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Abstract— This paper presents a new formulation of consen-
sus filters for parabolic PDEs. Using modal decompositions, the
information a given distributed filter transmits to and receives
from the remaining networked filters depends on the modal
information needed. If a given distributed filter can completely
reconstruct a specific mode or modes of the PDE, then it does
not need any information from any of the networked filters.
Similarly, if a distributed filter cannot adequately reconstruct a
given mode, then it receives information from the filter that can
completely reconstruct that specific mode. This then presents
a connectivity which is based on the information needed.
This consensus protocol which is dictated by the information
a filter does not have but needs, is essentially a projection
of information needed onto the unobservable space. This is
demonstrated for a diffusion PDE in 1D and subsequently its
abstraction is formulated for Riesz-spectral systems. Numerical
studies demonstrate the proposed modal consensus filters.

I. INTRODUCTION

A new paradigm of consensus protocols for distributed fil-
ters of PDEs is examined. Earlier works on distributed filters
for PDEs were given a prescribed communication topology
and had to design the consensus gains in order for each filter
to synchronize [1], [2], [3], [4], [5], [6], [7], [8]. Here, the
information transmitted is on a need-basis and constitutes the
main contriobution of this work. A filter transmits its state
estimate information only to the distributed filters that need
this specific information. And in that case, it only transmits
the specific information customised for each filter. Similarly,
a filter only receives very particular information from filters
that have done a better job at reconstructing specific modes
of the PDE. Thus, the bi-directional information sharing is
on a need-basis and only the experts transmit the needed
information. This modal consensus filter architecture avoids
superfluous information transmitted to the networked filters.

The problem is formulated in Section II for the 1D
diffusion PDE which is excited by specific modes and whose
response is given by a finite sum of the modal expansion.
In order to link sensor locations to the distributed filters, it
is assumed that a given sensor, or sensor group, can have a
larger modal observability of specific modes over the other
sensors. The modal consensus filters are presented in Sec-
tion III. The abstraction and generalization of the proposed
modal consensus filters is summarized in Section IV for
PDEs that can be represented by Riesz-spectral systems.
Numerical results with conclusions follow in Section V.
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II. PROBLEM FORMULATION

The key aspects of the proposed multi-band consensus
filters will be demonstrated via the 1D diffusion PDE and in
a gradual manner the design of such consensus filters will
be extended to a general class of PDEs. The PDE is

∂x(t,ξ)
∂t

= κ
∂2x(t,ξ)

∂ξ2 +β(ξ)u(t), (1)

where x(t,ξ) denotes the state at time t ∈ R
+ and spatial

location ξ ∈ (0, ℓ) = Ω. The parameter κ denotes the thermal
diffusivity and the spatial function β(ξ) denotes the spatial
distribution of the actuating device. The associated control
signal is denoted by u(t). It is assumed that Dirichlet
boundary conditions hold with x(t,0) = x(t, ℓ) = 0.

A. Modal decomposition and observability

Starting with the homogeneous case, i.e., u = 0, one can
write the solution to (1) in a series expansion

x(t,ξ) =
∞

∑
i=1

αi(t)φi(ξ). (2)

The functions φi(ξ), i = 1, . . . ,∞ are the modes and using
established results on the solution of the eigenvalue problem
for (1) with Dirichlet boundary conditions [9], one obtains

φi(ξ) =
√

(2/ℓ) sin(iπξ/ℓ) , i = 1, . . . ,∞, (3)

with the associated eigenvalues given by

λi =−κ(iπ/ℓ)2 , i = 1, . . . ,∞. (4)

To appreciate the effects of the sensor location, assume
that a pointwise sensor with centroid at location ξs ∈ Ω
provides process measurements

y(t) =
∫ ℓ

0
δ(ξ−ξs)x(t,ξ)dξ = x(t,ξs). (5)

For argument’s sake, assume that the initial condition
x(0,ξ) = x0(ξ) is given by x0(ξ) = x0kφk(ξ), i.e. the initial
condition is equal to the kth mode. Using (2) in (1), one has

∞

∑
i=1

α̇i(t)φi(ξ) =
∞

∑
i=1

λiαi(t)φi(ξ).

