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Abstract— This paper presents an adaptive functional estima-
tion scheme for the fault detection and diagnosis of nonlinear
faults in positive real infinite dimensional systems. The system
is assumed to satisfy a positive realness condition and the fault,
taking the form of a nonlinear function of the output, is assumed
to enter the system at an unknown time. The proposed detection
and diagnostic observer utilizes a Reproducing Kernel Hilbert
Space as the parameter space and via a Lyapunov redesign
approach, the learning scheme for the unknown functional is
used for the detection of the fault occurrence, the diagnosis
of the fault and finally its accommodation via an adaptive
control reconfiguration. Results on parabolic PDEs with either
boundary or in-domain actuation and sensing are included.

I. INTRODUCTION

In the adaptive parameter identification of dynamical sys-
tems, provided the said systems admit a certain parametriza-
tion, a necessary condition for the extraction of the adaptive
laws using input and output information, is that the system
satisfies a positive realness condition [1]. The transfer matrix
from the input to the output must have certain properties
which in the time domain are equivalent to the system satis-
fying a Lyapunov equation and the input and output matrices
are coupled via the solution to the Lyapunov equation.

This property found its way in the use of adaptive tech-
niques for fault detection, diagnosis and accommodation
of dynamical systems. When faults, be they component,
actuator or sensor, are modelled as nonlinear functions of
the available signals (input or output), then one may assume
a series expansion parametrization for the nonlinear func-
tion and adaptively estimate the weights in the expansion.
This approach is used for both parameter estimation in
structurally perturbed systems and systems where the fault
function enters as an input and admits the series expansion
parametrization [2]. Similar approaches were applied in [3]
using flatness-based fault diagnosis utilizing input and output
signals and in [4] using backstepping methods. When the
function does not admit such a series expansion, then neural
networks are utilized to aid with the adaptive estimation.
However, one a priori selects the dimension of the parameter
space and proceeds with the adaptive estimation design.
This of course is restrictive since one must fix a priori the
parameter space dimension.

Another way of modeling the adaptive functional estima-
tion is via the use of Reproducing Kernel Hilbert Spaces
(RKHS), which provides a natural setting for the parameter
space. The paper [5], which itself followed the fundamental
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work in [6], formulated the problem of adaptive functional
estimation of strictly positive real infinite dimensional sys-
tems via the use of a RKHS as the parameter space.

The idea of using RKHS as the natural parameter space
is used in this work to model faults in positive real infinite
dimensional systems. The fault functions are assumed to be
nonlinear functions of available signals, such as inputs or
outputs, and this paper proposes an adaptive fault detection
observer to detect the presence of the fault. The diagnosis of
the fault, namely the adaptive functional estimation, is ab-
stractly viewed in the Hilbert space (the state space) and the
RKHS (the functional parameter space). The last component
of the fault management policy is the fault accommodation
stage which is achieved via the appropriate control recon-
figuration. This reconfiguration uses the adaptive estimates
of the functional estimation to cancel the effects of the fault
function, thereby attempting to bring a faulty system, into
its pre-fault performance.

II. MOTIVATION AND ABSTRACT FRAMEWORK

A representative PDE that falls under the abstract frame-
work considered here is the diffusion PDE with boundary
actuation and sensing

∂x(t,ξ)
∂t

= a1
∂2x(t,ξ)

∂ξ2 , x(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

x(t,0) = 0, xξ(t, ℓ) = u(t)+β(t − τ f ) f (y(t)),

y(t) = x(t, ℓ),

(1)

The state is x(t,ξ) with t ∈ R
+, ξ ∈ Ω = [0, ℓ], u(t) is the

control signal applied at the right boundary, β(t − τ f ) is the
time profile of the fault which describes the time evolution
of the fault and f (y(t)) is the fault function. The process
measurement y(t) is given by the state at the right boundary.

The fault profile function can represent an abrupt or an
incipient fault and is given by

β(t − τ f ) =

{
0 if t < τ f

1− e−λ(t−τ f ) if t ≥ τ f
(2)

When λ = ∞, the above profile becomes the Heaviside step
function representing abrupt fault and for 0 < λ < ∞ it
represents an incipient fault (slowly developing), [2].

