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Exotic electromagnetic energy injection in the early Universe may alter cosmological recombina-
tion, and ultimately cosmic microwave background (CMB) anisotropies. Moreover, if energy injec-
tion is inhomogeneous, it may induce a spatially varying ionization fraction, and non-Gaussianity
in the CMB. The observability of these signals, however, is contingent upon how far the injected
particles propagate and deposit their energy into the primordial plasma, relative to the character-
istic scale of energy injection fluctuations. In this study we inspect the spatial properties of energy
deposition and perturbed recombination resulting from an inhomogeneous energy injection of sub-
10 MeV photons, relevant to accreting primordial black holes (PBHs). We develop a novel Monte
Carlo radiation transport code accounting for all relevant photon interactions in this energy range,
and including secondary electron energy deposition efficiency through a new analytic approxima-
tion. For a specified injected photon spectrum, the code outputs an injection-to-deposition Green’s
function depending on time and distance from the injection point. Combining this output with a
linearized solution of the perturbed recombination problem, we derive time- and scale-dependent
deposition-to-ionization Green’s functions. We apply this general framework to accreting PBHs,
whose luminosity is strongly spatially modulated by supersonic relative velocities between cold dark
matter and baryons. We find that the resulting spatial fluctuations of the free-electron fraction
are of the same magnitude as its mean deviation from standard recombination, from which current
CMB power spectra constraints are derived. This work suggests that the sensitivity to accreting
PBHs might be substantially improved by propagating these inhomogeneities to CMB anisotropy

power spectra and non-Gaussian statistics, which we study in subsequent papers.

I. INTRODUCTION

An alluring feature of dark matter (DM) candidates
is their possible injection of electromagnetically inter-
acting particles. Part of this injected energy is eventu-
ally deposited in the form of extra heating, excitation,
and importantly, ionization of the primordial plasma
around cosmological recombination [1, 2]. This changes
the Thomson visibility function and diffusion damping
scale, and ultimately the angular power spectra of cos-
mic microwave background (CMB) anisotropies observed
today. This effect is at the basis of CMB anisotropy con-
straints on annihilating or decaying DM particles [3], as
well as evaporating [4, 5] or accreting primordial black
holes (PBHs) [6-8].

A key step of the underlying calculation is to convert
energy injection into energy deposition. This has been
the subject of extensive studies in the context of homo-
geneous energy injection [9-14], culminating in publicly
available code packages [13, 14] that project a broad class
of homogeneous energy injections into modified cosmo-
logical ionization histories. Energy injection, however,
need not be spatially uniform. For instance, DM den-
sity perturbations around recombination would imply an
inhomogeneous energy injection rate if DM annihilates
or decays [15], or if part of it is made of evaporating or
accreting PBHs. Another example, which provided the
motivation for this work, is the highly nonuniform en-
ergy injection from accreting PBHs. As we describe in

more detail below, this is due to the modulation of their
accretion rate by supersonic relative velocities [16], as
illustrated vividly in Fig. 1. Beyond these specific ex-
amples, there is no reason to expect that exotic energy
injection in the early Universe should be spatially uni-
form in general.

An interesting consequence of inhomogeneous energy
injection is that it could imply spatial perturbations in
the ionization history. In turn, inhomogeneous recom-
bination gives rise to non-Gaussian signatures in CMB
anisotropies [15, 17, 18], which are qualitatively differ-
ent from the change of the CMB power spectra result-
ing from homogeneous perturbations to recombination,
and could be significantly more constraining. In order
to quantify these effects accurately, the first step is to
understand the spatial aspect of energy deposition: if it
is highly nonlocal, it may partially smear out inhomo-
geneities in the injected power, thus partially wash out
non-Gaussian signatures in CMB anisotropies (see the
appendix of Ref. [15] for a discussion). A detailed in-
spection on how electromagnetically interacting particles
deposit their energy spatially on cosmological scales has,
to the authors’ knowledge, yet to be published. This work
lays out the initial steps in such a study, with the eventual
goal of translating arbitrary spatial variations of energy
injection into an inhomogeneous recombination history,
and, ultimately, non-Gaussian CMB anisotropies.

As a first step in this program, we tackle the problem
of injection of sub-10 MeV photons, which, among other
possible applications, is relevant to accreting PBHs. In



this energy regime, photons are subject only to Comp-
ton scattering off bound and unbound electrons and
photoionization of neutral hydrogen and helium. The
timescales for these photon interactions can be compa-
rable to or longer than a Hubble time [9], and we thus
follow photons with a temporally and spatially dependent
radiative transport code. In contrast, the energetic elec-
trons resulting from these interactions lose their energy
on a short timescale through heating, collisional excita-
tions, ionizations, and inverse Compton scattering (ICS)
of CMB photons [13, 14]. For sub-10 MeV secondary
electrons, ICS results in upscattered photons with low
enough energies that they very quickly deposit it into
the plasma, unless they are less energetic than 10.2 eV.
In the latter case, their energy is effectively lost, only
contributing to spectral distortions of the CMB [13]. We
develop a new and highly accurate analytic estimate of
this loss fraction, allowing us to simply account for en-
ergy deposition by secondary electrons, and include it in
our radiative transport code. Specializing to sub-10 MeV
injected photons therefore involves a relatively simple al-
gorithmic structure (e.g. it is not necessary to re-inject
photons resulting from ICS events back into the radiative
transfer code), allowing us to focus our efforts on check-
ing the robustness of the code, from which we extract
novel spatial signatures of energy deposition. In partic-
ular, we will see that for photon energies £ = MeV, the
spatial dependence of energy deposition is very different
from the Gaussian distribution one may expect from a
simple diffusion length estimate [15].

As long as the effect of non-standard energy injection
on the thermal and ionization history is sufficiently small,
the energy deposition rate is linearly related to the en-
ergy injection rate. Mathematically, these rates are con-
nected through a time- and scale-dependent injection-to-
deposition Green’s function, which we extract from our
radiative transport simulations for a given photon injec-
tion spectrum. Under the same perturbative assumption,
the change in ionization fraction is linearly related to the
energy injection rate, which is described mathematically
by a deposition-to-ionization Green’s function. The con-
volution of these two functions leads to the injection-to-
ionization Green’s function. This tool is one of the main
outcomes of this work: for a given injected spectrum, it
serves to compute the time and scale dependence of ion-
ization perturbations in response to any time- and scale-
dependent energy injection history.

We apply this formalism to the specific scenario of en-
ergy injection by accreting PBHs, which are expected
to radiate photons up to energies ~ 10 MeV [7, 19].
In the mass range of ~ 1 — 10* M), the luminosity of
accreting PBHs is large enough that it would leave ob-
servable signatures on the thermal history of the Uni-
verse, even if PBHs make a subdominant fraction of the
DM. In fact, one of the strongest constraints on PBH
abundance in this mass range results from their effect on
the mean ionization history, thus CMB anisotropy power
spectra [6-8, 20]. In the simple Bondi accretion model

[21], the PBH accretion rate has a strong dependence
on supersonic relative velocities vy, of baryons and DM,
M o (vi, + c2)73/2 where ¢ is the sound speed. This
dependence propagates to the PBH luminosity, thus to
the energy injection rate. This implies that, on top of the
spatially averaged effect, from which the most conserva-
tive CMB anisotropy limits are derived [7], there ought
to be order-unity inhomogeneities in the energy injection
rate. This is to be contrasted with the small fluctuations
in DM density modulating the energy injected from their
annihilation products, studied in Ref. [15]. The charac-
teristic length scale of PBH luminosity inhomogeneities
is set by the scale over which baryon-DM relative veloc-
ity fluctuate, of order ~ 10> Mpc [22]. Convolving the
injected power with our injection-to-ionization Green’s
function, we are able to compute the spatial perturba-
tions to the recombination history. Importantly, we find
that the finite spatial extent of energy deposition only
partially washes out inhomogeneities in the modification
to the ionization fraction, which retains order-unity rela-
tive spatial fluctuations. This result bodes well for non-
Gaussian signatures in CMB anisotropies, which we cal-
culate in follow-up publications.

The remainder of this paper is organized as follows. In
Sec. II, we start by introducing the Green’s function for-
malism used throughout this paper. We then review the
physical processes relevant to sub-10 MeV injected pho-
tons, and describe our Monte Carlo radiation transport
simulations. In Sec. IIT we convert the energy deposited
into an inhomogeneous recombination history. We apply
our results to accreting PBHs in Sec. IV. We conclude
and outline future work in Sec. V. For completeness, we
explicitly list all the cross sections relevant to this work
in Appendix A. Appendix B describes a simple semi-
analytic approximation for the energy deposition Green’s
function, which we use as a check for our simulations. We
inspect whether the perturbed free-electron response due
to accreting PBHs is linear in Appendix C. Throughout
this paper we adopt geometric units Gnewt = ¢ = 1.

II. ENERGY DEPOSITION FROM INJECTED
SUB-10 MEV PHOTONS

A. Injection-to-deposition Green’s function

We denote the rate of energy injection per baryon
(specifically, per hydrogen nucleus), per logarithmic scale
factor interval, per photon energy interval, by

déin;
dE,

(a,r) = €mj(a,r)V(E,,a,r), (1)

where einj(a,r) is the total energy injected per baryon
per logarithmic scale factor interval, and ¥(E,, a,r)
is the injected photon spectrum, normalized such that
JdE, 9(E,) = 1. Similarly, we denote by €qep(a,r)
the total energy deposited into the plasma, per baryon,
per logarithmic scale factor interval. The quantities
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300 Mpc x 300 Mpc slice of a realization of the relative velocity field vy (left), and the corresponding estimated

PBH luminosity normalized by its maximum value (right), at z = 1060. At this redshift, the rms relative velocity is about five
times the speed of sound c¢s. As a consequence, the PBH luminosity L o (¢ + vi,) % is highly inhomogeneous, with most of
the radiation concentrated in small regions with subsonic relative velocities. Figure credit: Julian Mufoz.

€inj,dep are Telated to the volumetric rates of energy injec-
tion/deposition Pinj,dep through €njdep = Pinj,dep/HnH,
where ny is the total number density of hydrogen (both
neutral and ionized).

Assuming the thermal and ionization state of the gas
is close to its standard history, the deposited power is
linearly related to the injected power through a Green’s
function. Specifically, we define the energy-dependent
dimensionless injection-to-deposition Green’s function
G, (aq,a;,7) such that

d3
€dep(ad, ') = ///dlnai ﬁdE7

deinj
dE,,

/!

xGg, (aq,a:,r) (ai, 7" +7). (2)
Note that homogeneity and isotropy of the background
plasma ensures that the Green’s function only depends on
the comoving distance r from the injection point (rather
than on the vector r).

In the case where the photon spectrum is spatially uni-
form, we may integrate out the energy dependence, and
define a Green’s function for the specific (time depen-
dent) spectrum ¥(E,,a),

Gidnejp(ad,ai,rhll)E/dEW\I!(EW,ai)GEW(ad,ai,r), (3)

such that

d3r
Edep(ad,rl) = //dlnai m

foirgp(ad, a;,7|¥) €mjla;, ™ +71). (4)

We define the spatially averaged Green’s function,

éggp(ad,amll) = /dlnr Gg;jp(ad,ai,ﬂ\l/), (5)

and similarly define 6E7 (ad,a;). This Green’s function
connects the spatial average of the energy deposition rate
€4ep to the spatial average of the energy injection rate €p;:
in the case of a homogeneous injection spectrum, we get

faep () = / dina; G2 (04,0l 0) Eglar). ()

Lastly, we define the dimensionless Fourier transform of
the Green’s function,

G (aa, ai, 7[9) sin(kr)
43 kr
sin(kr)
kr
(7)

and similarly for Gg_ (aq, a;, k). This allows us to connect
the Fourier components of the energy deposition rate to
those of the energy injection rate; for a spatially uniform
spectrum ¥ (but inhomogeneous total injection rate €iy;),
we have

Gidnejp(ad,ai,khll) = /dgr

:/dlnr Gidr,’gjp(ad,ai,ﬂlll)

edep(ad,k):/dlnai G (aa, ai, k| W)€ (ai, k). (8)

B. Interactions processes for sub-10 MeV photons
and electrons

As photons propagate in the expanding Universe, they
lose energy through redshifting and interacting with the
plasma. At redshifts of interest, sub-10 MeV photons
are only subject to two interactions: Compton scattering
and photoionization [9].

