = TB0u + Jpyp + Jvyv, x̂ = w + Epyp. (10)  

The n-dimensional vector x̂ is the estimate of the position x, and, by construction of the natural UIO for 2nd order systems, the estimate 

of the velocity vector is equal to the derivative of x̂; i.e. ̂̇x
(

t
)

= d
dt x̂(t

)

, ∀t⩾0. 

In a similar fashion as in [6], one imposes the following matrix identities 
(
I − MEpCpM−1)

F0 = 0, T = I − MEpCpM−1 = M
(
I − EpCp

)
M−1,

D1 = TD + Jv1 Cv, K1 = TK + Jp1 Cp,

Jv = Jv1 + Jv2 , Jp = Jp1 + Jp2 ,

Jv2 = −D1EpQ−1, Jp2 = −K1Ep,

(11)  

with the additional assumption that the two output matrices are related via 

Cv = QCp, (12)  

where Q is any p × p nonsingular matrix. The above condition (collocated-type) eliminates the need to differentiate the position 
output, as required in the observer design of [6]; the difference comes at the condition Jv2 = −D1EpQ−1. When equations Eq. 11, Eq. 12 
are satisfied, then the estimation error e ≜ x −x̂ is governed by 

Më + D1ė + K1e = 0. (13)  

Conditions that guarantee the convergence of the position and velocity errors to zero regardless of the presence of the unknown input 
d are given below. 

Theorem 3.1. The necessary and sufficient conditions for the proposed observer in Eq. 10, which uses both yp and yv, to be a natural UIO for 
the 2nd order system in (7) are:  

1. rank
(

CpM−1F0
)

= rank
(

M−1F0
CpM−1F0

)

.  

2. the pairs (Cp, TK) and (Cv, TD) are detectable, in the sense that one may assign the spectrum of both K1 and D1 such that the following 
quadratic pencil [18] has a desired eigenstructure 

P 1
(
s
)

= s2M + s
(
TD + Jv1 Cv

)
+

(
TK + Jp1 Cp

)
.

3. Cv = QCp with Q nonsingular. 

Proof. The proof is similar to the one in [6] and whose main difference is in the additional arguments required for the added velocity 
measurements. When Cv = Cp, then the proof is identical to that in [6] with ẏp = yv. Due to the similarity in the proof for the current 
case of Cv = QCp, the reader is directed in [6]. □ 
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Remark 3.1. (Restrictions of the natural UIO extended from [6]) While the proposed natural UIO in (10) is an improvement of the 
natural UIO presented in [6] as it explicitly uses velocity measurements, it is nonetheless a special case of natural UIOs. The reason is 
that the Sylvester equations 

−TK − JpCp + K1M−1TM = 0,

−TD − JvCv + D1M−1TM = 0,

resulting from the estimation error dynamics, should have incorporated the constraint TF0 = 0 in order to obtain the solution Ep, and 
the general solution for Ep should have used the matrix Z in Lemma 3.1. The solution for Ep solely relies on condition 1 of Theorem 3.1. 
If this cannot be satisfied, then Ep has to be solved using the above two Sylvester equations. Even if condition 1 is satisfied, there is no 
guarantee that the detectability conditions (condition 2) can be satisfied. However, if all three conditions of Theorem 3.1 are satisfied, 
then the design procedure for the natural UIO in (10), as given in Algorithm1, will result in a natural UIO with minimal design 
complexity. 

Remark 3.2. (Natural UIO to natural observer) One can observe that when F0 = 0n×q, the UIO in Eq. 10-Eq. 12 coincides with the 
natural 2nd order observer summarized in [2] for lumped parameter systems. Indeed, when F0 = 0n×q, then x̂ = w +Epyp with Ep =

0n×p1 , gives ̂x ≡ w and the governing equation becomes M ¨̂x + D1
˙̂x + K1 x̂ = B0u + Jp1 yp + Jv1 yv,with D1 = D + Jv1 Cv,K1 = K + Jp1 Cp,

T = In, Jv2 = Jp2 = 0p×n, or M ¨̂x + (D + Jv1 Cv) ˙̂x + (K + Jp1 Cp)x̂ = Bu + Jp1 yp + Jv1 yv. The above framework retains the 2nd order 
structure of mechanical systems with the time derivative of the estimated position equal to the estimated velocity, [2]. 

To show that the error system in Eq. 13 converges to zero asymptotically, one employs the parameter-dependent Lyapunov function 
that was used in [6]. Detailed arguments leading to the convergence of e, ė to zero are given in [6], and in [2] for the case of a natural 
2nd order observer. Alternatively, one may use condition 2 of Theorem 3.1 to argue stability of the error Eq. (13) corresponding to 
(14). 

In order to arrive at a natural UIO that is not restrictive, one must utilize the general framework of UIFO that rely on associated 
Sylvester equations to enforce a condition similar to TF0 = 0. In that case, the general natural UIFO presented in Section 4 can be used 
to design natural UIO and FO for vector 2nd order systems. 

4. Natural UIFOs for vector 2th order systems 

The proposed natural UIFO for (7) is given by 
{M_{{0}}}{{̈ {\mathop{ζ}}}\vphantom{̈}}+{D_{{0}}}{{̇ {\mathop{ζ}}}\vphantom{̇}}}+
{K_{{0}}}ζ={J_{{p}}}{y_{{p}}}+{J_{{v}}}{y_{{v}}}+Hu\vphantom{Hu}{\curr \hskip0 . 
\vphantom{.}}\fleqno \tf="TTe692faf0"\hbox{(14a)}  

ẑ = A1ζ + A2ζ̇ + Epyp + Evyv, (14b)  

The estimate of z(t) contains a weighted sum of the “projected” position and velocity ζ(t) and ζ̇(t). The matrices Ep, Ev have dimensions 
r × p1 and r × p2, respectively. The “projected” mass, damping and stiffness matrices M0, D0, K0 have dimension s × s with min(n,

r)⩽s⩽n. Similarly, the matrices A1, A2 have dimension r × s. Finally, Jp, Jv and H have dimensions s × p1, s × p2 and s × m. A way to view 
(14), is that the observer (14a) with state (w, ẇ) is of order 2s and its output z is of order r. Define the matrices P1 = Lp −EpCp,P2 =

Lv −EvCv. Theorem 4.1 provides conditions for (14) to be a natural UIFO for (7). 