Multiplying with a test function equal to the jth eigenfunction
and integrating over the spatial domain, one arrives at

∞

∑
i=1

α̇i(t)
∫ ℓ

0
φi(ξ)φ j(x)dξ =

∞

∑
i=1

λiαi(t)
∫ ℓ

0
φi(ξ)φ j(ξ)dξ. (6)

Using the initial condition x0(ξ) = x0kφk(ξ) and the orthog-
onality of the eigenfunctions, (4) reduces to

α̇k(t) = λkαk(t), αk(0) = x0k, (7)

with a solution αk(t) = x0keλkt and subsequently x(t,ξ) =
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x0keλktφk(ξ). The output in (5) is now given by

y(t) =
∫ ℓ

0
δ(ξ−ξs)x0keλktφk(ξ)dξ = x0keλktφk(ξs).

In terms of the eigenfunctions (3), the state and output are

x(t,ξ) = x0k

√
2/ℓeλkt sin(kπξ/ℓ) ,

y(t) = x0k

√
2/ℓeλkt sin(kπξs/ℓ) .

(8)

Examination of (8) has that for x0k 6= 0, the state x(t,ξ) is
nonzero and time-varying and that it eventually converges
to zero exponentially due to (4). However, the output signal
y(t) may be zero for certain sensor locations. Indeed, when
ξs is a zero of φk(ξ) =

√
2/ℓ sin(kπξ/ℓ), i.e. ξs = nℓ/k, n ∈

Z
+,n ≥ k, then the output is y(t) = 0 for all t ≥ 0.
As it will be examined further, one can easily see that

when the input u(t) is selected in a specific way in terms
of the weighted sum of few eigenfunctions and the initial
condition is similarly chosen as a weighted sum of the same
few eigenfunctions, then the state will have a similar finite
series expansion. When a sensor is placed at a spatial location
that coincides with the zeros of those few eigenfunctions, the
output once again will be equal to zero. While the state will
be non-zero, the process output will be identically zero for
all times. An attempt to design an observer for such a system
will simply result in a naı̈ve observer.

To demonstrate the effects of the sensor locations, it is
assumed that the input term β(ξ)u(t) and initial condition
x0(ξ) are expressed in terms of the first three modes

β(ξ)u(t) =
3

∑
i=1

uiφi(ξ), x0(ξ) =
3

∑
i=1

x0iφi(ξ). (9)

Remark 1: Please note that one seldom has an actuating
device with spatial distribution β(ξ) equipped with such a
modal discrimination. Similarly, the initial condition in (9)
also is artificial and one almost never has such a modal
content in x0(ξ). However, the use of such a specific and
artificial expansion is made to accentuate the proposed work.
In the abstract representation in Section IV, such assumptions
are removed since input terms have no effect in filter design.

In a manner similar to (6), (7) the modal components of
the solution to (1) are described by

α̇i(t) = λiαi(t)+ui, αi(0) = x0i, i = 1,2,3, (10)

yielding the modal solutions

αi(t) = eλitx0i +
eλit −1

λi
ui, i = 1,2,3, (11)

and the state solution

x(t,ξ) =
(

eλ1tx01 +
eλ1t−1

λ1
u1

)√
(2/ℓ) sin(1πξ/ℓ)

+
(

eλ2tx02 +
eλ2t−1

λ2
u2

)√
(2/ℓ) sin(2πξ/ℓ)

+
(

eλ3tx03 +
eλ3t−1

λ3
u3

)√
(2/ℓ) sin(3πξ/ℓ).

(12)

The question that arises now, is where to put the sensor?
To obtain an insight, consider the three modes weighted
by

√
ℓ/2 (i.e. plot the sinusoids). Examining Figure 1, if

a sensor is placed at the location ξs = 0.5 that maximizes
φ1(ξ), one has that φ2(0.5) = 0 and φ3(0.5) =−1.
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Fig. 1: Plot of modes sin(iπξ/ℓ), i = 1,2,3 in [0,1].