Sufficiently high energy photons Compton scatter with
both free and bound electrons. At energies E, < h/ag =



am. ~ 4 keV, where ay is the Bohr radius, Comp-
ton scattering with bound electrons is suppressed (see
e.g. Ref. [23]). Given that at these low energies, photoion-
ization is the dominant source of energy loss for photons,
for simplicity, and at no loss of accuracy, we may assume
that photons scatter with bound and free electrons at all
energies, with the unsuppressed Compton cross section.

In addition, photons may photoionize hydrogen atoms
if their energy is above E; = 13.6 €V and helium atoms if
their energy is above 24.6 eV. We consider redshifts z <
1800, at which helium is fully recombined [24], and thus
need not account for photoionization of singly ionized
helium.

Upon Compton scattering, a photon with initial energy
E, <10 MeV transfers part of its energy to a secondary
electron, with energy E. < 10 MeV. This energy is typ-
ically much greater than atomic binding energies, thus
results in an ionization event if the electron was initially
bound. In the case of photoionization events, the pho-
ton terminates and deposits essentially all of its energy
(minus the binding energy) into the freed electron. In
both instances, the secondary electron then deposits all
of its energy on a short timescale, as we describe below.
Given that atomic binding energies are much less than
the typical energies of secondary electrons, we can ne-
glect the small amount of energy directly deposited by
the initial photon in photoionization and Compton scat-
tering events off bound electrons.

Energetic electrons are subject to four possible interac-
tions in the early Universe: they may collisionally ionize
or excite a neutral hydrogen or helium atom, transfer
part of their kinetic energy to (i.e. heat up) another elec-
tron, or inverse Compton scatter (ICS) a CMB photon.
Following either one of these interactions, the outgoing
electron (or electrons, in the case of collisional ioniza-
tion) promptly interacts again through either one of the
four channels, and so on, until all of the initial electron’s
kinetic energy is used up. The timescales for these in-
teractions are several orders of magnitude shorter than
the Hubble timescale at the epochs of interest, so that
the loss of energy of the initial electron can be approx-
imated as effectively instantaneous [13, 14], as well as
spatially local. The end result is that a fraction of the
initial electron’s energy is eventually deposited into ion-
ization, excitation and heating, and the remainder ends
up in photons produced by ICS.

In principle, the photons resulting from ICS should
be added to and evolved alongside the primary photon
spectrum. However, for the electron energies of interest
E. < 10 MeV, the photons produced in ICS have en-
ergy E! S 4(E./me)*Ty ~ 500 eV (z/10%)(E,/10 MeV)?,
much lower than the primary photons’ energies. At these
low energies, the fate of upscattered photons is simple to
determine. Photons with energies 10.2 eV < E, < 500
eV interact with the plasma on a timescale much shorter
than the Hubble time [9], by photoionizing or exciting
a neutral atom; the subsequently produced electrons can
themselves ionize, excite or heat the plasma, but have too

little energy to efficiently ICS CMB photons. Therefore,
upscattered photons with energies 10.2 eV < E, < 500
eV promptly deposit their energy in the form of ion-
ization, excitation and heating. In contrast, photons
with energies £, < 10.2 eV no longer interact with the
plasma. This last channel is thus taken effectively as an
energy sink, as far as the ionization and thermal history
is concerned (but it can lead to CMB spectral distortions,
which we do not consider in this work) [13].

In summary, we see that an electron with initial energy
E. <10 MeV quickly deposits its energy into four chan-
nels: ionization, excitation, heating and non-interacting
sub-10.2 eV photons, which constitutes a sink. Given an
initial electron energy E,., we define Fy,k(E.) to be the
fraction of energy that goes into the latter channel. Its
complement Fyep(Ee) = 1 — Fyink(Ee) is therefore the
fraction of energy that is efficiently deposited into the
plasma.

C. Sub-10.2 eV ICS energy sink fraction for
secondary electrons

We now turn to computing the fraction Fgpnk(E.) of an
electron’s energy that is lost to sub-10.2 eV ICS photons.
Here we derive a simple yet remarkably accurate analytic
solution, matching the numerical results of Ref. [14].

If an electron with energy F. collisionally ionizes a
neutral atom, the end state consists of a free proton
and two free electrons with energies E/ > E” such that
E! + B!/ = E. — E;. In principle one should keep track
of both electrons following an ionization event. How-
ever, the differential ionization cross section doio,/dFE.
is peaked at |E, — E.| ~ Ep, i.e. E!/! ~ Ef < E. (see
Appendix A). Therefore, in practice we may neglect the
lower-energy electron. The differential rate of ionization
events per final electron energy interval is therefore

dTion (Ee) doion (Ee)
dE! 7o ©)

where n,; is the abundance of the relevant atomic species:
Nat = (1 —x.)ny for hydrogen, where z, is the ionization
fraction, and n,; = nge for neutral helium.

If an electron has energy greater than the atomic ex-
citation energy Fexc, it may collisionally excite a neutral
hydrogen or helium atom. For simplicity, we only con-
sider collisional excitation from the ground state to the
first excited state, with Fo. = 10.2 €V and 21.2 eV for
hydrogen and helium, respectively. The corresponding
differential rate takes the form

dFeXC(Ee)
W = nataexc(Ee)(s(Eé + Eexc - Ee)7 (10)
where ooy (E.) is the collisional excitation cross section,
provided explicitly in Appendix A.

Similarly, we denote by dlyeat(F.)/dE" the differen-
tial rate at which an electron with energy FE. interacts



with the plasma in “heating events”’, producing a final
electron with energy E!. We will see shortly that the
relevant quantity of interest is the heating rate, given in
Appendix A, rather than this differential interaction rate.
We only need the latter for intermediate calculations, and
will assume that it is sharply peaked at E! = FE. [25].

Lastly, let us consider ICS of CMB photons. The final
state of an ICS event is an electron with energy E’ and an
upscattered photon with energy E’, such that £, + E! =
E. + Eycmb > Ee. The total differential rate of ICS
events is given by converting the doubly differential rate
provided in Appendix A,

dl'ics(Ee) , d*Tics(E d*T'ics(Ee)
. 11
dE/ /d v dE’dE’ (11)

As discussed earlier, upscattered photons with energy
Ei/ < Fexe = 10.2 eV no longer interact and are effec-
tively an energy sink. We may define the corresponding
differential rate by

dFsink (Ee)

FE, 2
oxe d FICS(E )
= dE, ——=2=2 12
dE! / ’ (12)

7 dELdE]

which is nonzero if E! > E, — Fexc.
We denote by Tyt (F.) the total rate of interaction of
the original electron:

dTion(Ee)  dlexe(Fe)
I—\ E/ OI] e exc e
tot /d ( dE! + dE"

theat(E ) dFICS(Ee)
dE! g ) 1Y

We are now in a position to compute the fraction
Fank(E.) of the initial electron energy FE. going into sub-
10.2 eV photons. Assuming all the processes at play oc-
cur on a timescale much shorter than the expansion time,
Fink(E.) satisfies the following integral equation:

1 dl“sink(E ) E. - E
Fiyink(Fe dE' ¢
W(Be) = Tiot(Ee) / dE' E,
B —<c Ee) Ee Lok (EL). (14
+Fm /d dE, £ Fan(EL). (19

The first term in this equation accounts for the fraction
of the electron’s energy that directly goes into the sink
channel, and the second term accounts for the indirect
sink deposition, after first interacting through any of the
channels ¢ = ionization, excitation, heat, and ICS.

The discretized version of Eq. (14) was solved numer-
ically in Ref. [14]. Here we propose a simple approx-
imation that dramatically simplifies the evaluation of
Fink(E.), yet produces very accurate results. We con-
sider electrons with energies E, > FEj. In that case, in all
the processes considered, electrons only lose a small frac-
tion of their energy upon interacting. Mathematically,
the rates dT'.(E.)/dE" are all peaked at E! ~ E., with a
width much smaller than E.. Assuming that Fynk(E,) is

a smooth function of E, (which we confirm a posteriori),
inside the integral we may approximate
El Fsmk (E )

E.Fan(Ee)— (Ee—Eé)i(Eerink(Ee))-

dE,
(15)
With this approximation, Eq. (14) becomes a simple first-
order ordinary differential equation,
d% (E Fsmk(E )) ~ Mv
> EelEe)

where E.(F,) is the rate of direct energy deposition
through channel c:

(16)

SC(Ee)E/dE’ dFde, )(E E). (17)

Equation (16) has the explicit integral solution

I blnk E/)
T E. / S E(EL) (18)

We show our analytic solution for 1 — Fynk(FEe) in
Fig. 2, and compare it to the numerical solution of
Ref. [14]. The sharp feature in Ref. [14]’s result is due to
their assumption that electrons lose all their energy via
atomic processes at E. < 3 keV (see also [13]), implying
Fyine = 0 for E. < 3 keV. When imposing this boundary
condition for comparison, we find that our approximation
agrees remarkably well with the results of Ref. [14] across
all redshifts and electron energies. For our computations
we make no such cutoff and simply use Eq. (18), which
gives a smooth transition Fy,x(E.) — 0 at low energies,
differing somewhat from (and likely more accurate than)
that of Ref. [14] at electron energies E. < 10 keV.

Let us note that our calculation for the fraction
Fyink(E.) of electron energy deposited into sub-10.2 pho-
ton is accurate across all energies F, > E; (as can be
seen from the agreement with the numerical results of
Ref. [14] up to E. = GeV). However, its complement
1 — Fink(FEe) can be interpreted as the fraction of en-
ergy efficiently deposited into ionizations, excitations and
heating only for £, < 10 MeV. For hlgher electron en-
ergies, part of the energy not ending in the sub-10.2 eV
sink goes into higher-energy upscattered photons which
do not necessarily interact immediately with the plasma,
and would have to be followed numerically alongside the
primary injected photons.

Let us also remark that our simple analytic approx-
imation for Fgnk(F.) can be easily generalized to the
fraction of electron energy deposited into ionizations, ex-
citations, heating and ICS photons. For the former three
channels, the relevant fractions F,(E,) satisfy Eq. (18),
with the substitution Esnk(E!) — E.(E.) in the numer-
ator. For ICS photons, one can define a differential frac-
tion of energy deposited into photons, per photon en-
ergy interval, dFics(Ee)/dE., satisfying Eq. (18), with
the substitution Egnk(E,) — déics(EL)/dE!, in the nu-
merator, where the latter is defined as in Eq. (17), with
dT'.(E.)/dE! — d21"Ics(Ee)/dEédEﬁ/.

Fsmk
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FIG. 2. Total fraction of an electron’s energy F. that does
not end in sub-10.2 eV photons. For electron energies E. < 10
MeV of interest in this paper, this corresponds to the fraction
of energy efficiently deposited into the plasma in the form
of ionizations, heating and excitations. Solid lines show our
analytic approximation Eq. (18) and dashed black lines are
the numerical results from Ref. [14]. The semitransparent
lines are obtained with our approximation, but imposing a
sharp boundary condition Funk(E. < 3 keV) = 0, as is done
in Ref. [14], and showing that this sharp cutoff is the main
source of difference between our result and that of Ref. [14]
at E. < 10 keV. Otherwise, we find a remarkable agreement
at all energies and redshifts. We use the solid lines with no
energy cutoff in this paper.

D. Radiation transport simulations

While at z > 103 photon interactions occur on a
timescale much shorter than the Hubble time, it is not the
case around and after recombination, at z < 103. There-
fore, one must study the time-dependent evolution of the
photon spectrum, and we do so with a Monte Carlo ra-
diative transport simulation, following the temporal and
spatial evolution of sub-10 MeV photons.

