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Abstract. We study the Becker–Döring bubblelator, a variant of the Becker–Döring coagulation-fragmentation4
system that models the growth of clusters by gain or loss of monomers. Motivated by models of gas evolution5
oscillators from physical chemistry, we incorporate injection of monomers and depletion of large clusters. For a6
wide range of physical rates, the Becker–Döring system itself exhibits a dynamic phase transition as mass density7
increases past a critical value. We connect the Becker–Döring bubblelator to a transport equation coupled with an8
integrodifferential equation for the excess monomer density by formal asymptotics in the near-critical regime. For9
suitable injection/depletion rates, we argue that time-periodic solutions appear via a Hopf bifurcation. Numerics10
confirm that the generation and removal of large clusters can become desynchronized, leading to temporal oscillations11
associated with bursts of large-cluster nucleation.12

Key words. bubblelator, oscillator, time periodic solution, growth process, injection, depletion, Hopf bifurcation13

AMS subject classifications. 68Q25, 68R10, 68U0514

1. Introduction. Becker and Döring [5] provided one of the original descriptions of a mech-15

anism of particle growth in the theory of nucleation from supersaturated vapor. The main as-16

sumptions of their model are that individual clusters consist of atomic parts called monomers,17

and that the growth and shrinkage of clusters occurs only by the addition and removal of single18

monomers. Although this process is not necessarily realized by chemical kinetics, it is convenient19

to be interpreted as a reaction network of the form20

(1.1) {1}+ {k} ak−−−⇀↽−−−
bk+1

{k + 1} , k = 1, 2, 3, . . . .21

As noted by Slemrod [34], the Becker-Döring equations provide perhaps the simplest model capable22

of a realistic description of several phenomena associated with the dynamics of phase changes.23

Starting from the seminal work of Ball, Carr and Penrose [2], the mathematical theory for these24

equations has been developed in great detail. Many aspects of the long-time behavior of solutions25

and the implications for the emergence of phase transitions are understood, but there are also still26

open questions; see [19] for a recent review.27

In this work we add to (1.1) two reaction mechanisms, which are motivated by the dynamics of28

chemical oscillators, and in particular bubblelators, also known as gas evolution oscillators (cf. [35,29

8, 39, 4]). First, we suppose monomers are injected into the system at a constant source rate S > 0:30

(1.2) ∅ S−→ {1} .31
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Second, we suppose clusters are removed at a rate proportional to a power law with removal32

coefficient R > 0 and exponent r ≥ 0 :33

(1.3) {k} Rkr

−−→ ∅, k = 2, 3, . . . .34

The resulting chemical reaction network (1.1), (1.2), (1.3) is open and no longer satisfies a detailed35

balance condition, in contrast to (1.1) alone. By consequence, solutions may no longer dissipate36

free energy, and it becomes unclear whether long-time convergence to equilibrium always holds,37

or whether some more complicated dynamic behavior becomes possible. In this work we will38

provide evidence for the persistence of oscillations in time for a suitable approximate model of the39

network (1.1), (1.2), (1.3).40

1.1. The classical Becker–Döring model. The Becker–Döring equations [5] form an infi-41

nite system of kinetic equations that describes phase transitions in two-component mixtures where42

one of the phases has much smaller volume fraction than the other. In this case, the dilute phase43

consists of clusters of size k ∈ N, where k denotes the number of atoms, or monomers, in the cluster.44

The main assumption in the Becker–Döring theory is that clusters evolve only by gain and loss of45

monomers. If nk denotes the density of clusters with k monomers, and Jk denotes the net rate of46

the reaction in (1.1), the equations read47

∂tn1 = −J1 −
∞
k=1

Jk ,(1.4)48

∂tnk = Jk−1 − Jk , k ≥ 2 ,(1.5)49

Jk = akn1nk − bk+1nk+1 ,(1.6)5051

where ak, bk are the respective attachment and detachment rate coefficients. The system of equa-52

tions (1.4)-(1.6) conserves the total mass ρ; that is,53

(1.7)

∞
k=1

knk(t) =

∞
k=1

knk(0) = ρ .54

Following work in statistical mechanics done by Penrose and collaborators [28, 29, 30] to model the55

dynamics of phase transitions, we take the coefficients to be of the form56

(1.8) ak = kα , bk = kα

1 +

q

kγ


, with q > 0 , γ ∈ (0, 1) , α ∈ [0, 1) .57

The exponents α and γ depend upon the geometry of clusters and the dominant mechanism of58

monomer transport: For three-dimensional spheres dominated by diffusive transport, α = 1/3 and59

γ = 1/3, while if cluster growth is limited by reactions on the interface, we have α = 2/3 and γ = 1/3.60

In the two-dimensional situation we have γ = 1/2 and α = 0 and α = 1/2, respectively.61

The coefficient q arises from the Gibbs-Thomson law and is proportional to surface tension. It62

plays a key role in determining a critical cluster size kcrit during the process of nucleation, a process63

which will prove fundamental throughout this paper.64

We have chosen units for convenience such that the density of monomers in equilibrium with a65

planar phase boundary is66

zs = lim
k→∞

bk
ak

= 1.67
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This is also the maximum monomer concentration for which finite-mass steady states exist. The68

equilibrium state with this critical monomer concentration gives rise to a critical mass ρs > 069

such that for any ρ ∈ [0, ρs] an equilibrium solution n̄ exists, which then has n̄1 ≤ zs. For initial70

data with supercritical mass ρ > ρs, it has been established in [2, 29] that the solution converges71

weakly in the long-time limit to the equilibrium solution with density ρs. The excess mass ρ− ρs is72

transferred to larger and larger clusters as time proceeds and their evolution can be approximated73

by the classical LSW model for coarsening (see also [26, 33]). Furthermore, it has been shown in74

[28] that for certain initial data with small excess density it takes at least exponentially long time75

(in terms of the excess density) until large clusters are created. Even though the proof is for specific76

data only, one expects that such metastable behavior appears for all generic data. (See also [11] for77

numerical simulations.)78

1.2. The Becker–Döring model with injection and depletion. In this paper we are79

interested in the Becker–Döring equations with injection of monomers and depletion of large clusters.80