Theorem 4.1. The signal ẑ in (14a), (14b) is an asymptotic estimate of the functional z in (7) for any initial position x(0), initial velocity 
ẋ(0), any ẑ(0) and any bounded input u(t) in (7) if and only if the equations 

Algorithm 2: Designing minimum complexity natural UIO observers for 2nd order systems using (10) 

1: Use M(I −EpCp)M−1F0 = 0 to obtain the solution Ep =
(
M−1F0

)(
CpM−1F0

)†

2: Compute T using T = M(I −EpCp)M−1  

3: Compute TK and TD 
4: Compute K1 = TK +Jp1 Cp and D1 = TD +Jv1 Cv by using pole placement techniques in the pairs (Cp, TK) and (Cv, TD) to select Jp1 and Jv1  

5: Compute Jp = Jp1 −K1Ep and Jv = Jv1 −D1EpQ−1  

6: Implement the minimum complexity natural UIO  

Mẅ + D1ẇ + K1w = TB0u + Jpyp + Jvyv, x̂ = w + Epyp.
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−P2M−1K − NP1 − A2M−1
0 JpCp = 0r×n,

P1 − P2M−1D − NP2 − A2M−1
0 JvCv = 0r×n,

P2M−1B0 − A2M−1
0 H = 0r×m,

P2M−1F0 = 0r×q,

(15)  

along with the following auxiliary matrix identities 

A2M−1
0 K0 + NA1 = 0r×s, A2M−1

0 D0 + NA2 − A1 = 0r×s, (16)  

with N Hurwitz, hold and in that case the associated estimation error converges to zero asymptotically. 

Proof. One defines the estimation error 

e = z − ẑ = Lpx + Lvẋ − Epyp − Evyv − A1ζ − A2ζ̇ =
(
Lp − EpCp

)
x +

(
Lv − EvCv

)
ẋ − A1ζ − A2ζ̇ = P1x + P2ẋ − A1ζ − A2ζ̇.

The evolution of the estimation error is given by 

ė = P1ẋ + P2ẍ − A1ζ̇ − A2ζ̈

= P1ẋ + P2
(

− M−1Dẋ − M−1Kx + M−1B0u + M−1F0d
)

− A1ζ̇ − A2
(

− M−1
0 D0ζ̇ − M−1

0 K0ζ + M−1
0 Jpyp + M−1

0 Jvyv

+ M−1
0 Hu

)
+ Ne − N(P1x + P2ẋ − A1ζ − A2ζ̇)

=
(
P1 − P2M−1D − NP2 − A2M−1

0 JvCv
)
ẋ +

(
− P2M−1K − NP1 − A2M−1

0 JpCp
)
x +

(
P2M−1B0

− A2M−1
0 H

)
u + P2M−1F0d +

(
A2M−1

0 K0 + NA1
)
ζ +

(
− A1 + A2M−1

0 D0 + NA2
)
ζ̇ + Ne.

If (15), (16) hold then ė = Ne. Since N is Hurwitz by design, e converges to zero asymptotically. □ 

Lemma 4.1. The necessary and sufficient conditions for the existence and asymptotic convergence of the UIFO observer (14a), (14b) to the 
functional output z of the vector 2nd order system (7) are  

1. rank

⎛

⎜
⎝

⎡

⎢
⎣

LvK
(
LvM−1F0

)

CvK
(
CvM−1F0

)

Cp 0p1×q

⎤

⎥
⎦

⎞

⎟
⎠ = rank

([
CvK

(
CvM−1F0

)

Cp 0p1×q

] )

,  

2. rank

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LvD − Lp(In − L†
vLv)

−Cp(In×n − L†
vLv)

CvD

Cv

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

−Cp(In×n − L†
vLv)

CvD
Cv

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠, 

where K = M−1K
(

In − L†
pLp

)
, D = M−1D

(
In − L†

vLv
)
, Cp = Cp

(
In − L†

pLp

)
, Cv = Cv

(
In − L†

vLv
)
. 

4.1. Design procedure for natural UIFOs and FOs 

The natural UIFO and its reduction to FO and UIO, require similar matrix identities and therefore we consider one set of matrix 
identities; we provide the design steps to the general matrix identities below. Their solution can then be adapted to the appropriate 
observer. Consider the following matrix equations 

−P2M−1K − NP1 − A2M−1
0 JpCp = 0r×n,

P1 − P2M−1D − NP2 − A2M−1
0 JvCv = 0r×n,

P2M−1F0 = 0s×q,

which represent the first part of the identities (15), (16). The auxiliary matrix identities (16) are written as 

−[ A1 A2 ]

[
0s×s Is

−M−1
0 K0 −M−1

0 D0

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟A0

+ N[ A1 A2 ] = [ 0r×s 0r×s ],
(17)  

and can thus be used to obtain A1, A2 once M0, D0, K0, N are designed. If one defines 

J̃p = A2M−1
0 Jp, J̃v = A2M−1

0 Jv,

M.A. Demetriou                                                                                                                                                                                                        



Mechanical Systems and Signal Processing 164 (2022) 108060

9

then the above equations are re-written as 

−P2M−1K − NP1 − J̃pCp = 0r×n,
(18a)  

P1 − P2M−1D − NP2 − J̃vCv = 0r×n, (18b)  

P2M−1F0 = 0s×q. (18c)  

Eqs. (18) will eventually produce N,P1,P2,Ep,Ev,J̃p,J̃v, and M0, D0, K0 needed for the auxiliary identities. When ̃Jp, J̃v are found from the 
solution to (18), then knowledge of A2, M0 will enable the computation of Jp, Jv needed for the implementation of the UIFO (14). The 
solution to the auxiliary matrix identity (17) can be obtained via vectorization 

(
I2s ⊗ N − AT

0 ⊗ Ir
)
vec([ A1 A2 ]) = 02sr×1, with the 

solution given by 
[
A1 A2 ] ∈ ker

(
I2s ⊗ N − AT

0 ⊗ Ir
)
. Once A2 is available, then Jp = (A2M−1

0 )
†J̃pand Jv = (A2M−1

0 )
†J̃v. 