This means that a sensor placed at ξs = 0.5 will not be
able to provide any information about the second mode of
(12). Using for now the absolute value of the mode at the
selected sensor location as a measure of “modal observabil-
ity” consider the sensor locations ξs = 1/2,1/3,1/6. Table I
summarizes the results

mode ξs = 1/2 ξs = 1/3 ξs = 1/6
1 |φ1(ξs)|= 1 |φ1(ξs)|=

√
3/2 |φ1(ξs)|= 1/2

2 |φ2(ξs)|= 0 |φ2(ξs)|=
√

3/2 |φ2(ξs)|=
√

3/2
3 |φ3(ξs)|= 1 |φ3(ξs)|= 0 |φ3(ξs)|= 1

Table I. Level of “modal observability” expressed as |sin(iπξs)|.

• A sensor placed at ξs = 1/2 can completely observe
modes 1 and 3 and cannot observe mode 2.

• A sensor placed at ξs = 1/3 can partially observe modes
1 and 2 and cannot observe mode 3.

• A sensor placed at ξs = 1/6 can partially observe modes
1 and 2 and can observe mode 3 completely.

Several conclusions follow from the above:
• A (centralized) filter with a sensor at ξs = 1/6, which

yields observability of all three modes, can efficiently
reconstruct the process state whose solution is given by
(12). While it completely observes mode 3, it partially
observes modes 1 and 2.

• A filter with two sensors at ξs = 1/6 and ξs = 1/2 can
efficiently reconstruct the process state; it completely
observes modes 1 and 2 and partially observes mode 2.

• A filter with three sensors at ξs = 1/2, ξs = 1/3 and at
ξs = 1/6 can efficiently reconstruct the process state;
it completely observes modes 1 and 2 and partially
observes mode 2.

• A filter with three sensors at ξs = 1/2, ξs = 1/4 and at
ξs = 1/6 can completely reconstruct the process state;
it completely observes all three modes collectively.

When different modes other than the first three modes
are present in (12), then a single sensor location will never
be able to provide complete observability for all modes.
In fact, it may have zero modal observability for certain
modes. A network of sensors placed at different locations
may collectively have observabilty of all modes. However
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filter estimate mode 1? estimate mode 2? info needed
x̂1 Y N mode 2 estimate
x̂2 N Y mode 1 estimate

Distributed filters and specialized information needed.

such an obsevability may not be complete for each mode,
i.e. the value of the modal observability will not be unity
for all modes. One can argue that with an adequate number
of sensors placed at specific locations will produce a system
that has partial modal observability of all modes and can
subsequently reconstruct the process state adequately.

B. Distributed modal filters and modal consensus protocol

Against the centralized filter architecture is the decentral-
ized filter architecture that employs multiple filters that may
share information. One may consider the same number of
filters as the number of modes present in a response like
(12). For each sensor that is placed in a location that has a
complete modal observability over a single mode and perhaps
a partial modal observability over few other modes, one can
associate a single filter. Thus each filter will be able to
completely reconstruct a specific mode and can “partially’
reconstruct few other modes.