More precisely for a given source rate S > 0, removal rate R > 0 and removal exponent r ≥ 0, we81

consider the system82

∂tn1 = −J1 −
∞
k=1

Jk + S ,(1.9)83

∂tnk = Jk−1 − Jk −Rkrnk , k ≥ 2 ,(1.10)8485

with Jk as in (1.6) and coefficients as in (1.8).86

It is well documented in the chemistry literature that temporal oscillations can persist in87

chemical–physical systems in which a phase transition creates strong nucleation peaks that lead88

to rapid growth of supercritical agglomerations which are later removed. Specifically, the sys-89

tem (1.9)–(1.10) has many similarities to models of bubblelator dynamics describing oscillatory90

release of a gas (cf. [25, 1, 35, 31, 17]). For more background, we refer to Section 1.7.91

Our goal is to obtain oscillatory solutions for an approximation of the model (1.9)-(1.10) under92

suitable choices of the source term S and the removal term R. The rough heuristics explaining93

the appearance of oscillatory solutions are the following. For small S and R, the solution of (1.9),94

(1.10) first evolves as in the classical model without source and removal terms—indeed, it evolves to95

a metastable steady state with locally constant nonzero fluxes Jk. Slowly, the source term S kicks96

in and raises the monomer density to a supercritical value with a small positive excess n1−1 > 0 of97

order ε for small ε > 0. This triggers the creation (or nucleation) of clusters larger than a critical98

size. The nucleated supercritical clusters then grow by a process that depletes the monomer density99

by a smaller amount of order ε
1/γ which is nevertheless enough to shut down large-cluster creation.100

Large clusters eventually get destroyed, nucleation resumes, and the scenario repeats.101

In order for this picture to be realized, the source term S and the removal term R have to be102

chosen in such a way that all the relevant terms balance. At steady state, source-driven nucleation103

balances removal of very large clusters. But the time it takes for nucleated clusters to grow large104

enough for effective removal introduces a delay that allows creation and removal to get out of phase.105

1.3. Limit model. In Section 2 we identify the relevant scales, determine suitable S and R106

and derive a simplified model formally valid in the limit ε → 0. This consists of an evolution107

equation for a rescaled monomer density u, defined in terms of the excess monomer density via108

(1.11) n1 − 1 = ε+


ε

q

1/γ

u ,109
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and a transport equation for a rescaled density f of large clusters with rescaled continuous size110

x ∈ (0,∞). Section 2.5 contains the precise definition of the scales and a rescaled removal rate111

η > 0. Taking those for granted, we formally derive the system112

∂τu(τ) = 1−
 ∞

0

xαf(x, t), dx ,(1.12)113

∂τf(x, τ) + ∂x

xαf(x, τ)


= −ηxrf(x, τ) , x > 0 ,(1.13)114

xαf(x, τ) → eu(τ) , x → 0 .(1.14)115116

The key ingredients that go into the derivation of this system are the following. First, the distribu-117

tion of clusters for k around the critical size kcrit or smaller is taken as quasistationary, corresponding118

to constant-flux states for the Becker-Döring equations, which are parametrized by the monomer119

density. The transport equation arises by a continuum approximation to the difference equation120

(1.5) in the supercritical range x ≃ (k − kcrit)/X > 0, with size scale X exponentially large in121

ε. The two size regimes are related by matching fluxes around k ≃ kcrit. For the quasistationary122

states, a continuum approximation results in an Arrhenius law giving the exponential dependence123

on u in (1.14). The precise scaling of u by ε
1/γ leads to a change of order one in the Arrhenius124

factor in the boundary condition (1.14) when u has a change of order one.125

We remark that a simple computation yields the mass balance law126

(1.15) ∂τ


u(τ) +

 ∞

0

xf(x, τ) dx


= 1− η

 ∞

0

xr+1f(x, τ) dx.127

Hence, the total mass in the system increases though the influx of monomers in (1.12) at unit rate,128

and decreases due to the removal of large clusters on the right hand side of (1.13).129

1.4. Oscillations via Hopf bifurcation. For the approximate model (1.12)–(1.14), time-130

periodic solutions satisfy a delay-differential equation with infinite delay horizon. To our knowledge,131

a mathematically rigorous Hopf bifurcation theorem has been proven only for finite delay horizons.132

Nevertheless, we argue in Section 3 that Hopf bifurcations from stationary solutions should occur133

as one varies the removal parameter η. In particular, we make a careful analysis of the spectrum of134

the linearized problem around a steady state solution and track the dependence of the eigenvalues135

of the linearized operator upon the removal parameter η. We identify points where eigenvalues cross136

the imaginary axis transversely, and we perform a formal expansion to determine the direction that137

bifurcation should occur, which should indicate when stable periodic solutions appear. We provide138

analytical and numerical evidence regarding bifurcation points and their dependence on α and r in139

Section 4.140

1.5. Oscillations via desycronization of source and removal. In Figure 1 a numerical141

solution of the limit model (1.12)–(1.14) is shown. The oscillations are large amplitude, indicating142

that the chosen parameters are already far beyond the Hopf bifurcation point. The flux profiles in143

this regime develop an interesting structure involving the transport of rather sharp peaks, which144

one can understand in a physical way that we wish to explain.145

Before discussing that, we remark that stable oscillations should also exist in the full Becker–146

Döring model with injection and depletion (1.9), (1.10). The numerical computation of such oscilla-147

tions seems to be a challenging matter, however, due to the multiscale nature of the Becker–Döring148

system, as already observed in [11]. The main difficulty is that the scales associated to the problem149

depend exponentially on the small parameter ε. For instance, we obtain for ε = 0.1 that the typical150
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0 200 400 600

−20

−15

−10

−5

0 τ

0 200 400 600 800 1,000
10−12

10−6

100

x

0 200 400 600 800 1,000
10−12

10−6

100

0 200 400 600 800 1,000
10−12

10−6

100

0 200 400 600 800 1,000
10−12

10−6

100

0 200 400 600 800 1,000
10−12

10−6

100

Fig. 1: Time evolution of u (top left), and semi-log plots of flux xαf at times τ = 523 (top right),
τ = 533 and 543 (middle row), τ = 553 and 563 (bottom row). The times τ = 523, . . . , 563 are
indicated by circle marks in the top left plot. Parameters: η = 0.1, α = 1