For a given time-dependent injected photon spectrum
U(E,,z) (such that [dE,¥(E,,z) = 1), we run a sepa-
rate simulation for every injection redshift z;. We assume
a matter- and radiation-dominated Universe (i.e. neglect
dark energy), with cosmological parameters consistent
with the Planck 2018 results [3]. We assume a standard
ionization history computed with HyRec [26, 27], i.e. we
do not account for the feedback of a modified ionization
history on the energy deposition efficiency.

Initialization — We initialize the simulation at red-
shift z; with N = 10° photons, all located at the ori-
gin of coordinates r = 0. The photons energies are
distributed according to dN/dE, = EiotV(E.,, zinj)/ E-,
where Eyor = N ([ clEAY\IJ(E,Y)/EA,)_1 is the total injected
energy.

Quantities evolved — In the course of a simulation, we
keep track of four phase-space coordinates for each of the
N photons, namely their energy £, and 3-dimensional
comoving vector to the origin 7,. Note that we do not

store these quantities as a function of redshift, but simply
update them at each timestep. Since the photons do not
interact with one another, we may use a different coor-
dinate system for each photon, and choose it such that,
at any given time, the photon’s direction of propagation
is along the z axis.

Timestep — We take logarithmic time steps in scale
factor dlna, no larger than 0.0025, and such that the
probability of any photon to either Compton scatter or
photoionize a hydrogen or helium atom is at most 0.005.

Free-streaming step — We account for cosmological
redshifting by updating each photon’s energy to E, :=
E,Ye*””n“. We update each photon’s position by freely
propagating it from its position at the previous timestep
along the current direction of propagation 2, ie. 7y :=
7y + (dlna/aH) Z.

Interaction step — For each photon, we compute the
probability of photoionizing a hydrogen or helium atom,
and of Compton scattering during dlna. Explicitly, for
a photon of energy F.,, the probability for each process
X is given by

dlna
H(a)’

where the relevant cross sections are given in Appendix
A, and nx is the number density of scatterers relevant
to process X — neutral hydrogen or helium abundance
for photoionization, total abundance of free and bound
electrons for Compton scattering.

We draw a first random number for each photon, uni-
formly distributed in (0, 1). If this number is less than
Ponu(Ey), the photon photoionizes a hydrogen atom,
leading to an electron of energy E. = E, —13.6 eV. The
original photon is then terminated. We reiterate this
procedure with the remaining photons for Helium pho-
toionization. If a photon photoionizes a neutral Helium
atom, it is terminated and leads to an electron of energy
E.=FE,—246¢eV.

With the same procedure, we determine whether each
remaining photon Compton scatters. If so, we sample
the polar angle 6 (with respect to the propagation direc-
tion) into which the photon scatters and resulting final
energy E from Eqgs. (A1) & (A2), and uniformly sample
the azimuthal angle ¢ in [0,27). This process results in
an electron with energy £, = E, — E/w We then update
the photon’s energy E, := E;, and rotate the photon’s
coordinate system such that the new direction of propa-
gation is along the z direction; explicitly, we update its
spatial coordinates 7, := R(0, ¢) - 7, with the rotation
matrix

Px(Ey) =nxox(E,) (19)

cosfcos¢p cosfsing —sinf
—sin g cos ¢ 0 . (20)
sinfcos¢ sinfsing cosf

R(0,¢) =

At the end of each timestep, we thus have an updated
table of photon energies and position vectors, for pho-
tons that have not been terminated. Moreover, for each



photon that interacted during the timestep, we have ex-
tracted the energy FE. of the secondary electron produced
in the interaction.

Maintaining a large photon sample — As a simulation
progresses, photons lose energy to redshifting and Comp-
ton scattering, and the gas is increasingly neutral. As a
consequence, photons are increasingly likely to be termi-
nated in photoionization events. In order to maintain
low statistical errors, we duplicate the remaining pho-
tons every time their number decreases by a factor of
2. This procedure is equivalent to having initialized the
simulation with twice the original photon number, and
we therefore update Eiot — 2 X Elo every time we du-
plicate photons. Depending on the injection energy and
redshift, this duplication can happen up to O(10) times.

Simulation outputs — For a given photon injection
spectrum U, the end results of each simulation (with
initial scale factor a;) is a 2-dimensional table of the
injection-to-deposition Green’s function Gy (aq, ai, 1),
in predetermined bins in deposition scale factor ay and
comoving distance from the origin r;. The scale fac-
tor bins are logarithmically distributed, in (6.6 x 1074,
0.020) with bin width Alna = 0.005 (this is fixed and
not to be confused with the adaptive timestep dlna).
The radial distance bins are logarithmically distributed
in (1, 10%) Mpc with bin width Alnr = 0.05; we also
include a single bin for 0 < » < 1 Mpc and a single fi-
nal bin for 7 > 103 Mpc. The Green’s function table
Gggp(ad7 a;, 7)) is initialized to zero; at each timestep in
the simulation, if the scale factor a falls within the d-th
bin (ag — Alna/2,aq + Alna/2), the relevant table row
is incremented by

Z{r,Y in k-th bin} EeFdCP(EB)
FEiot Alna Alnr

Giixgp(adv Qs s T.k) +=

. (21)
where the sum goes over all photons that have inter-
acted during the timestep, and the fraction Fyep(E.) of
the secondary electron’s energy efficiently deposited was
described in Sec. ITC. This numerical Green’s function
matches our formal definition (4). This can be checked
explicitly by inserting the simulation’s input, correspond-
ing to €inj(a, 1) = Eiotd®(r)d(Ina — Ina;)/nY, where n
is the comoving baryon density, into Eq. (4).
Convergence — To check convergence with respect
to the number of injected photons, timestep length,
and bin resolution, we have run a Dirac-delta photon
injection spectrum simulation with 60 times as many
photons (N, = 60 x 105), half the maximum logarithmic
timestep (dlna no larger than 0.00125), and double
the radial and temporal bin resolution (Alnr = 0.025,
Alna = 0.0025). We find that, although there is less
noise in the real-space output Eq. (21), computing the
Fourier transformed Green’s function defined in Eq. (8)
produced indistinguishable results. In other words,
our simulations produce well-converged large-scale
Fourier-space Green’s functions, of interest here.

Note that we do not keep track of the energy deposited
directly into photoionizations, as it is small relative to the
energies of the secondary electron produced in photoion-
ization events, of which we do keep track. This neglect is
moreover consistent with our Taylor-expansion approx-
imation for Fyep(Ee), which breaks down near the ion-
ization threshold. These approximations become inaccu-
rate for sub-keV photons, for which the neglected atomic
binding energy exceeds a percent of the energy deposited.
For injected photons with energies below a few keV, the
timescale for photoionization is much shorter than the
Hubble time even at z ~ 100, and thus these photons
could be treated as depositing energy effectively instan-
taneously. The comoving mean free path for helium pho-
toionization is lygp ~ 4 Mpe(10%/2)?(E, /keV)33, im-
plying that energy deposition can be approximated as
spatially on-the-spot at z > 102, for scales larger than
a few Mpc. Our treatment would therefore have to be
improved if one is interested in sub-keV photon injection
at redshifts z < 102, relevant e.g. for 21-cm fluctuations.
Our main focus is on photons injected at z > 102, with
initial energies well above a keV, and whose vast ma-
jority photoionize well before reaching a keV. We thus
expect our neglect of photoionization energies to be very
accurate for our purposes.

E. Results

1. Spatially averaged Green’s function: crosscheck against
existing results and analytic solutions

As a crosscheck of our numerical code, we extract the
spatially averaged Green’s function for a Dirac spectrum
of injected photon energies, i.e. 6321) = GEW. The most
sophisticated numerical computations of éEW are pro-
vided in Refs. [13, 14], and simple approximations are
provided in Refs. [7, 15]. In what follows, we compare the
results from our Monte Carlo radiation transport simu-
lations with existing results and a new analytic approxi-
mation we develop in Appendix B.

First, we consider a simplified problem: only account-
ing for Compton scattering, neglecting photoionizations,
and assuming Fyep(E) = 1, i.e. full efficiency of sec-
ondary electron energy deposition. We derive a sim-
ple semi-analytic approximation for the corresponding
Green’s function in Appendix B, generalizing the result
of Ref. [7]. The final result is
Eclad, Eyjlad; By, ai))

E,YH(ad) ’

—analytic

GE7 (ag,a;) = (22)

where £c(a, E) is the mean rate of energy loss due to
Compton scattering defined explicitly in Eq. (B3), and
FEivj(a; Ey,a;) is the energy trajectory of a photon at
scale factor a, subject to redshifting and to the mean
rate of energy loss to Compton scattering. That is, we
solve Eyj = —HFEyj — Ec(a, Eyj) with initial conditions



FEij(a;) = E,, where E., is the photon’s initial injection
energy. In words, Eq. (22) is the normalized instanta-
neous energy loss of photons to Compton scattering at
scale factor ag4, assuming they have followed a “mean”
energy trajectory Ky since their injection at a;.

In Fig. 3, we compare the semi-analytic result (22) to
our numerical Green’s function obtained from Compton-
scattering-only simulations, for initial photon energies
E,=0.1,1, and 10 MeV injected at z; = 1300. It can be
seen that the two agree remarkably well for injected en-
ergies I, = 0.1 and 1 MeV, giving us confidence in the
robustness of our simulations. For £ = 10 MeV, how-
ever, the match is rather poor. This results from the fact
that, within our analytic approximation, an initially nar-
row distribution of injected photons evolves into a narrow
distribution centered at Eiyaj(Ey; aq,a;). As can be seen
in Fig 4, this is not accurate at either injected energies,
as the time-evolved photon spectrum is broad, as a re-
sult of the finite width of the distribution of final photon
energies in Compton scattering. Nevertheless, for injec-
tion energy E, = 0.1 MeV, the photon spectrum is in-
deed centered around Fiyj(aq; Ey, a;), shown with dashed
lines. In contrast, for £, = 10 MeV, the evolved pho-
ton energy distribution is clearly bimodal, with a signif-
icant fraction of photons near the free-streaming energy
E.a;/a, due to preferentially forward scattering in the
Compton limit. The disagreement of the semi-analytic
and numerical Green’s functions at F, = 10 MeV is thus
due to the breakdown of the assumptions underlying the
former.

Second, we compare our full-fledged simulations (in-
cluding photoionizations and the ICS sink, i.e. Fyep(E) <
1) to the results of Ref. [13], where the homogeneous
Green’s function is computed, accounting for all photon
processes at all energy scales. Note that our simulation
has a higher resolution in deposition time than that of
Ref. [13]. At injected photon energies E., < 10 MeV, the
results of Ref. [13] should match our simulation. This
is indeed the case, as shown in Fig. 5 for various injec-
tion energies. The factor-few disagreement at low red-
shifts has no observable consequence as it only affects the
Green’s function in the regime where it is exponentially
suppressed.

2. Spatial part of the Green’s function

We now discuss the spatial distribution of energy de-
position, for which no other numerical code currently ac-
counts. In Fig. 6, we show Gg_ (24, zhr)/éEw(zd, z;) for
Dirac-delta photon spectra at energies E, = 0.1 MeV
and 10 MeV injected at z; = 1300, including all physical
processes (i.e. Compton scattering, photoionization, and
ICS sink). The shapes of the Green’s function are signif-
icantly different for the low- and high-energy cases: for
the former, the Green’s function has a broad, Gaussian-
like shape, while for the latter, it is initially concentrated
at a narrow ring, and eventually develops an additional

Compton scattering only
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FIG. 3. Comparison of the spatially averaged Green’s func-
tion obtained in our simulation (black) with the semi-analytic
approximation (22) derived in Appendix B (red), when ignor-
ing photoionizations and assuming full efficiency of secondary
electron energy deposition. The labeled curves correspond to
Ein;y = 0.1, 1, and 10 MeV at z; = 1300, with multiplicative
offsets for clarity. The agreement is excellent for low ener-
gies, giving us confidence in our simulations’ accuracy; it is
poor for 10 MeV injected photons, for which the semi-analytic
approximation breaks down.

broad feature. These features can be understood quali-
tatively and semi-quantitatively, as we show below.