The question is how to share the information so that all
such distributed filters agree with each other. A consensus
protocol can be implemented by all such distributed filters
and the learning abilities will then be dictated by the commu-
nication topology and the appropriate selection of consensus
weights. However, one aspect of this information sharing will
be explored here: each filter must share what it knows best
to the remaining filters it communicates with. Not only that,
but each filter should receive the necessary information it
needs from the remaining filters. As an example consider
two filters denoted by x̂1(t,ξ) and x̂2(t,ξ), with a single
sensor each. If each filter can only reconstruct completely
one mode and not a second mode, one will have the fol-
lowing: x̂1(t,ξ) can reconstruct mode 1 and not reconstruct
mode 2. Similarly, x̂2(t,ξ) can reconstruct mode 2 and not
reconstruct mode 1. The first filter needs only information
about mode 2 and filter x̂2(t,ξ) needs only information about
mode 1. A standard consensus protocol will send all modal
information to each distributed filter. Thus we have that
x̂1(t,ξ) will receive information from x̂2(t,ξ) that contains
estimates of modes 1 and 2; however x̂1(t,ξ) does not need
any information on mode 1, since it does a superb job in
reconstructing it. The reverse is observed when filter x̂2(t,ξ)
receives information from x̂1(t,ξ) that contains estimates
on modes 1 and 2; however x̂2(t,ξ) does not need any
information on the estimate of mode 2 since it is doing a
better job to reconstruct mode 2 than x̂1(t,ξ) does. Table II
summarizes the relevant information needed for each filter
to each consensus. A generic consensus protocol will share
unnecessary information between the distributed filters.

Therefore, a modification to a consensus protocol is war-
ranted to ensure that only useful information is transmitted
from one filter and that superfluous information is not shared.
Similarly, a given filter will receive only useful information
from the remaining filters that have a better ability to

reconstruct specific modes that this filter cannot reconstruct
and must hence receive. In other words, each filter will get
the modal information it does not have from the “experts”.

This in fact constitutes the main contribution of this paper
and is presented in the next section for a system that has
a response similar to (12). Subsequently an attempt will be
made to carefully extend this to a general class of PDEs with
response given by a more general expression than (12).

III. MULTI-BAND MODAL CONSENSUS FILTERS

Assume that the system has a response given by (12) and
that three sensors placed at locations ξs1, ξs2, and ξs3 provide
process information

yi(t) =Cix(t) =
∫ ℓ

0
δ(ξ−ξsi)x(t,ξ)dξ = x(t,ξsi), (13)

for i = 1,2,3, where Ci are the output operators associated
with the sensor spatial distributions δ(ξ−ξsi). To each sensor
we associate a single filter and thus we have the following
filters used to reconstruct (1) that has the response (12)

∂x̂1

∂t
= κ

∂2x̂1

∂ξ2 +βu+L1

(
y1 −

∫ ℓ

0
δ(ξ−ξs1)x̂1 dξ

)
,

∂x̂2

∂t
= κ

∂2x̂2

∂ξ2 +βu+L2

(
y2 −

∫ ℓ

0
δ(ξ−ξs2)x̂2 dξ

)
,

∂x̂3

∂t
= κ

∂2x̂3

∂ξ2 +βu+L3

(
y3 −

∫ ℓ

0
δ(ξ−ξs3)x̂3 dξ

)
,

(14)

where we have suppressed the dependence on t and ξ
for brevity. The spatial functions Li(ξ), i = 1,2,3 are the
filter kernels and correspond to the adjoints of the observer
operator gains. They are selected either using a Luenberger
observer design or Kalman filter design with the property
that an associated estimation error will converge to zero.
Each filter in (14) admits a truncated series expansion as
the process state x(t,ξ) does, and so one has

x̂i(t,ξ) =
3

∑
i=1

α̂i j(t)φi(ξ) (15)

where α̂i j(t) denotes the estimate of the jth modal weight
α j(t) in (12) and the first superscript denotes the ith filter;
e.g. α̂23(t) is the 3rd modal component of filter x̂2(t,ξ).

Let us examine the innovation terms in (14). Define

εi(t) = yi(t)−
∫ ℓ

0
δ(ξ−ξsi)x̂i(t,ξ)dξ

=
3

∑
j=1

(α j(t)− α̂i j(t))φ j(ξsi), i = 1,2,3.
(16)

Then the modal components of the ith filter associated with
yi(t) are given by

˙̂αi1 = λ1α̂i1 +u1 + εi(t)
∫ ℓ

0
Li(ξ)φ1(ξ)dξ

˙̂αi2 = λ2α̂i2 +u2 + εi(t)
∫ ℓ

0
Li(ξ)φ2(ξ)dξ

˙̂αi3 = λ3α̂i3 +u3 + εi(t)
∫ ℓ

0
Li(ξ)φ3(ξ)dξ.

(17)

