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Inducing persistence of excitation through sensor motion in the
adaptive estimation of spatial fields

Michael A. Demetriou

Abstract— An alternative to regression-based estimation of
spatial fields is adaptive-based estimation. Harnessing a widely
used assumption on the series expansion of an unknown spatial
field, the on-line estimation of the spatial field enables the
integration of the real-time estimation of the field with any other
tasks required of sensing agents. Parameter convergence in the
adaptive estimation case requires the property of persistence of
excitation. This condition reduces to imposing the integral of
the outer product of a regressor vector be uniformly positive
definite. With a single sensor measurement this is impossible to
achieve unless the measurements are mobile. In this work, it is
shown that in the adaptive estimation of a spatial field, a single
mobile sensor is capable of inducing persistence of excitation
and hence provide the sought after parameter convergence.
Thus, the motion of a single sensor is a necessary condition
for parameter convergence. It is shown with the appropriate
control design for the platform carrying onboard the sensor,
it also is a sufficient condition for persistence of excitation.
Numerical results examining the time-variation of the regressor
vector to induce a persistence of excitation along with user-
defined guidance for the adaptive estimation of spatial fields
are included to demonstrate the effects of mobile sensors in
inducing persistence of excitation.

I. INTRODUCTION

The estimation of spatial fields for exploration and cov-
erage [1] used regression-based estimation schemes wherein
measurement(s) from static or mobile sensor(s) deployed in
the spatial field were processed using a particular algorithm.
In [2] multi-robot coverage considered the density function
and relied on Bayesian optimization with gaussian processes.
An approach with a flavor towards quantized and imperfect
channels communication constraints in wireless sensor net-
works was presented in [3]. A review of all existing methods
for spatial field estimation are summarized in [4], [5], [6],
(71, [8].

A different approach is to obtain spatial measurements,
either from a network of static (immobile) sensors or from a
smaller set of mobile sensors and process the information
to provide an estimate of the spatial field using adaptive
techniques. Instead of utilizing regression techniques, the
adaptive techniques for parameter estimation rely on the
iterative updating of the estimates of the unknown parameters
in real time. This essentially embeds a static process (true
field) into the dynamic process of its estimate and attempts
to select the update rules so that an associated output error
converges to zero asymptotically. Parameter convergence,
and hence function estimate convergence, is only insured
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when a persistence of excitation (PE) condition is satisfied.
As it turns out, this PE condition imposes the uniform
positive definiteness of the integral of the output product
of a regressor vector. In the case of static sensors, the
regressor vector, and also its outer product, are time invariant
and subsequently cannot yield a uniformly positive definite
integral, unless the number of sensors is greater than or equal
to the number of unknown parameters and the sensors are
placed in locations that do not coincide with the zeros of the
interpolating functions.

Thus, when a single immobile sensor is used, parameter
convergence cannot be established. However, when the sen-
sor is mobile, it may ensure that this rank-one time varying
matrix resulting from the outer product of the regressor
vector, to have a uniformly positive definite integral. Thus,
persistence of excitation required for parameter convergence
can be achieved by a single mobile sensor!

The motion of the sensor is necessary condition to es-
tablish parameter convergence. When platform dynamics for
the onboard sensor are accounted for, then the appropriate
guidance control for the platform may provide the sufficient
condition for parameter convergence.

A related and relevant work in [4] considered the kine-
matics of the mobile sensor and its effects on the robot
motion, reminiscent of Zermelo’s navigation problem with
position-dependent vector velocity [9]. These field effects on
the kinematics were additive terms of the velocity vector of
the spatial field weighted by two unknown field parameters
to be identified adaptively. Through the construction of an
observer of the vehicle motion, a persistence of excitation
condition was discovered to provide convergence of the
unknown values of the field present in the vehicle kinematic
equations. The difference of [4] with this work is that here
the estimation scheme is field-centric wherein an adaptive
scheme for the entire spatial field reconstruction is proposed
and via the requirements for spatial field error convergence,
the PE condition is expressed in terms of the time variation
of the outer product of the regressor vector. A way to induce
time variation of the regressor vector and possibly lead to PE
is via the motion of the sensor. The resulting outcome is the
complete reconstruction of the entire spatial field. Inducing
the PE can be done off-line prior to any experiments by
carefully designing a mobile sensor path within the spatial
domain via the time-variation of the interpolating functions.