The fault detection, diagnosis and accommodation objec-
tive is to (i) detect the presence of the fault, i.e. estimate
when β 6= 0, (ii) diagnose the fault, i.e. estimate f (y), and
(iii) change the control signal, in an automated manner using
the estimate of f (y), in order to retain the performance of
the control for the healthy system. For the system in (1),
detection is declared when the monitoring scheme “senses”
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the presence of the term β(t − τ f ) f (y(t)) in the boundary.
Such a detection may not occur at exactly t = τ f , but at a time
thereafter t > τ f . The time instance the presence of the fault
is declared is termed the detection time td and the difference
of the two is termed the detection delay τd = td − τ f ≥ 0.
Obviously one wants τd as small as possible.

The above PDE can be written as an evolution system in
a Hilbert space X as follows

ẋ(t) = Ax(t)+Bu(t)+β(t − τ f )B f (y(t))

y(t) = B∗x(t), x(0) ∈ D(A).
(3)

Accommodating for unbounded input and output operators,
a Gelfand triple is considered V →֒ X →֒ V ∗ with the em-
beddings dense and continuous. The state space X serves as
the pivot space and V is a reflexive Banach space with V ∗

denoting its conjugate dual, [7].
The output space is denoted by Y ∈ R

m and represents
process measurement that is an m-dimensional vector. As-
suming a square system (equal number of controls and
measurements) the input space U coincides with Y . Further,
with collocated inputs and outputs, we have B ∈ L(Y ,V ∗)
and B∗ ∈ L(V,Y ). The state operator A ∈ L(V,V ∗). For the
system in (1), we have that the input and output operators
are rank 1; i.e. m = 1 with U = Y = R

1.
Prior to the occurrence of the unknown fault, i.e. for t < τ f ,

the healthy system is described by the linear system

healthy system:

{
ẋ(t) = Ax(t)+Bu(t)

y(t) = B∗x(t), x(0) ∈ D(A),
(4)

and in terms of the PDE in (1) is
∂x(t,ξ)

∂t
= a1

∂2x(t,ξ)
∂ξ2 , x(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

x(t,0) = 0, xξ(t, ℓ) = u(t),

y(t) = x(t, ℓ).

(5)

III. ADAPTIVE FAULT DETECTION, DIAGNOSIS AND

ACCOMMODATION

The adaptive fault detection is easily accomplished with an
adaptive detection observer. The adaptive fault diagnosis re-
quires additional assumptions on the operators (A,B,B∗) and
a particular parametrization of the fault function f (y). For
a functional parametrization based on a RKHS, additional
assumptions and formulations are required.

A. Adaptive Fault Detection Observer

The proposed adaptive detection observer is given by
˙̂x(t) = Ax̂(t)+L(y(t)−B∗x̂(t))+Bu(t), x̂(0) 6= x(0), (6)

where L is the filter operator such that A−LB∗ generates an
exponentially stable C0 semigroup. The latter is achieved by
imposing that the pair (B∗,A) be approximately observable
[8]. The detection observer (6) essentially is unaware of the
presence of the term β(t−τ f )B f (y(t)) in (3) and thinks that
the system is instead described by the healthy system (4).

To analyze the ability of the detection observer to “sense”
a change in the system, define the estimation error e(t) =
x(t)− x̂(t). Using (3) and (6) we arrive at the error system

ė(t) = (A−LB∗)e(t)+β(t − τ f )B f (y(t)), e(0) 6= 0. (7)

A suitable signal to monitor the detection system is the
residual signal ε(t) given by

ε(t) = B∗e(t). (8)

The residual, which coincides with the output error, serves
as a means to detect the presence of a fault. Prior to the fault,
i.e. for t < τ f , the residual is norm-bounded by r0(t)

|ε(t)| ≤ r0(t), M‖B∗‖e−λA−LB∗ t‖e(0)‖, ∀t < τ f , (9)

where TA−LB∗ is the semigroup generated by the filter oper-
ator A−LB∗. Such a signal is exponentially converging to
zero and one can find a bound, which will serve as a time-
varying threshold. Thus, the threshold is given by r0(t). At
the onset of the abrupt fault, the residual is given by

ε(t) = B∗TA−LB∗(t)e(0)