As long as the Compton scattering timescale is short
relative to the Hubble time, and that photon energies are
within or near the Thomson regime such that scattering
is approximately forward-backward symmetric, photons
undergo a random walk. The spatial diffusion scale is
then qualitatively similar to the Silk damping scale, ex-
cept for the fact that at the relevant energies, photons
may Compton scatter with both free and bound electrons
(this point was missed in the Appendix of Ref. [15]). Ex-
plicitly, we may estimate the Compton diffusion scale as

AZ(t) = /t dt’
= t; a’?niyoc(Eyi(a’; By, a;))’

(23)

where the Compton scattering cross section o¢ is eval-
uated along the energy trajectory Eyi(a; E,a;) defined
in the previous section, and again ny is the total abun-
dance of neutral and ionized hydrogen. If the number
of scatterings during a Hubble time is large, and if pho-
ton propagation directions are uncorrelated between two
scatterings (as is the case in the Thomson limit, with
forward-backward symmetry), from the central-limit the-
orem we expect the photon spatial distribution — and
thus the spatial distribution of energy deposition — to be
a Gaussian with vanishing mean and variance of order
A4. We overlay the Compton diffusion scale A¢ on top
of the numerically evaluated Green’s function in Fig. 6.
We see that for injection energy E. = 0.1 MeV, the nu-
merical Green’s function has an approximately Gaussian
shape, whose peak is within a factor ~ 2 from A¢.
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FIG. 4. Evolution of the normalized photon energy spectrum with z; = 1300 as a function of energy over several deposition
redshifts, for a Compton-scattering-only simulation, with a Dirac-delta spectrum of injected photons, at energy E,; = 0.1
MeV (left) and 10 MeV (right). The vertical dashed lines show the mean energy trajectory of photons subject to Compton
scattering and Hubble flow discussed in Appendix B. For 10 MeV photons, the right panel reveals a bimodal distribution that
is not well approximated by this mean energy: the high-energy mode is dominated by photons that have not scattered once
and hence have energies E, ;(1 + z4)/(1 + z) (dotted lines in the right panel), and the low-energy mode is photons that have

scattered many times.
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FIG. 5. Comparison of the spatially averaged Green’s func-
tion obtained in our simulation (black) with the results from
Ref. [13] (blue), including Compton scattering, photoioniza-
tions, and secondary electrons’ ICS sink. The labeled curves
correspond to Ein,; = 0.1, 1, and 10 MeV at z; = 1300,
with multiplicative offsets for clarity. The agreement of these
curves gives us confidence in the robustness of our simulation.

When Compton scattering events are rare, or when
they are preferentially forward, as in the case in the limit
E, > m., we do not expect the Green’s function’s spatial
dependence to be Gaussian. Instead, in this regime we
expect photons to be mostly located on the light horizon
of the injection point, at r = fti dt’'/a’, either because
they propagate mostly freely, or because they effectively
propagate along straight lines due to preferentially for-
ward scattering. This is confirmed in the right panel
of Fig. 6, where the Green’s function exhibits a sharp

light horizon feature at early times. We have checked
explicitly that these narrow features are robust and in-
dependent of the radial and temporal bin resolution, sim-
ulation timestep and photon number. At late times, the
10 MeV-photon Green’s function shows a bimodal spa-
tial distribution, consisting of a sharp light cone feature,
and a broad Compton diffusion bump. These two sub-
distributions correspond to the high-energy photons that
have scattered less than a few times and/or preferentially
forward, and to those that have lost a significant part of
their energy and reached the Thomson regime, respec-
tively. This is a spatial manifestation of the bimodal
photon energy distribution shown in Fig. 4. As time
progresses, more and more photons reach the Thomson
regime, and the Green’s function approaches the Gaus-
sian shape with scale near A¢.

As an application of our code beyond a Dirac spec-
trum, we consider injected photon spectra that are flat
up to some cutoff energy, V(E,) = O(Emax — Ey)/Emax,
where O is the Heaviside step function. We tabulated the
spectrum-averaged Green’s function for two values of the
cutoff energy Fnax = 0.2 MeV and E.x = 10 MeV, in-
cluding all physical processes. These flat injected spectra
and upper energy cutoffs are relevant to PBH accretion
considered in Sec. IV. In practice, due to the diverging
photon number distribution dN/dE, « 1/E., in this case,
we have to impose a numerical lower cutoff E,, in the
injected photon energies. We set E,i, = 0.02 MeV, and
checked explicitly that setting En;, = 0.002 MeV in-
stead leads to no noticeable differences in results for the
Eax = 0.2 MeV case. We emphasize that this numerical
cutoff is only applied to the injected spectrum, but that
our code follows photons down to arbitrarily low energies.
In Fig. 7, we show the Fourier transforms of the corre-



sponding Green’s functions, for z; = 1300. Their qualita-
tive features can be understood in light of the real-space
Green’s functions for Dirac-function spectra discussed
above. At low energies (such that photon energies are
always in the Thomson regime), the real-space Green’s
function resembles a Gaussian, and so does its Fourier
transform. At high energies (such that photon ener-

gies are in the Compton regime initially), Gggp(ad, a;, k)
shows ringing features; these are due to the sharp light-

cone feature in the real-space Green’s function.

IIT. FROM ENERGY INJECTION TO
DELAYED RECOMBINATION

A. Definitions: deposition-to-ionization and
injection-to-ionization Green’s functions

In this section we study the change to the free-electron
fraction z.(z) for a given rate of energy injection, thus
deposition, into the plasma. We make two simplifying
approximations to keep the problem tractable. First, we
assume that the effect on the ionization history only de-
pends on the local (in space) energy deposition rate. This
ought to be an excellent approximation at the scales of
interest & < 103 Mpc™!, much larger than the scales
at which Lyman-continuum and Lyman-« transport is
relevant [28]. Second, we assume that perturbations
to the standard ionization history are small, i.e. that
Az, < 29,1 — 29, where 29 is the standard ionization
fraction. This is motivated by CMB anisotropy con-
straints on changes to recombination history near the
peak of the visibility function [3]. It is also consistent
with our assumption that . = 2% when computing the
energy deposition efficiency. These assumptions allow
us to define a purely temporal deposition-to-ionization
Green’s function G3°P(a, aq), such that

Azxc(a,r) ~ / dlnay G (a, ad)%p%w, (24)
1

In this definition, we have normalized €4ep, to the ioniza-
tion energy of hydrogen, E; = 13.6 eV, so that eqep/Er
represents the effective number of ionizing photons de-
posited per baryon, per Hubble time. With this conven-
tion, we expect Gdep to be of order unity, and the linear
approximation to hold as long as €qep/Er < 1.

Combining with Eq. (4), we then obtain (in the case
of a homogeneous injection spectrum ¥),

3
Az.(a,r’) = //dlnai 3

inj(ai, ™ +7)

<G (a, g, r|w) it L (25)
1

where the injection-to-ionization Green’s function GmJ is
obtained from the temporal convolution of the 1nject10n—
to-deposition and deposition-to-ionization Green’s func-

10
tions:

G (a,a;,7|¥) = /a dlnag Ggip(a,ad)GH;jp(ad,ai,r|\IJ).

26
As in the case of the injection-to-deposition Green’s fl(mc%
tion, we may define the spatially averaged injection-
to-ionization Green’s function é;rf (a,a;|P), as well as
its Fourier transform Gi¥(a,a;, k|¥), both defined as

in Eq. (26) above, with G

dep
Gggp(ad,ai\\Il) and Gggp(ad,al, k|¥), respectively. With

these Green’s functions, we obtain the homogeneous part
of the perturbation to the free-electron fraction, as well
as its Fourier components, as follows:

(aq,a;,r|¥) replaced by

Azela) = / dlna, éij(a,aihﬂ)%(lai), (27)

€inj (ai7 k)

B (29

Aze(a, k) = /dlnai Giwnej(a,ai,khll)

We now turn to the numerical evaluation of G$°P.

B. Calculation of the ionization Green’s functions

We now describe how we compute the ionization
Green’s functions. For simplicity, we focus on hydrogen
recombination, and neglect the effect of energy deposition
on helium recombination (but note that we do account for
helium photoionization as a means of converting injected
photons into energetic electrons, as described in Sec. II).
This neglect is justified as follows. First, during helium
recombination at z 2 1800, the matter temperature is ef-
fectively locked to the radiation temperature by Compton
scattering, and therefore all the energy deposited in the
form of heat has virtually no impact on the thermal his-
tory. Second, and most importantly, CMB anisotropies
have very little sensitivity to changes to the ionization
history at these high redshifts. With that being said, he-
lium atoms can also get ionized at z ~ 1000, i.e. during
the epoch of hydrogen recombination. Given the small
helium-to-hydrogen number ratio ny./ny =~ 0.08, we ex-
pect that accounting for this effect would lead to order
O(10%) corrections to our results, as found in Ref. [29]
in the context of dark matter annihilation. Our results
should therefore be accurate at the O(10%) level.

Computing hydrogen recombination history with sub-
percent accuracy requires solving ordinary differential
equations (ODEs) for the free-electron fraction z. and
baryon temperature T}, coupled with a partial differen-
tial radiative transfer equation for the photon distribu-
tion near the Lyman resonances [30], accounting for two-
photon emission and absorption [31, 32] and resonant
scattering [33, 34]. These equations are solved numer-
ically by the state-of-the-art codes HyRec [26, 27] and
CosmoRec [35]. In order to compute the deposition-to-
ionization Green’s function with these codes, one could
in principle include energy deposition source terms with
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FIG. 6. Injection-to-deposition Green’s function normalized to its spatial average, Gk, (Zd,Zi,"')/éE,y (24, 2i), for injection
redshift z; = 1300, and a Dirac spectrum of injected photons, at E, = 0.1 MeV (left) and 10 MeV (right). Solid lines are
outputs from our full simulation (including photoionization, Compton scattering, and ICS sink), and the vertical dotted lines
show the Compton diffusion scale A¢ defined in Eq. (23). At low energies the spatial distribution has a near-Gaussian shape with
a peak near Ac. At high energies, the distribution shows a feature near the light horizon radius, in addition to a near-Gaussian
shape at low redshifts; see main text for a qualitative explanations of these features.

Flat Spectrum (Emnax = 0.23 MeV, z;=1300) Flat Spectrum (Emax = 10 MeV, z=1300)

1.0 N 24= 150 — zg= 750 — 24= 150 — z4= 750
N 24= 300 — zg4= 900 — 24=300 — zg4= 900
=208 24= 450 — z4= 1050 - — z4= 450 — z4= 1050
£o Z4= 600 — z4= 1200 £ — z4= 600 — z4= 1200
) [G)
X 06 ~
N N
L“? 0.4 ﬁ
- —g
£ £
O 0.2 ) -
0.0 AN —0.21
1073 1072 107t 10° 10! 1073 1072 101 100 10!
k (Mpc~1) k (Mpc™1)

FIG. 7. Normalized Fourier transform of the injection-to-deposition Green’s function ij“ejp(zd,zi,k) /éggp(zd,zi), for a flat
spectrum of injected photons ¥(E,) = ©(Emax — Ey)/Emax, with cutoff Fmax = 0.23 MeV (left) and Emax = 10 MeV (right).
These spectra correspond to two limiting assumptions for energy injected by accreted PBHs, discussed in Sec. IV. At low
injected energies, the Green’s function and its Fourier transform are approximately Gaussian, but at high injected energies, the
sharp light cone feature in the real-space Green’s function results in ringing in its Fourier transform. These Green’s functions

were extracted from our full simulation, including photoionization, Compton scattering, and the ICS sink.

narrow redshift support, approximating Dirac functions.
Instead, we use the simpler system of two coupled ODEs
solved in HyRec-2 [36], which allow us to compute the
Green’s function more robustly. These ODEs are based
on the effective 4-level atom model for hydrogen [26],
with correction functions accounting for detailed radia-
tive transfer, calibrated with HyRec.
The ODEs solved by HyRec-2 take the form

j;e = F(aaxeaTb) + Sﬂlg?

