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Abstract— The economic aspects as a new factor in the
selection of sensors for improved filtering of dynamical systems
are introduced. By using the price of a single sensor, reflected by
high values of the associated covariance, an economic aspect of
the sensor optimization for optimal filtering is introduced. Both
the unit price and the total price of a network of inexpensive
noisy sensors are used as an alternative to the performance of
a single expensive and highly accurate sensor. Algorithms for
the integrated sensor optimization for both finite and infinite
dimensional systems are presented and examples are provided
to demonstrate these effects.

I. INTRODUCTION

The problem of sensor placement and selection in im-
proved filtering of systems governed by partial differential
equations (PDEs) has been explored as early as mid-70s with
the paper by Curtain and Ichikawa [1]. and the paper by
Amouroux, Babary, and Malandrakis [2]. Immediately after
the initial works, many others considered deterministic or
stochastic diffusion PDEs. The concern was for either the
optimal sensor selection for filtering, or the optimal sensor
and actuator selection for compensator design, [3], [4], [5].

Most of the optimal sensor selection works considered the
optimal performance as expressed in terms of the location-
parameterized solution to an operator Riccati equation. While
the numerical aspects were of concern, the issue of the
convergence of the optimal sensor (or actuator) location was
not considered at that time. A somewhat related issue, that of
the convergence of the matrix representations of the Riccati
equations to their respective infinite dimensional operators
was examined in the 80’s, see [6] and references therein.

The missing part were the conditions that enable one to
find the optimal sensor location of the finite dimensional
representation of the distributed process and guarantee that
it would converge to the optimal location of the infinite
dimensional system. This was first considered in the context
of optimal actuators in the optimal control (LQR/H2/H∞)
problem in the works by Morris [6], [7], [8], [9].

In the context of the sensor selection for optimal filtering,
the work by Demetriou and Fahroo in [10] considered this
problem for a class of infinite dimensional systems. At about
the same time, Zhang and Morris, in [11], [12] considered a
more general class of infinite dimensional systems and also
brought forth the issue of the sensor quality, as expressed in
terms of the sensing device covariance.

In this work, another level in the sensor optimization is
added by incorporating the price of the devices. A pedestrian
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description would consider a single optimally placed expen-
sive and highly accurate, in the sense of very low covariance,
sensor and a network of optimally placed inexpensive and
inaccurate sensors. If price is the deciding factor, would
someone consider a compromised filter performance? If both
price and performance are the deciding factors, would some-
one select a single accurate expensive sensor or a network
of moderately priced and moderately accurate sensors?

The above issues will be considered in the context of
sensor quality, number and location for the optimal filtering
of both infinite and finite dimensional dynamical systems.
As a performance measure of the optimal filter, the mean
reconstruction error of the associated Kalman filter will
be used and which is expressed in terms of the variance
operator/matrix. This variance is subsequently optimized
with respect to the price, location and number of candidate
sensors in order to yield the optimal filter.

In Section II, the problem is formulated for a parabolic
PDE in one spatial dimension and subsequently is extended
in Section III to a class of infinite dimensional systems. The
sensor accuracy, as reflected in the value of the sensor noise
covariance is incorporated into the performance measure
along with the sensor locations and the sensor numbers.
Various optimization problems are stated involving the se-
lection of the number, location and total price of sensors. A
performance matching is incorporated whereby one matches
the performance of many inexpensive sensors placed at opti-
mal locations to the filter performance of a single expensive
idealised sensor. The only criterion becomes that of total
price. The same results are also presented for a class of
linear finite dimensional dynamical systems, presented in
Section IV. In this case, the sensor parametrization is made
via the use of the unit vectors in the finite dimensional
state space R

