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The Universe’s initial conditions, in particular baryon and cold dark matter (CDM) isocurvature
perturbations, are poorly constrained on sub-Mpc scales. In this paper, we develop a new formalism
to compute the effect of small-scale baryon perturbations on the mean free-electron abundance,
thus on cosmic microwave background (CMB) anisotropies. Our framework can accommodate per-
turbations with arbitrary time and scale dependence. We apply this formalism to four different
combinations of baryon and CDM isocurvature modes, and use Planck CMB-anisotropy data to
probe their initial amplitude. We find that Planck data is consistent with no small-scale isocurva-
ture perturbations, and that this additional ingredient does not help alleviate the Hubble tension.
We set upper bounds to the dimensionless initial power spectrum ∆2

I(k) of these isocurvature
modes at comoving wavenumbers 1 Mpc−1 ≤ k ≤ 103 Mpc−1, for several parameterizations. For
a scale-invariant power spectrum, our 95% confidence-level limits on ∆2

I are 0.023 for pure baryon
isocurvature, 0.099 for pure CDM isocurvature, 0.026 for compensated baryon-CDM perturbations,
and 0.009 for joint baryon-CDM isocurvature perturbations. Using a Fisher analysis generalized to
non-analytic parameter dependence, we forecast that a CMB Stage-4 experiment would be able to
probe small-scale isocurvature perturbations with initial power 3 to 10 times smaller than Planck
limits. The formalism introduced in this work is very general and can be used more widely to probe
any physical processes or initial conditions sourcing small-scale baryon perturbations.

I. INTRODUCTION

The Universe’s initial conditions on scales ranging from
a few to a few thousand comoving Mpc have now been
characterized with exquisite precision, especially through
measurements of cosmic microwave background (CMB)
anisotropies. The data points to a rather simple pic-
ture: on these large scales, initial perturbations in all
species – photons, neutrinos, baryons and cold dark mat-
ter (CDM) – are consistent with being proportional to a
single, Gaussian-distributed scalar quantity, with a vari-
ance of order ∼ 10−9 and a nearly scale-invariant power
spectrum. In addition, initial perturbations are consis-
tent with being adiabatic, i.e. with equal number den-
sity fluctuations for all species. Quantitatively, the lat-
est Planck data constrains non-adiabatic contributions
to the observed temperature variance to be below 1.7%
on scales 10−3 Mpc−1 . k . 10−1 Mpc−1 [1] (see also
Refs. [2, 3] for earlier constraints). In other words, on
large scales, isocurvature modes [4], which can be pro-
duced by multi-field inflation [5–9], are constrained to be
significantly subdominant to adiabatic modes expected
from single-field inflation.

Our knowledge of the Universe’s beginnings on smaller
scales is much more limited. CMB-anisotropy obser-
vations cannot probe initial conditions beyond k &
few 10−1 Mpc−1, as temperature and polarization fluc-
tuations are exponentially damped by photon diffu-
sion. Large-scale-structure measurements can in prin-
ciple reach smaller scales, but their interpretation is lim-
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ited by our understanding of nonlinear structure for-
mation and complex baryonic physics. We thus only
have indirect information on initial conditions on scales
k & 1 Mpc−1, in the form of upper bounds. The tightest
constraints arise from upper limits to distortions of the
CMB blackbody spectrum [10]. Such spectral distortions
would be sourced by the dissipation of small-scale pho-
ton perturbations with wavenumbers 1 Mpc−1 . k . 104

Mpc−1[11, 12]. As a consequence, their non-detection
constrains the variance of adiabatic perturbations to be
less than ∼ 10−5 on these scales [13] (see also Ref. [14]
for weaker limits for 104 Mpc−1 . k . 105 Mpc−1).
Small-scale neutrino density and velocity isocurvature
modes [4] are also constrained by this method, with a
variance limited to . 10−4 [15]. On the other hand,
small-scale baryon isocurvature (BI) and CDM isocur-
vature (CI) modes do not efficiently source photon per-
turbations, and are thus relatively poorly constrained by
CMB spectral distortions [15]. A tighter constraint on
small-scale BI modes arises from the observation that
the primordial deuterium abundance would be modified
by significant baryon inhomogeneities in the early Uni-
verse, implying 〈δ2

b 〉 . 0.02 on scales k & 0.1 Mpc−1 [16].
Given this very limited and fragmentary information on
small-scale initial conditions, in particular baryon and
CDM isocurvature modes, it is useful to try and devise
new and complementary probes.

In this paper, we explore an alternative window into
small-scale baryon (and CDM) perturbations, through
their effect on the average recombination history, thus
large-scale CMB anisotropies. The key idea is that re-
combination dynamics depend non-linearly on the baryon
density, and as a consequence, small-scale baryon pertur-
bations lead to an offset of the average free-electron abun-
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dance, to which CMB anisotropies are very sensitive.
This general idea was first put forward in Refs. [17, 18],
where it was used to constrain primordial magnetic fields
(PMFs), which would source small-scale baryon density
perturbations. The same physical effect underlies the re-
cent proposal that small-scale baryon perturbations gen-
erated by PMFs might alleviate the Hubble tension [19],
which was recently shown to be unsuccessful [20, 21].
While these studies were motivated by a physical model
for baryon perturbations, in practice they treat them as
time independent. This simplification allows the authors
of Refs. [17–21] to estimate the mean free-electron abun-
dance by simply averaging the outputs of a recombina-
tion code run with different values of the baryon den-
sity parameter ωb. Realistic density perturbations, of
course, would depend on time and scale. One of the main
goals of the present work is therefore to develop a gen-
eral formalism, able to accommodate arbitrary temporal
and spatial variations of small-scale baryon density and
velocity perturbations. Our formalism relies on comput-
ing the second-order Green’s function response of recom-
bination to baryon perturbations, and is thus accurate
as long as the latter are small in amplitude. Moreover,
we neglect spatial transport of Lyman-α and Lyman-
continuum photons, implying that our calculation is valid
up to wavenumber k . 103 Mpc−1 [22].

We apply this new formalism to compute modifica-
tions to the mean ionization history in the presence of
small-scale BI and CI modes. In addition, we consider
two linear combinations of these initial conditions: a
baryon and CDM isocurvature (BCI) mode, in which
both species start with the same density perturbation,
and the compensated isocurvature perturbation (CIP), in
which baryon and CDM perturbations start with oppo-
site signs, and in such a way as to produce a vanishing to-
tal matter perturbation1. We modify the recombination
code hyrec-2 [36–38] and the Boltzmann code class
[39], and analyze the latest Planck data [40] including
additional small-scale isocurvature perturbations, with
a power spectrum parametrized by either a Dirac delta
function or a power law. We find that the data is consis-
tent with no isocurvature perturbations, and that adding
this ingredient does not alleviate the Hubble tension, cor-
roborating the findings of Refs. [20, 21]. We are therefore
able to set upper limits to the amplitude of isocurvature
perturbations, for each of the four modes considered (BI,
CI, BCI and CIP), on scales 1 Mpc−1 . k . 103 Mpc−1.
Our limits are significantly stronger than CMB spectral-
distortion limits [15]. They are weaker than the Big Bang
Nucleosynthesis (BBN) limits of Ref. [16], but rely on an
entirely different physical effect and data. More gener-
ally, the formalism developed here ought to be useful to

1 Note that CIPs are poorly constrained even on large scales, since
they do not have any effect at linear order on the matter power
spectrum or CMB spectra [23], and we refer the reader to Refs. [1,
24–35] for a variety of astute methods to probe large-scale CIPs.

probe a variety of mechanisms sourcing baryon pertur-
bations, which may not necessarily be already present
by BBN. Further, we forecast the sensitivity of a CMB
Stage-4-like experiment [41], using a generalized Fisher
analysis, allowing us to circumvent the non-analytic de-
pendence of the change in CMB power spectra on the
amplitude of isocurvature perturbations. The rest of
this paper is organized as follows. In Section II, we de-
velop the nonlinear Green’s function formalism to com-
pute perturbations to the mean free-electron abundance
due to time- and scale-dependent baryon perturbations.
In Section III, we review how small-scale baryon pertur-
bations evolve for the four different isocurvature initial
conditions considered, and compute the induced pertur-
bations to the ionization history. We describe our CMB
anisotropy constraints and forecast in Sec. IV and com-
pare them with previous limits. We conclude in Section
V. In Appendix A, we revisit the BBN limits of Ref. [16].
Throughout, we denote conformal time by η, and over-
dots denote derivatives with respect to η.