The remainder of the paper is as follows. The assumptions
made for the modeling of the spatial fields are presented
in Section II along with the definition of static and mobile
sensor measurement. A summary of the adaptive estimation
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of time invariant spatial fields, assumed to admit a series
expansion, are given in Section III. A Lyapunov-based guid-
ance along with a user-defined guidance are also provided
in Section III along with the results on the necessity of
mobile sensor for PE. Showing the sufficiency part for PE
via sensor motion is also given in this section which is
formulated as a control problem and which only operates
on the sensor-parameterized regressor vector. This a priori
selects the mobile sensor path to achieve PE. Extensive
numerical results on achieving a PE for a selected regressor
vector along with the reconstruction of a spatial field in 1D
and 2D are presented in Section IV. Conclusions and future
work follow in Section V.

II. MODELING OF SPATIAL FIELDS

Consider the spatial field denoted by f(x), where x € Q
is the spatial variable and Q C R?, d = 1,2,3, is the spatial
domain. The unknown spatial field is assumed to be bounded
f€L”(Q), differentiable f € C*(Q) and further it assumes
an expansion of the form

(x) = éei(pi(x),

where 0; are the unknown parameters and ¢;(x) are known
interpolating functions with the appropriate regularity.
Measurement from a pointwise-in-space sensor is assumed
available. The sensor is placed at the spatial location x, € Q,
termed the sensor centroid, and is given by the value of the
unknown function f(x) evaluated at this point via

y= /Sx xg) f(x)dx = f(x). 2

To account for a mobile sensor, the centroid is assumed time-
varying and (2) is re-written to account for the sensor motion

/sx xo(0)) £(x) dx = £(x,(0)). (3)

Note that the sensor measurement in (3) is time varying
due to the sensor motion. Additionally, (3) includes (2) as a
special case when x; = 0.

Using (1), the output y(¢) in (3) is explicitly expressed in
terms of the unknown parameters

XEQ, ()

= D 6ii (xs(1)). 4)
i=1

The measurement (4) can be written in compact form using

61 01(xs(t))

0= ) (I)(xs (t)) = )
0, P (xs5(2))
as follows

(1) = @7 (xi(1))6. (5)

Using the assumption f € L= (Q), the unknown parameter 6
belongs to the parameter space ©@ = {p € R" : || p||rr < oo}.
Problem statement: Using the mobile sensor measurement
(3), identify the unknown parameters 6 € © in real-time.

III. ADAPTIVE ESTIMATION OF SPATIAL FIELDS

If the expansion (1) is assumed, then the adaptive estimate
of f(x) is given by

Flt,x) = xeQ, teRT, (6)

M:

161( )@i(x),

where @i(t) €R!, i=1,...,n are the adaptive estimates of
the unknown constant coefficients 6,. Evaluating the above
expression at the sensor centroid x4(z), we have

/8x xs(t 29

Similar to (5), the estimated output can be written as
() = @7 (x,(1))8(1), ™

where the n x 1 vector @(x,(¢)), was defined earlier. The
output estimation error €(t) = y(t) — y(t) is

e(t) = @7 (x,(1))8(0), ®)
where 0(¢) is the parameter error vector. This is also given
by the spatially varying state error

X) = iéi<z>¢i<x>,

evaluated pointwise at the sensor centroid x;. The expression
in (8) is in a form suitable for extracting the adaptive laws
for 8(z), [10]. The mobile sensor guidance is represented by
the sensor velocity xs(¢) and is also desired to be identified.

tx)dx ftxs (Pl xs

XxXeQ, teRT,

A. Lyapunov-based adaptation and guidance

To extract the adaptation of ﬁ(t) and the sensor guidance
Xs(t), consider the Lyapunov function

V(s):%(ez(t), vy>0.
Its derivative is
o= fs<>g(d>T<xA<>>e<r>)
= L[] B0+ 0)60].