N and does not involve a sensor location, but
rather a sensor selection. Numerical results for both a PDE
and an N-dimensional system are included in Section V
to provide insights on metrics for sensor selection in the
filtering of dynamical systems. One of the revealing findings
is that a single expensive and accurate sensor may not be the
most economic choice for the filtering of dynamical systems.
Using a network of inexpensive and noisy sensors, their
filter performance is matched to the performance of a single
expensive sensor and thus the selection criterion becomes
that of the total price. As concluded in Section IV with the
filter performances matched, a network of noisy inexpensive
filters is cheaper to use than a single expensive and accurate
sensor. Conclusions and extensions on the economic aspects
for sensor selection are summarized in Section VI.
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II. PROBLEM FORMULATION

A representative infinite dimensional system is provided
by the advection-diffusion PDE in one spatial dimension

∂x(t,ξ)
∂t

=
∂
∂ξ

(
a

∂x(t,ξ)
∂ξ

)
+b

∂x(t,ξ)
∂ξ

+ cx(t,ξ)

+b1(ξ)w(t)+b2(ξ)u(t),
(1)

where x(t,ξ) denotes the state at time t ∈ R
+ and location

ξ ∈ Ω = [0,L]. The spatial functions b1(ξ),b2(ξ) denote the
spatial distributions of the disturbance (process noise) and
actuator input, respectively. The temporal signals w(t) and
u(t) denote the process noise and control input, respec-
tively. The above equation is furnished with the appropriate
boundary and initial conditions. For simplicity, it is assumed
that Dirichlet boundary conditions are assumed x(t,0) = 0 =
x(t,L) and the initial condition is given by x(0,ξ) = x0(ξ).

The above PDE is supplemented with output measure-
ments. Since two separate measurements associated with
different sensing devices are considered, we present the
“idealized” measurement as the output of an expensive sensor
with minimal noise given by

y0(t) =
∫ L

0
c0(ξ;ξ0)x(t,ξ)dξ+ν0(t). (2)

Similarly, we denote the measurements from the inexpensive
noisy sensing devices by

yi(t) =
∫ L

0
ci(ξ;ξi)x(t,ξ)dξ+νi(t), i = 1, . . . ,n. (3)

The function ν0(t) denotes the noise corresponding to the
expensive and idealized sensor placed at the location ξ0 ∈ Ω
and having covariance N0. Similarly, the functions νi(t), i =
1, . . . ,n denote the noise of the n inexpensive sensing devices
placed at the locations ξi, i = 1, . . . ,n and having covariances
given by Ni, i = 1, . . . ,n. The measurement noise functions
are assumed to be real-valued white noise with

E [νi(t)ν j(τ)] = Nδ(t − τ).
Note that since the n inexpensive sensors do not have the
same performance as the single expensive sensor, then

Ni ≫ N0, i = 1, . . . ,n.

The problem at hand can be summarized here: given the
process (1) and the idealized sensor (2), find the optimal
sensor location ξ0 to provide the optimal state estimator
performance. This performance now serves as the reference
point for the selection of the inexpensive sensors (3) and the
optimization problem becomes that of finding the minimum
number n of sensing devices and their associated optimal
locations ξi, i = 1, . . . ,n so that the state estimator associ-
ated with these n inexpensive sensing devices is “as close
as” possible to the performance provided by the idealized
expensive sensor. Differently put, find the smallest number of
the inexpensive sensing devices and their associated optimal
locations so that the resulting state estimator “matches” the
filter performance provided by the single expensive sensor.

With the filter performances being equal, one essentially
replaces a single expensive sensing device by a number
n of inexpensive sensors. The economic aspects of this
optimization then become obvious.

To formulate the optimization problem for both the finite
and infinite dimensional cases, we provide some additional
information on the sensing devices and bring the system in
(1) with (2) or with (3) in state space form, written as an
evolution equation in a Hilbert space.

Assumption 1 (sensor price): The price of each of the
inexpensive sensing devices associated with (3) is denoted
by pi, i = 1, . . . ,n and the price of the expensive sensor
associated with (2) is denoted by p0.
Following Assumption 2, the total price of the n sensors is

Ptotal =
n

∑
i=1

pi, (4)

and in the event that the n sensing devices are identical with
pi = p j for all i, j = 1, . . . ,n and denoted by p, then the total
price of the n inexpensive sensing devices reduces to

Ptotal = np. (5)

Assumption 2 (sensor type): The n inexpensive sensors
are identical and thus the total price is given by (5).