II. MODIFIED RECOMBINATION WITH
SMALL-SCALE BARYON FLUCTUATIONS

A. Basic idea

Consider small-scale inhomogeneities parametrized
with initial conditions I(x), resulting in fluctuations in
the baryon density δb(η,x), thus in the free-electron
abundance ne(η,x). In general, inhomogeneities in ne
lead to non-Gaussian signatures in CMB anisotropies
[42]. However, if I thus ne fluctuate on scales much
smaller than ∼ 1 Mpc, we expect non-Gaussianities to
be negligible at the large scales k � 1 Mpc−1 at which
CMB anisotropies are observed.

If the amplitude of δb ∝ I is sufficiently large, however,
it may result in noticeable modifications to the average
free-electron abundance. Indeed, the recombination rate
depends non-linearly on the local baryon density [17] and
velocity divergence. As a consequence, the free-electron
abundance ne(η,x) depends non-linearly on the initial
perturbations:

ne = n(0)
e + n(1)

e ∗ I + n(2)
e ∗ I ∗ I +O(I)3, (1)

where n
(0)
e is the standard free-electron abundance (ob-

tained for a uniform baryon density), and n
(1)
e and n

(2)
e

are linear and quadratic Green’s functions, respectively.
In full generality, the symbol ∗ in Eq. (1) represents a spa-
tial convolution. Taking the average of Eq. (1), and as-
suming that the three-point function of I vanishes (which
is the case, e.g. if I is Gaussian), we find

〈ne〉 = n(0)
e + n(2)

e ∗ 〈I ∗ I〉+O(I4). (2)

This modification to the average free-electron abundance
affects the Thomson collision term in the photon Boltz-
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mann equation, thus CMB-anisotropy power spectra on
all scales2.

We expect the fractional correction to the ionization

history to be of order n
(2)
e ∗ 〈I ∗ I〉/n(0)

e ∼ δ2
b,rec, where

δb,rec is the characteristic baryon overdensity at recom-
bination. Given that Planck is sensitive to sub-percent-
level corrections to recombination [43], we therefore ex-
pect to be sensitive to baryon perturbations δ2

b,rec .
10−2. We’ll see that in practice, the sensitivity of Planck
is (significantly) weaker than this expectation, likely due
to the specific shape of ionization perturbations, which
happen to be poorly constrained by CMB anisotropies.

B. Recombination with a local time-dependent
perturbed baryon density

To compute n
(2)
e in practice, we make the simplifying

approximation that the net recombination rate depends
on the local baryon density and velocity divergence. This
amounts to neglecting the spatial transport of Lyman-α
and Lyman-continuum photons, and our calculations are
therefore only valid at scales k . 103 Mpc−1, beyond
which these effects become relevant [22].

In addition, we neglect the small variations of the He-
lium mass fraction YHe with baryon density at BBN.
Indeed, YHe is relatively insensitive to ωBBN

b : us-
ing the fitting formula provided in Ref. [44], we find
d lnYHe/d lnωBBN

b ≈ 0.04. We may therefore safely as-
sume a constant YHe, up to percent-level relative errors.

Given these assumptions, a local time-dependent
baryon perturbation modifies the recombination dynam-
ics in three different places:

(i) The net recombination rate ẋe = F(xe, nH, nHe, ...)
depends on the local baryon density ρb = ρb(1 + δb)
through the hydrogen and helium densities nH = nH(1 +
δb), nHe = nHe(1 + δb), where we approximated YHe as
constant.

(ii) During hydrogen recombination, the function ẋe
also depends on the local baryon velocity divergence
θb ≡ ∇ · vb, which modifies the Lyman-α escape rate
by a factor (1 + 1

3θb/aH). This factor corresponds to the

local expansion rate H + 1
3a
−1∇ · vb [45, 46] (note that

the global expansion rate is unchanged). In principle, he-
lium recombination also depends on the baryon velocity
divergence, as it would affect the local expansion rate
thus the opacities in several helium transitions as well as

2 Note that Eqs. (1) and (2) hold for baryon perturbations at all
(i.e. not necessarily small) scales. However, baryon perturbations
on large scales k . 1 Mpc−1 would induce additional modifica-
tions to CMB power spectra, of the same order as those resulting
from the change in the mean free-electron abundance which we
consider here. Such terms would arise from the long-wavelength
terms of order δne×Θ in the Boltzmann collision operator, where
Θ is the temperature or polarization anisotropy. We do not con-
sider such terms here and thus limit ourselves to k & 1 Mpc−1.

the hydrogen continuum opacity [37, 47]. However, for
the isocurvature modes considered, the baryon density is
approximately constant in time until after hydrogen re-
combination (as we will see in Sec. III B), implying θb ≈ 0
during helium recombination.

(iii) The matter temperature evolution, accounting for
adiabatic cooling and Thomson heating, is modified to

ρ
2/3
b

d(ρ
−2/3
b Tm)

dη
= aΓT(Tγ − Tm), (3)

ΓT ≡
8arxeT

4
γσT

3me(1 + xe + fHe)
, (4)

where ar is the radiation constant, Tγ is the average CMB
temperature and fHe ≈ 0.08 is the helium fraction by
number. This can be rewritten as follows

a−2 d(a2Tm)

dη
= aΓT(Tγ − Tm) +

2

3

δ̇b
1 + δb

Tm, (5)

where we kept the full nonlinear dependence on δb, as we
are interested in nonlinear corrections to the recombina-
tion history. Given that the Compton heating rate ΓT is
much greater than the expansion rate H for z & 102, mat-
ter temperature perturbations remain small relative to
baryon perturbations at these redshifts (see e.g. Ref. [45]
for the evolution of δTm in the context of standard adia-
batic perturbations). The additional source term in the
matter temperature evolution therefore has little effect
on the free-electron fraction until late times, thus rela-
tively little impact on CMB anisotropies. We include it
for completeness, and note that it can potentially become
important at low redshifts, causing either extra cooling
or heating of the gas beyond standard, which could have
observable effects on the 21-cm signal [48–50].

We incorporate these effects into the recombination
code hyrec-2 [38]. This code computes the recombi-
nation history with a simple but highly accurate 4-level
atom model [36], accounting for radiative transfer effects
with a correction to the Lyman-α escape rate calibrated
with hyrec [37]. We modify it so it can take as an input
a local perturbation to the baryon density with arbitrary
time dependence, ρb(η,x) = ρb(η)[1 + δb(η,x)]. We ac-
count for the local baryon velocity divergence assuming
θb = −δ̇b, which holds at linear order in perturbation
theory. We explain below why this is justified.

C. Nonlinear recombination response function

Let us consider a local baryon density perturbation
δb(η,x) and velocity divergence θb(η,x), which we group
together in a two-dimensional vector

B ≡ (δb, θb), (6)

whose components we denote by Bα. Since recombina-
tion only depends on these quantities locally, we may
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write, formally, and up to corrections of cubic order in
perturbations,

ne(η,x) = n(0)
e (η) +

∫ η

dη′ G(1)
α (η; η′)Bα(η′,x)

+

∫∫ η

dη1dη2 G
(2)
αβ(η; η1, η2)Bα(η1,x)Bβ(η2,x), (7)

where G
(1)
α is a (vector) linear Green’s function and G

(2)
αβ

is a (tensor) quadratic Green’s function. By definition,
the spatial average of the baryon density perturbation δb
vanishes at any order in perturbation theory. The spatial
average of θb also vanishes, due to the fact that it is the
divergence of a vector field. Again, this holds at any
order in perturbation theory. Hence, the first integral in
Eq. (7) has a vanishing spatial average, and the spatial
average of the free-electron abundance is given by

〈ne〉(η) = n(0)
e (η) +

∫∫ η

dη1dη2 G
(2)
αβ(η; η1, η2)

×〈Bα(η1,x)Bβ(η2,x)〉. (8)

We therefore see that to obtain 〈ne〉 at quadratic order in
the initial perturbations, we only need to account for the
evolution of baryon perturbations at first order in pertur-
bation theory. This justifies using the linearized continu-
ity equation θb = −δ̇b in our modification of hyrec-2.