To demonstrate the need for “usefull and necessary” infor-
mation to be shared amongst the filters in (17), for now let
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us make the rather stringent assumption∫ ℓ

0
Li(ξ)φi(ξ)dξ 6= 0,

∫ ℓ

0
Li(ξ)φ j(ξ)dξ = 0, i 6= j. (18)

Then the three filters are given by

filter 1





˙̂α11 = λ1α̂11 +u1 + ε1

∫ ℓ

0
L1(ξ)φ1(ξ)dξ,

˙̂α12 = λ2α̂12 +u2,

˙̂α13 = λ3α̂13 +u3,

(19)

filter 2





˙̂α21 = λ1α̂21 +u1,

˙̂α22 = λ2α̂22 +u2 + ε2

∫ ℓ

0
L2(ξ)φ2(ξ)dξ,

˙̂α23 = λ3α̂23 +u3,

(20)

filter 3





˙̂α31 = λ1α̂31 +u1,

˙̂α32 = λ2α̂32 +u2,

˙̂α33 = λ3α̂33 +u3 + ε3

∫ ℓ

0
L3(ξ)φ3(ξ)dξ.

(21)

Equations (19)–(21) will be used in the error analysis which
will provide the necessary modifications to (14) in order to
include the appropriate consensus terms. It is observed that
filter 1 can only reconstruct mode 1, filter 2 can reconstruct
mode 2 and filter 3 can reconstruct mode 3. Thus we have

• filter 1 needs information from filter 2 regarding mode
2 and from filter 3 regarding mode 3,

• filter 2 needs information from filter 1 regarding mode
1 and from filter 3 regarding mode 3,

• filter 3 needs information from filter 1 regarding mode
1 and from filter 2 regarding mode 2.

Prior to utilizing the above in the construction of the con-
sensus terms in (19)–(21), we consider the filter kernels
Li(ξ) and impose additional conditions to (18). Consider for
example the estimation error between mode 1 of x(t,ξ) and
of mode 1 of x̂(t,ξ). Using (10), (16) and (19), we have

d
dt

(α1 − α̂11)=

(
λ1 −φ1(ξs1)

∫ ℓ

0
L1(ξ)φ1(ξ)dξ

)
(α1 − α̂11) ,

where we have made the implicit assumption from (18) that
the innovation terms in (16) simplify to

εi(t) = (αi(t)− α̂ii(t))φi(ξsi), (22)

i.e. φi(ξs j) = 0. By selecting now the filter kernels Li(ξ) as∫ ℓ

0
Li(ξ)φi(ξ)dξ = mi

∫ ℓ

0
δ(ξ−ξsi)φi(ξ)dξ

= miφi(ξsi),

(23)

for some scalar gains mi > 0, we have that the modal
estimation errors are

d
dt

(α1 − α̂11) =
(
λ1 −m1φ2

1(ξs1)
)
(α1 − α̂11) .

Similar results can be obtained for the other cases and thus
d
dt

(αi − α̂ii) =
(
λi −miφ2

i (ξsi)
)
(αi − α̂ii) . (24)

The exponential convergence of the above modal estimation

errors immediately follows with the aid of (4). What (24)
reveals is that each of the three filters can completely
reconstruct the mode associated with its modal observability.
This strengthens the above observations on what modal
information is needed by each filter.