3 , γ = 1
3 , r = 2

3 .

size of clusters that are involved in the dynamics of the system (1.9), (1.10) is of order 1012 with151

a typical time-scale of order 109 (cf. Subsection 2.5). For larger values of ε a numerical approach152

might be feasible, but the formal asymptotic approximation done in this paper may not apply.153

In Figure 2, different fluxes in the Becker–Döring model relevant for the description of the154

oscillation mechanism are shown, superimposed on a schematic and highly exaggerated plot of nk155

vs k. The first crucial quantity is the critical size kcrit, as in [28]. This depends on the monomer156

excess ε = n1−1, and is defined for simplicitiy here as the value of k for which akn1 − bk vanishes157

(cf. Section 2.1). For the rates (1.8) and recalling that zs = 1, it holds158

(1.16) kcrit =
q
ε

 1
γ

.159

In the following, the critical size kcrit is used to distinguish small from supercritical clusters. It also160

provides the relevant next scale for the monomer expansion in (1.11), since n1 − 1 = ε + u/kcrit.161

The first driving mechanism is the flux of mass through the small clusters to beyond the critical size162

kcrit, denoted by Jnuc. In the literature (cf. Friedlander [17]), this process is called homogeneous163

nucleation. Because this process is diffusion-dominated for k around kcrit, we obtain a boundary164

layer with size of order ε−
1/γ , resulting in an Arrhenius relation for the flux. This is reflected in the165

This manuscript is for review purposes only.



6 B. NIETHAMMER, R.L. PEGO, A. SCHLICHTING, AND J. J. L. VELÁZQUEZ
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Fig. 2: Illustration of transport mechanisms (not to scale). For explanation, see text.

limit model through the exponential boundary condition (1.14).166

A second flux Jcon depletes the monomer concentration through the mechanism of large-cluster167

growth by direct absorption of monomers, also called condensation. This flux is reflected in the168

limit model as the integral loss term in (1.12), and also leads to the transport term in (1.13).169

These two fluxes need to be balanced with the source term S, and the time-scale chosen ac-170

cordingly, which is done in a careful analysis of the scales in Section 2.5.171

Both systems, the Becker–Döring model (1.9)–(1.10) and the limit model (1.12)–(1.14), allow172

for stationary states with time-independent concentration of monomers, and we believe that these173

are stable for large depletion parameters R or η, respectively. However, our results indicate that174

time-periodic solutions of the limit model exist for small particle-removal rates.175

An explanation is that in this case clusters must grow very large for effective removal. This176

depletes the monomer concentration due to the condensation flux Jcon that drives the growth of177

large clusters, and leads to time delays in replenishing those clusters. It takes more time both178

to restart nucleation from a lower monomer level and to grow supercritical clusters to sizes large179

enough for removal. In this way the generation and removal of large clusters can desynchronize,180

resulting in temporal oscillations.181

In somewhat more detail, the mechanism for oscillations works as follows. Peaks in the size182

distribution of large clusters form through a process mediated by the sensitive (exponential) depen-183

dence of the nucleation rate upon the concentration of monomers: A sufficient excess of monomers184

above the critical concentration n1 = 1 triggers rapid growth of the number of supercritical clusters185

through nucleation. The creation of enough supercritical clusters then produces a large condensa-186

tion flux Jcon which forces the concentration of monomers to decrease in spite of the source term.187

This stops, or drastically slows, the nucleation reaction transferring mass through the critical size.188

The peak of supercritical clusters generated in this way then continues to be transported to ever-189

larger sizes by the condensation mechanism, which continues to consume monomers. At sufficiently190

large sizes, the rate that clusters are removed from the system becomes dominant and the peak is191

eliminated. This makes the condensation flux Jcon small again, which allows the source term to192
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force the monomer concentration higher, and start the cycle over.193

1.6. Sharp peak model. The mechanism for oscillations just described can be implemented194

in a simple model with only two elements, namely the excess monomer density u(t) and the size195

distribution f(x, t) for clusters of supercritical size x > xcrit. The clusters increase their size at196

some constant rate by absorbing monomers, and they are removed instantaneously when size reaches197

some terminal value xrm > xcrit. If the source of monomers drives their excess to reach a certain198

nucleation threshold unuc, a sudden sharp peak of large clusters is created just above the critical199

size.200

The balance law for the monomer excess takes the form201

(1.17) ∂tu(t) = 1−
 xrm

xcrit

f(x, t) dx,202

and one starts with initial excess u(0) < unuc below the nucleation threshold. The size distribution f203

is advected at constant speed 1, satisfying the transport equation204

(1.18) ∂tf + ∂xf = 0, xcrit < x < xrm.205

We specify a zero influx condition f(xcrit, t) = 0 as long as the monomer flux remains below206

threshold, i.e., u(t) < unuc. When the monomer excess reaches the threshold at some time t∗,207

however, a delta-mass concentration of supercritical clusters is instantly nucleated at x = xcrit,208

giving the jump condition209

(1.19) f(·, t+∗ ) = f(·, t−∗ ) + f0δxcrit
if u(t∗) = unuc.210

For f0 > 1 and f ≡ 0 initially, say, this model produces a sawtooth evolution for u, with ∂tu = 1 > 0211

during time intervals when no supercritical clusters exist in the system, and ∂tu = 1−f0 < 0 during212

intervals after a peak of clusters has been nucleated and before it is removed upon reaching the213

outflow boundary x = xrm.214

The resulting oscillatory evolution in this model clearly illustrates desynchronization of super-215

critical cluster generation and removal. The first two equations (1.17) and (1.18) of this model are216

very similar to (1.12) and (1.13) by setting α = 0 and letting r → ∞. The only main difference217

is that the exponential boundary condition (1.14) is changed to the jump condition (1.19), leading218

here to the periodic production of sharp peaks.219

1.7. Related literature. Oscillations in chemical reaction networks have been well known220

ever since the Belousov–Zhabotinsky reaction was described [6, 40] and the Brusselator found by221

Prigogine and Lefever [32] (see [37] for the name). Later, the Oregonator was introduced by Field222

and Noyes [16] as a simpler model that develops temporal oscillations involving only five species.223