Let us now consider a general scale-dependent baryon
perturbation δb(η,k) = Tb(η, k)I(k), where Tb(η, k) is
the linear transfer function appropriate for the initial
conditions I(k) of interest. We then have θb(η,k) =

−Ṫb(η,k)I(k). Again, we group the baryon density
and velocity divergence transfer functions in a two-
dimensional vector

T (k) ≡ (Tb(k),−Ṫb(k)), (9)

with components Tα. Assuming the initial perturbations
I(k) are Gaussian, their two-point function is entirely de-
termined by their dimensionless power spectrum ∆2

I(k),
defined as

〈I(k′)I∗(k)〉 = (2π)3 2π2

k3
∆2
I(k) δD(k′ − k), (10)

where δD is the Dirac-delta function, implying

〈Bα(η1,x)Bβ(η2,x)〉 =

∫
d ln k Tα(η1, k)Tβ(η2, k)∆2

I(k).

(11)
Inserting Eq. (11) into Eq. (8), we arrive at

〈ne〉(η) = n(0)
e (η) +

∫
d ln k n(2)

e (η; k)∆2
I(k), (12)

n(2)
e (η; k) ≡

∫∫ η

dη1dη2 G
(2)
αβ(η; η1, η2)

×Tα(η1, k)Tβ(η2, k). (13)

We see that the quadratic-response function n
(2)
e (η; k)

depends on the specific type of initial conditions consid-
ered (e.g. adiabatic, isocurvature) through the transfer
functions Tα.

Comparing Eq. (13) to Eq. (7) suggests a simple ap-

proach to computing n
(2)
e without having to explicitly

compute the three-dimensional functions G
(2)
αβ(η; η1, η2).

The idea is to simply compute ne with a “local” den-
sity perturbation proportional to ±Tb(η, k). Specifi-
cally, we first compute the standard free-electron abun-

dance n
(0)
e (η), with the standard time-independent co-

moving baryon density. Second, for each Fourier mode
k, we compute the free-electron abundances n±e (η) with
time-dependent baryon density perturbations δb(η) =
±εTb(η, k). Explicitly, we compute the free-electron
fractions x±e using hyrec-2 modified as described in

Sec. II B, and then obtain n±e (η) = n
(0)
H (1± εTb(η, k))x±e ,

where n
(0)
H is the standard total hydrogen density. Re-

calling the definition of the linear and quadratic Green’s
functions, Eq. (7), we see from Eq. (13) that the function

n
(2)
e (η; k) is then simply obtained from

n(2)
e (η; k) =

n+
e (η; k) + n−e (η; k)− 2n

(0)
e (η)

2ε2
, (14)

as the linear parts in Eq. (7) cancel out. Note that one
can similarly define the matter temperature quadratic

response function T
(2)
m (η; k), which can be obtained si-

multaneously with n
(2)
e (η; k).

III. APPLICATION TO SMALL-SCALE
ISOCURVATURE PERTURBATIONS

A. Isocurvature modes considered

While the formalism developed in Sec. II can be applied
to any small-scale baryon perturbations, in this paper we
specialize to four specific linear combinations of baryon
and CDM isocurvature perturbations. We formally de-
note by X(k, ηi) the initial conditions for all metric and
fluid variables, defined at conformal time ηi well before
horizon entry for the Fourier mode k of interest. For each
of the four cases considered, we assume that X(k, ηi)
is proportional to a single scalar Gaussian random field
I(k). The four modes we consider are defined as follows:
• The baryon isocurvature (BI) initial condition

XBI(k, ηi) is such that δb(k, ηi)/I(k) → 1 for kηi → 0,
and all other metric and fluid variables vanish at kηi → 0.
• The CDM isocurvature (CI) initial condition

XCI(k, ηi) is such that δc(k, ηi)/I(k) → 1 for kηi → 0,
and all other metric and fluid variables vanish at kηi → 0.
• The Baryon and CDM isocurvature (BCI) mode is

defined such that XBCI(k, ηi) = XBI(k, ηi) +XCI(k, ηi),
i.e. has equal, unit-amplitude baryon and CDM initial
perturbations.
• Compensated isocurvature perturbations (CIPs)

are defined such that XCIP(k, ηi) = XBI(k, ηi) −
ωb

ωc
XCI(k, ηi), i.e. such that the baryon density pertur-

bation has unit initial amplitude, and the CDM pertur-
bation has amplitude −ωb/ωc, such that the total mat-
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ter density perturbation δm ≡ (ωbδb + ωcδc)/ωm initially
vanishes.

Note that explicit expressions for all the components
of XBI(k, ηi) and XCI(k, ηi) at small but finite kηi are
provided in Eqs. (23)-(24) of Ref. [4]. From these equa-
tions, one can check explicitly that, for the CIP initial
conditions, all metric and perturbed fluid variables be-
sides δb, δc vanish at second order in ηi.

B. Baryon transfer functions

We obtain the baryon transfer functions Tb(k, η) ≡
δb(k, η)/I(k) for the BI and CI modes with the Boltz-
mann code class [39]. For simplicity, we do not switch
on perturbations to the matter temperature, which them-
selves are coupled to perturbations to the ionization frac-
tion [45]. As we discussed below Eq. (5), matter temper-
ature perturbations are small relative to baryon density
perturbations at z & 102, and should therefore have a
negligible effect on the baryon pressure hence transfer
functions at redshifts relevant to CMB anisotropies. To
be clear, we do self-consistently perturb the matter tem-
perature evolution when solving for perturbed recombi-
nation, as described in Sec. II B, but do not do so when
computing the baryon transfer functions.

Given the BI and CI transfer functions, the BCI and
CIP transfer functions are then simply obtained from the
appropriate linear combinations:

T BCI
b = T BI

b + T CI
b , T CIP

b = T BI
b −

ωb
ωc
T CI
b . (15)

We show the numerical baryon transfer functions for each
of the four modes in Fig. 1, for k ranging from 3 to 104

Mpc−1. In what follows we develop some intuition for
the qualitative features seen in Fig. 1.

For baryon and CDM isocurvature modes, photons
and neutrinos are initially unperturbed. In addition, the
modes of interest are smaller than the Silk damping scale
and the neutrino free-streaming scale at last-scattering,
further preventing any growth of their perturbations. We
may therefore assume both photons and neutrinos to be
homogeneous. In addition, these small scales are deep
in the sub-horizon regime, so we may neglect relativistic
terms in the fluid equations. With these approximations,
and neglecting perturbations to the baryon temperature,
the linearized continuity and Euler equations for baryons
and CDM perturbations become [51]

δ̇b + θb = 0 = δ̇c + θc, (16)

θ̇b +Hθb = k2φ+ c2sk
2δb −Dθb, (17)

θ̇c +Hθc = k2φ, (18)

k2φ = −4πa2 (ρbδb + ρcδc) , (19)

D ≡ 4

3

ργ
ρb
aneσT (20)

where θb,c ≡ ikvb,c are the baryon and CDM velocity di-
vergences, H ≡ aH = ȧ/a is the conformal Hubble rate,

cs is the baryon sound speed, and overdots denote deriva-
tives with respect to the conformal time η. We checked
explicitly that solving this simple system of equations
accurately recovers the full numerical results from class
[39] on the scales of interest.

This system of equations exhibits a characteristic
time/redshift and a characteristic lengthscale. First, in-
dependent of wavenumber, the Compton drag rate D
dominates over the expansion rate H prior to kinematic
decoupling at zdec ≈ 1020 [52]. Second, baryon pressure
is relevant for scales smaller than the baryon Jeans scale
[24], with wavenumber

kJ ≡

√
3ωb
2ac2s

H0 ∼ 102 Mpc−1 max

(
1,

√
150

1 + z

)
. (21)

This approximation stems from the fact that the baryon
temperature closely follows the CMB temperature for
z & 150, and decays adiabatically as Tb ∝ 1/a2 after
that.