+

∫ t

0
B∗TA−LB∗(t − s)Bβ(s− τ f ) f (y(s))ds.

(10)

It is obvious that the instance the residual (10) exceeds the
time varying threshold (9) the presence of a fault is declared.
In fact, when t > τ f , the residual satisfies

r(t) = |ε(t)| ≤ r0(t)

+

∣∣∣∣
∫ t

0
B∗TA−LB∗(t − s)Bβ(s− τ f ) f (y(s))ds

∣∣∣∣

≤ r0(t)+

∣∣∣∣
∫ t

0
B∗TA−LB∗(t − s)B f (y(s))ds

∣∣∣∣ .

(11)

Lemma 1: The detection observer (6) prior to the occur-
rence of the fault, i.e. for all t < τ f , is such that ε(t) satisfies

|ε(t)| ≤ r0(t), ∀t < τ f .

The presence of the fault in the system (3) is declared the
instance the residual exceeds the time varying threshold r0(t).
The proof of Lemma 1 follows from [2], [9].

B. Adaptive fault diagnosis using RKHS

The fault detection observer (6) can be deactivated once
the fault is declared. However, one can easily modify (6)
to become an adaptive detection and diagnostic observer.
Finding the appropriate parametrization of the unknown term
f (y) would enable one (a) to ensure that no parameter
adaptation takes place prior to td and (b) to activate the
parameter updating scheme once the fault is declared.

If the unknown function f (y) admits the expansion

f (y(t)) =
N

∑
i=1

αiφi(y(t)), (12)

where φi(y(t)) are known functions of y and αi the unknown
constant weights, with its on-line estimate taking the form

f̂ (t,y(t)) =
N

∑
i=1

α̂i(t)φi(y(t)), (13)

then the adaptive estimation scheme in [5] with the dead-
zone modification presented in [2] would ensure that no
parameter adaptation takes place prior to the fault declaration
and it is activated after the fault declaration. The extraction
of the adaptive laws for the weights α̂i(t) is based on
Lyapunov-redesign methods. To examine the well-posedness
and convergence properties one must consider the parameter
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space Θ ∈ R
N which is the space of the N-dimensional

vectors with inner product 〈θ,χ〉Θ = θT χ, θ,χ ∈ Θ. The
resulting evolution system is viewed in X ×Θ. The well-
posedness of such an adaptive scheme was presented in [2].

However, the above parametrization and subsequently the
adaptive detection and diagnostic observer cannot be imple-
mented if the unknown fault function f (y) does not have a
parametrization given by (12).

To address this, a Hilbert space is used as the parameter
space for the estimation of f (y). We denote this Hilbert space
of functions by Q and defined on the output space Y via

f : Y → R
1, (14)

with the evaluation functional over Q; this evaluation func-
tional evaluates each function at a point y ∈ Y via

λy : f → f (y), ∀ f ∈ Q. (15)

In other words, one has

f (y) = λy( f ). (16)

Following the earlier work [5], when the kernels are ap-
propriately constructed, then the evaluation functional λy is
bounded. Then the parameter space Q becomes a Reproduc-
ing Kernel Hilbert Space (RKHS). The Riesz representation
theorem has that for all y∈Y , there exists an element κ(·, ·) :
Y ×Y → R

1 so that the reproducing kernel κy = κ(y, ·) has
the reproducing property, in other words

f (y) = λy( f ) = 〈 f ,κ(y, ·)〉Q = 〈 f ,κy〉Q, (17)

for all f ∈ Q and for all y ∈ Y . As mentioned in [5], the
inner product representation allows one to evaluate the kernel
function at points in the data space, i.e. the output space Y .
By considering two different outputs yi,y j in the data space
Y and the corresponding elements f (yi), f (y j) in the feature
space, i.e. the parameter space Q, one has

〈 f (yi), f (y j)〉Q = 〈κ(yi, ·),κ(y j, ·)〉Q = κ(yi,y j). (18)

Finally, to arrive at the skew-adjoint structure of the closed-
loop operator representing the state and parameter error,
one must define the adjoint of the evaluation functional λy,
denoted by λ∗

y : Y → Q and given by

〈η,λy( f )〉Y = 〈ηκy, f 〉Q = 〈λ∗
y(η), f 〉Q, η ∈ Y . (19)