The adaptatlon

8(1) = 8(1) = —D(x, (1) e(0),

changes the Lyapunov derivative to

V= —gz(t)d)T(xs(t))d)(xs(t)) + %{E(I) |:a<DaTt(X) ~

The second term is simplified to

80)cO, (9

%{8(1‘) [BQJ;(X) xxs(t):| é(t) = %g(t)xs(t)ex(t). (10)
The proposed guidance is
Xs(t) = —vsign(e(t))sign(e(7)), x5(0) = x50, (11)

where v is the assumed sensor speed and €, the spatial
gradient or ¢, defined in (13). The guidance (11) results in
the further simplification of the Lyapunov derivative

Vo= = )07 (x(1))P(xs(r) — yle)lex ()]

12
< 2007 (1 (1) O (1)). 12
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A more straightforward way to extract the guidance (11) is
to consider the individual terms in (10)

&(t) [“’i“‘) } 0() = (1) z 2 (0i(xs(1))) 8,(0)

X (¢
xzxx(t)) ( )

where

_ de(tx)
T ox

(13)

Lemma 1: Consider the unknown function f(x) admitting
the expansion (1). Assume that the mobile sensor can mea-
sure both the value of the function at its current location
and the associated spatial gradient. The adaptations of the
unknown parameters in (9) along with the guidance (11)
ensure that all signals are bounded if

O (x,(1))(x(1)) = 302 (1) > B, Ve €R,
i=1

is uniformly positive definite with lower bound B > 0.
Additionally, one has

x=xs(t) x=xs(t) '

tim fe(t)| =0 (14)
with 8,0 € L=(0,;R") (i.e. 6,0 € ©). If additionally, one
has that the 7 x n rank-one matrix ®(x,(¢))®7 (x,(¢)) has a
uniformly positive definite integral via

t+To
al, =4 [ 0@ (@) drz oL, (15)
!
then it guarantees parameter convergence
lim [[6(7) — 6][rn = 0 (16)

Proof: ~ The uniform boundedness assumption of
" @2 (x()), updates (12) to

V< —Be(t) <0.

Using Lyapunov stability theory one has convergence of &
to zero and € € L*. Using (8) we have 8 € L*(0,o;R") and
using (9), we have 0e L=(0,00; R™). If (15) is satisfied, then
using [10, ch. 4] we have parameter convergence. |

Remark 1: The condition (15) is called persistence of
excitation (PE). The matrix ®(x,(¢))®” (x(¢)), formed by
the outer product of the regressor vector ®(x (7)), gives an
n x n matrix of rank one. If the sensor is fixed with x;, =0,
then this matrix is constant and can never satisfy (15) since

t+To . T . t+Tp
=[O ) = @)0T (x) % /t ld
= (I)(xs)d)T(xs) z (e7)) PR
This leads to the next result.
Corollary 1: The motion of the single sensor is a neces-
sary condition for parameter convergence (16).
Indeed, for a single sensor one must have ¢; be time varying
and this is only achieved by the sensor motion.
One can also obtain the sufficiency if the guidance ensures
condition (15). This is considered in the next section.

B. User-defined guidance

The adaptive law (9) can also be obtained using a gradient
scheme to extract the adaptive laws. From [10] for finite
dimensional systems or from [11] for spatially distributed
systems, using

J(0) = L(®7 (1)@ (xs(1)) —y(t))?, (17)

the gradient-based law 6 = —yV.J (@), from [10] results in
0(t) = —1®(xs(¢))e(0),

which is identical to (9). To analyze the stability of the
gradient-based adaptive law, one uses the Lyapunov function
v = L67(08().
see [10]. However, the gradient-based adaptation provides
the necessary condition for persistence of excitation.
Lemma 2: 1f the sensor guidance, defined by x,(¢), is
selected so that (15) is satisfied, then the prescribed motion
of the sensor is a necessary and sufficient condition for
parameter convergence (16).