We may understand qualitatively the numerical results
shown in Fig. 1 in four different regimes:
• k & kJ, z & zdec – In this regime, baryon pertur-

bations remain very small for the CI initial conditions.
For the three other initial conditions, baryon perturba-
tions behave as an overdamped oscillator, as we now
demonstrate. Neglecting the contributions of CDM to
the gravitational potential, the last two terms domi-
nate in the baryon momentum equation (17), implying
θb ≈ c2sk2δb/D. Combining with the continuity equation,
one gets

δ̇b ≈ −
k2c2s
D

δb. (22)

This implies an exponential decay of initial baryon per-
turbation until kinematic decoupling:

δb(zdec, k) = δb,i(k) exp[−k2/k2
∗], (23)

k∗ ≡
(∫ ∞

zdec

d ln a
c2s
DH

)−1/2

≈ 5× 103 Mpc−1. (24)

This explains why baryon fluctuations on scales k & k∗
are exponentially suppressed before cosmological recom-
bination.
• k & kJ, z . zdec – Once photon drag is no longer rel-

evant, baryon perturbations below the Jeans scale start
undergoing acoustic oscillations, until the gravitational
force from CDM perturbations overcomes baryon pres-
sure. The oscillation timescale is shorter than the ex-
pansion time, implying that baryon and CDM perturba-
tions evolve on different timescales and are mostly de-
coupled. The amplitude of baryon acoustic oscillations
decreases with increasing k, due to the prior epoch of
overdamped evolution. In the meanwhile, CDM pertur-
bations (if present initially) grow, with a rate dependent
on the initial conditions: fastest for CI and BCI, and
slowest for CIP, for which the gravitational potential van-
ishes initially. Eventually, when the gravitational force
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FIG. 1. Baryon density transfer functions for the four different initial conditions described in Sec. III A, for several wavenumbers,
obtained with the class code [39]. See Sec. III B for a discussion of the qualitative features of these transfer functions.

from CDM perturbations overcomes the baryon pressure
force, baryon perturbations start growing as well.

• k . kJ, z & zdec – In this regime, photon drag is
dominant, and baryon pressure is negligible. As a conse-
quence the baryon velocity divergence is suppressed, and
baryon perturbations remain approximately constant, for
all four initial conditions.

• k . kJ, z . zdec – After decoupling, and on scales
larger than the Jeans length, baryons behave as a cold
fluid. With the exception of the CIP mode, baryons and
CDM perturbations therefore grow together, with a rate
depending on the initial conditions, which set the rela-
tive contributions of the growing and decaying modes.
In the case of CIPs, the initially vanishing gravitational
potential would imply that baryon and dark matter per-
turbations both remain constant. In practice, perturba-
tions are not strictly constant due to the small but finite
baryon pressure, leading to corrections of order (k/kJ)2.

Before moving forward, let us point out one important
missing ingredient in the transfer functions that we have
obtained from class: they do not take into account the

large-scale relative velocities between baryons and CDM,
originating from the standard adiabatic mode [53]. These
relative velocities vad

bc are typically supersonic, and as a
consequence the nonlinear (and mode-mixing) advection
terms vad

bc ·∇δiso
b and vad

bc ·∇viso
b in the continuity and mo-

mentum equation, respectively, are typically larger than
the baryon pressure term. These advection terms are rel-
evant on scales smaller than the characteristic distance
over which relative velocities advect baryons relative to
CDM, i.e. for wavenumbers k & 50 Mpc−1 [53] (see also
Ref. [54]). The impact of relative velocities on the evo-
lution of small-scale isocurvature modes should depend
on the specific mode considered. For BI, CI, and BCI
initial conditions, relative velocities should partially sup-
press the late-time growth of small-scale perturbations,
as baryon and CDM perturbations are advected out of
phase. In contrast, for CIPs, this advection should break
the perfect cancellation of matter perturbations, and may
lead to an earlier evolution of baryon and CDM pertur-
bations. For the sake of simplicity, in this first study we
ignore this effect, and defer a calculation quantifying it
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to future work.

C. Recombination perturbations

In Fig. 2, we show the nonlinear ionization response to

small-scale baryon perturbations, n
(2)
e (z; k)/n

(0)
e (z) [de-

fined in Eq. (13)] for the four different isocurvature ini-
tial conditions, as a function of redshift and wavenumber.
We see that different Fourier modes lead to very different
effects on the ionization history.

In addition to the quadratic responses to individual
Fourier modes, we may also obtain the response to any
given initial power spectrum from Eq. (12). Specifi-
cally, we will consider power-law initial conditions over
the range kmin ≡ 1 Mpc−1 ≤ k ≤ kmax ≡ 103 Mpc−1

(neglecting perturbations outside this range), which we
parametrize as

∆2
I(k) = ∆2

I(kp)

(
k

kp

)nI−1

, kp ≡ 30 Mpc−1.(25)

With this parametrization, the total small-scale power is

∆2
I,tot ≡

∫ kmax

kmin

d ln k ∆2
I(k)

=
∆2
I(kp)

nI − 1

[(
kmax

kp

)nI−1

−
(
kmin

kp

)nI−1
]
.(26)

For a given spectral index, we may use ∆2
I(kp) and ∆2

I,tot
interchangeably to describe the amplitude of the power-
law initial perturbations.

We show the resulting perturbation to the mean ion-
ization history in Fig. 3 with four different initial condi-

tions, for several values of nI . We see that (〈ne〉/n(0)
e −

1)/∆2
I,tot depends strongly on the spectral index at z .

1000, but is relatively universal (for a given isocurvature
mode) for z & 1000.

IV. CONSTRAINTS FROM CMB
ANISOTROPIES

A. Implementation and Planck analysis setup

We modify the Boltzmann code class [39] (which uses
hyrec-2 [38] to compute the ionization and thermal his-
tory), so that it can take as an input a parametrized
small-scale initial power spectrum, in addition to the
standard cosmological parameters. Specifically, we use
two different parameterizations: either a power law given
by Eq. (25), over the range 1 Mpc−1 ≤ k ≤ 103 Mpc−1,
or a Dirac-delta spike at wavenumber k0, defined as

∆2
I(k) = ∆2

I(k0)δD(ln k − ln k0). (27)

For improved efficiency, at virtually no cost in accuracy,

we precompute the ratios n
(2)
e (z, k)/n

(0)
e (z) for each of

the four isocurvature perturbations, for the Planck 2018
best-fit standard cosmology, and do not account for their
small variations with cosmological parameters. This is
justified as these functions vary very little over the range
of cosmologies allowed by CMB-anisotropy data.

For BI, CI and BCI modes, the late-time growth of

baryon perturbations implies that n
(2)
e /n

(0)
e becomes neg-

ative, with a large absolute value. For isocurvature am-
plitudes saturating the Planck limits we derive below, one
would obtain a negative 〈ne〉 at low redshift if naively
using Eq. (12). This is clearly unphysical, and stems
for the break-down of our nonlinear Green’s function
approach for large baryon fluctuations. To prevent the
code from using an unphysical negative ionization frac-
tion, we impose a floor to the average free-electron frac-
tion 〈ne〉/nH ≥ 10−5. In practice, for isocurvature am-
plitudes saturating our upper limits, this floor is typi-
cally reached around z ∼ 90, meaning that this approx-
imate truncation has little impact on CMB anisotropy
limits, which rely mostly on the ionization history at
z & 102. We explicitly checked that changing this floor
to 〈ne〉/nH ≥ 10−6 does not affect our constraints.