T, = —2HT, + Fc(l‘e) X (T,y — Tb) + STb7

(29)
(30)

where F(a,z.,T}) is the standard rate of change of the
free-electron fraction provided explicitly in Eq. (6) of

Ref. [36], T'c(z.) is the Compton heating rate, which de-
pends on z. (but not on 7}), and can be found, e.g. in
Eq. (12) of Ref. [27], and T, is the radiation temperature.
The last terms in Egs. (29) and (30) are source terms due
to nonstandard energy deposition in the plasma. Mak-
ing the approximation that the deposited energy goes
into ionization, excitation and heating with fractions
(1 —2¢)/3,(1 —x.)/3,(1 + 2x.)/3, respectively [2], and



generalizing the results of Ref. [37], the source terms are

1—.’)36 4 - pdep
e = 1+-(1-— —_— 1
5,257 (1430-0) g2 @
2 142z, .
ST, = ———— Ddeps 32
Ty 3nt0t 3 Pd P ( )
— 1 3
1-C= 1(1—025)4-1(1—02;0)7 (33)

where nyo is the total number density of baryons (elec-
trons, nuclei and atoms), and the coefficient Ca, (Cap)
is the effective probability that an atom in excited state
2s (2p) reaches the ground state rather being photoion-
ized, generalizing Peebles’ C factor [38], and is provided
in Eq. (7) of Ref. [36]. The first term in the parenthesis of
Eq. (31) corresponds to direct ionizations, and the second
term corresponds to excitations followed by ionizations.

We now assume that the source terms lead to small
perturbations Ax,., AT, to the ionization fraction and
baryon temperature, and linearize Eqs. (29), (30):

oOF OF

LAz + S ATy + S, (34)

Ate =5 oT,

AT, = —(2H +T¢)

+ STb7 (35)

where the derivatives of F and I'¢, as well as the source
terms, are evaluated along the standard ionization and
thermal history.

The deposition-to-ionization Green’s function is ex-
tracted by setting paep/(Ernu) = Hegep/Er = Hé(lna—
Inag) = 6(t — tq). Explicitly, for a given deposition scale
factor aq, we solve Eqgs. (34)-(35), with S, and Sp, set
to zero, and starting with initial conditions at a = aq

1- 2, T

Ate(aq) = —5~ (1+3<1—0>), (36)
2ny 14 2z,

ATb(ad):3nth 3 Ey, (37)

with both right-hand sides to be evaluated at a = aq4.
We show the deposition-to-ionization Greens function
G3P(a,a4) in Fig. 8. The envelope of this function fol-
lows the initial condition (36). Much before recombi-
nation, when the plasma is fully ionized (z. — 1), the
impact of energy deposition on the ionization history is
suppressed. Once the plasma becomes significantly neu-
tral, the envelope is approximately (1 +4/3(1 — C))/3;
the effective Peebles C-factor C is initially small, and
reaches unity for z < 800 (see e.g. Ref. [39]), which
translates to the bump in the Green’s function envelope
around z ~ 1000, and the 1/3 plateau at z < 800. Note
that, although we simultaneously solve for the temper-
ature evolution for completeness, at z 2 200, I'c > H,
implying an exponential damping of temperature pertur-
bations. The evolution of the ionization Green’s function
is thus mostly controlled by the term proportional to 3—]:

As time progresses, ng /H decreases (the recombination
e

process slows down), leading to a more extended tail for
the Green’s function at low redshifts.
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FIG. 8. Dimensionless deposition-to-ionization Green’s func-
tion G‘;ip(z, z4), as a function of the ionization redshift z, for
various energy deposition redshifts z4. Different line thick-
nesses are used only for the purpose of better visualization.

Given G4°P and G for a given injection spectrum W,
we convolve them to obtain the injection-to- depos1t10n
Green’s function G defined in Eq. (26). In Fig. 9, we
show the spatially averaged Green’s function, for a flat
injected spectrum, up to cutoff energies Fy . = 0.2 MeV
and 10 MeV, respectively. For the latter energy cutoff, we
see that, after recombination, changes in the free electron
fraction are suppressed in comparison with the lower en-
ergy cutoff photon injection spectrum. This is likely due
to a combination of two effects: one, the higher-energy
photons can result in secondary electrons (E. ~ MeV)
that are mostly inefficient in depositing energy into the
plasma (c.f. Fig.2); and two, higher-energy photons have
a lower probability of scattering and thus disperse their
energy deposition over later redshifts. In Fig. 10, we show
the normalized Fourier transform GIN(z,z = 1300, k),
as a function of wavenumber and ionization redshift, for
each of the two injected spectra. In both cases, fluctu-
ations in the ionization fraction are suppressed for k 2
few times 10~' Mpc~!, with a suppression lengthscale
increasing as time progresses, and typically larger for
higher-energy photons, which can propagate over larger
distances.

IV. APPLICATION TO ACCRETING PBHS
A. PBH accretion and radiation model

We now apply the formalism developed above to energy
injection by accreting PBHs. Despite the relatively sim-
ple physical conditions in the early Universe, the prob-
lem of accretion on PBHs remains complex, and exist-
ing estimates of their accretion rate and luminosity vary
by orders of magnitude and are highly uncertain [6-8].
One of the major uncertainties is the geometry of the
accretion flow: if an accretion disk forms, the radiative
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FIG. 9. Homogeneous injection-to-ionization Green’s function (defined in Eq. (26)) for a flat photon spectrum with cutoff
Emax = 0.23 MeV (left) and Emax = 10 MeV (right), as a function of ionization redshift z. Different line colors correspond to
different injection redshifts z;; note that we vary the thickness of lines only for clarity.
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FIG. 10. Normalized Fourier transform of the injection-to-ionization Green’s function Gy (2, zi, k) /G,. (z, 2:), for a flat energy
spectrum injected at z; = 1300, as a function of wavenumber. The left panel is with a high-energy cutoff of Enax = 0.23 MeV,
and the right is for Fmax = 10 MeV, showing a more pronounced small-scale suppression due to the propagation of higher-energy
photons, as well as ringing features due to the light-cone feature in the injection-to-deposition Green’s function.

efficiency and overall luminosity is expected to be signif-
icantly larger than for a quasi-spherical flow [8]. Lacking
a definitive proof that an accretion disk must form, in
order to make headway while remaining conservative, in
this work we adopt the quasi-spherical accretion model of
Ref. [7] (hereafter AK17). We emphasize that our main
point should remain qualitatively valid regardless of the
details of the accretion flow: the luminosity of accreting
PBHs ought to depend on the local supersonic relative
velocities of accreted baryons, leading to a spatially mod-
ulated energy injection rate. Our final results, applied to
the spherical accretion model of AK17, should therefore
be understood as an example application, and can be gen-
eralized to more sophisticated accretion models as they
become available.

We begin by briefly reviewing the idealized, spherically
symmetric accretion model. Consider a stationary, non-
rotating black hole with mass M embedded in a homo-

geneous plasma with an average baryon mass density p,,
temperature T, and mean ionization fraction 7, (all de-
fined far from the black hole). The rate of accretion, M,
was computed by Bondi [21] by solving for the physical
solution to the steady-state continuity and Euler equa-
tions. Namely, by enforcing the monotonic increase of
the fluid’s radial velocity approaching the black hole and
avoiding singularities in the flow outside the event hori-
zon, the unique solution can be found to be
2
M=\ x 47TﬁbM—3,
UB

(38)

where ) is a dimensionless parameter and vg = 1/ Py,/p,

is a characteristic velocity, where Py, = py (1 + Z.)Th/m,,
is the average gas pressure. With this definition, vg is
equal to the isothermal sound speed (but note that the
gas is not isothermal in general).



In Bondi’s original calculation, the only non-
gravitational force was assumed to be pressure, and the
gas was assumed to be barotropic. In the cosmological
context of interest, accreting PBHs are embedded in an
intense photon bath. In light of this, AK17 generalize this
accretion model as well as the calculations of Refs. [6, 40],
accounting for Compton drag and Compton cooling by
CMB photons. In practice, AK17 compute A numerically
by solving the steady-state fluid equations, and provide
an analytic approximation as a function of the ratios of
the accretion timescale tg = M /v3, to the Compton drag
and Compton cooling timescales. The parameter A(vg) is
thus a function of redshift as well as of vg. When Comp-
ton drag is negligible (typically after recombination), A
lies somewhere between the adiabatic and isothermal lim-
its, Aag = 0.12 and A5 =~ 1.12, respectively, depending
on the strength of Compton cooling. When the Compton
drag timescale is short relative to the accretion timescale
(typically before recombination), accretion is suppressed
by Compton drag, i.e. A < 1.

It was shown in Ref. [40] that the steady-state approx-
imation is valid for black hole masses M < 3 x 10* M.
Additionally, AK17 found that local thermal feedback
(i.e. Compton heating of the accreting gas by the radi-
ated gamma rays, which we describe shortly) is also neg-
ligible in this mass range. We therefore limit ourselves to
PBH masses M < 10* M, for which the simple spherical
accretion model is self consistent.

As the accreted gas falls towards the black hole’s hori-
zon, it gets compressed and heated up, and eventually
fully ionized. At minimum, we thus expect the accreted
plasma to produce free-free radiation. The total free-
free luminosity is dominated by emission near the black
hole’s horizon. It scales as the local gas density squared,
thus as the accretion rate squared, and is a function of
the gas temperature T near the horizon. The tempera-
ture Ts determines not only the overall PBH luminosity,
but also the radiation spectrum, as the differential free-
free spectrum dL/dE., is approximately constant up to
photon energies E, = Epax ~ Ts. In other words, the as-
sumed PBH luminosity per photon energy interval takes
the form

dL L
dEy " Emax

O(Emax — E,), L= L(T,)M?, (39)

where © is the Heaviside step function, and L(T}) is a
known function of temperature [41].

AK17 approximately determine the gas temperature
T near the black hole’s horizon in two limiting regimes.
In the first case, they assume the accreting gas is pho-
toionized by the black hole’s radiation; in this case,
the gas temperature near the horizon can reach up to
Ts ~ 101 K ~ 10 MeV [19] once Compton cooling is
negligible. The other limiting regime is that of collisional
ionization of the accreting gas. This scenario would ap-
ply if the radiation produced by the PBH is not strong
enough to photoionize the infalling gas. In this case,
the gas remains mostly isothermal throughout a colli-
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sional ionization region [19], and can only heat up to
T, ~ 3 x10° K ~ 0.2 MeV near the horizon. In both
cases, T can be significantly lower than the quoted max-
imum values before recombination, when Compton cool-
ing inhibits significant heating of the infalling gas, as can
be seen in Fig. 11. Importantly, AK17 showed that nei-
ther of these two limiting regimes is self-consistent, as in
both cases the PBH luminosity is neither large enough
to fully photoionize the gas nor small enough to be en-
tirely negligible. The PBH luminosity can vary by up to
two orders of magnitude between these two extreme lim-
its, which highlights the broad theoretical uncertainty
remaining in this problem. Still, the collisionally ion-
ized case should provide a very conservative, minimum-
plausible estimate of the luminosity of accreting PBHs.

Let us remark that, prior to recombination, the tem-
perature T, depends on the ratio of the Compton cooling
and accretion timescales. Just like the accretion rate M,
it is thus a function of redshift and of the characteristic
velocity vg, and so is the PBH luminosity L.