The mathematical analysis of these systems reveals that the basic mechanism behind the oscillations224

is of Lotka–Volterra type [21, 22, 38].225

In contrast to this, the model from Section 1.2 is motivated by mechanisms found in the226

dynamics of bubblelators, also known as gas evolution oscillators [35, 8, 39, 4]. These are chemical–227

physical systems [36] in which, due to some reaction mechanism, a dissolved gas is constantly228

generated in a solvent, leading to a steady increase in supersaturation and an eventual burst of229

nucleation and growth of gas bubbles. The first experimental report of such a system is ascribed230

to Morgan [25], who observed an oscillatory release of gas during dehydration of formic acid in231

concentrated sulfuric acid. The dynamics and growth of bubbles resembles a mechanism similar to232
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the Becker–Döring paradigm: The growth of bubbles is effected mainly through the absorption of233

gas emerging from the supersaturated solution into the expanding bubbles. Upon discretization in234

size, this suggests that the physical growth mechanism is reflected by fluxes resembling those in (1.6).235

Lastly, large bubbles randomly leave the solvent, depending on the setup of the experiment, mainly236

due to buoyancy, and this is loosely reflected in the system (1.10) by the removal term −Rkrnk.237

More experimental evidence of oscillatory concentrations in a mixture of nitric oxide and coal238

gas was obtained by Badger and Dryden [1]. A theoretical model of Becker–Döring type was239

proposed by Pratsinis, Friedlander, and Pearlstein [31] (cf. also [17]). The model in [31] has some240

physical similarities with the limit model obtained in Section 1.3. More precisely, the model uses241

the exponent α = 2/3 in (1.8) and r = 0 in (1.10). In this case, it is possible to obtain a closed242

system of ODEs for the evolution of the three lowest-order moments of the distribution of radii243

of supercritical clusters. This system of ODEs is coupled with the concentration of monomers244

n1 by means of an Arrhenius formula yielding the nucleation rate of supercritical clusters as a245

function of the monomer concentrations. The resulting model in [31] is a system of ODEs for which246

the existence of periodic solutions is demonstrated using a Hopf bifurcation argument. A similar247

reduction of a Becker–Döring model to a system of ODEs which has periodic solutions can be found248

in [24]. We can show (see the Appendix A) that, for some particular choices of exponents, the limit249

model from Section 1.3 can be reduced to a system of ODEs which has the same structure as those250

obtained in [17, p. 293ff].251

A boundary condition similar to (1.14) was derived by Farjoun and Neu [14] in a physical study252

describing the depletion of a supercritical concentration of monomers (without source) due to the253

nucleation of supercritical clusters. The nucleation rate is approximated using an Arrhenius law254

(or Frank-Kamanetskii) type of formula. A key observation made in [14] in the derivation of this255

boundary condition is that small changes in the concentration of monomers n1 yield significant256

changes in the nucleation rate. This same point underpins the present study.257

Recently, oscillations for a Becker–Döring model with atomization were proved to exist by two258

of the present authors in [27]. The model in [27] is closed and has no external source or removal259

terms (S = r = 0 in (1.9)–(1.10)). The atomization of clusters of a maximal size M into M260

monomers provides a closed feedback mechanism from large clusters to monomers, which could be261

considered to replace injection and depletion. This model has a Hopf bifurcation for suitable small262

atomization rate, when M is large.263

In the physical literature, temporal oscillations in coagulation-fragmentation models permitting264

interactions of clusters of any sizes (thus not of Becker-Döring type) have been reported in numerical265

simulations, by R. C. Ball et al. [3] for cases with monomer injection and cluster removal above a266

fixed size, and in the works [23, 9] for cases incorporating a nonlinear atomization mechanism. The267

onset of a Hopf bifurcation for a model consisting of coagulation with monomers and atomization268

has been recently shown numerically in [10].269

Lastly, Doumic et al. [13] consider a model for prion dynamics of Becker–Döring type, which270

exhibits very slowly damped oscillations. The model in [13] assumes that the polymer chains interact271

with two types of chemicals yielding respectively increase and decrease of the length of the polymer272

chain. These chemicals interact between themselves by means of a modified Lotka–Volterra type of273

equation, which is coupled with the Becker–Döring part of the system. It is well known that Lotka–274

Volterra models may admit periodic solutions. The interaction of the Lotka–Volterra equation with275

the Becker–Döring part is responsible for the damping of the oscillations observed in [13], but the276

specific form in which this damping takes place is not well understood at the moment.277
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2. Derivation of the limit model. In this section, we describe a regime in which the discrete278

Becker–Döring model with source and depletion (1.9)–(1.10) can be formally approximated by the279

limit model (1.12)–(1.14).280

Our analysis is based on understanding the interaction between small and large clusters, where281

the separation scale is given by the critical size (1.16). We shall argue that for clusters smaller or282

comparable to kcrit, solutions are close to a constant-flux steady state of the Becker–Döring equation283

parametrized by the monomer concentration, and we derive an Arrhenius law relating the flux and284

monomer concentration. We provide additional discussion of the quasistationary assumption in the285

supplementary material SM1, where we describe the time scale for a drift-diffusion approximation286

in the boundary layer where k is near critical size.287

In Section 2.2, we show that the dynamics of large clusters are well approximated by a transport288

equation, which will rescale to (1.13). The boundary condition for this transport equation is289

obtained in Section 2.3 by matching with the fluxes from Section 2.1. Then in Section 2.4, we290

study the evolution of the monomer fluctuation u in (1.11). This is a balance between (i) the291

nucleation flux towards large clusters through the critical size kcrit and (ii) a condensation flux due292

to the growth of large clusters.293

Finally, in Section 2.5, we will identify a time scale T , a macroscopic cluster size scale X much294

larger the critical cluster size (1.16), a macroscopic cluster density F , as well as the source rate295