For a fixed spectral shape (i.e. a fixed spectral in-
dex nI or fixed wavenumber k0 for the Dirac-delta
spectrum), we constrain small-scale primordial isocurva-
ture perturbation amplitude with the Planck 2018 base-
line TTTEEE + lowE + lensing likelihood [40], using
Montepython v3.0 [55]. Explicitly, we run a sepa-
rate MCMC analysis for nine different values of nI =
−1, 0, 0.6, 0.8, 1.0, 1.2, 1.4, 2, 3, and for seventeen values
of k0 evenly sampled in log-scale from 1 Mpc−1 ≤ k0 ≤
104 Mpc−1, for each one of the four isocurvature modes
BI, CI, BCI and CIP. Note that our results are only ro-
bust for k . 103 Mpc−1 due to our neglect of small-scale
radiative transport, but we also include smaller scales
in the Dirac-spectrum analysis to illustrate the potential
reach of our method. The power-law constraints, how-
ever, are derived for a power spectrum with support over
1 Mpc−1 ≤ k ≤ 103 Mpc−1 only.

B. Generalized Fisher analysis for a CMB Stage-4
experiment

1. Motivations

The standard Fisher analysis method (see
e.g. Ref. [56]) consists in Taylor-expanding the posterior
distribution near its maximum, to lowest order in small
variations in cosmological parameters pi. This requires
computing the first-order derivatives of CMB-anisotropy
power spectra (hereafter, the C`’s) with respect to
the pi. This method can be extended to account for
higher-order derivatives, see e.g. Ref. [57].

When adding small-scale isocurvature perturbations
with power ∆2

I (which hereafter represents either ∆2
I(kp)

or ∆2
I(k0) depending on the adopted parametrization),

we found that, for some of the modes considered, the
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FIG. 2. Ratio n
(2)
e (z; k)/n

(0)
e (z) with four different initial conditions, as functions of redshift for several wavenumbers. Note

that these functions are accurate only for k . 103 Mpc−1, as our assumption about the locality of recombination breaks down
for smaller scales.

change in C`’s scales as ∆C` ∝ (∆2
I)α, with α < 1. In

other words, the dependence of C`’s on ∆2
I appears to be

sub-linear, thus non-analytic. As a consequence, one can-
not directly use the standard Fisher analysis method [56]
nor its generalizations to higher-order derivatives [57],
since even the first derivative of C`’s with respect to ∆2

I
appears formally infinite near ∆2

I = 0.
This sub-linear scaling can be understood as fol-

lows. The modification to the ionization history ∆ne
induced by isocurvature perturbations implies a change
to the Thomson optical depth to last-scattering, ∆τ ∝∫
dt ∆ne ∝

∫
d ln a a3/2∆ne, assuming matter domina-

tion, i.e. H(a) ∝ a−3/2, where a is the scale factor. The
perturbation ∆ne is obtained from Eq. (2) as long as

〈ne〉 > 0, and otherwise saturates at ∆ne ≈ −n(0)
e , cor-

responding to the floor 〈ne〉 ≈ 0. In other words,

∆ne/n
(0)
e ≈ max

[
−1, (n(2)

e /n(0)
e ) ∗∆2

I

]
, (28)

where ∗ represents the wavenumber integral of Eq. (2).

At late times, we find that the growth of baryon per-

turbations implies |n(2)
e |/n(0)

e ∝ a2. Therefore the scale

factor a∗ at which |∆ne|/n(0)
e approaches unity (i.e. at

which the modification to the free-electron abundance
becomes non-perturbative and is assumed to saturate)
scales as a∗ ∝ (∆2

I)−1/2. At low redshift, the standard
free-electron fraction is nearly constant, and therefore

n
(0)
e scales approximately as a−3. As a result, one finds

that the change to the Thomson optical depth is domi-
nated by the transition region a ∼ a∗, and scales as

|∆τ | ∝ (∆2
I)3/4. (29)

If the change to the Thomson optical depth is domi-
nated by sufficiently low redshifts, its effect on CMB
anisotropies is qualitatively similar to a change in the
optical depth to reionization, and in particular implies
∆C` ≈ −2∆τ C` at small angular scales. This argument
explains the sub-linear scaling of ∆C` with ∆2

I .
Having identified the approximate dependence of ∆C`

on ∆2
I , we could in principle perform a standard Fisher
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FIG. 3. Fractional change of the free-electron abundance ne with four different isocurvature initial conditions, for power-law
initial power spectra, normalized the total small-scale isocurvature power in 1 ≤ k Mpc ≤ 103. We see that these perturbations
are nearly independent of nI for z & 1000, and differ mostly at lower redshifts, which have a lesser impact on CMB anisotropy
power spectra.

analysis with the parameter (∆2
I)3/4 rather than ∆2

I , an
approach similar in spirit to that of Ref. [58]. However,
this dependence is not exact, and is scale dependent. Fur-
thermore, as the argument above suggest, the dominant
effect of isocurvature perturbations is likely degenerate
with a (negative) change to the optical depth to reion-
ization, and is thus weakly constraining. In what follows,
we develop a method to isolate the non-degenerate part
of the change in C`’s, which we find is mostly linear in
∆2
I . The latter property further illustrates the indepen-

dence of our results from the details of how we impose
the constraint 〈ne〉 > 0.

2. Method

We define the cosmological-parameter vector p ≡
(p1, ..., p6, p7) ≡ (ωc, ωb, θs, τreio, ln 1010As, ns,∆

2
I). We

denote the standard ΛCDM Planck best-fit values [40]

by pstd ≡ (pstd
1 , ...pstd

6 , pstd
7 ≡ 0). We denote by C ≡

{CTT
` , CTE

` , CEE
` , Cdd

` } the vector containing the temper-
ature, polarization auto- and cross-spectrum, as well as
the power spectrum of lensing deflection and by Σ their
covariance matrix, given explicitly by

ΣXY,WZ
``′ ≡ cov[ĈXY

` , ĈWZ
`′ ]

= δ``′
C̃XW` C̃Y Z` + C̃XZ` C̃YW`

fsky(2l + 1)
, (30)

where, for X = T, E, d,

C̃XW` ≡ CXW` + δXWN
XX
` , (31)

where NXX
` is the instrumental noise, of the form [59]

NXX
` = NXX

0 exp

(
`(`+ 1)θ2

X

8 ln 2

)
. (32)

We include multipoles over the range 2 ≤ ` ≤ 3000 for
TT and 2 ≤ ` ≤ 5000 for TE ,EE, and dd. We adopt
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the noise parameters of Ref. [60] for a CMB S-4 exper-
iment, which are NTT

0 = NEE
0 /2 = 3.38 × 10−7µK2,

θT = θE = 1 arcmin, and fsky = 0.4. The lensing recon-
struction noises are calculated using the code developed
in Ref. [61]. Note that we checked that including Cdd

` or
not does not make a significant difference in the results.
Then, the chi-squared is

χ2 =
(
C(p)−C(pstd)

)
·Σ−1 ·

(
C(p)−C(pstd)

)
. (33)

Unlike the usual Fisher analysis, we extract the non-
degenerate changes in CMB spectra due to p7 = ∆2

I
as follows. Assuming that changes in C`’s are approx-
imately linear in small variations in the six standard cos-
mological parameters, we separate the changes in CMB
spectra due to p7 from the total changes as

∆C ≡ C(p)−C(pstd) '
6∑
i=1

∂C

∂pi
∆pi + ∆Ciso, (34)

where ∆pi ≡ pi − pstd
i and

∆Ciso ≡ C(pstd
1 , · · · , pstd

6 ,∆2
I)−C(pstd) (35)

is the change in C`’s due to the small-scale isocurvature
perturbations alone, neglecting its small dependence on
standard cosmological parameters. We then decompose
∆Ciso into a part that is degenerate with other cosmo-
logical parameters, and a part that is completely non-
degenerate:

∆Ciso =

6∑
i=1

αi
∂C

∂pi
+ ∆C⊥iso, (36)

where ∆C⊥iso is orthogonal to the variations of C`’s gener-
ated by all standard cosmological parameters, using the
inverse-covariance matrix as a scalar product:

∂C

∂pj
·Σ−1 ·∆C⊥iso = 0, ∀ j = 1, · · · , 6. (37)

Explicitly, the coefficients αi in Eq. (36) are given by

αi =
6∑
j=1

(
F̃−1

)
ij

∂C

∂pj
·Σ−1 ·∆Ciso, (38)

where the 6× 6 Fisher matrix F̃ij is given by

F̃ij =
∂C

∂pi
·Σ−1 · ∂C

∂pj
, 1 ≤ i, j ≤ 6. (39)