Proof: When the sensor is mobile, rendering the cen-
troid x,(¢) time-varying, then it is possible for the n x n rank-
one matrix ®(x,())®7 (x,(¢)) to have a uniformly positive
definite integral over a time interval [t,7 + Tp]. If the sensor
obeys the integrator dynamics

X(t) = u(t) (18)
where u denotes the control signal, then u(¢) can likewise be
selected to ensure (15) is satisfied. |

Remark 2: 1f the integrator dynamics (18) are not given,
then the guidance given by xs(¢) can be selected to ensure
that (15) is satisfied. In this case we have a user-defined
guidance.

The user-defined guidance selects the sensor centroid x,(¢)
to ensure (15) is satisfied. This selection operates on the
interpolating functions @;(x) and can be made prior to any
spatial field identification experiments. Once the interpolat-
ing functions are given, then the appropriate choice of x,(¢)
(path planning) for (15) provides the sensor guidance.

The question that arises is how does one select x(¢), or
u(t) in (18) such that (15) is satisfied. This will be considered
in the numerical examples.

C. Mobile sensor dynamics

If the mobile sensor has dynamics given by an equation of
the form (18), then it is possible to select the control signal
u(t) so that a user-defined guidance ensures that parameter
convergence is attained. Denote the function &(¢) that ensures
®(E(1))®T(&(1)) has uniformly positive definite integral.
Then a tracking control of the form

u(t) =&(1) —kp (xs(t) = &(1)), kp >0, (19)
ensures that the mobile sensor platform attains the desired
sensor guidance guaranteeing the PE condition (15).

The above law cannot be used for the Lyapunov-based
guidance (11) since &(¢) cannot be generated in closed form
and is not differentiable.
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When second integrator dynamics are assumed
% (1) = uld), (20)
then a law similar to (19) can be derived to ensure that the PE
condition is satisfied. Using &(z) to denote the function (the

desired sensor trajectory) that satisfies (15), then the control
law for (20) is given by

u(t) = &(0) = ke (%(0) =E()) =k (v ()~ (). @)

with k,,k; > 0. The algorithm below summarizes the control
design that ensures the PE condition is satisfied.

Algorithm 1 Inducing PE via sensor motion

1: initialize: Determine the function &(#) so that the rank-
one n x n matrix ®(&(¢))®7 (§(¢)) has a uniformly pos-
itive definite integral
if mobile sensor has no dynamics then
select the sensor centroid as x(¢) = &(¢)
end if
if mobile sensor obeys (18) then
implement controller (19)
end if
if mobile sensor obeys (20) then
implement controller (21)
end if

A A A

._
=4

1V. EXAMPLES

A. Example 1: Testing the PE condition (15)

Itis assumed that the unknown function has the expansion

Za(p, ,in Q=1[0,L] = [0,1] C R! where

¢i(X)=(f/ﬁ)Sln(iM/L),
A way to check (15) is

i=1,2,3.

to consider the matrix

®(E(1))DT (E(1)) for a prescribed sensor trajectory &(¢)
01 (E(1)) e1(&(0))02(8())  91(8(1))93(E(1))
02(E(1))91(8(2)) 03(E(1)) ¢2(8(2))93(5(¢))
03(E(0))e1 (&)  3(8(1))92(E(1)) 03 (E(1))

Following the analysis from a regression-based estimation,
one could try to avoid the sensor residing at any of the zeros
of the three functions ;. For the above selection of ¢;, the
zeros are at the spatial locations L/3,L/2,2L/3. However,
as mentioned earlier, the 3 x 3 matrix is rank one regardless
where the sensor resides. Such a matrix can be made to have
uniformly positive definite integral with a moving sensor.