Note that when the single expensive sensor is replaced by
the inexpensive noisy sensors the filter performance will be
matched and additionally one would achieve np ≪ p0.

III. INFINITE DIMENSIONAL SYSTEMS

The PDE in (1) can be written as an evolution equation in
the Hilbert space H = L2(Ω). In addition to the state space,
we consider the interpolating spaces V = H1

0 (Ω) and V ∗ =
H−1(Ω). The state operator A ∈ L(V,V ∗) associated with (1)
is given in weak form by

〈Aφ,ψ〉=
∫ L

0

(
d
dξ

(
a

dφ(ξ)
dξ

)
+b

dφ(ξ)
dξ

+ cφ(ξ)
)

ψ(ξ)dξ (6)

for all test functions φ,ψ ∈V . The input operators associated
with the spatial functions b1(ξ),b2(ξ) are given by

〈Biv(t),ψ〉=
∫ L

0
bi(ξ)v(t)ψ(ξ)dξ, i = 1,2, v = w,u, (7)

for all ψ ∈V . Using (6), (7), the PDE in (1) is written as

ẋ(t) = Ax(t)+B1w(t)+B2u(t), (8)

with initial condition x(0) ∈ D(A). Similarly, the output
signals associated with the single expensive sensor (2) and
with the n inexpensive sensors (3) are given by

y0(t) = C0x(t)+ν0(t)

=
∫ L

0
c0(ξ;ξ0)x(t,ξ)dξ+ν0(t),

(9)

and by

y(t) =




y1(t)
...

yn(t)


=




C1x(t)+ν1(t)
...

Cnx(t)+νn(t)




=




∫ L

0
c1(ξ;ξ1)x(t,ξ)dξ+ν1(t)

...∫ L

0
cn(ξ;ξn)x(t,ξ)dξ+νn(t)




(10)

Using a fixed location ξ0 ∈ Ω for the expensive sensor in (9)
and using (8), one can design an associated Kalman filter to
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provide the optimal state estimate. This is given by
˙̂x0(t) = Ax̂0(t)+B2(t)u(t)+K0 (y0(t)−C0x̂0(t)) , (11)

with initial condition x̂0(0), where the filter operator gain
K0 = Σ0C∗

0N−1
0 is given via the solution to the Operator

Algebraic Riccati Equation
〈Aφ,Σ0ψ〉+ 〈Σ0φ,A∗ψ〉+ 〈φ,B1B∗

1ψ〉
−〈φ,Σ0C∗

0N−1
0 C0Σ0ψ〉= 0, φ,ψ ∈ D(A∗).

(12)

The abstract representation of (1) given in (8) via (6), (7), (9)
can also be used to describe a large class of PDEs in two and
three spatial domains. Thus, we consider evolution equations
given by (8) representing distributed parameter systems.
The state space H is a Hilbert space equipped with inner
product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively.
The state operator A in (8) is the generator of a strongly
continuous semigroup T (t) on H, [13]. The control operator
B2 ∈ L(U,H) is a bounded linear operator from the control
space U to H and the process noise operator B1 ∈ L(W,H)
is a bounded linear operator from the process noise space
W to H. Indirectly assumed, the process and measurement
uncertain signals w and v, respectively, are assumed to be
square integrable to ensure well-posedness of (8). Finally,
the output operator associated with the expensive sensor, i.e.
device with “small” N0, is C0 ∈ L(Y,H) a bounded linear
operator from the output space Y to the state space H.