S and the depletion rate R for which the Becker–Döring system (1.9)–(1.10) with injection and296

depletion can be approximated by the limit model (1.12)–(1.14).297

2.1. Steady states with constant flux. We recall results from [28] about steady states298

with constant flux. We consider in particular the case of small excess density and find suitable299

asymptotic expressions of the steady states in this regime. It is convenient to recall first the300

formulas for equilibrium solutions with zero flux, given by301

(2.1) n̄k = Qkn̄
k
1 , Qk =

k−1
l=1

al
bl+1

,302

where the parameter n̄1 represents the equilibrium concentration of monomers. With coefficients303

as in (1.8) we find304

(2.2) log

akQk


= log

 k
l=1

al
bl


=

k
l=1

log


1

1 + q
lγ


≃ −qk1−γ

1− γ
(1 + o(1)) as k → ∞.305

Thus we see that the series
∞

k=1 kQkn̄
k
1 , which represents the mass of (n̄k), has radius of conver-306

gence 1 and converges for n̄1 = 1. The corresponding critical mass is denoted as ρs =
∞

k=1 kQk.307

For super-critical monomer density n̄1 > 1, the zero-flux equilibrium solution Qkn̄
k
1 grows308

exponentially at infinity and those solutions will not play a role. As in [28] we consider in this309

regime steady states with constant flux, where the flux is chosen such that the steady state remains310

bounded as k → ∞. More precisely, we look for given n̄1 for bounded solutions {Nk(n̄1)}k=N of311

(2.3) N1 = n̄1 and ak−1n̄1Nk−1(n̄1)− bkNk(n̄1) = J(n̄1) , k ≥ 2 ,312

where J(n̄1) is part of the unknown. It has been shown in [28, Lemma 1] that for each n̄1 > 1 there313

exists a unique solution to this problem, given by the formula314

(2.4) Nk(n̄1) = J(n̄1)Qkn̄
k
1

∞
l=k

1

alQln̄
l+1
1

where
1

J(n̄1)
=

∞
l=1

1

alQln̄
l+1
1

.315
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Furthermore, for fixed n̄1, akNk(n̄1) decreases monotonically with k (which implies that Nk(n̄1) is316

bounded and Nk(n̄1) → 0 as k → ∞ if α > 0), while for fixed k, Nk(n̄1)
n̄1

increases monotonically317

with n̄1 and we have for n̄1 > 1 that Qk < Nk(n̄1) < Qkn̄
k
1 for k ∈ N.318

Asymptotics of steady states and flux. We are particularly interested in the asymptotic319

behavior of {Nk(n̄1)}k=N and J(n̄1) for slightly supercritical density n̄1 > 1. Thus we introduce320

the small parameter321

(2.5) ε = n̄1 − 1 ≪ 1 .322

We shall argue that the asymptotics for the constant flux are given by323

(2.6) J(n̄1) ≃ J∞ :=


γ

2πq
1
γ

ε
γ+1
2γ exp


− γ

1− γ
q

1
γ ε−

1−γ
γ


as ε → 0,324

and for the corresponding steady states by325

(2.7) Nk(n̄1) ≃
J(n̄1)

εak
=

J(n̄1)

εkα
for k ≫ kcrit =

q
ε

 1
γ

.326

Derivation of (2.6). The critical cluster size kcrit from (1.16) is a crucial quantity occurring in327

the analysis of this paper, as in [28]. Improving on (2.2), we can write328

(2.8)
1

akQkn̄k
1

= eG(k)(1 + o(1)) , with G(k) = −k log n̄1 +

 k

1

log(1 + ql−γ) dl + C .329

The series for 1/J(n̄1) in (2.4) is dominated by terms with l near the point where k → G(k) is330

maximized, and it happens exactly at kcrit = (q/ε)
1/γ , which is consistent with (1.16). Laplace’s331

method provides an approximation to the series: Noting that332

G′′(k) =
−γqk−γ−1

1 + qk−γ
333

and G′′′(k)/G′′(k) = O(1/k), the expansion G(k) = G(kcrit)+
1
2G

′′(kcrit)(k−kcrit)
2(1+o(1)) is valid334

for |k − kcrit| < kpcrit for any p < 1. Choosing p > 1
2 (1 + γ) allows k−γ−1

crit (k − kcrit)
2 to be large,335

whence we find336 
|l−kcrit|<kp

crit

1

alQln̄l
1

≃ eG(kcrit)

 ∞

−∞
e

1
2G

′′(kcrit)(k−kcrit)
2

dk = eG(kcrit)


2π

−G′′(kcrit)
as ε → 0.337

The remaining part of the series for 1/J(n̄1) is small relative to this, and since n1 ≃ 1 it follows (2.6)338

from J(n̄1) ≃


−G′′(kcrit)
2π e−G(kcrit) and by noting that339

(2.9) G(kcrit) ≃
qk1−γ

crit

1− γ
(1 + o(1))− kcrit log n̄1 ≃ kcritεγ

1− γ
=

γ

1− γ
q

1
γ ε1−

1
γ .340

Derivation of (2.7). Similarly we obtain by recalling the relation (2.8) for k ≫ kcrit that341

akQkn̄
k
1

∞
l=k

1

alQln̄l
1

≃ e−G(k)
∞
l=k

eG(l) ≃
 ∞

0

eG
′(k)l dl =

1

−G′(k)
≃ 1

ε
,342

343

and hence, from (2.4), we obtain (2.7).344
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2.2. Transport equation for large clusters. For clusters much larger than the critical size,345

exceeding the macroscopic cluster size scale X that will be determined below in Section 2.5, we346

have347

(2.10) Jk = ak

n1−1


nk − akq

kγ
nk + bknk − bk+1nk+1 ≃ akεnk for k ≫ X ≫ kcrit .348

Hence, we can approximate the evolution of clusters in this regime by349

(2.11) ∂tn(k, t) + ε∂k

kαn(k, t)


= −rkrn(k, t)350

where for large cluster sizes, we treat k a continuous variable and we represent the discrete concen-351

tration nk(t) by a continuous concentration n(k, t).352

2.3. Monomers and the nucleation flux. The behavior of n for clusters that are much353

larger than the critical size, but much smaller than X, is given by the quasistationary solutions354

depending on n1(t), that is (2.7) implies355

(2.12) kαn(k, t) ≃ J(n1(t))