Using the above, the system (3) is now written as

ẋ(t) = Ax(t)+Bu(t)+β(t − τ f )Bλy(t)( f ), in V ∗. (20)

The structure of the detection and diagnostic observer for
(20) follows the one presented in [2], [9], but with the main
difference of the adaptive estimate f̂ of f . This adaptive
detection and diagnostic observer is given by

˙̂x(t) = Ax̂(t)+L(y(t)−B∗x̂(t))+Bu(t)+Bλy(t)( f̂ ). (21)

To demonstrate the learning of the unknown fault function
f (y), we first consider the case where the fault is present
from the beginning, i.e. τ f = 0 and then modify the adaptive
law to ensure that no adaptation takes place prior to the
declaration of the fault. With β(t − τ f ) set to 1, (20) and
(21) yield the error system

ė(t) = (A−LB∗)e(t)+Bλy(t)( f̃ ), (22)

where f̃ is the parameter error given by f̃ = f̂ − f . To extract
the on-line learning rules for f̂ , we state the assumptions
on the system operators and formally introduce them in
the lemma statement. The operator A− LB∗ is denoted by
Ao and the assumption on the triple (Ao,B,B∗) is that it
satisfies a special case of operator Lure’s equation. In this
case, there exists a nonnegative constant µ and an operator
S ∈ L(D(Ao),X) such that for ϕ ∈ D(Ao)

(Ao +µI)∗ϕ+(Ao +µI)ϕ =−S∗Sϕ. (23)

Using Lyapunov-redesign methods to extract the on-line
learning rules for f̂ , we consider the Lyapunov functional

V (e, f̃ ) = |e(t)|2X + 〈G−1 f̃ , f̃ 〉Q, G ∈ L(Q,Q). (24)

The derivative of (24) along (22) is

V̇ = 〈e,Aoe〉+ 〈Aoe,e〉+2〈e,Bλy(t)( f̃ )〉V,V ∗ +2〈G−1 ˙̃f , f̃ 〉Q.

The third term is the one that would provide the update laws
for the learning scheme. However, it must be brought into a
more suitable form. Use

〈e,Bλy(t)( f̃ )〉V,V ∗ = 〈B∗e,λy(t)( f̃ )〉Y

= 〈λ∗
y(B

∗e), f̃ 〉Q = 〈λ∗
y(ε), f̃ 〉Q.

Using the above equivalent expression and the last term of
the Lyapunov derivative we have

2〈e,Bλy(t)( f̃ )〉V,V ∗ +2〈G−1 ˙̃f , f̃ 〉Q

= 2〈λ∗
y(ε)+G−1 ˙̃f , f̃ 〉Q.

Forcing the above terms to zero yields the adaptive law in
weak form in terms of the adjoint of the evaluation functional

〈 ˙̃f , p〉Q = 〈 ˙̂f , p〉Q =−〈Gλ∗
y(t)(ε(t)), p〉Q, p ∈ Q, (25)

or in terms of the evaluation functional as

〈 ˙̃f , p〉Q =−〈ε(t),λy(t)(G p)〉Y , p ∈ Q. (26)

Equations (22) and (25) are considered in the space X ×Q
with the augmented state z = (e, f̃ ) as

d
dt

z(t) = A(t)z(t) (27)

where the operator A(t) : V ×Q →V ∗×Q is given by

A(t) =

[
Ao 0
0 0

]
+

[
0 Bλy(t)([ · ])

−Gλ∗
y(t)(B

∗ [ · ]) 0

]
.

To remove the assumption that the fault occurs at the
beginning, the learning law (25) must be made to ensure
that no adaptation takes place prior to the declaration of
the fault. Following the dead-zone modification presented
in [2] and adjusted for the adaptive functional estimation
considered here, the adaptive law for the adaptive detection
and diagnostic observer is

〈 ˙̃f , p〉Q =−〈Dr0 [ε(t)],λy(t)(G p)〉Y , p ∈ Q, (28)

where the dead-zone operator is

Dr0 [ε] =

{
0 if |ε(t)|< r0(t)

0 if |ε(t)| ≥ r0(t)
.

We summarize the above results for the adaptive detection
and diagnostic observer below.