The design for UIFO and FO differ slightly in that the former additionally enforces P2M−1F0 = 0s×q whereas the latter only requires 
the solution to (18a) and (18b). 

4.1.1. Design procedure for natural UIFOs in (14) 

Eq. (18a) which is equivalent to 
(

−P2M−1K −NP1 −J̃pCp

)[
L†

p In − L†
pLp

]
= 0r×(r+n), where L†

p denotes the generalized inverse of 

Lp with LpL†
p = Ir, produces 

−P2M−1KL†
p − NP1L†

p − J̃pCpL†
p = 0r×r,

(19a)  

−P2M−1K
(

In − L†
pLp

)
− NP1

(
In − L†

pLp

)
− J̃pCp

(
In − L†

pLp

)
= 0r×n.

(19b)  

Similarly, (18b), which is equivalent to
(

P1 −P2M−1D −NP2 −J̃vCv

)
[ L†

v In − L†
vLv

]
= 0r×(r+n), where L†

v denotes the generalized 

inverse of Lv with LvL†
v = Ir, produces 

P1L†
v − P2M−1DL†

v − NP2L†
v − J̃vCvL†

v = 0r×r , (20a)  

P1
(
In − L†

vLv
)

− P2M−1D
(
In − L†

vLv
)

− NP2
(
In − L†

vLv
)

− J̃vCv
(
In − L†

vLv
)

= 0r×n. (20b)  

Using the fact that P1L†
p = Ir −EpCpL†

p and the definition of P1, (19a) produces 

N = − LvM−1KL†
p +

[
Ev

(
NEp − J̃p

) ]
[

CvM−1KL†
p

CpL†
p

]

, (21)  

and (19b) produces 

[
Ev

(
NEp − J̃p

) ]

⎡

⎢
⎣

CvM−1K
(

In − L†
pLp

)

Cp

(
In − L†

pLp

)

⎤

⎥
⎦ = LvM−1K

(
In − L†

pLp

)
. (22)  

Using the definition of P2 and P2L†
v = Ir −EvCvL†

v, Eq. (20a) produces 

N = LpL†
v − LvM−1DL†

v + EvCvM−1DL†
v +

[
Ep

(
NEv − J̃v

) ]
[

−CpL†
v

CvL†
v

]

. (23)  

The second expression (20b) simplifies to 

[
Ep

(
NEv − J̃v

) ]
[

−Cp
(
In×n − L†

vLv
)

Cv
(
In − L†

vLv
)

]

=

(

Lv − EvCv

)

M−1D
(
In − L†

vLv
)

− Lp

(

In×n − L†
vLv

)

. (24)  

Eqs. ()()()()(21)–(24) will be solved concurrently. To simplify notation, define matrices 
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Cp = Cp

(
In − L†

pLp

)
, Cv = Cv

(
In − L†

vLv
)
, K = M−1K

(
In − L†

pLp

)
, D = M−1D

(
In − L†

vLv
)
,

Σ1 =

[
CvK
Cp

]

, Σ2 =

⎡

⎣
−Cp

(
In×n − L†

vLv
)

Cv

⎤

⎦, Σ3 =

[
CvK

(
CvM−1F0

)

Cp 0p1×q

]

,

G1 = LvK, G2 =
(

Lv − EvCv

)
D − Lp

(
In×n − L†

vLv

)
, G3 =

[
LvK

(
LvM−1F0

) ]
.

(25)  

Using P2 = Lv −EvCv, one has from (18c) 
(
Lv − EvCv

)
M−1F0 = 0s×q ⇒ Ev

(
CvM−1F0

)
=

(
LvM−1F0

)
.

Combine (22) and the above (cf step 2 of Algorithm 1) 

[
Ev

(
NEp − J̃p

) ]
[

CvK
(
CvM−1F0

)

Cp 0p1×q

]

=
[

LvK
(
LvM−1F0

) ]
. (26)  

Following (25), Eq. (26) is compactly written as G3 =
[

Ev (NEp − J̃p)

]
Σ3 and, using condition 1 in Lemma 4.1, has a solution if and 

only if 

rank
(

G3
Σ3

)

= rank
(
Σ3

)
.

Using Lemma 3.1, the solution in this case is given by the left inverse 
[

Ev

(
NEp − J̃p

) ]
= G3Σ†

3 + Z3
(
Ip1+p2 − Σ3Σ†

3
)
, (27)  

where Z3 is an arbitrary matrix. Using the above in (21), we have 

N = − LvM−1KL†
p + G3Σ†

3

[
CvM−1KL†

p

CpL†
p

]

+ Z3
(
Ip1×p1 − Σ3Σ†

3
)
[

CvM−1KL†
p

CpL†
p

]

. (28)  

Using pole placement, Z3 can be obtained from (28), and subsequently, N can be computed. Using Z3 in (27) provides the solution to Ev 

and (NEp −J̃p). Using Ev, compute P2 = Lv −EvCv. Now, to compute Ep and (NEv −J̃v), consider Eq. (24) which simplifies to 
[

Ep (NEv − J̃v)

]
Σ2 = G2 and (using condition 2 in Lemma 4.1), it has a solution if and only if 

rank
(

G2
Σ2

)

= rank
(
Σ2

)
.

Using Lemma 3.1, the solution to (24) is 
[

Ep

(
NEv − J̃v

) ]
= G2Σ†

2 + Z2
(
Ip1+p2 − Σ2Σ†

2
)
, (29)  

where Z2 is a matrix of appropriate dimensions. Using (23), (29) 

N =

(

LpL†
v − P2M−1DL†

v + G2Σ†

2

[
−CpL†

v

CvL†
v

] )

+ Z2

((

Ip1+p2 − Σ2Σ†

2

)[
−CpL†

v

CvL†
v

] )

. (30)  

Using N from (28) above, the matrix Z2 can be obtained by pole placement. Using the solution Z2 back in (29), one can compute Ep and 
(NEv −J̃v). From the last one, the knowledge of N and Ev from (27), (28) subsequently provides the solution to J̃v via J̃v =

NEv −(NEv −J̃v). Similarly, the knowledge of Ep allows one to compute J̃p via J̃p = NEp −(NEp −J̃p). 
To recover Jp,Jv, compute M0, D0, K0 so that the quadratic pencil P 0(s) = s2M0 +sD0 +K0 has all its roots in C−. The solution to the 

matrix identities (17) can be obtained and subsequently Jp = (A2M−1
0 )

†J̃p, Jv = (A2M−1
0 )

†J̃v and H = (A2M−1
0 )

†P2M−1B. Using M0, D0,

K0, Jp, Jv, H, A1, A2, Ep and Ev the UIFO in (14) can be realized. Algorithm3 summarizes the procedure for designing the proposed UIFO.  