Inserting Eq. (36) into (34), we may rewrite

∆C =
6∑
i=1

∆p̃i
∂C

∂pi
+ ∆C⊥iso, ∆p̃i ≡ ∆pi + αi. (40)

From the orthogonality properties of ∆C⊥iso, we may then
rewrite the chi-squared as

χ2 =
6∑

i,j=1

∆p̃i · F̃ij ·∆p̃j + ∆C⊥iso ·Σ−1 ·∆C⊥iso. (41)

Integrating the likelihood L ∝ exp(−χ2/2) over the stan-
dard cosmological parameters p1, ..., p6, we see that the
marginalized likelihood for ∆2

I is

Liso(∆2
I) ∝ exp

(
−1

2
∆C⊥iso ·Σ−1 ·∆C⊥iso

)
. (42)

Finally, we may estimate the 95% sensitivity to ∆2
I by

solving for ∆2
I such that

∆C⊥iso ·Σ−1 ·∆C⊥iso = 4. (43)

While this would be a well-defined procedure for arbi-
trary dependence of ∆C⊥iso on ∆2

I , in practice we find
that this dependence is in fact linear, so that the error
bar on ∆2

I is approximately

σ∆2
I
≈
(
∂∆C⊥iso
∂∆2
I
·Σ−1 · ∂∆C⊥iso

∂∆2
I

)−1/2

. (44)

It is a simple linear-algebra problem to show that, if the
full ∆Ciso were linear in ∆2

I , this result reproduces that
of a standard Fisher analysis.

C. Results

We find that Planck data does not favor small-scale
isocurvature perturbations, and that including this ad-
ditional ingredient leaves the posterior distributions of
standard cosmological parameters virtually unchanged,
regardless of the specific isocurvature mode and assumed
spectral shape. For instance, Fig. 4 shows the marginal-
ized error ellipses for the ΛCDM + ∆2

I(kp) analysis, in
the case of a scale-invariant isocurvature power spectrum
(nI = 1). In particular, we see that this modification to
the ionization history has very little impact on the in-
ferred Hubble parameter. This conclusion holds for all
four initial conditions considered, and regardless of the
spectral shape and spectral index, corroborating the find-
ings of Refs. [20, 21]. Explicitly, we show in Fig. 5 that
the means and 68% CL intervals of H0 remain consis-
tent with the standard ΛCDM result even when including
small-scale isocurvature perturbations with a Dirac-delta
spectrum, independently of the scale k0.

We present our 95% CL upper limits to the ampli-
tude of a Dirac-delta spectrum in Fig. 6, as a function
of wavenumber k0. These limits are mostly independent
of wavenumber for k0 . 300 Mpc−1. At smaller scales,
they become tighter for BI, BCI and CIP initial condi-
tions, and worsen for CI initial conditions, as could have

been anticipated from the scale-dependence of n
(2)
e /ne

shown in Fig. 2. In general, constraints on the CI ampli-
tude are much weaker than for other modes, which stems
from the vanishing initial baryon perturbations in this
mode. While our treatment is only valid for k . 103

Mpc−1, we show the limits that one would obtain by
simply extrapolating our analysis to smaller scales in a
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CIP initial conditions (the CI mode is not shown for clarity). In all cases shown here, the initial isocurvature power spectrum
is assumed to be scale-invariant (nI = 1) over the range 1 Mpc−1 ≤ k ≤ 103 Mpc−1. This figure shows that Planck data is
consistent with no small-scale isocurvature perturbations, and that the addition of this ingredient has a negligible impact on
the best-fit standard cosmological parameters and their error bars. These conclusions also hold for all 8 spectral indices and
all 17 Dirac spectra we considered, for each of the 4 initial conditions BI, CI, BCI and CIP.

shaded region. We see that the BI, BCI and CIP ampli-
tudes could potentially be constrained up to k ∼ several
times 103 Mpc−1, but not beyond 104 Mpc−1, due to the
exponential damping of small-scale baryon perturbation
by Compton drag prior to recombination, as discussed in
Sec. III B.

In Fig. 7, we present our 95% CL upper limits for
power-law initial power spectra, both in terms of the in-

tegrated power ∆2
I,tot (left) and of the amplitude at the

pivot scale ∆2
I(kp) (right). When expressed in terms of

total power, we see that CMB anisotropies limits depend
weakly on spectral index. This can be understood from
Fig. 3, where it can be seen that the perturbation to the
ionization history is not very sensitive to nI around the
peak of the Thomson visibility function z ∼ 1100. The
small improvement (or worsening) of limits on BI, BCI
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and CIP (or CI) total power with increased nI mirrors
the improvement (or worsening) of limits at small scales
seen in Fig. 6. The nearly index-invariant limits on ∆2

I,tot

translate to the peaked shape of the limits for ∆2
I(kp)

seen in the right panel of Fig. 7, as the two quantities are
related through Eq. (26).

We present the forecasted 95% CL sensitivities to
∆2
I(k) for a CMB S-4 experiment as red dot-dashed lines

in Figs. 6 and 7. Depending on the initial conditions, a
CMB S-4 experiment is expected to be three to ten times
more sensitive than current constraints from Planck data.
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FIG. 6. 95% CL upper limits on (sensitivities to) the ampli-
tude of the four isocurvature modes BI, CI, BCI and CIP, from
Planck data (CMB S-4 forecast), as a function of wavenum-
ber, for a Dirac-delta spike. Our treatment only applies to
k . 103 Mpc−1, due to our neglect of Lyman-α and Lyman-
continuum transport [22], which is why we show the limits at
k ≥ 103 Mpc−1 in a shaded region. We also show the BBN
limit of Ref. [16], updated in Appendix A. This limit applies
to BI, BCI and CIP modes, but not CI initial conditions.

D. Comparison with other constraints on
small-scale perturbations

1. Constraints on small-scale baryon perturbations from
primordial magnetic fields (PMFs)

The general idea explored in this work is similar in
spirit to that first put forward in Ref. [17], and explored
further in Refs. [18–21], in the context of baryon per-
turbations sourced by PMFs. Namely, the common idea
is that small-scale baryon density perturbations lead to
a systematic offset of the average ionization fraction, as
a result of the non-linearity of recombination dynamics.
As we highlight below, the underlying assumptions in our
work and these references are significantly different, pre-
venting a direct quantitative comparison of our results.

A first, and major difference, is that Refs. [17–21] as-
sume a time-independent baryon density perturbation.
This assumption seems difficult to justify, regardless of
the physical mechanism responsible for baryon perturba-
tions. In contrast, our formalism can accommodate ar-
bitrary time (and scale) dependence, provided they are
sufficiently small. With our notation, constant baryon
perturbations correspond to a density and velocity di-
vergence transfer function T (k) = (1, 0), independent
of wavenumber. From Eq. (13), this implies a scale-

independent quadratic response function n
(2)
e (η). There-

fore, in the limit of small density perturbations, Eq. (12)
implies that the perturbation to recombination only de-
pends on the integrated power, which is referred to as
the “clumping factor” b in Refs. [17–21]:

〈ne〉 ≈ n(0)
e +b n(2)

e , b ≡
∫
d ln k ∆2

I(k) ≡ 〈δ2
b 〉. (45)

Note that the constant-baryon-density response function

n
(2)
e (η) is virtually identical to the k = 3 Mpc−1 CIP re-

sponse function shown in Fig. 2, since large-scale baryon
(and CDM) perturbations remain constant for CIP initial
conditions. Within our formalism, we therefore obtain
the 95%-confidence limit b < 0.21 from Planck data.