Lemma 2: Assume that the class of PDEs under con-
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sideration is represented by (3) where the input operator
B ∈ L(Y ,V ∗) and the output operator B∗ ∈ L(V,Y ) are rank
1 operators with Y =R

1. Also assume that the control input
and the fault function are not catastrophic, in the sense that
the post-fault plant is bounded with ‖x(t)‖ ≤ c, a.e. t > 0 for
some positive constant c. Further assume that there exists
an operator L such that A−LB∗ generates an exponentially
stable C0 semigroup on X and satisfying the weak version of
positive realness (23). Then the proposed adaptive detection
and diagnostic observer (21) with the learning laws (28)
ensure that prior to the declaration of the fault no adaptation
takes place. A fault is declared when the residual signal
r(t) = |ε(t)| exceeds the time-varying threshold r0(t) and the
adaptation is activated with

〈 ˙̂f , p〉Q =−〈ε(t),λy(t)(G p)〉Y , p ∈ Q, t ≥ td .

This ensures that after the fault occurrence, the system
is well-posed and bounded, and the state estimation error
converges to zero

lim
td<t→∞

|e(t)|X → 0.

Functional convergence in the sense of

lim
t→∞

‖ f̂ (y)− f (y)‖Q = 0,

can be concluded provided that the system (21), (28) is
persistently excited in the sense that there exists T0,δ0 and
ε0 such that for each q ∈ Q with |q|Q = 1 and sufficiently
large t > td , there exists a t ′ ∈ [t, t +T0] such that

∥∥∥
∫ t ′+δ0

t ′
Bλy(τ)(q)dτ

∥∥∥
V ∗

≥ ε0.

Note that norm convergence of f̃ to 0, i.e. ‖ f̃ (y)‖Q, implies
pointwise (in time) convergence of | f̃ (y(t))|Y to 0.

Proof: A sketch is provided since it relies on arguments
made in earlier works on adaptive fault detection schemes
in strictly positive real infinite dimensional systems [2].
Using the positive real condition (23) for the collocated
infinite dimensional system, one has that the derivative of
the Lyapunov functional (24) for the error system given
by (22) and (26) yields V̇ ≤ −2µ|e(t)|2X for t ≥ td . For
such a system, the operator A(t) in the evolution of the
augmented system (27) satisfies all the conditions laid for
in [10] and therefore one has well-posedness of (27) with
norm convergence of the state estimation error e(t) to zero.
If the persistence of excitation condition is also satisfied, then
one can immediately claim functional convergence. For the
interval [τ f ,τd), the adaptation is not activated due to dead-
zone modification and thus the error system is governed by
(22) with f̃ replaced by − f . Using the assumption that the
presence of that fault function ensures a bounded f (y) (via
a Lipschitz condition) and via the assumption of Ao being
the generator of an exponentially stable semigroup, one can
argue well-posedness and boundedness of e(t).

C. Adaptive fault accommodation using RKHS

The nominal control signal for the healthy system (4)
is denoted by u0(t) and can be chosen as static feedback
(function of y) or as dynamic feedback (function of x̂). For

simplicity, it is assumed that this nominal controller is

u0(t) =−Kx̂(t), (29)

where the feedback operator K ∈ L(V ∗,R1) is such that
the closed-loop operator A−BK generates an exponentially
stable semigroup on X . The closed-loop system consisting
of the healthy system (4), the observer (6) with the control
u(t) = u0(t) can equivalently be expressed in terms of the
healthy system (4), the control u(t) = u0(t) and the error
system ė(t) = Aoe(t) via

d
dt

[
x(t)
e(t)

]
=

[
A−BK BK

0 Ao

][
x(t)
e(t)

]
. (30)

It is easily seen that the system (30) is exponentially stable.
When a fault is present in the system, the control (29)

may not be able to guarantee the same performance as for the
healthy system. To accommodate for the presence of the fault
function f (y) the control signal must be reconfigured so that
it “cancels” the effects of f (y). This is done by subtracting
the estimate of the fault function

u(t) = u0(t)−λy(t)( f̂ ), t ≥ td . (31)

For t ≥ td , the closed-loop system with this controller is

ė = Aoe+Bλy( f̃ )

ẋ = (A−BK)x+BKe+Bλy( f̃ )
˙̃f =−Gλ∗

y (Dr0 [B
∗e])

Expressed in terms of the aggregate state ζ(t) =
(e(t),x(t), f̃ (t)) for t ≥ td , the closed-loop system (3), (21),
(28) and (31) is

ζ̇ =




Ao 0 Bλy ([ · ])
BK A−BK Bλy ([ · ])

−Gλ∗
y (Dr0 [B

∗[ · ]]) 0 0


ζ. (32)

The following lemma summarizes the well-posedness of the
fault accommodated closed-loop system.