Given the differential luminosity dL/dE., of each PBH,
one can finally infer the volumetric rate of energy injec-
tion by accreting PBHs, per photon energy interval:

Pcdm dL
M dE,’

dpinj _
dE,y - fpbh

(40)

where fppn is the fraction of PBHs that comprise dark
matter. This equation holds for a single PBH mass and
can be trivially generalized to an extended mass distri-
bution.
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FIG. 11. Temperature near the Schwarzschild radius derived

in AK17 for black hole masses M =1, 100 M as a function
of redshift, evaluated for two different values of the relative
velocity vbe = 0 (solid) and wvpe = (vZ.)Y/? (dashed). We
show both accretion scenarios where the accreting plasma is
either collisionally ionized or photoionized by the black hole
radiation itself. This temperature governs the overall PBH
luminosity as well as the energy cutoff of the approximately
flat radiated spectrum.



B. Relative velocity of accreted gas

The simple accretion model described above applies to
a spherically symmetric flow. In practice, the accreted
gas has significant velocity at infinity in the PBH rest-
frame. In this subsection we describe the properties of
these velocities, and describe their estimated impact on
PBH accretion in Sec. IV C.

It is now well known that, with adiabatic initial condi-
tions, CDM and baryons have supersonic relative veloci-
ties v around and after recombination [22]. Indeed, be-
fore recombination baryons and photons are tightly cou-
pled and undergo acoustic oscillations, while the CDM
free-falls in gravitational potentials. These different dy-
namics result in large-scale relative velocities, fluctu-
ating on ~ 100 Mpc scales, and with a rms reaching
about five times the baryon sound speed at recombina-
tion. After baryons kinematically decouple from photons
at z ~ 1000, they behave as a cold fluid on scales larger
than their Jeans length, and the baryon-CDM relative ve-
locities then decay as 1/a, as long as baryons and CDM
perturbations remain linear. As the gas cools and the
sound speed decreases too, relative velocities remain su-
personic until baryons heat up again at reionization.

If PBHs make up a significant part of the CDM, they
must have adiabatic initial conditions on large scales in
order to satisfy observational constraints [42]. Even if
they make up a subdominant part of the CDM, if PBHs
are produced through the gravitational collapse of rare
overdense regions upon horizon entry, their large-scale
distribution is expected to follow that of the radiation,
in the absence of significant primordial non-Gaussianity
[43, 44]. In other words, in this formation scenario, we
also expect PBHs initial density perturbations to be adi-
abatic on large scales. We thus expect the velocity of
baryons relative to PBHs to follow the baryon-CDM rel-
ative velocity on large scales, regardless of PBH abun-
dance.

The picture is notably different on small scales, at
which PBH (thus CDM) density perturbations get en-
hanced by unavoidable Poisson fluctuations [45-47], lead-
ing to early formation of nonlinear structures [48, 49].
This results in additional relative velocities on small
scales, with magnitude similar to the virial velocities of
collapsed halos. In their mixed PBH and particle-like
CDM simulations, Ref. [50] found these virial velocities
to be smaller than the background baryon sound speed
for z 2 300 and smaller than the rms large-scale rela-
tive velocity for z 2 100. These results indicate that
small-scale nonlinear relative velocities can be neglected
in the PBH accretion problem, at least for z 2 100. Note
that even if PBHs make a very small fraction of CDM,
and Poisson fluctuations do not significantly affect struc-
ture formation, nonlinear structures eventually form at
z < 30, leading to small-scale relative velocities [8].

Given that CMB anisotropies have little sensitivity to
the ionization history at z < 100, in this work, following
previous studies, we shall only consider the large-scale,
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linear component of baryon-CDM relative velocities vy,
with a Gaussian distribution entirely characterized by
its power spectrum, which can be extracted from linear
Boltzmann codes, and with rms (v )1/? a 30 km/s ~
5 vp at z ~ 103 [22].

C. Effect of relative velocities on PBH luminosity
and radiated spectrum

Generalizing Bondi’s prescription [21], we account ap-
proximately for relative velocities by making the follow-
ing substitution in A\, M and Tj:

vg — \/ Vi + vl (41)

Modulo the weak dependence of vg in the dimensionless
accretion parameter A(vp), simulations have shown the
functional form of Eq. (41) to be accurate in accretion
rates within several tens of percents [51-53].

With the prescription (41), relative velocities affect
most significantly the accretion rate, which scales ap-
proximately as M o 1/v3. To a lesser extent, they
also affect the ratio of the Compton drag and cooling
timescales to the accretion timescale, thus the accretion
constant A(vp), as well as the gas temperature T, near
the horizon. The first effect dominates the PBH lumi-
nosity, which scales as L oc M? oc 1/(v3 + vE.)3. The
luminosity is thus dominated by the rare regions where
the relative velocity is subsonic, which occupy a volume
fraction of order (vp/(v3.)'/?)? ~ 1072 at z ~ 10%. In
the remaining vast majority of the volume, the accre-
tion luminosity is strongly suppressed by the supersonic
relative motions. This physical picture is illustrated in
Fig. 1, showing the function vg/(v3 +vE.)® computed for
a 3-dimensional realization of the relative velocity field.
This figure shows that the PBH luminosity, thus energy
injection rate, is concentrated in small and rare islands
with subsonic relative velocities, surrounded by a mostly
quiet sea of regions with supersonic velocities. It more-
over indicates that the distribution of PBH luminosities
is highly skewed, and that its average value is not at all a
representative luminosity. We illustrate this in a different
way in Fig. 12, where we show that the rms luminosity
can be up to an order of magnitude greater than its mean.

Relative velocities also modulate the gas temperature
T, near the PBH horizon, thus the cutoff F.. ~ T of
the free-free emission spectrum. In practice, for a given
accretion scenario (collisional ionization or photoioniza-
tion of the accreted gas), Ts varies by no more than a
factor-of-a-few when vy, is varied from 0 to (vZ )!/2, as
can be seen in Fig 11. Moreover, these variations are
mostly limited to z > 103. Given that our simple accre-
tion model is certainly not accurate to that degree, in
order to simplify computations, we shall neglect the vari-
ations of Fy,.x with relative velocity. For consistency,
we shall also neglect its variations with PBH mass and
redshift, which are of comparable magnitude. For each



accretion scenario, we therefore assume a flat spectrum
up to a constant cutoff Fmax, independent of redshift,
mass and relative velocity. We take F,.x ~ 0.2 MeV for
the collisional-ionization scenario, and E,.x ~ 10 MeV
for the photoionization scenario. We checked explicitly
that restoring variations of FEp,,x with respect to mass
and redshift per accretion scenario does not significantly
affect our final results (the rms fluctuations of x.). It is
important to note that this approximation only concerns
the photon spectrum cutoff, not the overall amplitude of
luminosity L(7), in which we include the full dependence
on PBH mass, redshift and relative velocity.
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FIG. 12. The ratio of y/(L2) — (L)? to (L) (where average

here means over realizations of relative velocity between cold
dark matter and baryons) as a function of redshift for several
different black hole mass, as computed in AK17. These curves
are obtained in the collisional-ionization accretion scenario.

D. Spatially perturbed recombination due to
accreting PBHs

We now have all the ingredients to compute the per-
turbations to the free-electron fraction Az, due to in-
homogeneously accreting PBHs. For a given accretion
scenario (photoionization or collisional ionization of the
accreted gas), we assume a uniform injected photon spec-
trum V(E,) = O(Emax— E+)/Emax, with constant Erax.

We compute the injection-to-deposition and injection-
to-ionization Green’s functions for this spectrum, as de-
scribed in Secs. II and III. We then obtain Az, from
Eq. (25), with

€inj(r) =€y (1 +0L(r)),  @&nj = %L, (42)
where 7, (r) = L(r)/L — 1 is the relative fluctuation of
PBH luminosity.

The new quantities computed in this work are the spa-
tial perturbations to the free-electron fraction Az, (a, k),
obtained from Eq. (28), with €nj(k) = €njor (k). These
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perturbations are not directly observable, but leave an
imprint on CMB anisotropy power spectra and higher-
order correlations, the computation of which we defer to
upcoming works. Importantly, to lowest order in fypn,
these CMB observables depend on the part of Az, that
is correlated with terms quadratic in unperturbed CMB
anisotropies. In order to obtain a proxy for this corre-
lated part, we split PBH luminosity perturbations in a
piece tracing fluctuations in vﬁc (superscript ¢), and a
piece that is uncorrelated with them (superscript unc):

61(r) = 0L (Une(r)) + 012" (vbe(7) (43)

)

(UhedL™) =0, (45)

where (...) represents averaging over the Gaussian distri-
bution of relative velocities, and all quantities implicitly
depend on scale factor. Note that the two-point corre-
lation function of 6§ matches the large-scale limit of the
two-point correlation function of &y [54, 55]. Numeri-
cally, we find that the power spectrum of 6§ reproduces
well the power spectrum of &y, for k& < 0.1 Mpc™!, but
significantly underestimates it for smaller scales. Using

¢ in lieu of ¢, should therefore provide a conservative es-
timate of the spatial perturbations of Ax,, which, in any
case, are suppressed at k& > 0.1 Mpc~! due to nonlocal
energy deposition, as can be seen in Fig. 10.

We thus define Az¢(a, k) as the free-electron pertur-
bation resulting from the v —correlated part of the in-
jected energy, €,; = €n;jo7 (), inserted in Eq. (28). This
“correlated part” of the free-electron fluctuations serves
as a proxy for the quantity relevant to CMB anisotropies.

For any field X(a,k) we define the dimensionless
unequal-time power spectrum A% (a,a’, k) through

7T5
(X(a, k)X (K} = 5

A% (a,d' k)63 (K — k), (46)

and for short denote A%(a,k) = A%(a,a, k), which gives
the variance of X (a,r) per logarithmic k interval:

var(X (a)) = (X (a,7)?) = /dlnk‘ A% (a k). (47)
From Eq. (28), with €5; — €n;j0¢, we obtain

AQAxg (a,k) = // dlna;dIn a;Gixnej (a,ai, k)G;rS(a,a;7 k)
Xb(a;)€nj(ai)b(a;)Emn; (ag)A%(ai7 ai k), (48)

where b(a) is defined in Eq. (44) and #n(a,r) =
vi.(a,7)/ (v (a)) — 1. The power spectrum of 7 is easliy
computed, and can be expressed as an integral quadratic
in the power spectrum of vy, given explicitly in Ref. [16];
we show it for several redshifts in Fig. 13.

In Fig. 14, we show rms(Ax¢) /2 = \/var(Az¢) /22, as
a function of redshift, for both accretion scenarios; this
quantity is obtained from AQAI2 (k) through Eq. (47). For
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FIG. 13. Dimensionless power spectrum of n(z,r) =

vie(z,7)/ (vE.(2)) — 1 at several redshifts, normalized by its
variance var(n) = 2/3. The shape is approximately constant
at z < 1000, after kinematic decoupling [22].

reference, we also show the mean relative change Az, /2,
obtained through our Green’s function. We see that
rms(Az¢) is comparable to Az, within a factor of order
unity. Note that our estimate of Az, is somewhat differ-
ent from that of AK17. Our treatment is more accurate
in some respects, as AK17 have a simplified treatment
of energy deposition and do not account for photoion-
ization nor the ICS energy sink. On the other hand,
our Green’s function approach does not capture nonper-
turbative changes to the free-electron fraction, for which
AK17 do solve. As we show in Appendix C, our Green’s
function approach is accurate as long as Az, /2% < 1, in
which case our treatment is overall more accurate.