We now present the design for the modal consensus filters.
The first modal component of filter 1 does not need to receive
any information. The second and third components of filter
1 in (19) are now modified

˙̂α11 = λ1α̂11 +u1 + ε1(t)
∫ ℓ

0
L1(ξ)φ1(ξ)dξ,

˙̂α12 = λ2α̂12 +u2 + f12

˙̂α13 = λ3α̂13 +u3 + f13

(25)

The functions f12, f13 denote the consensus terms that filter 1
requires and they are interpreted as follows: fi j represents the
ith filter and the information it receives is from the jth filter.
Comparing the error between the second modal component
of filter 2 and the second modal component of filter 1 in
(25), we have

d
dt

(α̂22 − α̂12) = λ2 (α̂22 − α̂12)

+ε2(t)
∫ ℓ

0
L2(ξ)φ2(ξ)dξ− f12

= λ2 (α̂22 − α̂12)− f12

+m2φ2
2(ξs2)(α2 − α̂22 + α̂12 − α̂12)

= (λ2 −m2φ2
2(ξs2))(α̂22 − α̂12)

+m2φ2
2(ξs2)(α2 − α̂12)− f12.

Using (13), the term m2φ2
2(ξs2)(α2 − α̂12) is

m2φ2
2(ξs2)(α2 − α̂12)

= (y2(t)−C2x̂1(t))
∫ ℓ

0
L2(ξ)φ2(ξ)dξ,

(26)

where y2 denotes the measurement signal from the second
sensor and the signal C2x̂1(t) is the value of the state of filter
1 evaluated at the second sensor. Using (26), a logical choice
of f12 in (25) is

f12 = (y2 −C2x̂1)
∫ ℓ

0
L2(ξ)φ2(ξ)dξ+q12(α̂22 − α̂12) (27)

where q12 > 0 is a scalar consensus weight. Substitution of
(27) in (25) results in

d
dt

(α̂22 − α̂12) =
(
λ2 −m2φ2

2(ξs2)−q12
)
(α̂22 − α̂12) . (28)

Equation (28) reveals that the consensus error α̂22 − α̂12

exponentially converges to zero with a rate faster than a2 −
α̂22 does. The remaining term f13 in (25) can be determined
in a similar fashion. The same applies with the additional
terms in filter 2 of (20) and in filter 3 of (21). These are
stated in the lemma below.

Lemma 1: Consider the system (1) which admits a solu-
tion similar to (12). Assume that the filter kernels are selected
using (18) and (23). Then the proposed multi-band modal
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consensus filters given by

filter 1





˙̂α11 = λ1α̂11 +u1 + ε1

∫ ℓ

0
L1(ξ)φ1(ξ)dξ,

˙̂α12 = λ2α̂12 +u2 + f12,

˙̂α13 = λ3α̂13 +u3 + f13,

(29)

filter 2





˙̂α21 = λ1α̂21 +u1 + f21,

˙̂α22 = λ2α̂22 +u2 + ε2

∫ ℓ

0
L2(ξ)φ2(ξ)dξ,

˙̂α23 = λ3α̂23 +u3 + f23,

(30)

filter 3





˙̂α31 = λ1α̂31 +u1 + f31,

˙̂α32 = λ2α̂32 +u2 + f32,

˙̂α33 = λ3α̂33 +u3 + ε3

∫ ℓ

0
L3(ξ)φ3(ξ)dξ.

(31)

with the consensus terms given by

f12 = (y2 −C2x̂1)

∫ ℓ

0
L2(ξ)φ2(ξ)dξ+q12(α̂22 − α̂12)

f13 = (y3 −C3x̂1)
∫ ℓ

0
L3(ξ)φ3(ξ)dξ+q13(α̂33 − α̂13)

f21 = (y1 −C1x̂2)
∫ ℓ

0
L1(ξ)φ1(ξ)dξ+q21(α̂11 − α̂21)

f23 = (y3 −C3x̂2)
∫ ℓ

0
L3(ξ)φ3(ξ)dξ+q23(α̂33 − α̂23)

f31 = (y1 −C1x̂3)
∫ ℓ

0
L1(ξ)φ1(ξ)dξ+q31(α̂11 − α̂31)

f32 = (y2 −C2x̂3)
∫ ℓ

0
L2(ξ)φ2(ξ)dξ+q32(α̂22 − α̂32)

(32)

ensure that the filters (29)–(31) reconstruct the process state
of (1) with the modal errors satisfying

d
dt

(αi − α̂ii) =
(
λi −miφ2

i (ξsi)
)
(αi − α̂ii) (33)

for i = 1,2,3 and the consensus errors satisfying
d
dt

(α̂ii − α̂ ji) =
(
λi −miφ2

i (ξsi)−q ji
)
(α̂ii − α̂ ji) (34)

for i, j = 1,2,3. Furthermore, as a consequence of the triangle
inequality one has

lim
t→∞

|αi − α̂ ji|= 0 (35)

for i, j = 1,2,3, i 6= j, with exponential convergence having
a rate at least λi −miφ2

i (ξsi), i = 1,2,3.