ε
for kcrit ≪ k ≪ X .356

We see from (2.6) that small changes in ε yield large changes in the flux J(1 + ε). In order357

to obtain variations of order one during the evolution we introduce a rescaled concentration of358

monomers. More precisely, we introduce for fixed 0 < ε ≪ 1 the new variable u via359

n1(t) = 1 + ε+
ε
q

 1
γ

u(t) = n̄1 +
u(t)

kcrit
.360

Note also that we have n1−1 ≃ ε at leading order as long as u = O(1). Hence, as long as u remains361

of smaller order, we may approximate J(n1) with n1 in place of n̄1 in the derivation of (2.6) to362

arrive at363

(2.13) J(n1) ≃ J∞eu .364

Indeed, the relation (2.13) follows by maximizing365

G̃(k) = −k log n1 +

 k

1

log(1 + ql−γ) dl + C = G(k)− k log


n1

n̄1


.366

The maximum occurs at k̃ satisfying n1 = 1 + qk̃−γ , so367

k̃ =


q

n1 − 1

 1
γ

=
q
ε

 1
γ


n1 − 1

ε

− 1
γ

= kcrit


1 +

u

εkcrit

− 1
γ

= kcrit +O(ε−1).368

Hence, by following the same derivation as for (2.6), we arrive at J(n1) ≃ J(n̄1)e
−G̃(k̃)+G(kcrit).369

Now k̃ = kcrit(1 + o(1)), so370

k̃ log


n1

n̄1


= k̃ log


1 +

u

kcritn̄1


= u+ o(1) ,371

while G(k̃) −G(kcrit) = O(G′′(kcrit)(k̃ − kcrit)
2) = O(k−1−γ

crit ε−2) = O(ε
1
γ −1) justifying the asymp-372

totic expansion (2.13).373
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2.4. Evolution of monomers. We introduce a constant L ≫ 1 as a multiplicative cutoff374

between subcritical and supercritical clusters, and approximate the equation for the monomers by375

∂tn1 = −J1 −
Lkcrit
k=1

Jk −
∞

k=Lkcrit+1

Jk + S .376

In the second sum we use the approximation (2.10) for the fluxes Jk and approximate the sum by377

an integral378
∞

k=Lkcrit+1

Jk ≃ (n1−1)

 ∞

Lkcrit+1

n(k, t)kα dk for L ≫ 1.379

In the supplementary material SM1, we justify that in the region of of subcritical clusters, the380

evolution follows a quasistationary law on an algebraically large time scale in ε−1, which allows us381

to approximate Jk by J(n1(t)) for 1 ≤ k ≤ Lkcrit.382

Using also that n1 − 1 is of order ε we obtain the following equation for the concentration of383

monomers384

(2.14)
1

kcrit
∂tu = −


Lkcrit + 1


J(n1(t))− ε

 ∞

Lkcrit+1

f(y, t)yαdy + S ,385

together with equation (2.11) for the supercritical clusters and the boundary condition (2.12). We386

will see later that the term (Lkcrit+1)J in the contribution of the monomers is negligible compared387

to the integral term during the whole dynamics. We assume that for the moment and will check388

that a posteriori.389

2.5. Identification of scales. We introduce new units and variables for the cluster size X,x390

time T, τ and cluster density F, f , respectively, via391

(2.15) k = Xx , t = Tτ , n = Ff .392

We will obtain the limit model (1.12)–(1.14) by choosing the scales393

(2.16) X =


ε

kcritJ∞

 1
2−α

, T =
X1−α

ε
, F =

kcrit
X2

, S =
1

Tkcrit
, R =

η

TXr
,394

with kcrit as defined in (1.16) and J∞ given in (2.6). We have also included the size of the monomer395

source S in this formula and introduce a rescaled depletion rate η > 0. Notice that from (2.6), J∞396

is exponentially small in the parameter ε, which implies similar exponential dependencies for all397

scales X,T, F , and S.398

Using the scales in (2.15), the monomer equation (2.14) becomes399

(2.17) ∂τu = −

Lkcrit + 1


J(n1(τ))Tkcrit − εX1+αFTkcrit

 ∞

Lkcrit+1

X

f(x, τ)xαdx+ STkcrit ,400

and similarly the transport equation for the large clusters (2.11) together with its boundary condi-401

tions (2.12) take the form402

∂τf(x, τ) +
Tε

X1−α
∂x

xαf(x, τ)


= −


TXrR


xrf(x, τ)(2.18)403
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xαf(x, τ) ≃ J(n1(τ))

FεXα
, for

kcrit
X

≪ x ≪ 1 .(2.19)404
405

We recall from (2.13) that J(n1(τ)) = J∞eu(τ), where J∞ is an exponentially small quantity406

defined in (2.6) that gives the order of magnitude of the fluxes through the critical size. As explained407

in Section 1.5, the nucleation rate, given by the flux through the critical size manifested as the408

boundary condition in (2.19), and the condensation rate, given by the coagulation rate of monomers409

with macroscopic clusters manifested as the scale of the integral in (2.17), need to be of the same410

order of magnitude. It is readily checked that (2.16) implies411

J∞
FεXα

= 1 and εX1+αFTkcrit = 1 .412

The time scale that yields growth of the macroscopic clusters due to the transport on the left hand413

side of (2.18) in that scale is given by Tε/X1−α, which becomes equal to one by the choice (2.16).414

Notice that the choice of S in (2.16) implies that the changes of u in (2.17) are of order one. This415

justifies the expansion of the flux in (2.13) a posteriori This formula yields the relation between416

ε and the source S. A different choice of S might still result in oscillatory behavior, with an417

amplitude change in u not of order O(1), although the expansion of the flux in (2.13) is valid for u418

up to order o(ε−
1
γ ).419

In order to conclude the derivation of the limit model (1.12)–(1.14), it only remains to justify420

neglecting the fluxes in the subcritical region, or equivalently to show that the term (Lkcrit +421

1)J(n1(τ))Tkcrit in (2.17) is negligible. The contribution Lkcrit + 1 is algebraically large in ε−1.422

We estimate the exponential terms contained in the product J(n1(τ))T , which are423