We show A2, .(z,k)/var(AzS(z)) at several redshifts
in Fig. 15, for accretion onto 100-Ms PBHs in either
accretion scenario. This quantity represents the over-
all shape of the relative fluctuations in the ionization
fraction Az¢ per logarithmic k-interval. For contrast,
we overlay the normalized power spectrum A (k) /var(n)
at z = 1000, i.e. after kinematic decoupling, for which
7 is time invariant [22]. This comparison reveals the
small-scale suppression of power in Axz¢ due to nonlo-
cal energy deposition that is more stark for later red-
shifts, as we would expect from photon propagation. Ad-
ditionally, for the photoionized accretion scenario, the
higher-energy injected photons have larger propagation
distances, resulting in a more pronounced suppression of
small-scale power relative to large-scale power (this can
be seen by examining the ratios of the amplitudes of the
second and first peaks). Note that, besides the redshift-
dependent small-scale suppression, the power spectrum
of Az, does not quite have the universal shape of low-
redshift velocity-induced acoustic oscillations [56, 57]
shown as a black dashed line, which is relevant to large-
scale structure [54] or 21-cm fluctuations [55, 58]. Indeed,
free-electron fraction perturbations at a given redshift are
affected by energy injection at all prior epochs, including
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FIG. 14. The rms of spatial fluctuations of the (vi.-
bc

correlated part of) free-electron fraction perturbations in-
duced by accreting PBHs (solid lines), compared to the mean
change in the free-electron fraction (dashed lines), both nor-
malized to the standard ionization history z0. The two col-
ors correspond to the two accretion scenarios discussed in
Sec. IV A. In both cases, we consider 100-M; PBHs, whose
abundances roughly saturate AK17’s limits: fppn = 1, 1072
for the collisional ionized and photoionized cases respectively.

before kinematic decoupling, during which the scale de-
pendence of relative velocities is time dependent, as seen
in Fig. 13.

Figs. 14 and 15 constitute the main results of this
study. Fig. 14 shows that the spatial modulations of the
free-electron fraction perturbations sourced by accreting
PBHs are comparable in amplitude to their mean. More-
over, Fig. 15 shows that these perturbations have support
on large scales k ~ 0.01—0.1 Mpc~!, similar to the scales
at which CMB anisotropies are maximal. In past studies,
the mean perturbation to recombination Az, has been
the sole quantity considered when estimating the impact
of accreting PBHs on CMB anisotropies. Qualitatively, a
homogeneous increase to the free-electron fraction affects
CMB-anisotropy power spectra similarly to an increase in
the reionization optical depth: it damps anisotropies on
small angular scales and enhances polarization on large
angular scales. The order-unity spatial perturbations in
Az, shown in Figs. 14 and 15 ought to impact CMB
anisotropies in two different ways. First, they should
lead to order-unity modifications to the perturbation to
CMB power spectra, with an angular dependence qual-
itatively different from that resulting from the homoge-
neous Azx.. This means that this additional perturbation
to CMB power spectra should have different degeneracies
with standard cosmological parameters, in particular the
reionization optical depth, and should therefore help im-
prove constraints on accreting PBHs. Secondly, the large-
scale perturbations to Az, should source higher-order
correlations functions in CMB anisotropies, beyond the
power spectra. We will study and quantify these effects
in upcoming publications.
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Dimensionless power spectrum of the (vi.-correlated part of the) free-electron fraction Az at several redshifts,

obtained from Eq. (48), normalized by its variance. Each panel corresponds to a PBH accretion scenario: collisionally ionized
(left) and photoionized (right), see Sec. IV A for details. For reference, the black dashed line shows the normalized power
spectrum of n(z,7) = vi.(z,7)/ (vi.(2)) — 1, at z = 1000 (this quantity is independent of redshift for z < 1000). These
plots reveal the small-scale suppression of free-electron perturbations due to nonlocal energy deposition, which becomes more
pronounced for lower redshifts, as photons have propagated farther from their injection point. Still, free-electron perturbations

retain significant spatial fluctuations up to k ~ 0.1 Mpc™*.

V. DISCUSSION AND CONCLUSION

In this work, we have developed a set of analytic and
numerical tools to compute spatial perturbations to re-
combination resulting from inhomogeneous injection of
sub-10 MeV photons, and applied them to the specific
case of accreting PBHs.

The first step was to translate energy injection to a time-
and space-dependent energy deposition rate. To that
end, we developed a Monte Carlo radiation transport
code, incorporating all relevant plasma interactions with
up-to-date cross sections. This code follows the evolu-
tion of an injected photon spectrum, accounting for pho-
toionization and Compton scattering, and tabulates the
energy deposited into secondary electrons as a function
of time and distance from the injection point. While sec-
ondary electrons dissipate their energy almost instanta-
neously through rapid interactions, a non-negligible part
of this energy is lost to upscattering CMB photons to
sub-10.2 eV energies, at which they do not interact ef-
ficiently with the plasma. We computed the fraction of
electron energy that is lost to this sink with a novel ana-
lytic integral expression (18), matching existing numeri-
cal results remarkably accurately. The final output of our
radiation transport code is a time- and space-dependent
injection-to-deposition Green’s function, self-consistently
accounting for this energy sink.

The second step was to convert the energy deposited in
the primordial plasma to a perturbation of its ioniza-
tion and thermal history. We extracted a deposition-to-
ionization Green’s function by linearizing the effective
4-level atom differential equations solved by HyRec-2,
which provide a highly accurate approximation of the
exact numerical radiative transfer calculation of HyRec.

By convolving the two Green’s functions, we obtained the
injection-to-ionization Green’s function, which directly
connects an energy injection rate to a time-dependent
inhomogeneous free-electron fraction. We find that re-
combination inhomogeneities are typically washed out for
scales k > 0.1 Mpc~!, due to the finite propagation of in-
jected photons. The Green’s function we compute allows
us to quantify this suppression in detail, as a function of
time, injected spectrum, and comoving scale.

We applied these new tools and methods to inspect,
for the first time, the imprint on cosmological recom-
bination of inhomogeneous photon injection by accret-
ing PBHs. The physical origin of this inhomogeneity is
the dependence of the accretion rate on the velocities
of accreted baryons relative to dark matter, thus PBHs.
Importantly, these relative velocities are typically super-
sonic, and therefore ought to have a strong, nonperturba-
tive effect on PBH luminosities. Fluctuations of relative
velocities on ~100 Mpc scales thus translate to a large-
scale spatial modulation of the PBH accretion rate and
luminosity, thus energy injection rate. To quantify this
effect, we adopted the accretion model of Ref. [7], which
was used to derive conservative upper limits to the PBH
abundance from CMB-anisotropy power spectra. Within
this model, the PBH luminosity is highly inhomogeneous,
concentrated in small islands with subsonic relative ve-
locities (see Fig. 1). Conservatively, we extracted the
free-electron variations resulting from the component of
luminosity fluctuations that is correlated with relative ve-
locities squared, as we expect those to give the dominant
contributions to observable effects in CMB anisotropies.
We found that spatial perturbations to the free-electron
fraction Az, peak at k ~ 1072 Mpc™!, and are only
partially washed out by the finite propagation distance



of high-energy photons. Importantly, we found that the
rms of Az, is comparable to its mean, which was the
only quantity evaluated in previous studies.

While we focused on accreting PBHs in this work, the
tools we developed ought to be useful to study other
sources of non-standard energy injection, and their ef-
fect beyond the CMB. For instance, it may be useful to
extend our study to annihilating or decaying DM par-
ticles in the cosmic dark ages, during which the DM
density distribution is significantly inhomogeneous. The
resulting energy injection should heat the gas inhomo-
geneously, and therefore leave unique signatures on the
high-redshift 21-cm signal [59-62].

This work presents the first detailed calculation of the
spatial aspect of energy deposition and ionization per-
turbations, and it is worth mentioning several aspects in
which it could be improved or expanded upon. First, it
would be interesting to generalize our spatial injection-to-
ionization Green’s function to arbitrary photon energies,
and to arbitrary types of injected particles. This would
allow this formalism to be applied, e.g. to inhomoge-
neously distributed annihilating or decaying dark matter
particles [15]. Second, we derived a novel and accurate
analytic expression for the fraction of electron energy re-
sulting in sub-10.2 eV inverse-Compton-scattered (ICS)
photons. This result can be extended to the branch-
ing ratios of electron energy deposition into ionization,
excitation, heating and ICS, as we outline in the main
text. In particular, our analytic approximation can be
generalized to derive the full spectrum of sub-10.2 eV
photons produced in ICS; this will be useful to quan-
tify the impact of sub-10.2 eV photons on cosmological
recombination, and thus check the standard assumption
that their effect is entirely negligible. Third, when com-
puting the deposition-to-ionization Green’s function, we
assumed that the deposited energy is shared equally be-
tween ionization, excitation and heating (for a fully neu-
tral gas) [2]. Our Green’s function could be made more
accurate by computing these branching ratios explicitly.
Lastly, for the specific problem of energy injection by ac-
creting PBHs, we adopted the extended-Bondi accretion
model of Ref. [7], which provides a clear prescription for
the effect of relative velocities on PBH luminosities. It
would be interesting to consider the case of disk-like ac-
cretion [8], for which the dependence of luminosity on
relative velocities has not yet been studied.

To conclude, we have laid the groundwork for study-
ing the imprints of inhomogeneous energy injection in the
early Universe on CMB anisotropies. In the context of
accreting PBHs, our preliminary result shows that spa-
tial fluctuations in ionization perturbations are as large
as their mean, which suggests novel signatures in CMB
anisotropies. First, these fluctuations should source ad-
ditional contributions to CMB temperature and polariza-
tion power spectra, comparable in magnitude to the effect
of the mean perturbation to the free-electron fraction.
Importantly, these additional contributions should have
very different shapes than the previously computed per-
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turbations to CMB power spectra, thus could help break
parameter degeneracies and probe lower PBH abun-
dances. Second, we expect these spatial perturbations
to recombination to imprint non-Gaussian signatures in
CMB anisotropies — specifically, a nonzero trispectrum
at lowest order in PBH abundance. This novel qualita-
tive effect should provide a sensitive window into PBHs,
given the tight limits on CMB non-Gaussianities [63]. To
quantify these auspicious signatures requires perturbing
the photon Boltzmann-FEinstein system. We tackle this
challenging problem in upcoming companion papers.
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Appendix A: cross sections and energy loss rates

1. Sub-10 MeV photons

a. Compton Scattering

The Compton cross section o¢(F) is the integral of the
Klein-Nishina differential cross section computed from
tree-level quantum electrodynamics. Namely, for a given
initial photon energy FE,

doc 3 (E\N°(E F )
E)=- — — + =1
Tcosd D) SUT(E> e ot
(A1)

where o7 is the Thomson cross section and the outgoing
photon energy, E’, is a function of cosf and E,

’ —1
% = (1 + E(1 —cos@)) .

Me



b. Photoionization

We adopt the following cross sections for photoioniza-
tion of hydrogen and neutral helium [64],

6477r 1exp(—4narctan(1/n))
ou(E) = S or(Bi/ By B ()
1
"= TR 1 (A4)
UHeI(E) = —120’H(E)
L(E)
+5.1 % 10720 em? (250;\/‘) . (A5)

where « is the fine structure constant, and E; = 13.6
eV is the ionization energy of hydrogen. The exponent
in the Helium cross section, I'(E), is a broken power-
law fit [64]: T' = 3.30 for £ > 250 eV, and I" = 2.65 for
50 eV< E < 250 eV, but a posteriori our injected photons
do not reach this latter limit even accounting for Hubble
expansion and Compton scattering. For comparison to
Thomson scattering, when E > FEj,

e " (A6)

ou(E) ~ 02407 ( -

2. Electrons
a. Inverse Compton Scattering (ICS)

For ICS we use the general spectrum with no assump-
tions on the energy regime originally from [65], which we
checked matches the asymptotic low- and high-energy ap-
proximations (see the appendix of [14] for discussion).