Algorithm 3: Designing natural UIFO’s for vector 2nd order systems: solving (18a), (18b) and (18c) 

1: Using Lp, Lv, Cp, Cv, M, D, K set up matrices Cp ,Cv,K, D, and Σ1, Σ2, Σ3, G1, G3 in (25)  
2: Using pole placement techniques, solve for Z3 in (28)  
3: Solve for [Ev (NEp −J̃p)] using (27)  
4: Use Ev to solve for P2 = Lv −EvCv and set-up G2 in (25)  

(continued on next page) 
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(continued ) 

Algorithm 3: Designing natural UIFO’s for vector 2nd order systems: solving (18a), (18b) and (18c) 

5: Using pole placement in N, solve for Z2 in (30)  
6: Solve for Ep and J̃v using Z2 and J̃v = NEv −(NEv −J̃v) in (29)  
7: Compute P1 using P1 = Lp −EpCp  

8: Solve for J̃p using J̃p = NEp −(NEp −J̃p)

9: Select positive definite r × r matrices M0, D0 and K0 such that the quadratic pencil P 0(s) = s2M0 +sD0 +K0 has all roots s ∈ C−

10: : Use M0, D0, K0 and N to solve for the auxiliary matrix identities for A1,A2  

11: Solve for Jp and Jv using Jp =
(
A2M−1

0
)† J̃p and Jv =

(
A2M−1

0
)† J̃v  

12: Solve for H using H = (A2M−1
0 )

†P2M−1B  
13: Using N, Ep, Ev, Jp, Jv , P2 implement the natural UIFO  

{

M0 ζ̈ + D0 ζ̇ + K0ζ = Jpyp + Jvyv + Hu, ẑ = A1ζ + A2 ζ̇ + Epyp + Evyv.

4.1.2. Design procedure for natural FOs in (14) 
The procedure is very similar. The difference comes at the removal of (18c). In this case one uses (22) to solve for [Ev (NEp −J̃p)]. 

The condition for solvability is now 

rank
(

G1
Σ1

)

= rank
(
Σ1

)
.

The solution to (22) is 
[

Ev

(
NEp − J̃p

) ]
= G1Σ†

1 + Z1
(
Ip1+p2 − Σ1Σ†

1
)

(31)  

where Z1 is an arbitrary matrix. Substituting to (21) 

N = − LvM−1KL†
p + G1Σ†

1

[
CvM−1KL†

p

CpL†
p

]

+ Z1
(
Ip1×p1 − Σ1Σ†

1
)
[

CvM−1KL†
p

CpL†
p

]

. (32)  

Using pole placement, Z1 can be obtained from (32), and subsequently, N can be computed. Using Z1 in (31) provides the solution to Ev 

and (NEp −J̃p). Using Ev, compute P2 = Lv −EvCv. The rest of the steps follow the ones for UIFO in Eqs. (29), (30). Algorithm 14 
summarizes the design of the natural FO (14).  

Algorithm 4: Designing natural FOs for vector 2nd order systems: solving (18a), (18b) 

1: Using Lp, Lv , Cp, Cv , M, D, K set up matrices Cp, Cv, K, D and Σ1, Σ3, G1, G3 using (25)  
2: Using pole placement techniques, solve for Z1 and then for N in (32)  
3: Using Z1, solve for Ev and (NEp −J̃p) in (31)  
4: Solve for P2 = Lv −EvCv  

5: Using pole placement in N, solve for Z2 in (30)  
6: Solve for Ep and J̃v using Z2 and J̃v = NEv −(NEv −J̃v) in (29)  
7: Solve for P1 using P1 = Lp −EpCp  

8: Solve for J̃p using J̃p = NEp −(NEp −J̃p)

9: Select positive definite r × r matrices M0, D0 and K0 such that the quadratic pencil P0(s) = s2M0 +sD0 +K0 has all roots s ∈ C−

10: Use M0, D0, K0 and N to solve for the auxiliary matrix identities for A1 ,A2  

11: Solve for Jp and Jv using Jp =
(
A2M−1

0
)† J̃p and Jv =

(
A2M−1

0
)† J̃v  

12: Solve for H using H = (A2M−1
0 )

†P2M−1B  
13: Using N, Ep, Ev, Jp, Jv, P2 implement the natural FO  

{

M0 ζ̈ + D0 ζ̇ + K0ζ = Jpyp + Jvyv + Hu, ẑ = A1ζ + A2 ζ̇ + Epyp + Evyv .

4.2. Reducing the proposed natural UIFO to natural UIO, natural FO and natural observer 

Since the criterion for any UIFO of vector 2nd order systems to be termed natural, is its property to reduce to a natural FO, to a 
natural UIO and to a natural observer, we consider the proposed UIFO in (14) and verify that it can be reduced to a FO, to an UIO and 
subsequently to a natural observers. 
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4.2.1. Reduction of natural UIFO to a natural UIO and then to a natural observer 
We now show that when the vector to be estimated is the entire state vector, i.e. r = 2n with 

z =

[
In×n
0n×n

]

x +

[
0n×n
In×n

]

ẋ = Lpx + Lvẋ,

and the dimension of (14) is now s = n, the proposed UIFO in (14a), (14b) reduces to a natural UIO. By inspection, one has M0 = M and 
A1 = Lp and A2 = Lv. With this choice of A1,A2, the Eqs. (17) produce 

N =

[
0n×n In

−M−1K0 −M−1D0

]

,

and the matrix identities in (15) become 

[ P1 P2 ]

[
0n×n In

−M−1K −M−1D

]

− N[ P1 P2 ] +

[
0n×n 0n×n

−M−1JpCp −M−1JvCv

]

= [ 02n×n 02n×n ],

and which produce the natural UIO. Now to reduce the natural UIO to a natural observer, set d = 0q. Then Ep = 02n×p1 , Ev = 02n×p2 and 
thus 

P1 =

[
In

0n×n

]

, P2 =

[
0n×n
In

]

.