Proof: Consider (10), the first equation of (29), the
second equation of (30) and the third equation of (31)

d
dt

(αi − α̂ii) = λi (αi − α̂ii)− ε1

∫ ℓ

0
L1(ξ)φ1(ξ)dξ.

Using (22) and (23), the above produces (33). Using the α̂ ji

components from (29)–(31) along with the definitions of the

consensus terms in (32), one has
d
dt

(α̂ii − α̂ ji) = λi (α̂ii − α̂ ji)+ εi

∫ ℓ

0
Li(ξ)φi(ξ)dξ− f ji

=
(
λi −miφ2

i (ξsi)−q ji
)
(α̂ii − α̂ ji) .

Finally, using the triangle inequality

|αi − α̂ ji| = |αi − α̂ii + α̂ii − α̂ ji|
≤ |αi − α̂ii|+ |α̂ii − α̂ ji|

and the convergence from (33), (34), one obtains (35).
As a first step in considering the modal consensus filters

for a more general class of PDEs with a response that has
more than three modes present, the modal consensus filters
(29)–(31) must be written in the form (14). Additionally, the
assumption (18), (23) can be relaxed. In such a case, each
filter in (29)–(31) will have additional residual terms that will
not cancel out and must be absorbed by the consensus terms
fi j. Please note that when Li(ξ) = miδ(ξ−ξsi), one may not
ensure that each sensor location ξsi will coincide with the
zeros of all eigenfunctions φ j(ξ) except φi(ξ). Referring to
Table I, when ξs = 1/6, one had φi(1/6) 6= 0 for = 1,2,3.

IV. ABSTRACTION OF MODAL CONSENSUS FILTERS

(29)–(31)

We consider PDEs expressed as a Riesz-spectral system

ẋ(t) = Ax(t)+Bu(t) (36)

over the state space X , having three different outputs

y1(t) =C1x(t), y2(t) =C2x(t), y3(t) =C3x(t), (37)

produced by three different sensor groups. It is assumed that
each sensor group is represented by the output operator Ci,
i = 1,2,3 and is associated with a distinct set of eigenfunc-
tions. Each sensor group may not have the same number of
sensors as another group, but all three sensor groups have
more than one sensor each.

Define the projection operators Pi : X → X , i = 1,2,3, as-
sociated with each of the three sensor groups, as represented
by their output operators Ci, i = 1,2,3. We need to obtain
the three components of each filter x̂i(t) associated with the
process (36). Then the three filters are abstractly written as

˙̂x1 = Ax̂1 +Bu+L1(y1 −C1x̂1)+P2 f12 +P3 f13,

˙̂x2 = Ax̂2 +Bu+L2(y2 −C2x̂2)+P1 f21 +P3 f23,

˙̂x3 = Ax̂3 +Bu+L3(y3 −C3x̂3)+P1 f31 +P2 f32.