This result cannot be directly compared to those of
Refs. [19–21] due to another difference between our
works: our formalism is only valid insofar as baryon over-
and under-densities are small and Gaussian-distributed,
so that we only need to keep terms quadratic in the
baryon density, but neglect higher-order terms. In the
three-zone models considered in Ref. [19], the baryon
overdensities are allowed to be of order unity; for in-
stance, “model M1” in Ref. [19] includes a zone with
∆1 ≡ ρb/ρb = 0.1, i.e. an underdensity δb = −0.9.
In the limit that the overall clumping factor is small,
these highly over- or under-dense zones occupy a small
volume fraction, and our quadratic approximation for
〈ne〉 should still be relatively accurate. This may ex-
plain why the authors of Ref. [20] find that, when letting
∆1 vary, this parameter is hardly constrained by CMB
anisotropies. Note that our upper limit is marginally
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FIG. 7. 95% CL upper limits on (sensitivities to) the amplitude of the four isocurvature modes BCI, BI, CIP and CI (from
bottom to top in each plot), from Planck data (CMB S-4 forecast), as a function of spectral index nI , for a power law spectrum
of the form (25). The limits are presented in terms of the total integrated power ∆2

I,tot (left) and of the power at the pivot

scale ∆2
I(kp) (right), which are related through Eq. (26). In the left panel, we also show the BBN limit of Ref. [16], updated

in Appendix A. In the right panel, we also show the CMB spectral-distortion limits (solid black lines) and forecasts (dashed
black lines) of Ref. [15] for BCI, CI and BI modes.

consistent with our perturbative assumption, since it
corresponds to baryon density perturbations of order
δb ∼

√
b ∼ 0.4, which is not particularly small. However,

provided 〈δ3
b 〉 = 0, our small-δb expansion should still be

accurate up to corrections of order b2 ∼ 0.04. For good
measure, we checked that we obtain the same limits as
Ref. [20] for the three-zone models M1 and M2 when us-
ing the same set-up, i.e. computing the free-electron frac-
tion non-perturbatively, by appropriately weighing the
outputs of hyrec-2 in each of the three zones.

2. Constraints on BI and CI modes from CMB spectral
distortions

The damping of small-scale photon perturbations at
z . 2× 106 gives rise to spectral distortions of the CMB
blackbody spectrum, quadratic in the amplitude of pho-
ton perturbations, thus linear in the primordial power
spectrum (see e.g. Ref. [62]). The authors of Ref. [15]
(hereafter CG13) pointed out that this effect can be
used to constrain small-scale isocurvature perturbations,
which indirectly source photon perturbations. Using up-
per limits on µ and y-distortions from COBE/FIRAS
[10, 63], they derived upper limits on the amplitude
of small-scale BI and CI perturbations for 1 Mpc−1 .
k . 104 Mpc−1, and forecasted the sensitivity of future
PIXIE-type experiments [64]. Note that CG13 also con-
sidered neutrino isocurvature modes, which could not be
constrained through perturbed recombination.

In the right panel of Fig. 7, we show the FIRAS limits
and PIXIE forecasts of CG13 for BI and CI amplitudes,
alongside our Planck constraints and CMB Stage-4 fore-

casts, for power-law spectra. Using the fact that spectral
distortions are proportional to (ωbδb + ωcδc)

2 [15], we
can also easily extract the spectral distortion limit on
the BCI amplitude: it is tighter than the CI limit by a
factor (ωc/ωm)2. The same argument implies that CIPs
are not constrained by spectral distortions. For the range
of spectral indices considered −1 ≤ nI ≤ 3, Compton-y
distortions are systematically more constraining than µ-
distortions, and we therefore only show limits and fore-
casts from the former. Note that the power spectrum
constrained in CG13 does not formally include an up-
per cutoff, but the y distortion is mostly sensitive to
wavenumbers 1 Mpc−1 . k . 50 Mpc−1, and there-
fore the results of CG13 are directly comparable to ours.
Also note that CG13’s original results were obtained for
a pivot scale k0 = 0.002 Mpc−1, so we rescale their limits
to kp = 30 Mpc−1 by multiplying them by (kp/k0)nI−1.

As can be seen in Fig. 7, our Planck limits on BI, CI
and BCI amplitudes are significantly stronger than the
FIRAS limits on these modes, for all spectral indices. We
also see that an experiment like PIXIE would be sensitive
to CI (BI) modes with an amplitude below the Planck
limits for nI ≤ 2 (nI ≤ 1). For sufficiently blue spectra,
however, our limits remain stronger than the reach of
a PIXIE-like experiment. Note that for clarity of the
figures we only show GC13’s limits in terms of ∆2

I(kp),
but the same conclusions would hold for the integrated
power ∆2

I,tot.
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3. BBN constraints on small-scale baryon perturbations

Last but not least, Ref. [16] obtained constraints on
the small-scale baryon perturbations from the predicted
Deuterium yield yD during Big Bang Nucleosynthesis
(BBN). The basic idea is similar in spirit to the one on
which the present work relies: yD is a nonlinear func-
tion of the local baryon density, and as a consequence
its spatial average is modified in the presence of small-
scale baryon overdensities. Comparing the modified yield
against Deuterium abundance observations [65] (and as-
suming ωb measured from CMB anisotropies, which our
analysis confirms is not affected by small-scale baryon
perturbations), Ref. [16] derive the 2-σ limit 〈δ2

b 〉 ≤ 0.016.
We revisit their analysis in Appendix A, and obtain the
slightly weaker 95%-confidence upper limit 〈δ2

b 〉 ≤ 0.019.
This limit applies to the total integrated power up to the
neutron diffusion scale during BBN, kd ∼ 4×108 Mpc−1.
While this limit was derived for BI initial conditions, it
would apply equally for BCI or CIP modes, since small-
scale isocurvature baryon perturbations remain constant
around BBN, regardless of the CDM perturbation. As
can be seen in Fig. 6 and the left panel of Fig. 7, this
limit is approximately one order of magnitude stronger
than our BI and CIP limits, and a factor of ∼ 3 stronger
than our BCI constraint. Nevertheless, these two limits
rely on completely different physical processes and obser-
vational systematics. Importantly, the general formalism
we have developed can apply to arbitrary perturbations,
including ones generated after BBN.

V. CONCLUSION

Cosmological recombination is a nonlinear process, and
as a consequence the average free-electron abundance,
thus CMB anisotropies, are sensitive to the variance of
small-scale baryon perturbations. This idea was explored
in Refs. [17–21], in the limit of time-independent baryon
density perturbations. In this work, we have developed a
formalism able to account for arbitrary time- and scale-
dependent baryon perturbations on scales 1 Mpc−1 .
k . 103 Mpc−1, in the limit that they are small in am-
plitude. One of the main elements of our calculation
is the time- and scale-dependent second-order recombi-

nation perturbation response function, n
(2)
e (z, k), which

can be obtained for arbitrary linear baryon density and
velocity transfer functions. From this function, one may
obtain the mean free-electron abundance for an arbitrary
initial power spectrum through Eq. (12).

Our general framework allowed us to constrain the am-
plitude of small-scale baryon and CDM isocurvature per-
turbations using Planck CMB-anisotropy data. Specifi-
cally, we considered pure baryon and CDM isocurvature
modes (BI and CI), as well as two linear combinations
of them: an equal baryon and CDM isocurvature mode
(BCI), and the compensated isocurvature perturbation
(CIP), in which the initial baryon and CDM density per-

turbations cancel out. We found that the latest Planck
data is consistent with no small-scale isocurvature per-
turbations, and that including this additional ingredient
does not shift the best-fit cosmological parameters in a
significant way – in particular, it does not help allevi-
ate the Hubble tension as shown in Fig. 5, corroborating
the results of related analyses [20, 21]. We derived up-
per limits on the amplitudes of these four isocurvature
modes, parametrized by either Dirac-delta or power-law
initial power spectra, as summarized in Figs. 6 and 7.
For scale-invariant initial power spectra within the range
1 ≤ k Mpc ≤ 103, our 95%-confidence upper limits on
the dimensionless power spectrum ∆2

I(k) of initial per-
turbations are 0.099, 0.026, 0.023, and 0.009, for CI, CIP,
BI and BCI initial conditions, respectively3.