The above Sylvester equation reduces to 
[

0n×n In
−M−1(

K + JpCp
)

−M−1(
D + JvCv

)

]

−

[
0n×n In

−M−1K0 −M−1D0

]

=

[
0n×n 0n×n
0n×n 0n×n

]

, (33)  

leading to K0 = K + JpCp,D0 = D + JvCv. Using the above, the natural UIFO (14a), (14b) is now given by 
⎧
⎨

⎩
Mζ̈(t) +

(
D + JvCv

)
ζ̇ (t) +

(
K + JpCp

)
ζ(t) = B0u + Jpyp + Jvyv, ẑ(t) =

[
ζ(t)
ζ̇(t)

]

, (34)  

which coincides with the natural observer with ζ = x̂ and ζ̇ = ˙̂x. 

4.2.2. Reduction of natural UIFO to natural FO and then to natural observer 
This is a rather trivial exercise. Indeed, when F0 = 0n×q, then the equations (15), (16) without the additional condition P2M−1F0 =

0, follow the procedure in Section 4.1.2 and summarized in Algorithm 14. 
To recover the natural observer from the natural FO, with z being a 2n-dimensional vector (i.e. estimate the entire state), one has 

r ≡ 2n with the associated matrices having dimension 2n × n and given by 

Lp =

[
In

0n×n

]

andLv =

[
0n×n
In

]

.

Setting Ep = 02n×p1 , Ev = 02n×p2 produces [ P1 P2 ] = I2n. Following the steps similar to the previous case, one arrives at (33) and 
therefore the UIFO in (14) reduces to the natural observer (34). 

4.3. Alternate design to (14) 

Similar to the 1st order case in [11], one can have an observer whose dimension is different to the estimated functional dimension r. 
While this was presented in (14), wherein the dimension of ζ was not necessarily equal to the dimension of z, we consider this in the 
context of a re-defined Sylvester matrices P1, P2 in (15). 

The UIFO is identical to (14a) with the estimate of z given by 

ẑ = Q1ζ + Q2ζ̇ + Epyp + Evyv, (35)  

but the Sylvester Eqs. (15) will differ. Using the same estimation error e = z −ẑ = (Lp −EpCp)x + (Lv −EvCv)ẋ −Q1ζ −Q2ζ̇, we have that 

ė =
(
Lp − EpCp

)
ẋ +

(
Lv − EvCv

)
ẍ − Q1ζ̇ − Q2ζ̈

=
(

−
(
Lv − EvCv

)
M−1K − Q2M−1

0 JpCp − N
(
Lp − EpCp

))
x +

((
Lp − EpCp

)
−

(
Lv − EvCv

)
M−1D − QsM−1

0 JvCv − N
(
Lv

− EvCv
))

ẋ +
((

Lv − EvCv
)
M−1B − Q2M−1

0 H
)
u +

(
Lv − EvCv

)
M−1Fd +

(
Q2M−1

0 K0 + NQ1
)
ζ +

(
− Q1 + Q2M−1

0 D0 + NQ2
)
ζ̇. (36)  

Defining Q1P1 = Lp −EpCp,Q2P2 = Lv −EvCv, then (36) produces the counterpart of (15) 
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−Q2P2M−1 − NQ1P1 − Q2M−1
0 JpCp = 0,

(37a)  

Q1P1 − Q2P2M−1D − NQ2P2 − Q2M−1
0 JvCv = 0, (37b)  

NQ1 = Q2M−1
0 K0, (37c)  

NQ2 = Q1 + Q2M−1
0 D0, (37d)  

Q2
(
P2M−1B − M−1

0 H
)

= 0, (37e)  

Q2P2M−1F = 0. (37f)  

5. Special cases 

5.1. Special case: dim(z) = dim(ζ) in (14) 

One may simplify the proposed UIFO (14) by choosing A2M−1
0 = Ir×r, i.e. the dimension s of the observer state ζ in Eq. 18b is set 

equal to the dimension r of the state functional z. In this case, the identities (15) become 

−P2M−1K − NP1 − JpCp = 0r×n,

P1 − P2M−1D − NP2 − JvCv = 0r×n,

P2M−1B0 − H = 0r×m, P2M−1F0 = 0r×q,

and the auxiliary identities (16) simplify to 

K0 + NA1 = 0r×r, D0 + NM0 − A1 = 0r×r, ⇒ D0 = −
(
NM0 + N−1K0

)
, A1 = − N−1K0.

In this case, the proposed natural UIFO (14), becomes 
{

M0ζ̈ −
(
NM0 + N−1K0

)
ζ̇ + K0ζ = Jpyp + Jvyv + P2M−1B0u, ẑ = −N−1K0ζ + M0ζ̇ + Epyp + Epyv,

and which provides a “closed-loop” damping matrix D0 which is proportional to air damping (via −NM0) and structural damping (via 
−N−1K0). To obtain Jp, Jv, Ep, Ev one simply follows Algorithm3. 

5.2. First order FOs for vector 2nd order systems 

When both yp(t) and yv(t) are available, it is possible to have a 1st order structure for the FO. In fact it represents the components of 
a FO based on the 1st representation (8). The 1st order FO ẑ of z is given by 

ẇ = Nw + QvM−1B0u + Jpyp + Jvyv,

ẑ = w + Epyp + Evyv, (38)  

where N, Qv, Jp, Jv, Ep, Ev will be defined below. The r-dimensional vector w denotes the observer state and ̂z denotes the estimate of z. 
The theorem below provides the conditions for ẑ to be an estimate of z. 

Theorem 5.1. The signal ̂z in (38) is an asymptotic estimate of the state functional z in (7) for any initial position x(0), initial velocity ẋ(0), 
any ẑ(0) and any bounded input u(t) in (34) if and only if 

−QvM−1K − NQp − JpCp = 0r×n,
(39a)  

Qp − QvM−1D − NQv − JvCv = 0r×n, (39b)  

where Qp = Lp −EpCp, Qv = Lv −EvCv, and the r × r matrix N is Hurwitz. 