(2.20) J∞

 1

J∞

 1−α
2−α

= J
1− 1−α

2−α
∞ = J

1
2−α
∞ .424

Since 1
2−α > 0, it follows that this term is exponentially small. Therefore the flux terms due425

to subcritical particles yield a negligible contribution and (2.17) can be formally approximated426

by (1.12).427

3. Periodic solutions for the limit problem. Our goal is to argue, by formal means, that428

steady state solutions of the limit model (1.12)–(1.14) undergo a Hopf bifurcation as the rescaled429

removal parameter η is varied, for a wide range of values of α and r.430

To our knowledge, a rigorous Hopf bifurcation theorem has not yet been proven for a model of431

this type, though it seems plausible that one might extend existing methods for retarded functional432

differential equations with finite delays (RFDE) which are based upon rescaling to fix the temporal433

period and Lyapunov-Schmidt reduction [18, 12].434

It is well known, that in order to prove the existence of periodic solution by means of a Hopf435

bifurcation, one has to show:436

1. existence of steady states for a family of dynamical systems parametrized by θ ∈ Θ;437

2. the linear stability of these steady states changes at a critical value θcrit due to fact that438

two complex conjugated eigenvalues of the linearized system cross from {Re(λ) < 0} to439

{Re(λ) > 0};440

3. for generic dynamic systems, the periodic solutions exists for small |θ − θcrit| either in the441

parameter region {θ < θcrit} or {θ > θcrit}. These periodic solutions are stable if the steady442

states found in 1. are unstable for the range of θ, where the periodic solutions exist.443
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We carry out the three steps of this program for the limit model (1.12)–(1.14) in Subsections 3.1,444

3.2, 3.3, respectively. To simplify the Hopf bifurcation analysis, it is convenient to introduce a new445

size variable z and relabeled flux h(z, τ) defined by446

(3.1) z = x1−α and h(z, τ) =
xαg(x, τ)

1− α
,447

In those variables the system (1.12)–(1.14) takes the form448

∂τu = 1−
 ∞

0

h(z, τ)zν dz ,(3.2)449

∂τh(z, τ) + ∂zh(z, τ) = −ηzβh(z, τ) , z > 0 ,(3.3)450

h(0, τ) = eu(τ) ,(3.4)451452

where the exponents β and ν are nonnegative and given by453

(3.5) β =
r

1− α
, ν =

α

1− α
.454

For any solution of this system, such as a steady-state or time-periodic solution, which exists455

for all times τ ∈ R, one finds, by integrating (3.3) along characteristics emerging from z = 0, that456

necessarily457

(3.6) h(z, τ) = exp(u(τ−z)) exp

− η

β + 1
zβ+1


.458

Using this expression in (3.2) we find that u must satisfy an RFDE with infinite delay, namely459

(3.7) ∂τu = 1−
 ∞

0

eu(τ−z) exp

− η

β + 1
zβ+1


zνdz .460

3.1. Steady states and their stability. For any η > 0 we have a constant solution u ≡ u0461

of this equation, given by462

(3.8) 1 = eu0

 ∞

0

exp

− η

β + 1
zβ+1


zνdz .463

The corresponding steady state h = h0(z) is then given by (3.6) with u replaced by u0.464

Next we consider the linear stability of these steady states as solutions of (3.2)–(3.4). After465

linearizing about u0, h0, we find nonzero solutions proportional to eλτ exist, λ ∈ C, if and only if466

(3.9) λ = −eu0

 ∞

0

exp

− η

β + 1
zβ+1 − λz


zνdz .467

It is convenient to study this equation after the rescaling η−
1

β+1λ → λ. With468

(3.10) Gβ,ν(λ) :=

 ∞

0

exp

− 1

β + 1
zβ+1 − λz


zνdz ,469

the eigenvalue equation (3.9) then takes the form470

(3.11) ϑλ+Gβ,ν(λ) = 0, where ϑ = η
1

β+1Gβ,ν(0) .471
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Note λ = 0 is never an eigenvalue since Gβ,ν(0) > 0. Also note G′
β,ν(λ) = −Gβ,ν+1(λ),472

(3.12) Gβ,ν(0) ≥ |Gβ,ν(λ)| and |G′
β,ν(0)| ≥ |G′

β,ν(λ)| whenever Reλ ≥ 0.473

It follows that we have linear stability for large values of the parameter ϑ:474

Lemma. There are no eigenvalues in the closed right half plane if ϑ > |G′
β,ν(0)|, i.e.,475

η >


Gβ,ν+1(0)

Gβ,ν(0)

β+1

.476

The reason is that if Reλ ≥ 0, then with G = Gβ,ν we have477

ϑ > |G′(0)| ≥ Re


G(0)−G(λ)

λ


≥ −Re

G(λ)

λ
.478

3.2. Eigenvalue crossings. A Hopf bifurcation should occur provided that some branch of479

solutions λ = λ(ϑ) of (3.11) crosses the imaginary axis transversely. This means that Reλ = 0 and480

Re dλ
dϑ ̸= 0 at some particular ϑ = ϑ0. Since (ϑ+G′(λ))dλdϑ = −λ along the branch, we find481

(3.13) signRe
dλ

dϑ
= signRe


−λ

ϑ+G′(λ)


= sign

d

dt
ReG(it) = sign

d

dt
argG(it),482

if λ = it with t > 0. Thus the criteria for Hopf bifurcation become the following: First, there should483

exist t0 > 0 such that for t = t0,484

(3.14) ReGβ,ν(it) = 0 and ImGβ,ν(it) < 0, or equivalently argGβ,ν(it) = −π

2
(mod 2π) .485

This is necessary and sufficient for (3.11) to hold with ϑ = −G(it)/it > 0. Second, the transversality486

condition holds if and only if487

(3.15)
d

dt
ReGβ,ν(it) ̸= 0, or equivalently

d

dt
argGβ,ν(it) ̸= 0.488

Thus we can provide evidence that a Hopf bifurcation occurs (for some ϑ) and infer the direction489

of eigenvalue crossings by identifying zero crossings on the graph of π
2 +argG(it) (mod 2π). In the490

original time scale τ of the model, such zeros correspond to oscillations with wave number491

(3.16) κ = tη
1

β+1 =
tϑ

Gβ,ν(0)
, Gβ,ν(0) = (β + 1)

ν−β
β+1 Γ


ν + 1

β + 1


.492

3.3. Direction of bifurcation. In this section we identify computable criteria that should493

determine the direction of bifurcation (i.e., whether small time-periodic solutions appear for η > η0494

or η < η0). We posit bifurcating solutions have variable period 2π/κ and scale time using the495

variable wave number κ near a value κ0 given by (3.16) at a putative bifurcation point t = t0.496