Lemma 3: The fault accommodating controller (31) en-
sures that the closed-loop system (32) is well-posed and

lim
t→∞

|e(t)|2X = 0.

The convergence rate of the state x to a residual set dictated
by λy( f̃ ) is the same as the convergence rate of the healthy
system to zero. Convergence of the actual state to zero can
be achieved either by imposing persistence of excitation or
an L2 bound on the functional error f̃ , see [11].

IV. SPECIAL CASE: FINITE DIMENSIONAL SYSTEMS

In the finite dimensional case the Hilbert/Sobolev spaces
collapse and are equal to the state space with V = X =V ∗ =
R

n. The linear system is given by
ẋ(t) = Ax(t)+Bu(t)+β(t − τ f )Bλy(t)( f ), in R

n,

y(t) =Cx(t)
(33)

where the state matrix A ∈ R
n×n, the input matrix B ∈

R
n×1 and the output matrix C ∈ R

1×n. In this case, we do
not require collocation and therefore we can impose the
general condition for SPR systems [1], whereby the triple
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Σ = (A,B,C) satisfies the matrix Lur’e equations

AT
o P+PAo =−W TW, BT P =C. (34)

The associated adaptive observer is symbolically identical
to the infinite dimensional counterpart in (21) and given by

˙̂x(t) = Ax̂(t)+L(y(t)−Cx̂(t))+Bu(t)+Bλy(t)( f̂ ), (35)

where x̂(t)∈R
n is the adaptive estimate of x(t) and f̂ is still

the adaptive estimate of f . The error equation is

ė(t) = (A−LC)e(t)+Bλy(t)( f̃ ). (36)

The finite dimensional version of the Lyapunov functional
(24) is given by

V (e, f̃ ) = eT (t)Pe(t)+ 〈G−1 f̃ (t), f̃ (t)〉Q (37)

where G ∈ L(Q,Q) is the same adaptive gain operator as in
(24). The derivative of this V along (36) is

V̇ = eT PAoe+ eT AT
o Pe+2eT PBλy(t)( f̃ )+2〈G−1 ˙̃f , f̃ 〉Q

=−eTW TWe+2εT λy(t)( f̃ )+2〈G−1 ˙̃f , f̃ 〉Q
(38)

Using the same manipulations as in the infinite dimensional
case, the third term is

εT λy(t)( f̃ ) = 〈ε,λy(t)( f̃ )〉Y = 〈εκy(t), f̃ 〉Q = 〈λ∗
y(t)(ε), f̃ 〉Q

which provides an adaptive law identical to (25).
Lemma 4: Assume that the finite dimensional system in

(33) satisfies the more general form of the strictly positive
real system via Lur’e equations (34). Then the adaptive
detection and diagnostic observer (35), along with the robust
learning scheme that uses a dead-zone (28) ensures that no
adaptation of f̂ takes place prior to the presence of the fault
and detects the presence of the fault the instance the residual
signal ε(t) =Ce(t) exceeds the time-varying threshold

r0(t) = |C|e−λ(A−LC)t |e(0)|.
Then the accommodating controller u=−Kx̂−λy( f̂ ) ensures
that the closed-loop system will have a performance close
to that of the healthy system and that the system with
its adaptive detection observer is a well-posed system in
R

n×R
n×Q with boundedness of all signals and asymptotic

convergence of the plant state x(t) and estimation error e(t).