Proof. The resulting estimation error e is 

e = z − ẑ = Lpx + Lvẋ − Epyp − Evyv − w = Qpx + Qvẋ − w.

The time derivative of e is ė = Qpẋ + Qvẍ −ẇ. Using the expression for ̈x in (7), the expression for ẇ in (38) and adding and subtracting 
Ne, then ė is given by 
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ė = Ne + Qpẋ + Qvẍ − Nw − QvM−1B0u − Jpyp − Jvyv − N
(
Qpx + Qvẋ − w

)

= Ne + Qpẋ − QvM−1Dẋ − QvM−1Kx − Jpyp − Jvyv − NQpx − NQvẋ

= Ne +
(
Qp − QvM−1D − NQv − JvCv

)
ẋ +

(
− QvM−1K − NQp − JpCp

)
x.

Following the conditions (39a), (39b) in Theorem 5.1, the estimation error is then governed by 

ė = Ne, e(0) = e0 ∕= 0r×1.

Since the matrix N is Hurwitz by design, then we have limt→∞|e(t)| = 0. □ 

Remark 5.1. The proposed FO in (38) cannot be termed a natural FO for the vector 2nd because it does not reduce to a natural 
observer. Setting r = 2n with Ep = 02n×p1 , Ev = 02n×p2 and 

Lp = Qp =

[
In

0n×n

]

, Lv = Qv =

[
0n×n
In

]

,

and which leads to a similar estimator as presented at the beginning of Section 3. 

Remark 5.2. The equations in (39) can also be derived when one considers a functional observer for the system in 1st order form (8). 
In this case, one has 

z = [ Lp Lv ]X, ẑ = w + [ Ep Ev ]

[
yp
yv

]

, P =
[

Qp Qv
]
, JC = [ JpCp JvCv ],

and the associated Sylvester Eq. (3) is given by PA −NP = JC, or 
[

Qp Qv
]
A − N

[
Qp Qv

]
= [ JpCp JvCv ].

A solution to this Sylvester equation exists when the spectra are disjoint σ(A) ∩ σ(N) = ∅, [12]. Two special cases arise namely 
having solely position measurements (Cv = 0p2×n) and it is desired to obtain an estimate of a functional of the position (Lv = 0r×n); 
similarly having only velocity measurements (Cp = 0p1×n) and it is desired to estimate a functional of the velocity (Lp = 0r×n). These 
two cases cannot be dealt with using the procedure presented earlier, as both degenerate and result in naïve observers. Any other 
combination can be handled under the framework set forth in Theorem 4.1. 

5.3. Asymptotic observer for functional position using position measurements 

In this case, the output is y = yp = Cpx =
[
Cp 0r×n

]
X, and one must provide an estimate for z = Lpx =

[
Lp 0r×n

]
X. Here, one 

cannot set Lv = 0r×n in (7c), Cv = 0p2×n, Jv = 0r×p2 , Ev = 0r×p2 , P2 = 0r×n in (14) and solve (18) with P2 = 0r×n, Jv = 0r×p2 , since it 
degenerates. Eq. (18a) reduces to NP1 = −JpCp and (18b) gives P1 = 0r×n. Upon substitution into (14), one arrives at a naïve observer. 

We propose the following natural functional observer (cf (14)) 

M1ẅ + D1ẇ + K1w = M1P1M−1B0u + Jpyp 

ẑ = w + Epyp (40)  

where ẑ denotes the estimate of the unknown functional position z. The functional position error is given by 

e = z − ẑ = Lpx − EpCpx − w = P1x − w, P1 = Lp − EpCp.

We use the following expressions to relate the pairs (x, e) and (x, w) via 
[

x
e

]

=

[
In 0n×r
P1 −Ir

][
x
w

]

and
[

x
w

]

=

[
In 0n×r
P1 −Ir

][
x
e

]

. (41)  

To facilitate the asymptotic properties of the error equation, consider the vector 2nd order systems (7), (41) 
[

M 0n×r
0r×n M1

][
ẍ
ẅ

]

+

[
D 0n×r

0r×n D1

][

ẋ ẇ
]

+

[
K 0n×r

0r×n K1

][
x
w

]

=

[
B0u

M1P1M−1B0u

]

+

[
0n×1

JpCpx

]

.

Using (41) in the above expression, we have 
[

M 0n×r
0r×n M1

][
In 0n×r
P1 −Ir

][
ẍ
ë

]

+

[
D 0n×r

0r×n D1

][
In 0n×r
P1 −Ir

][

ẋ ė
]

+

[
K 0n×r

0r×n K1

][
In 0n×r
P1 −Ir

][
x
e

]

=

[
B0u

M1P1M−1B0u

]

+

[
0n×1

JpCpx

]

Simplifying the above, one arrives at 
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[
M 0n×r

M1P1 −M1

][
ẍ
ë

]

+

[
D 0n×r

D1P1 −D1

][
ẋ
ė

]

+

[
K 0n×r

K1P1 −K1

][
x
e

]

=

[
B0u

M1P1M−1B0u

]

+

[
0n×1

JpCpx

]

.

In order to diagonalize the mass matrix of the augmented system, we multiply both sides by the left inverse 
[

In 0n×r
M1P1M−1 −Ir

]

to arrive at 
[

M 0n×r
0r×n M1

][
ẍ
ë

]

+

[
D 0n×r

M1P1M−1D − D1P1 D1

][
ẋ
ė

]

+

[
K 0n×r

M1P1M−1K − K1P1 K1

][
x
e

]

=

[
B0u
0m×1

]

+

[
0n×n 0n×r

−JpCp 0r×r

][
x
e

]

.

Solving for the following matrix equations 
{

M1P1M−1K − K1P1 + JpCp = 0r×n,

M1P1M−1D − D1P1 = 0r×n,
(42)  

one arrives at 
[

M 0n×r
0r×n M1

][
ẍ
ë

]

+

[
D 0n×r

0r×n D1

][
ẋ
ė

]

+

[
K 0n×r

0r×n K1

][
x
e

]

=

[
B0u
0r×1

]

.