In the situation of interest, electrons interact with
CMB photons, with a blackbody spectrum: the number
density of photons per energy interval is

1 €2

npp(e T) = w2h3 exp(e/kpT) — 1

(A7)

Given an electron with initial energy E, the doubly dif-
ferential ICS rate, per initial CMB photon energy € and
final photon energy €1, is then

~ Bornps(e) [1 (e &
3266926 |94 \er €2

(14 8) [5@2 +3)+ 50— 46%}

d’Tcs
dedeq

(- 0) |58 +3) — (0 - 459 2
G- (1 Do (1555 ) ] @9

where v = E/m, and 8 = /1 — 1/+? are the Lorentz
factor and velocity of the incoming electron, respectively.
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The expression above holds for (1—08)e;/(14+8) < € < €.
In addition, for e; < e < (1+ B)e1/(1 = 5),

d2FICS szICS

dedeq (e <ef)=- dedeq
All other values of the incoming photon energy are kine-
matically forbidden. The energy lost by the electron per
scattering is AE = E—E’ = ¢; —e. The quantity of inter-
est to us is the rate of electron energy loss to sub-10.2eV

photons,
exc dQF
smk /de/ deq1 (€1 — €) dedlecls'

b. Ionization

(e1>6-p)  (A9)

(A10)

We use the relativistic binary-encounter-dipole model
from Ref. [66] for an incident electron ionizing ground-
state hydrogen and neutral helium. Taking the liberated
electron’s outgoing energy as W = E— E’ — E;, where E;
is the binding energy of the target atom, the differential
ionization cross section per atomic orbital is,

doion(E) 307 Nm,
dE" (8% + BE + B, )AET
AT (ot ) e
2= (/) [(w A ((;Ei/t’n;;);}
s () - ()]

(Al1)

where N is the orbital electron occupation number for
the relevant atom, t = E/Er, t' = E/m., w = W/Ey,
and v = U/E; where U = (p?/2m) is the average orbital
kinetic energy of the target electron. f; here are the
velocities computed for energies i € {E,U,Er}. N; =
fo (df/dw)dw, where df/dw is the differential dlpole
oscillator strength and is taken from Ref. [67] as a fitted
power series

af
dw
with y = Er /(W + Er) = 1/(1 4+ w). The coefficients are
given by:
o Hydrogen: E; = 13.6, U = 13.6, N = 1, A = 0,
B=122,C=-296, D =313, and F = —12.2.
e Helium: E; = 246, U = 395, N = 2, A =
—0.0225, B = 1.18, C = —0.463, D = 0.0891, and

= Ay? + By® + Cy* + Dy® + Fy°, (A12)

F=0.
The relevant energy loss is then,
doion,i(E)
/ ion,: /
Eion(E —UEZ%:Henz/dE T(E—E)7
(A13)



where vg = /1 — m2/E? is the velocity of the incoming

electron.

c. Fxcitation

We only consider excitations from the ground state to
the first excited. We use the fitting functions in Ref. [68],

Oexc(E) =

3orR E R

Aln | — B —
127 (E + B1 + Boxt) ( 8 (R) e CE)
(A14)

where R ~ 13.6 eV is the Rydberg energy. The coeffi-
cients are given by,

e Hydrogen: FEoy. = 10.204, E; = 13.6, A = 0.5555,
B =0.2718, and C' = 0.0001.

e Helium: Fey. = 21.218, By = 24.6, A = 0.1656,
B = —0.07694, and C' = 0.03331.

We assume the energy lost by the electron is simply the
excitation energy. We therefore obtain the following rate
of energy loss through excitation

gexc<E) = VUE Z niEexc,iUexc,i(E)-
i=H,He

(A15)

d. Heating

An energetic electron propagating in a plasma shares
its kinetic energy with ambient electrons, thus heats the
plasma. Because we eventually compute the rate of en-
ergy loss, we simply use from Ref. [25],

; 4dr(ahe)?ngxe In A
5heat(E) = ( ’I’I)'L ’UI; = )

(A16)

where v is the electron velocity, and the Coulomb loga-
rithm is taken as,

1/2
InA =In (A‘CE) 4;525(4””}‘%0‘%) . (A17)

€ me

Appendix B: Semi-analytic approximation for the
spatially averaged Green’s function with Compton
scattering only

In this appendix we focus on the temporal part of
the Green’s function Gg(ag,a;) defined in Eq. (6). The
most detailed numerical computation of G is given in
Refs. [13, 14]. Here we provide a simple semi-analytic
approximation, holding when photoionizations are neg-
ligible, and assuming secondary electrons efficiently de-
posit all their energy (i.e. Fgink = 0). This approximation
provides a consistency check for our simulations.
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We define Ng as the photon number density per en-
ergy interval. In the homogeneous limit, and neglecting
photoionizations, the collisional Boltzmann equation sat-
isfied by Ng takes the form

_ 1 dpin
" E dE

In the left-hand-side, d/dt = 0, — HEOg is the total
derivative along free photon trajectories. The first term
in the right-hand-side of Eq. (B1) accounts for energy
injection in the form of photons, and the second term is
the Compton collision operator, which is a linear integral
operator.

Given the photon number density Nz (t), the (homoge-
neous) volumetric power deposited in secondary electrons
is then simply

a_Q%(aQJ\/'E) FColNE.  (BY)

pult) = [ dE Eo(EIN(), (B2)
where
E
Ec(E) = ny /E aE d"dCé;E) (E—E) (B3)

is the rate of photon energy loss through Compton scat-
tering — it can be expressed analytically, but the expres-
sion is not particularly enlightening and we do not pro-
vide it here. Note that in this equation (just like our
simulations) the ionization energy is neglected relative
to the initial photon energy.

With the exact Compton collision operator, the Boltz-
mann equation (B1) has to be solved numerically. Fol-
lowing Ref. [7], we shall approximate Cc[Ng]| by a simple
number-conserving divergence term, reproducing the ex-
act energy loss rate for a given Ng:

0

CC[NE] ~ @

<EC(E)NE) . (B4)
This approximation ought to be accurate when the
Compton scattering kernel is narrowly peaked at final
photon energies close to the initial photon energy. In
particular, we expect it to be accurate for £ < me.

With this approximation, the Boltzmann equation for
NE becomes

81(a®Ng) — (HE + SC(E)) Op(a*Ng)

e

oF
We now derive an explicit semi-analytic solution for this
approximate photon Boltzmann equation.

Given an initial photon energy Ey at time ¢/, we define
E:(Ev) to be the solution of the differential equation

ﬁ dpinj

2 _
“Ne=5"p

(B5)

dE, :
= HE — £(E)), (B6)
Et (t = t/) = Et/, (B7)



In words, E; is the evolution of the mean energy of pho-
tons injected with energy Ey at time ', subject to en-
ergy loss through cosmological redshifting and Compton
scattering. The solution E;(FEy) is unique, and one can
therefore uniquely define Ey (FE;), the initial energy at
some time t’ evolving to F; at a later time t. We will re-
fer to the solutions E; as the “Compton trajectories”. We
show a few trajectories in Fig. 16. Since £c o< ng o< a™>
and H o a%/2 during matter domination, energy loss
through Compton scattering dominates at early times,
and cosmological expansion dominates at late times.

10%/ :
HE = &c(E)

103_

aE (eV)

101_

0 200 400 600 800 1000 1200
V4

FIG. 16. Trajectories of a photon’s energy subject to Comp-
ton scattering and Hubble flow with zin; = 1200 and energies
of Ein; = (20, 15, 10, 5, 1, 0.1, 0.01) Xxm.. The orange dashed
line marks the redshift below which redshifting becomes dom-
inant over energy loss through Compton scattering. Note the
y-axis is scaled by a.

The first two terms in Eq. (B5) have a simple inter-
pretation: they represent the total time derivative along
Compton trajectories, d/dt|c (in contrast with d/dt, the
total derivative along free trajectories). In other words,
we may rewrite Eq. (B5) as

d 2 d.in'

o C(a2NE) +v(E)a*Ng = % (';EJ, (B8)
9E,

WE) = —55 (BY)

This is now a simple first-order ODE along Compton
trajectories, which has an explicit integral solution:

¢ ¢

a’Ng, :/ dt’ exp [—/ dt”V(Et"(Et))]
0 %

|:G/2 dpin_j

| . B (B10)
To find p.(t), we insert this solution into Eq. (B2). This
involves an integral over F;, the photon energy at time
t. We are, instead, interested in expressing p.(t) as an
integral over the initial energies at injection, Ey. The
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two integrals are related by the Jacobian

J(t,t) = ggfﬁ

(B11)

Differentiating Eq. (B6) with respect to Ey, we find that
the Jacobian satisfies the ODE

oJ OEc Do
8t__<H+8E>J’ Jtth) =1, (B12)
with solution

, (B13)

’

/ _Ci/ o ¢ //%
J(t,t)—aexpl /tdt 55

where the integrand is to be expressed at Ey (Ey ).

Inserting Eq. (B10) into (B2), switching the order of
integration and replacing [ ...dE; = [ ...JdEy, we finally
arrive at

1 dpin;
Ey dEy

3
. a” s
Pe (t) = /dt/ / dEt/ ?EC (t, Et (Et’) . (B14)
From this expression, we may finally read off the Green’s
function for energy deposition into secondary electrons
(defined with the same convention as Gg),

—e Ecl(t, Ey(Ey
Gy, (a,a) = W (B15)
This result can be understood rather intuitively. It rep-
resents the rate of photon energy deposition through
Compton scattering at time ¢, accounting for the fact
that photons lost energy between ¢ and ¢, so that their
energy at ¢t is Fy(Ey). Let us note that AK17 derived
an analytic solution for pgep given pinj, neglecting pho-
toionizations, assuming that all the secondary electron’s
energy is efficiently deposited, and moreover approximat-
ing Ec(F) = 0.1 ngorE. It is straightforward to check
that our more general solution recovers that of AK17
when making the same approximations.

Appendix C: Validity of the linear approximation
for recombination perturbations

In this paper we have computed the effect of energy
deposition on ionization perturbations Az, by linearizing
the recombination equations. In this appendix, we check
the validity of this linear approximation for the specific
case of energy injection from accreting PBHs.

The assumption that Az, < z0 is not necessarily al-
ways justified in the case of inhomogeneously accreting
PBHs. To illustrate this point, we have computed the
fractional change to the ionization history with the mod-
ified version of HyRec [27] used in AK17. While AK17
use an approximate energy deposition efficiency, this al-
lows them to solve for z. and pgep simultaneously and
self-consistently, without assuming that perturbations to



the ionization history are small. In Fig. 17, we show the
changes to the free-electron fraction in two limiting cases
for 100 M, PBHs.

On the one hand, if one assumes that the energy depo-
sition is fully smeared out spatially, then the relevant en-
ergy injection is coming from a relative velocity-averaged
luminosity as was done in AK17 (purple lines). In this
case, the change in ionization fraction is indeed small at
all times and our linearized approximation agrees with
the nonperturbative result of AK17 within ~ 30%.

On the other hand, if one instead assumes a spatially
local energy deposition, the effect on the recombination
history is significantly enhanced in regions where the
baryon-PBH relative velocity is subsonic. The major-
ity of the PBH population’s luminosity then arises from
black holes with relative velocity vhe = ¢s,00/ V2, where
Cs,00 18 the speed of sound of baryons far away from the
accreting mass. In this limit, we obtain changes to the
free electron fraction as large as Az, ~ 10 20 at 2 < 800
(blue lines), which our linearized approximation fails to
accurately reproduce. The actual effect lies somewhere in
between these two limits, and we therefore expect the lin-
ear approximation to be reasonably accurate, especially
around the peak of the visibility function.
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FIG. 17. Comparison of the fractional change in ionization
history from a homogeneous perturbation to recombination
AzZe/xeo, from PBH’s with masses of 102 M and abundance
approximately saturating the CMB anisotropy limit, in the
collisional-ionization case. We assume that every PBH has
an identical luminosity in two limiting cases: luminosity av-
eraged over the distribution of relative velocity ({(L}), purple
or lower) as done in AK17; or the luminosity at the peak of
the PBH population’s luminosity contribution (Lpeak, blue or
upper). We expect the actual effect to be in between these
limiting cases. Solid lines are computed from our deposition-
to-ionization Green’s function, relying on the linearization of
the recombination equations, and dashed lines show the non-
perturbative result from a modified version of HyRec [7].
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