We consider different sensor trajectories and evaluate the
integral of the above matrix over an interval [¢,¢+ Tp] and
examine its positive definiteness

&1(t) = (0.5+0.45sin(2mt)) L
Ex(¢) = (0.4134-0.10(¢)) L
E3(¢) = (2+cos(mi))L/5, i€ Z.

trajectory | time interval | o o
3 [0.1,0.6] 0.6976 13437
3 [5.09,5.1] 348781 | [67.1825
3 [8,9] 0.3488 0.6718
& [0.1,0.6] 0.0566 2.5730
& (5.09,5.1] 2.8276 128.6520
& (8,9] 0.0283 1.2865
&3 (0.1,0.6] 1.2500 1.2500
& [5.09,5.1] 62.5000 62.5000
& 8,9] [0.6250] |  0.6250

Table 1. Effects of sensor trajectory &(¢) on the PE bounds in (15).

The last one switches sequentially between the two values
xg = 0.2L and x; = 0.6L emulating a sensor that “jumps”
between these two locations. The function v(z) in &;(7) is a
random number with zero mean and variance 1, generated
from the Matlab function randn.

Using the above three sensor trajectories, the matrix ®d”
was integrated in the intervals [0.1,0.6], [5.09,5.1] and [8,9].
In all three cases, the integral was uniformly positive definite
with the bounds 0,0 in (15) given in Table I.

The most surprising observation is that of &;(¢) which
switches sequentially between two locations. This means that
there are only two pointwise spatial field measurements that
are cycled through the adaptation via the sensor jumping (i.e.
hopping) and can provide a complete parameter convergence.

B. Example 2: Estimating f(x) using minimum number of
measurements

The unknown function is

S(x) =01(x) +0.302(x) —0.7¢3(x), x€]0,1],
with the ¢; defined in Example 1. The user assumes that the
unknown function has the expansion

3
fx)= ; 0,0;(x)

In other words, it is assumed that there are 3 unknown
coefficients with true values 0; =1, 0, =0.3, 05 = —0.7. The
adaptive estimation scheme must identify the coefficients and
must achieve

lim 01 (z) = 1,
We consider a moving sensor with measurements and a user-
defined trajectory

y(t) = f(x(2)), x5(¢) =0.5+0.05sin(50mz).

The adaptation (9) was used with y =20 and 6;(0) = 0.1,
i=1,2,3. The moving sensor is able to induce the PE con-
dition (15) and subsequently provide the desired parameter
convergence. This is depicted in Figure 1, where it is seen
that all three errors 6;(¢) asymptotically converge to zero.
The unknown f(x) is successfully reconstructed as ob-
served in Figure 2; the function estimate f(x,¢) at the final
time 7, = 30s is indistinguishable from the true function.
The evolution of the relative error, given by the norm

lim8,(1) = 0.3, lim 63() = 0.7,

lle(tx)llz, () Jo €2(e.x) dx
10029 — 100 —
HXHLZ(Q) /fol £2(x)dx ’
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Fig. 1: Example 2: Evolution of parameter errors §i(t).

1.5 true field f(x)
Py estimated field ji(tj,z) i
initial estimate f(0,z)
25 I I I I | | |

0 01 02 03 04 05 06 07 08 09 1
spatial variable x
Fig. 2: Example 2: Spatial evolution of true unknown f{(x),
and its adaptive estimate f(¢,x) at t =0 and at ¢y = 30.

is depicted in Figure 3. It starts with a value of 97.11% and
finishes with a value of 1.214% at the final time.

When the unknown spatial field is known to admit a
series expansion, then a user-defined guidance can provide
PE and hence convergence of f(¢,x) to f(x). This enables
agent-based monitoring and control systems to deploy mobile
agents in a spatial field and concurrently perform field
estimation along with any other tasks required.