To derive the baseline filter performance, the single expen-
sive sensor must be optimally placed in the domain Ω. Thus,
the output operator C0 is parameterized by the candidate
locations ξ0 ∈Θ, where Θ is the parameter set and comprises
the set of admissible sensor locations ξ0 ∈ Ω that render the
system approximately observable, [14]. Thus, we explicitly
state this location dependence with (9) re-written as

y0(t;ξ0) =C0(ξ0)x(t)+ν0(t). (13)

The output measurement due to the expensive sensor is
explicitly dependent on the candidate locations ξ0 ∈ Θ. The
parameter set is formally defined via

Θ= {ξ0 ∈Ω :
(
C0(ξ0),A

)
is approximately observable} (14)

A. Optimal location of single expensive sensor

The state estimator (11) is now expressed in terms of the
location-parameterized output operator and thus

˙̂x0(t;ξ0) = Ax̂0(t;ξ0)+B2u(t)

+K0(ξ0)(y0(t;ξ0)−C0(ξ0)x̂0(t;ξ0))

x̂(0;ξ0) ∈ D(A), ξ0 ∈ Θ.

(15)

As denoted above, the operator K0(ξ0) = Σ0(ξ0)C∗
0(ξ0)N

−1
0

is derived from the location-parameterized positive operator
solution to the algebraic Riccati equation

〈Aφ,Σ0(ξ0)ψ〉H + 〈Σ0(ξ0)φ,A∗ψ〉H + 〈φ,B1B∗
1ψ〉H

−〈φ,Σ0(ξ0)C∗
0(ξ0)N

−1
0 C0(ξ0)Σ0(ξ0)ψ〉H = 0,

(16)

for ξ0 ∈ Θ. To find the optimal estimator (16), one must
perform a sensor location optimization. A suitable metric
for location optimization, that is to find the “best” x̂0(t;ξ0)
over all ξ0 ∈ Θ, is the mean reconstruction error which is

expressed in terms of the trace of the variance operator
Jopt(ξ0) = E [〈x(t)− x̂0(t;ξ0),x(t)− x̂0(t;ξ0)〉H ]

= trace [Σ0(ξ0)] , ξ0 ∈ Θ.
(17)

The optimal location of the single expensive sensor is then

ξopt
0 = arg inf

ξ0∈Θ
trace [Σ0(ξ0)] . (18)

The optimal performance associated with the optimal single
expensive sensor is subsequently given by

Jopt(ξopt
0 ) = trace

[
Σ0(ξopt

0 )
]
. (19)

Remark 1: Note that the optimal performance (19) is
the one to be used to find the minimum number n and
optimal locations ξopt

i of the inexpensive sensors such that
the performance of the associated filter matches (19).

B. Optimal number and location of inexpensive sensors

To arrive at a location-parameterized filter, similar to (15),
some simplifying assumptions must be made. The parameter
space for the n sensing devices is assumed to be the same
as for the single expensive device which means that each of
the n inexpensive sensing devices can by itself result in an
approximately observable pair. It should be noted that this
type of observability is not achieved collectively by a number
of sensing devices, but by each of the devices independently.
We make the following assumptions.

Assumption 3: The sensing devices, namely the single ex-
pensive device and the n inexpensive devices, have identical
spatial distributions, differing only on the measurement noise
statistics. Thus, the corresponding output operators are

Ci(ξs) =C0(ξs), ∀ξs ∈ Θ, i = 1, . . . ,n.
With regards to the specific PDE in (1), and measurements
(2), (3), the above assumption translates to

ci(ξ;ξs) = c0(ξ;ξs), ∀ξs ∈ Θ, i = 1, . . . ,n.

The measurement vector due to the n inexpensive devices
in (10), parameterized by the sensor locations is given by

y(t;θ) =




C0(ξ1)x(t)+ν1(t)
...

C0(ξn)x(t)+νn(t)




= C(θ)x(t)+ννν(t)

(20)

where ννν(t) =
[

ν1(t) · · · νn(t)
]T

, θθθ = {ξ1, . . . ,ξn} ∈
∏n Θ =ΘΘΘ, C(θ) = diag{C0(ξ1), . . . ,C0(ξn)}. The covariance
of the sensor noise in (20) is given by N = diag{N1, . . . ,Nn}.