(38)

The consensus terms fi j are given by

fi j = L j(y j −C j(Pj x̂i)−Li(yi −Ci(Pj x̂ j))

−qi j(Pj x̂i −Pj x̂ j), i, j = 1,2,3, i 6= j.
(39)

Please notice that the term Li(yi −Ci(Pj x̂ j)) corresponds to
(18) when one selects the filter gains as Li = µiPiC∗

i , i =
1,2,3, for some scalar weights µi > 0, i = 1,2,3. In other
words, when the filter gains are selected as a scalar multiple
of the adjoint of the output operator associated with a sensor
group and projected onto the appropriate subspace, then the
consensus terms in (39) simplify to

fi j = L j(y j −C j(Pj x̂i)−qi j(Pj x̂i −Pj x̂ j), (40)
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Fig. 2: Evolution of estimation error norms ‖x− x̂i‖.

for i, j = 1,2,3, i 6= j. The scalar gains qi j are the consensus
weights that were similarly given in (32) for the simpler
case of each sensor group containing only one sensor. The
abstractions of (33)–(35) are given by

lim
t→∞

‖Pi(x− x̂i)‖= 0, lim
t→∞

‖Pi(x̂i − x̂ j)‖= 0,

and lim
t→∞

‖Pi(x− x̂ j)‖= 0.

V. NUMERICAL RESULTS AND CONCLUSION

For simplicity, consider (1) with κ = 0.01 having each
sensor group consisting of a single sensing device. In other
words, we consider sensors associated with three different
modes {φk1(ξ)}, {φk2(ξ)}, {φk3(ξ)}. For the specific case,
we selected k1 =, k2 = 2 and k3 = 4. Due to the fact
that φk3(ξ) =

√
2/ℓsin(4πξ/ℓ), the sensor locations were

different from the ones in Table I and were selected as
ξs1 = ℓ/2, ξs2 = ℓ/4 and ξs3 = ℓ/8. For simplicity, Li =
PiC∗

i , i = 1,2,3. The consensus weights were selected as
q12 = q13 = q21 = q23 = 20 and q31 = q32 = 50. The input
in (9) was selected as β(ξ)u(t) = φ1(ξ)+φ2(ξ)+φ3(ξ) and
x0(ξ) = φ1(ξ)+ 3φ2(ξ)+ 6φ3(ξ). To simulate (1), a total of
N = 14 modes were used in the truncated expansion (2) given
by x(t,ξ) = ∑N

i=1 αi(t)φi(ξ). This of course still produces a
solution similar to (12) due to the choice of u and x0 and is

x(t,ξ) =
(
eλ1t +(eλ1t −1)/λ1

)√
2/ℓ sin(1πξ/ℓ)

+
(
3eλ2t +(eλ2t −1)/λ2

)√
2/ℓ sin(2πξ/ℓ)

+
(
6eλ3t +(eλ3t −1)/λ3

)√
2/ℓ sin(4πξ/ℓ) .

with λ1 = −κ(1π)2, λ2 = −κ(2π)2 and λ3 = −κ(4π)2. The
evolution of the norm of the estimation errors x(t)− x̂i(t) is
depicted in Figure 2 for both the case of using the proposed
modal consensus filters in (38) and the case of distributed
noninteracting filters ( f1 j = 0).

To quantify the amount of disagreement of the three filters,
an appropriate metric is the disagreement potential ΨG(x̂) =
1
2 ∑(i, j)∈E ‖x̂i− x̂ j‖2 where G is the communication graph and
E denotes the set of edges of the graph G. For the infinite
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Fig. 3: Evolution of disagreement
√

∑i, j ‖x̂i − x̂ j‖2.

dimensional case this potential is given by

ΨG(x̂) =
1
2

(
‖x̂1 − x̂2‖2 +‖x̂1 − x̂3‖2 +‖x̂2 − x̂3‖2)

=
1
2

(∫ ℓ

0
(x̂1(t,ξ)− x̂2(t,ξ))2 dξ+

∫ ℓ

0
(x̂1(t,ξ)− x̂3(t,ξ))2 dξ

+
∫ ℓ

0
(x̂2(t,ξ)− x̂3(t,ξ))2 dξ

)

Figure 3 depicts
√

2ΨG(x̂) which shows the positive effects
of consensus in (38) in ensuring filter synchronization.

The proposed multi-band modal consensus filters dictated
the communication topology based on the value of informa-
tion generated and needed. An immediate extension would
require to modify this to an integrated sensor grouping and
subsequent sensor location together with consensus protocols
constrained by parameterized communication topologies.
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