V. NUMERICAL EXAMPLE AND CONCLUSIONS

Example 1: PDE with in-domain actuation and sensing. The
following PDE is considered in [0, ℓ] = [0,1]

xt(t,ξ) = a1xξξ(t,ξ)+a2xξ(t,ξ)

+1.5a1δ(ξ−ξs)
∫ ℓ

0
δ(ξ−ξs)x(t,ξ)dξ

+δ(ξ−ξs)(u(t)+β(t − τ f ) f (y(t)))

y(t) =
∫ ℓ

0
δ(ξ−ξs)x(t,ξ)dξ

with a1 = 0.01,a2 = 0.05 and the actuator location ξs =
0.251ℓ. The fault term was set as f (y) = 0.1y with an
abrupt fault profile given by β(t − τ f ) = H(t − 1.5). The
state feedback controller gain K was on LQR design with
cost functional described by ‖x(t)‖2 and 100u2(t). The filter
gain was L(ξ) = 2a1δ(ξ−ξs).
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Fig. 1: Example 1: Evolution of ε(t) and its threshold.
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Fig. 2: Example 1: Evolution of ‖x(t)‖: healthy case, faulty
with no accommodation and faulty with accommodation.

Radial basis functions (RBFs) were selected for the func-
tional estimation, with κy(q) = exp{− |y−q|2

2σ2 }. The standard
deviation was σ= 100

2
√

log(2)
with the means evenly distributed

in the interval [−10,10]. In the approximation of f (y),
via finite dimensional subspaces QN ⊂ Q, a total number
N = 41 of RBFs were used f (y) ≈ ∑N

i=1 θiκyi(·). For the
approximation of the PDE a Galerkin scheme was used with
a total of 50 elements.

Figure 1 depicts the evolution of the residual signal and
its time varying threshold. The presence of the fault was
detected at td = 5.034s resulting in a fault delay of τd =
3.534s. The state norm with and without the proposed fault
accommodation are depicted in Figure 2, where it is observed
that when the fault is accommodated, the performance ap-
proaches that of the healthy system.
Example 2: PDE with boundary actuation and sensing. We
consider

xt(t,ξ) = a1xξξ(t,ξ), x(0,ξ) = x0(ξ), 0 ≤ ξ ≤ ℓ,

x(t,0) = 0, xξ(t, ℓ) = u(t)+β(t − τ f )g(y),

y(t) = x(t, ℓ).

where a1 = 0.05, f (y) = 0.02y3, β(t − τ f ) = H(t − 2). In
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Fig. 3: Example 2: Evolution of ε(t) and its threshold.
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Fig. 4: Example 2: Evolution of ‖x(t)‖: healthy case, faulty
with no accommodation and faulty with accommodation.

this example, the state feedback controller gain K was based
on LQR design with cost functional defined by ‖x(t)‖2 and
25u2(t). The observer used a gain with kernel given by
L(ξ) = 10a1δ(ξ− ℓ).

Figure 3 depicts the evolution of the residual signal and
its time varying threshold. The presence of the fault was
detected at td = 3.036 a resulting in a fault delay of 1.036s.
Similarly, the state norm with and without the proposed
fault accommodation are depicted in Figure 4, where once
more it is observed that when the fault is accommodated,
the performance approaches that of the healthy system. The
functional error f (y(t))− f̂ (t,y(t)) is depicted in Figure 5,
where it is observed that when the dead-zone modification
is implemented, no adaptation takes place prior to the fault
declaration (td = 3.036) and converges to zero thereafter.

VI. CONCLUSIONS

An adaptive fault detection and diagnosis scheme for
a class of positive real infinite dimensional systems was
proposed. The fault function, given by a nonlinear function
of the output, was diagnosed via an adaptive functional
estimation scheme utilizing a reproducing kernel Hilbert
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Fig. 5: Example 2: Evolution of error f (y(t))− f̂ (t,y(t)).

space as the parameter space. This resulted in both the state
and parameter spaces be Hilbert spaces. Well-posedness and
convergence were summarized. The finite dimensional case
was treated as a special case of the infinite dimensional
case and which allowed for more general output matrices.
Extensive simulation studies on parabolic PDEs with in-
domain and boundary actuation and sensing were presented.

Immediate extensions involve strictly positive real infinite
dimensional systems where the input-output collocation con-
dition is no longer assumed and a more general operator
Lur’e equation is used along with the effects of partial
persistence of excitation on the functional convergence.
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