Following a similar procedure for the single expensive sen-
sor, the state estimator associated with the n measurements
(20), parameterized by the n locations θθθ = {ξ1, . . . ,ξn} is

˙̂x(t;θθθ) = Ax̂(t;θθθ)+B2u(t)

+K(θθθ)(y(t;θθθ)−C(θθθ)x̂(t;θθθ))
x̂(0;θθθ) ∈ D(A), θθθ ∈ΘΘΘ.

(21)

where the filter gain K(θθθ) =ΣΣΣ(θθθ)C∗(θθθ)N−1 is obtained from
the location-parameterized positive operator solution to the
filter algebraic Riccati equation

〈Aφ,ΣΣΣ(θθθ)ψ〉H + 〈ΣΣΣ(θθθ)φ,A∗ψ〉H + 〈φ,B1B∗
1ψ〉H

−〈φ,ΣΣΣ(θθθ)C∗(θθθ)N−1C(θθθ)ΣΣΣ(θθθ)ψ〉H = 0, θθθ ∈ΘΘΘ.
(22)
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For a fixed sensor location vector θ ∈ΘΘΘ, the cost associ-
ated with the filter (21) is given by

Jopt(θ) = E
[
〈x(t)− x̂(t;θθθ),x(t)− x̂(t;θθθ)〉2

H

]

= trace [ΣΣΣ(θθθ)] , θθθ ∈ΘΘΘ.
(23)

Minimization of (23) over the admissible locations will
provide the optimal location vector θθθopt that minimizes
trace [ΣΣΣ(θθθ)]. However one is not simply interested in finding
the optimal sensor locations. Instead, one is interested in find-
ing the minimum number n of the optimal sensor locations
that minimize trace [ΣΣΣ(θθθ)] that have the same performance as
the single optimal expensive sensor (19) and minimize (5).
Sensor optimization O1 (fixed price):

minimize n

subject to inf
θ∈ΘΘΘ

trace [ΣΣΣ(θθθ)] = inf
ξ0∈Θ

trace [Σ0(ξ0)] ,

np < p0.

(24)

For a fixed number n of inexpensive sensing devices, one
can find the optimal sensor location, given by

θθθopt = arg inf
θθθ∈ΘΘΘ

trace [ΣΣΣ(θθθ)] (25)

resulting in the optimal cost associated with n sensors

Jopt(θθθopt) = trace
[
ΣΣΣ(θθθopt)

]
. (26)

In view of (25), (26), (24) is compactly written as

minimize n

subject to trace
[
ΣΣΣ(θθθopt)

]
= trace

[
Σ0(ξopt

0 )
]
,

np < p0.

(27)

Other related optimization problems can be considered.

Algorithm 1 Economic sensor optimization: fixed price

1: initialize: Find optimal location ξopt
0 of single expensive

sensor via (18)
2: initialize: Select integer n = 2
3: loop
4: define parameter space ΘΘΘn = ∏n Θ
5: find optimal sensor location θθθopt,n of inexpensive

sensors using

θopt,n = arg inf
θθθ∈ΘΘΘn

trace [ΣΣΣ(θθθ)]

6: compute price of n inexpensive sensors using

Pn
total = np

7: if
∣∣∣trace [ΣΣΣ(θθθopt,n)]− trace

[
Σ0(ξopt

0 )
]∣∣∣ ≥ ε or Pn

total ≥
p0 then

8: n ← n+1
9: goto 3

10: else
11: terminate
12: end if
13: end loop

For example, one may fix a priori both the number n and
the sensor locations and optimize the filter (21) in order to
match its performance (23) to (19) by selecting the sensor
accuracy. The sensor accuracy is reflected in the value of the

covariance, which itself is linked to the price p. The more
reliable a sensing device is, equivalently the lower the Ni

is, the higher the price. Assuming this relationship, a simple
model relating the price to the accuracy (covariance) is

p ∝ 1/N. (28)

In this case the optimization becomes that of minimizing
price or sensor covariance.
Sensor optimization O2 (variable price):

minimize p

subject to inf
p

trace [ΣΣΣ(θθθ)] = trace
[
Σ0(ξopt

0 )
]
,

np < p0.