While our CI limit is rather weak, as expected from
the vanishing initial baryon perturbations in this mode,
it is significantly stronger than the only other limit on
small-scale CDM isocurvature perturbations, resulting
from upper bounds on CMB spectral distortions [15].
Our limits on CIP, BI and BCI amplitudes are signifi-
cantly weaker than what one could have anticipated given
the high sensitivity of CMB anisotropies to cosmological
recombination. This seems to stem from the weak sen-
sitivity of CMB anisotropies to the specific shapes of re-
combination perturbations induced by small-scale baryon
perturbations. Still, our bounds are much stronger than
spectral-distortion limits (which do not constraint CIPs)
[15]. Our constraints on these modes are, however,
weaker than limits resulting from the Deuterium yield
in perturbed BBN [16], by a factor ∼ 3 − 10, depend-
ing on the specific mode. Our results are still useful as
they rely on completely different physics and observables,
implying completely different systematics.

In addition to deriving limits from Planck data, we
forecasted the sensitivity of a CMB Stage-4-like experi-
ment, using a generalized Fisher analysis method. We
found that such an experiment would be sensitive to
small-scale isocurvature perturbations with power three
to ten times smaller than currently constrained from
Planck data. For BCI initial conditions, the sensitivity
is comparable to the current BBN limit.

As always, we had to make simplifying approxima-
tions in order to make headway. First, our study is
limited to wavenumbers k . 103 Mpc−1 due to our as-
sumption that the recombination rate depends on the
local baryon density and velocity divergence. Our anal-
ysis shows that, in principle, CMB anisotropies could be
sensitive to small-scale baryon isocurvature modes up to
k ∼ 104 Mpc−1, beyond which baryon perturbations are
exponentially damped before recombination by the com-
bination of Compton drag and baryon pressure. It could
therefore be interesting to generalize our work to scales

3 Our full results (limits and forecasts) are avail-
able at https://github.com/nanoomlee/small-
scale baryon CDM isocurvature results.

https://github.com/nanoomlee/small-scale_baryon_CDM_isocurvature_results
https://github.com/nanoomlee/small-scale_baryon_CDM_isocurvature_results
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k ∼ 103 − 104 Mpc−1, which would require accounting
for the non-locality of recombination due to transport of
Lyman-α and Lyman-continuum photons [22]. Second,
we neglected the advection of baryon and CDM pertur-
bations relative to one another due to their supersonic
relative velocities, generated by the standard adiabatic
mode [53]. This nonlinear effect may lead to order-unity
changes to the isocurvature baryon transfer functions at
scales k & 50 Mpc−1, thus could affect CMB power spec-
trum limits by factors of order unity. More interestingly,
this effect would lead to a large-scale modulation of the
ionization fraction, tracing the large-scale fluctuations of
relative velocities (see Ref. [66] for a similar effect in a
different context). This would result in non-Gaussian sig-
natures in the CMB, which could be more constraining
than the modification to the power spectrum, on which
the limits presented here rely.

In conclusion, we have introduced a general framework
to estimate the effect of small-scale baryon perturbations
on the mean ionization history. In this work, we have
focused on the consequences on CMB anisotropy power
spectra. In addition, the global cosmological recombina-
tion spectrum (see e.g. [67, 68]) would also be affected by
perturbations to recombination dynamics. Even though
this faint signal will likely not be observed until the
next generation of spectral-distortion experiments sees
the light [69], it would be interesting to explore this com-
plementary observable to probe the smoothness of the
early Universe on very small scales.
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Appendix A: BBN limits to small-scale baryon
inhomogeneities

In this appendix we revisit the limit on small-scale
baryon perturbations from the BBN deuterium yield [16],
with a more rigorous data analysis method.

Using the PArthENoPE code [70], the Planck collabo-
ration [44] obtained a fitting formula for the deuterium
yield of BBN, yDP ≡ 105 D/H, as a function of the baryon

density parameter ωb

yDP(ωb) = 18.754− 1534.4ωb + 48656ω2
b − 552670ω3

b ,
(A1)

with an estimated theoretical uncertainty σth = 0.06.
Assuming ωb = ωb(1 + δb), the average deuterium yield
is then, up to terms of order O(δ3

b ),

〈yDP〉(ωb, 〈δ2
b 〉) = yDP(ωb) + γ(ωb)〈δ2

b 〉, (A2)

γ(ω) ≡ 1

2
ω2 d

2yDP

dω2
= 48656ω2 − 1658010ω3. (A3)

Therefore, the measurement yobs = 2.545 of the yield
with error bar σobs = 0.025 [65] implies a joint posterior
on (ωb, 〈δ2

b 〉) of the form

P(ωb, 〈δ2
b 〉) ∝ exp

[
− (yobs − 〈yDP〉)2

2(σ2
th + σ2

obs)

]
Θ(〈δ2

b 〉), (A4)

where Θ is the Heaviside step function, enforcing the
prior 〈δ2

b 〉 > 0.
In order to obtain a marginalized posterior for 〈δ2

b 〉,
we include additional information on ωb, from Planck
anisotropy measurements. In principle, these measure-
ments are also sensitive to a combination of ωb and 〈δ2

b 〉.
However, as we find in this work and as show in Fig. 4,
these two parameters are not very degenerate. Moreover,
the Planck constraints on 〈δ2

b 〉 are significantly weaker
than BBN constraints. We may therefore assume that
Planck constrains ωb to be Gaussian-distributed, with
mean ω0

b = 0.02233 and error bar σωb
= 0.00015 [40].

Given the smallness of the error bar, we may Taylor-
expand 〈yDP〉 around ω0

b :

〈yDP〉 ≈ y0
DP + λ0(ωb − ω0

b) + γ0〈δ2
b 〉, (A5)

y0
DP = 2.5985, λ0 = −188.155, γ0 = 5.800, (A6)

where we neglected terms of order (ωb − ω0
b)〈δ2

b 〉.
Upon multiplying Eq. (A4) by the Gaussian distri-

bution for ωb and integrating over ωb, the resulting
marginalized distribution for 〈δ2

b 〉 is a Gaussian with
mean and variance

mean
(
〈δ2
b 〉
)

=
yobs − y0

DP

γ0
≈ −0.0092, (A7)

var
(
〈δ2
b 〉
)

=
σ2

obs + σ2
th + λ2

0σ
2
ωb

γ2
0

≈ (0.0122)2,(A8)

truncated to positive values of 〈δ2
b 〉. Solving for the 68%

and 95% confidence intervals of this truncated Gaussian,
we find

〈δ2
b 〉 < 0.0086 (68%), 0.0187 (95%). (A9)

We see that our 95%-confidence upper limit is slightly
weaker than that derived in Ref. [16].
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Dinda, and M. Kamionkowski, arXiv e-prints (2021),
arXiv:2106.11979 [astro-ph.CO].
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[38] N. Lee and Y. Ali-Häımoud, Phys. Rev. D 102, 083517
(2020), arXiv:2007.14114 [astro-ph.CO].

[39] D. Blas, J. Lesgourgues, and T. Tram, JCAP 07, 034
(2011), arXiv:1104.2933 [astro-ph.CO].

[40] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6
(2020), arXiv:1807.06209 [astro-ph.CO].

[41] K. N. Abazajian et al. (CMB-S4), arXiv e-prints (2016),
arXiv:1610.02743.

[42] L. Senatore, S. Tassev, and M. Zaldarriaga, J. Cosm. As-
tropart. Phys. 2009, 038 (2009), arXiv:0812.3658 [astro-
ph].

[43] U. Seljak, N. Sugiyama, M. J. White, and M. Zal-
darriaga, Phys. Rev. D 68, 083507 (2003), arXiv:astro-
ph/0306052.

[44] Planck Collaboration, Astron. Astrophys. 594, A13
(2016), arXiv:1502.01589 [astro-ph.CO].

[45] A. Lewis and A. Challinor, Phys. Rev. D 76, 083005
(2007), arXiv:astro-ph/0702600 [astro-ph].

[46] L. Senatore, S. Tassev, and M. Zaldarriaga, J. Cosm. As-
tropart. Phys. 2009, 031 (2009), arXiv:0812.3652 [astro-
ph].

[47] E. R. Switzer and C. M. Hirata, Phys. Rev. D 77, 083006
(2008), arXiv:astro-ph/0702143 [astro-ph].
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