With the above choice one has that the functional position error satisfies 

M1ë + D1ė + K1e = 0. (43)  

Lemma 5.1. When only position output yp is available and it is desired to reconstruct z = Lpx, then the natural functional observer (40) 
ensures that the associated functional position error governed by (43) asymptotically converges to zero if and only if the Sylvester Eqs. (42) are 
satisfied. 

The proof follows from the preceding analysis and uses arguments similar to the proof of Theorem 5.1. 

Remark 5.3. Similar to the general case in (18), one can obtain the solution to (42). Rewriting (42) 
(

P1K̃ − K̃1P1 + J̃pCp

)[
L†

p I − L†
pLp

]
= 0, P1D̃ − D̃1P1 = 0,

where K̃ = M−1K, K̃1 = M−1
1 K1, D̃ = M−1D, D̃1 = M−1

1 D1, J̃p = M−1
1 Jp. The first one produces 

K1 = M1LpM−1KL†
p + [ −M1Ep

(
K1Ep + Jp

)
]

[
CpM−1KL†

p

CpL†
p

]

.

From the second one 

[ −M1Ep
(
K1Ep + Jp

)
]

[
CpK
Cp

]

= − M1LpM−1K.

One may follow the steps presented in Section 4 for the solution to the above two matrix equations. Due to their similarities, the reader 
is directed to Section 4. 

Table 1 
natural UIFO.  

Case is Cp = 0p1×n?  is Cv = 0p2 ×n?  is Lp = 0r×n?  is Lv = 0r×n?  corresponding UIFO 

(a1) N N N N (14) 
(a2) N N N Y (14) 
(a3) N N Y N (14) 
(a4) Y N N N (14) 
(a5) N Y N N (14) 
(b) N Y N Y (40) 
(c) Y N Y N (44)  
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5.4. Asymptotic observer for functional velocity using velocity measurements 

Similar to the previous case, one now has Lp = 0r×n, Cp = 0p1×n, Ep = 0r×p1 with P1 = 0r×n. When these are used in (18), they 
produce a constrained solution for P2. Eq. (18a) produces P2M−1K = 0r×n. Eq. (18b) simplifies to P2M−1D + NP2 + J̃vC = 0r×n. 
Multiplying by [ L†

v In − L†
vLv ] and incorporating P2M−1K = 0r×n along with (18c) yields 

N = − LvM−1DL†
v +

[
Ev

(
NEv − J̃v

) ]
[

CvM−1DLv †CvL†
v

]

,
[

Ev

(
NEv − J̃v

) ]
[

CvD CvM−1K CvM−1F0
Cv 0 0

]

=
[

LvD LvM−1K LvM−1F0
]
.

Solving the second equation and then using pole placement for N, one can obtain the solution to Ev,J̃v. Once N, J̃v are obtained and M0,

D0, K0 are selected, one can solve for A1, A2 in (17) and for H in (15). Then the UIFO (14) for this case becomes 

M0ζ̈ + D0ζ̇ + K0ζ = Jvyv + Hu,

ẑ = A1ζ + A2ζ̇ + Evyv. (44)  

The stability and convergence arguments are similar to the earlier cases and are omitted. 
Table 1 summarizes the UIFO and the special cases in terms of the matrices Cp,Cv,Lp,Lv. 

6. Compensator design using natural functional observer: Functional output as the control input 

In the event that one would like to use z = Lpx +Lvẋ as a compensator in place of a full state feedback, one must set r = m and find 
the gains Lp and Lv such that the closed loop system Mẍ + (D −B0Lv)ẋ + (K −B0Lp)x = 0, satisfies some a priori defined stability and 
optimality criteria. For example one may use (8) to design an optimal feedback control law. Using the 1st order setting (8), a linear 
quadratic regulator with cost 

J =

∫ ∞

0
XT (

τ
)
QX

(
τ
)

+ uT (τ)Ru(τ)dτ,

will produce an optimal feedback controller u(t) = −GX(t), where G ∈ Rr×2n is the feedback gain obtained via the solution to an 
associated Algebraic Riccati Equation. Closer examination of u reveals that 

u
(

t
)

= − GX
(
t
)

= −
[

Gp Gv
]
[ x(t)

ẋ
(

t
)

]

= − Gpx
(

t
)

− Gvẋ(t), (45)  

where Gp, GvRr×n are the decompositions of G. The above controller results in the closed-loop system 

Ẋ(t) =

[
0n×n In

−M−1K −M−1D

]

X(t) +

[
0n×q

M−1B0

]

u(t) =

[
0n×n In

−M−1K −M−1D

]

X(t) −

[
0n×n 0n×n

M−1B0Gp M−1B0Gv

]

X(t)

=

[ 0n×n In

−M−1
(

K + B0Gp

)
−M−1

(
D + B0Gv

)
]

X(t) = AclX(t), (46)  

with the closed-loop state matrix Acl given by 

Acl =

[ 0n×n In

−M−1
(

K + B0Gp

)
−M−1

(
D + B0Gv

)
]

.

In its natural setting, the closed-loop system is given by Mẍ + (D + B0Gv)ẋ + (K + B0Gp)x = 0. The stability of the closed loop system 
(46) directly follows from the optimal control formulation. 

In the absence of full state information, the state feedback u(t) = −GX(t), cannot be implemented. In its place, one uses the state 
estimate of X(t) given by 

u
(

t
)

= − GX̂
(

t
)

. (47)  

The controller (47) requires the estimate X̂(t) to be realized. A state estimator, based on a Luenberger observer or a Kalman filter, 
would require the implementation of an 2n dimensional compensator which becomes computationally expensive. A computationally 
inexpensive alternate is to use a functional observer for the r-dimensional signal −GX(t). In other words, one implements the func
tional observer for 

z
(

t
)

= − Gpx
(

t
)

− Gvẋ(t), (48) 
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which requires the implementation of a r ≪ 2n dimensional dynamical system, and uses its estimate ̂z(t) in place of the control signal; i. 
e. use u = ẑ. The question that arises is whether the controller u(t) = ẑ(t) with z(t) given by z = −GX can result in a stable closed-loop 
system. 

The use of the estimate of (48) as a control signal in the UIO (10), in the UIFO and FO (14), in the first order FO (38), in the 
functional position observer (40), and the functional velocity observer (44), results in a stable closed-lop system. The stability ar
guments are similar and thus only one case will be detailed. 