C. Example 3: Estimating a 2D field f(x,y)

The unknown 2D function is selected as

Sx,p) = 1.602(x)91 (v) —0.203(x) 91 (»), x € [0, Ly],y € [0,L,],

where ¢; are the same interpolating functions used in Exam-
ple 1. It is assumed to admit the expansion

3
S(xy) = ;ei(Pi(x)(Pl ).

100 T T

estimation error norm ||e(t,§)||L, ‘

90 |

80 b

70 b

60 b

50 | b

40 1

30 b

0 s \ .
0 5 10 15 20 25 30
Time (s)

Fig. 3: Example 2: Evolution of the relative L,(€2) norm of
the estimation error e(¢,x). At initial time the relative error
is 97.11% and at the final time it is 1.214%.

A user-defined guidance is selected with
xs(¢) = (0.5—0.1sin(107t)) Ly, ys(t) = (0.5—0.1cos(6mt) ) Ly.

The mobile sensor measurement is given by

(0 = [ 8080 (0) /) dva

= Sxs(2),x5(1)).
The mobile sensor output can be written in the form (5) with
Q1 (xs(1)) @1 (vs(1)) 0
D(xs(1),y5(1)) = | @2(xs(1))@r(ys(1)) |, O6=1 62
@3 (xs(2)) 01 (vs(2)) 0;

Using the adaptive law (9) with y= 2, the parameter errors
0;(¢) are depicted in Figure 4, where it is observed that all
three converge to zero. The relative L, (Q) error norm

100\//0LX /OLyez(t,x,y)dydx/\//oLx OLyﬂ(x,y)dydx

is depicted in Figure 5, where it is also observed that the rel-
ative state error converges to zero in the L, (Q) norm. Finally,
the spatial distribution of e(z,x,y) at the final time ¢, = 40s
is depicted in Figure 6. For comparison, the distribution of
the unknown function f'(x,y) is also included. The pointwise
convergence of the error e(¢,x,y) is observed in Figure 6.

V. CONCLUSIONS AND POSSIBLE EXTENSIONS

In estimating spatial fields, the use of adaptive methods
with mobile sensors provides an alternative to the use of
regression-based field reconstruction. The advantage of the
adaptive techniques is that the mission of a mobile agent
within a spatial field can be integrated with the learning
scheme and the mobile sensor will be able to learn “on-
the-fly”” without separating the tasks of learning and explo-
ration/coverage. In do so, it turns out that a single sensor
due to its motion can induce a PE condition and thus ensure
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Fig. 4: Example 3: Evolution of parameter errors §i(t).
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Fig. 5: Example 3: Evolution of relative error norm.

estimated spatial field convergence.

The extension to 2D and possibly 3D spatial fields may
require more regularity assumptions on the field and its
assumed expansion. Another interesting extension is when
the assumed series expansion is not guaranteed and instead

fx)= zn'ie,-(p,»(x) +Af

where Af is the approximation error. The above expansion is
artificial with the “known” parameters 6, being the artificial
parameters that minimize the L?> norm between f(x) and
Y1 0:9;(x). The “true” parameters are not known, but are
assumed to exist for analysis purposes. In other words, there
exist unknown artificial parameters 0; that minimize the L,
norm of Af. Use of the adaptive techniques presented in
this paper may guarantee state error convergence to zero.

o~

However, this will not be the true state error f(¢,x) — f(x),

~

but the error between f(z,x) and the assumed expansion

actual f(z,y)

- N o N

0.4 0.6

) 02

error at final time e(t;, z,7)

- N o N

0.6 0.8

0.2 0.4

spatial variable z spatial variable y

Fig. 6: Example 3: Evolution of relative error norm.

o~

> 0;0i(x). The convergence of f(¢,x) is offset by the
unknown approximation error Af. However, such an error
can be reduced when larger n is used. Alas, the mathematical
framework may not be suitable for this and instead one may
consider kernel spaces as considered in [12]. This work is
currently being undertaken by the author and will appear in
a forthcoming publication.
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