(29)

Other variants of the above arise, such as fixing n and
optimizing both sensor locations and their price (equiv.
covariance), but these are special cases of O1 or O2.

IV. FINITE DIMENSIONAL SYSTEMS

Similar to the infinite dimensional case (8), a finite dimen-
sional linear dynamical system is given by

ẋ(t) = Ax(t)+B1w(t)+B2u(t), (30)

where the finite dimensional state x ∈ R
N and the matrices

B1,B2 are of commensurate dimensions with the noise and
control signals w(t) and u(t) being scalar signals.

While many sensor parametrization models appeared in
the literature in the context of sensor selection, we consider
a rather trivial parametrization; as such the ith measure-
ment has an output vector given by the unit vector 1i =[

0 · · · 0 1 0 · · · 0
]

in R
N

yi(t) = 1ix(t)+νi(t), i = 1, . . . ,n, (31)

To appropriately parameterize the sensors by the sensor
locations for the finite dimensional case, we use the notation

C j(θi) = 1i, θi ∈ Θ, i = 1, . . . ,N, j = 1, . . . ,n, (32)

where C j is the jth device and θi is the location. The
parameter space is similarly defined to be the space of all
1×N unit vectors 1i that render the pairs (1i,A) detectable

Θ = {1i ∈ R
1×N , | (1i,A) detectabe}. (33)

Please note that the parameter space has at most N elements.
To simplify further, it is assumed that all devices are

identical, in the sense they have the same function on the
state vector, differing on the accuracy of their readout, as
quantified by the sensor covariance.

Assumption 4: All sensors, the single expensive sensor
and the n inexpensive sensors, have the same output matrix,

C j(·) =C(·), j = 0, j = 1, . . . ,n.
The ideal expensive sensor has an output that is parame-

terized by the sensor location θ ∈ Θ and given by

y0(t;θ) =C(θ)x(t)+ν0(t), (34)

where the sensor noise ν0(t) has an associated covariance
N0. Please note that θi ∈ Θ does not imply that θi = 1i; it
simply means that the ith sensing device C(θi) is an element
of the parameter space Θ, or that C(θi) is equal to any of
the unit vectors that yield detectability.
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The n-dimensional output generated by the n inexpensive
noisy sensing devices is given by

y(t;θθθ) =




C(θ1)x(t)+ν1(t)
...

C(θn)x(t)+νn(t)


= C(θθθ)+ννν(t), (35)

where ννν(t) =
[

ν1(t) . . . νn(t)
]T

, θθθ = {θ1, . . . ,θn} ∈
∏n Θ=ΘΘΘ, and C(θ) = diag{C(θ1), . . . ,C(θn)}. Similarly, the
covariance in (33) is N = diag{N1, . . . ,Nn}.

A. Optimal location of single expensive sensor

First, one selects the optimal sensor for the filter associated
with the single expensive sensor. It is given by

˙̂x0(t;θ) = Ax̂0(t;θ)+B2u(t)

+K0(θ)(y0(t;θ)−C(θ)x̂0(t;θ)) , θ ∈ Θ.
(36)

The N dimensional filter gain K0(θ) = Σ0(θ)CT (θ)N−1
0 is de-

rived from the now location-parameterized positive solution
to the filter matrix algebraic Riccati equation

AT Σ0(θ)+Σ0(θ)AT +B1BT
1

−Σ0(θ)CT (θ)N−1
0 C(θ)Σ0(θ) = 0, θ ∈ Θ.