Lemma 6.1. Assume that m = r and consider the vector 2nd order system (7) with the linear functional (41) where the gains Gp, Gv ∈ Rq×n 

are designed so that the corresponding closed-loop system (46) is stable. The minimum order controller u(t) = ẑ(t) where ẑ(t) is given by (14) 
and the requisite matrices in (18), are solved using Lp = −Gp and Lv = −Gv, results in an exponentially stable closed-loop system, whose 
convergence rate is dictated by the spectra of Acl and N. 

Proof. Setting z = −GX and using u = ẑ = z −e, the closed loop system (7), (14), (45) with d = 0 becomes 
{

Mẍ +
(

D + B0Gv

)
ẋ +

(
K + B0Gp

)
x = −B0e, ė = Ne. (49)  

Using the first order formulation (46), then the augmented system is given by 

d
dt

[
X(t)
e(t)

]

=

⎡

⎣ Acl

[
0n×q

M−1B0

]

0r×2n N

⎤

⎦

[
X

(
t
)

e
(
t
)

]

. (50)  

The spectrum of the augmented state matrix, an upper diagonal matrix, consists of the spectra σ(Acl) and σ(N). Since both are Hurwitz 
matrices, the exponential stability of (49) immediately follows, [19,12]. □ 

Remark 6.1. The same conclusions can be drawn for the special case of functional position observer in (40). In this case one must 
require that the control input u = z = Lpx would result in a stable nominal system Mẍ + Dẋ + (K + B0Gp)x = 0. Use of the control 
input u = ẑ = z −e results in 

Mẍ + Dẋ +
(

K + B0Gp

)
x = −B0e 

M1ë + D1ė + K1e = 0.

Similar results hold for the UIO (10), the 1st order FO (38), and the functional velocity observer (44). However, the presence of a 
nonzero d in (7) requires additional conditions. When the control signal u = ẑ −e is applied in (7), it results in 

{

Mẍ +
(

D + B0Gv

)
ẋ +

(
K + B0Gp

)
x = −B0e + F0d, ė = Ne.

Asymptotic stability can be invoked in this case when the disturbance signal d ∈ L2(0, ∞; Rq), [19]. 

Fig. 1. Mechanical system: three masses connected via springs and dampers.  
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7. Numerical example 

Consider the system (7) with 

M =

⎡

⎣
2 0 0
0 3 0
0 0 5

⎤

⎦, K =

⎡

⎣
6 −2 0

−2 3 −1
0 −1 1

⎤

⎦, D =

⎡

⎣
5 −3 0

−3 6 −3
0 −3 3

⎤

⎦,

B0 =

⎡

⎣
0
0
1

⎤

⎦, F0 =

⎡

⎣
1
1
0

⎤

⎦, Cp =

[
1 0 0
0 0 1

]

, Cv = [ 0 1 0 ].

representing three masses connected through springs and dampers with only the last one having a control force and depicted in Fig. 1. 
The unknown input d(t) enters in the first two masses and position measurements are available for the first and third mass, while 
velocity measurements are available for the second mass. The numerical values of the mass, damper and stiffness elements are m1 =

2, m2 = 3, m3 = 5, b1 = 2, b2 = 3, b3 = 5, k1 = 4, k2 = 2 and k3 = 1. Using a pole placement scheme [20,21] to place the open loop 
poles ( −2.5, −0.9193 ± 0.9193j, −0.5664, −0.0976 ± 0.3206j) to the desired locations ( −2.5, −2, −1.75, −1.5, −1.25, −1), the 
resulting feedback gains for u(t) = −GX(t), are Lp = [ 5.1376 10.9089 29.1756

]
, Lv = [ 11.3586 16.2619 24.5000 ]. 

We consider the special case with dim(z) = dim(ζ) = 1 in Section 5.1. This yields A2 = M0. Selecting M0 = 1 and K0 = 4 with N =

−1.4, then D0 = −(NM0 +N−1K0) = 4.2571 and A1 = 2.8571. The associated UIFO in Section 5.1 was implemented with (7a) and d(t)
= 10−4sin(2t) using u = −z and u = −ẑ resulting in the closed-loop system (49). Fig. 2 depicts the evolution of the closed-loop norm 
with the full-state feedback and the UIFO-based compensator. As expected, the UIFO-based compensator has a comparable perfor
mance to the full state feedback with the difference of only implementing the reduced-order UIFO as opposed to an observer-based 
feedback. Table 2 summarizes the results for the two cases and which also shows the control effort when an UIFO-based compen
sator is used. While an increased control effort is warranted in the UIFO-based compensator, the computational savings can be used to 
counterbalance the increased control effort, especially when one has to deal with large mechanical systems which would require a 2n 
dimensional observer to be simulated in real time versus a 2m dimensional UIFO with m ≪ n. 

8. Conclusions 

A unknown input functional observer, representing the most general case of a functional observer, has been proposed for a class of 
mechanical systems described by vector 2nd order systems. A computational benefit in considering UIFO’s in a 2nd order setting was 
the solution of two n dimensional Sylvester equations as opposed to 2n dimensional Sylvester equations when using a 1st order setting. 
Associated with this 2nd order setting for the design of UIFOs is the ability to recover natural observers when the entire state is desired 
to be estimated. Such property cannot be guaranteed when designing UIFO or UIO of mechanical systems in a 1st order setting. An 

Fig. 2. Evolution of energy norm using u = −GX and using an UIFO with u = ẑ.  

Table 2 
L2(0, 10; R) norm for different controllers.  

Control policy Control norm State norm 

full state 0.269 0.5136 
UIFO-based 1.737 0.5438  
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additional and important benefit when considering compensator design, when the UIFO is used as the estimate of a full state feedback, 
it requires a minimum order compensator given by 2m, where m ≪ n is the rank of the input distribution matrix. The alternative of an 
observer-based feedback controller requires a 2n dimensional observer to be realized. 

An immediate extension involves mechanical systems with nonlinear dynamics whereby certain parameterizations are required to 
produce an adaptive natural observer for the on-line estimation of both system parameters and functionals of the state. A related 
extension concerns the extension to time-varying systems which produce differential Sylvester equations. Both such extensions are 
considered by the author and will appear in a forthcoming publication. 
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