(37)

The optimal sensor θopt
0 for the single expensive sensor is

θopt
0 = arg inf

θ∈Θ
trace [Σ0(θ)] . (38)

The optimal performance associated with the optimal single
expensive sensor is given by

Jopt(θopt
0 ) = trace

[
Σ0(θopt

0 )
]
. (39)

B. Optimal number and location of inexpensive sensors

The state estimator associated with the n measurements
(35), parameterized by the locations θθθ = {θ1, . . . ,θn} is

˙̂x(t;θθθ) = Ax̂(t;θθθ)+B2u(t)

+K(θθθ)(y(t;θθθ)−C(θθθ)x̂(t;θ)) , θθθ ∈ΘΘΘ.
(40)

where the filter gain K(θθθ) = ΣΣΣ(θθθ)C∗(θθθ)N−1 is obtained
from the location-parameterized positive solution to the filter
matrix algebraic Riccati equation

AΣΣΣ(θθθ)+ΣΣΣ(θθθ)AT +B1BT
1

−ΣΣΣ(θθθ)CT (θθθ)N−1C(θθθ)ΣΣΣ(θθθ) = 0, θθθ ∈ΘΘΘ.
(41)

For a fixed element θθθ ∈ΘΘΘ, the cost associated with (40) is
Jopt(θθθ) = E

[
(x(t)− x̂(t;θθθ))(x(t)− x̂(t;θθθ))T

]

= trace [ΣΣΣ(θθθ)] , θθθ ∈ΘΘΘ.
(42)

Similar to the infinite dimensional case, using (39), (42), the
optimal number and location of the n inexpensive sensors is

minimize n

subject to trace
[
ΣΣΣ(θθθopt)

]
= trace

[
Σ0(θopt

0 )
]
,

np < p0.

(43)

The associated algorithm is given by Algorithm 2 below.

V. EXAMPLES

Example 1 (advection-diffusion PDE): We consider (1) with

a(ξ) = 5×10−3
(e−

1
2 (

x−µ
σ )

2

σ
√

2π
+1+3sin(3πξ)sin((ξ−1)2)

)

Algorithm 2 Economic sensor optimization: fixed price

1: initialize: Find optimal location θopt
0 of single expensive

sensor via (38)
2: initialize: Select integer n = 2
3: loop
4: define parameter space ΘΘΘn = ∏n Θ
5: find optimal sensor location θθθopt,n of inexpensive

sensors using

θopt,n = arg inf
θθθ∈ΘΘΘn

trace [ΣΣΣ(θθθ)]

6: compute price of n inexpensive sensors using

Pn
total = np

7: if
∣∣∣trace [ΣΣΣ(θθθopt,n)]− trace

[
Σ0(θopt

0 )
]∣∣∣ ≥ ε or Pn

total ≥
p0 then

8: n ← n+1
9: goto 3

10: else
11: terminate
12: end if
13: end loop

n Ni/N0 Jopt(θθθ)/Jopt(θopt
0 ) total price np

10 3.106 1 1.0366
100 31.04 1 0.1038

1000 310.3 1 0.0104

Table 1. Comparison with a priori selected sensor positions over a
uniform grid, and with Jopt(θopt

0 )= 0.1213, N0 = 10−3, θopt
0 = 0.76.

with µ= 0.75L, σ = L/8, b = −10−2, c = −3× 10−3. The
initial condition is x(0,ξ) = sin(π(L−ξ)/L) exp(−7(ξ−L)2)
and the spatial distribution of the noise is given by

b1(ξ) = sin(π(L−ξ)/L)exp(−7(ξ−L).2).

The spatial distribution of the single device in (2) and of the
many inexpensive devices in (3) are identical and given by∫ L

0
c(ξ;ξi)φdξ =

∫ L

0
δ(ξ−ξi)φdξ = φ(ξi),

and this case the parameter set consists of all points that are
not the zeros of the eigenfunctions of the spatial operator.

For the particular example, the expression in (28) is taken
to be p = k/N2 monetary units, where the constant k is
selected for simplicity as k = N2

0 , and thus the total price
in this case simplifies to

np = nk/N2 = nN2
0/N2 = n/(N/N0)

2

From Table 1, it is observed that it is cheaper to use
n = 1000 sensors with a price of 1.041 × 10−5 monetary
units/each than a single sensor placed at θopt

0 = 0.76 and with
a price of 1 monetary units. Both filters have essentially the
same performance but the one with a single sensor is 96.15
times more expensive. Another possibility is to use n = 100
inexpensive sensors with a total price of 0.1038 monetary
units and which is 9.634 times cheaper than the single
expensive sensor. Using n = 10 inexpensive sensors will not
work, since their total price of 1.037 monetary units is above
the price of a single expensive sensor. Figure 1 depicts the
spatial distribution of x̂(t,ξ) for 4 different time instances.

4143



case norm
single sensor 0.0906
n sensors 0.0976

Table 2. L2(0,6;L2(Ω)) norm of estimation error.
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Fig. 1: Spatial distribution of x̂(t,ξ) at different times.

Table 2 also summarizes the results of the estimation error
norm. Both point to identical performance of the two filters,
the price of the inexpensive sensors is significantly lower.
Example 2 (4th order system): Consider (30) with

A =




−4 1 0 0
1 −4 2 0
0 1 −4 1
0 0 1 −4


 , Q = I4×4

and candidate sensors given by Ci = ei, i = 1, . . . ,4. The
single sensor is assumed to have N0 = 1×10−3. The case of
using four sensors, thus having access to all states is only
incorporated as a point of reference and does not represent a
realistic situation. Another level of sensors is included, that
of moderate price and moderate quality. It is assumed that if
n= 3 inexpensive sensors are used, then Ni,3 = 30N0. If n= 2
sensors are used, they are moderately priced and moderately
accurate with Ni,2 = 15N0. As the unrealistic case, of n = 4
sensors are used, they are extremely inexpensive and highly
inaccurate. For reference, we have Ni,4 = 45.36N0.

Due to the low value of the state space dimension, we
have performed an exhaustive search to obtain the filter
performance and tabulate the results in Table 3. The best
performance with 1.022% of that of a single sensor, is
obtained for the three-sensor combination {C1,C2,C3} or
{C2,C3,C4} with a total price 0.0033 . Close second is the
two-sensor combination {C2,C3} with a relative performance
1.0023% but with a higher total price of 0.0089. Despite the
higher noise levels, the very noisy four-sensor combination
yields the lowest possible cost of 0.0019, while being able
to match the performance of the single expensive sensor.

VI. CONCLUSIONS

The effects of sensor price, assumed inversely proportional
to noise covariance, were introduced as another level in

sensor selection Ni/N0 Jopt(θθθ)/Jopt(θopt
0 ) total price

{C1,C2} 15 1.0355 0.0089
{C1,C3} 15 1.0181 0.0089
{C1,C4} 15 1.0927 0.0089

{C2,C3} 15 1.0023 0.0089
{C2,C4} 15 1.0105 0.0089
{C3,C4} 15 1.0458 0.0089

{C1,C2,C3} 30 1.0022 0.0033
{C1,C2,C4} 30 1.0170 0.0033
{C1,C3,C4} 30 1.0242 0.0033

{C2,C3,C4} 30 1.0022 0.0033
{C1,C2,C3,C4} 45.36 1.0000 0.0019

Table 3. Comparison with a priori selected sensor positions over a
uniform grid, and with Jopt(θopt

0 ) = 0.4119, N0 = 10−3, θopt
0 =C2.

the optimization for the optimal filtering of distributed and
lumped parameter systems. When the total price of a sensor
network was incorporated into the optimization problem, it
revealed surprising results for their selection and placement.
As observed in the examples, a network of inexpensive and
noisy sensors may perform as well as a single accurate sensor
with the added advantage of reduced cost.

The details of the convergence of the optimal sensor in
terms of the approximation index, as presented in [10], [11]
will be extended to include different spatial distributions and
different noise covariance and price within a sensor network.
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