Rewriting (3.7) in terms of the constant solution u0 from (3.8) and rescaled variables given by497

(3.17) u(τ) = u0 + U(s), s = κτ, y = κz,498

we find that the 2π-periodic function U , constant κ and bifurcation parameter η should satisfy499

(3.18) κ∂sU +

 ∞

0


eU(s−y) − 1


exp


−η

β + 1

yβ+1

κβ+1


yν dy

eu0

κν+1
= 0.500
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It will be convenient to work with the variables and parameters given by501

(3.19) v(s) = eU(s) − 1, δ =
κν+2

eu0
, µ =

η

(β + 1)κβ+1
, g(µ, y) = yν exp(−µyβ+1).502

Thus we seek a 2π-periodic function v, constant δ and bifurcation parameter µ so503

(3.20) δ∂sv + (1 + v)(γ ∗ v) = 0, where (γ ∗ v)(s) =
 ∞

0

g(µ, y)v(s− y) dy.504

The function v ≡ 0 is a trivial solution for any δ and µ, and the problem is equivariant with respect505

to translation in s. We expect bifurcation from this branch for δ, µ respectively near values δ0, µ0506

coming from the parameters t0, η0 by the formulas above.507

In terms of an amplitude parameter ε, we seek formal expansions508

v = εv1 + ε2v2 + . . . , δ = δ0 + εδ1 + ε2δ2 + . . . , µ = µ0 + εµ1 + ε2µ2 + . . . .509

We will find δ1 = µ1 = 0 as is typical for Hopf bifurcation. Provided certain nondegeneracy510

conditions hold, we find the quantities δ2 and µ2 can be expressed in terms of the quantities511

(3.21) ĝj(k) =

 ∞

0

e−ikygj(y) dy, gj(y) = ∂j
µg(µ0, y) = (−yβ+1)jyν exp(−µ0y

β+1).512

In fact, our computations will show that µ2 and δ2 are determined by the relations513

(3.22) µ2 Re ĝ1(1) =
−δ20 Re ĝ0(2)

4|ĝ0(2) + 2iδ0|2
, δ2 + µ2 Im ĝ1(1) = −δ0

4
+

δ20(2δ0 + Im ĝ0(2))

4|ĝ0(2) + 2iδ0|2
,514

provided the transversal crossing condition and the nonresonance condition ĝ0(2) + 2iδ0 ̸= 0 hold.515

Returning to the original parameters η = η0(1+ ε2η2 + . . .), κ = κ0(1+ ε2κ2 + . . .), and taking516

from (3.8) into account that eu0Gβ,ν(0) = η
ν+1
β+1 , we find517

(3.23) η2 = (ν + 2)
µ2

µ0
+ (β + 1)

δ2
δ0

, κ2 =
ν + 1

β + 1

µ2

µ0
+

δ2
δ0

.518

The sign of η2 determines the direction of the bifurcation. It is plausible that this determines519

the stability of the bifurcating periodic solutions in a similar way as for ODEs, and RFDEs with520

finite delays [12]. Namely, if the constant flux solution with u ≡ u0 is stable for η on one side of521

the bifurcation point η0, then bifurcating periodic solutions are stable if they appear for η on the522

opposite side, and unstable otherwise. As the constant-flux solution is stable for η sufficient large,523

we therefore expect that at the largest bifurcation point η0, the new branch of periodic solutions524

is stable provided that η2 is negative. We call this case supercritical and will provide numerical525

evidence that indeed such bifurcations occur in Section 4.2.526

In the remainder of this section we derive the relations in (3.22). By an integration by parts527

starting from (3.13), we have λ = it = −λ̄, since d
dy e

−ity = −ite−ity. Moreover, G′
β,ν(λ) =528

−Gβ,ν+1(λ) and hence by using (3.11), we obtain529

−λ̄G′
β,ν(λ) = −itGβ,ν+1(it) =

 ∞

0


d

dy
e−ity


yν+1 exp


− yβ+1

β + 1


dy530
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= −
 ∞

0

e−ity((ν + 1)yν − yν+1+β) exp

− yβ+1

β + 1


dy531

= −(ν + 1)Gβ,ν(it) +Gβ,ν+1+β(it)532

= (ν + 1)(it)ϑ− ĝ1(1)

tν+2+β
.533

534

Here, we used (3.21) and thus arrive at535

(3.24) signRe
dλ

dϑ
= − signRe ĝ1(1) .536

We require this quantity is nonzero, which is equivalent to transversal eigenvalue crossing.537

We proceed to compute. Expanding γ = γ0 + εγ1 + ε2γ2 + . . . we find γ0 = g0, γ1 = µ1g1,538

γ2 = µ2g1 +
1
2µ

2
1g2. Plugging into (3.20), at the respective orders ε, ε2, and ε3 we find539

0 = Lv1 := δ0∂sv1 + γ0 ∗ v1,(3.25)540

0 = Lv2 + (δ1∂s + γ1∗)v1 + v1γ0 ∗ v1,(3.26)541

0 = Lv3 + (δ2∂s + γ2∗)v1 + v2(γ0 ∗ v1) + v1(γ0 ∗ v2)(3.27)542

+ (δ1∂s + γ1∗)v2 + v1(γ1 ∗ v1).543544

By what we have said in subsection 3.2, equation (3.25) should have two-dimensional kernel N0545

spanned by cos s and sin s (or e±is). Due to translation equivariance of the problem, we may546

suppose that the amplitude and phase of this mode of v are normalized so that v1(s) = cos s.547

Now, in terms of Fourier series v =


k∈Z v̂(k)e
iks, an equation Lv = w corresponds to548

L̂(k)v̂(k) = ŵ(k) for all k ∈ Z, L̂(k) = ikδ0 + ĝ0(k).549

This is solvable if and only if the nonresonance condition holds, namely L̂(k) ̸= 0 for all k such that550

ŵ(k) ̸= 0. Since L̂(±1) = 0 by assuming the first criteria (3.14) for a Hopf transition, we always551

require ŵ(±1) = 0.552

Moreover, for the following formal analysis we require the nonresonance condition553

(3.28) L̂(k) = L̂(−k) = ikδ0 + ĝ0(k) ̸= 0 holds for k = ±2.554

Applying these considerations to (3.26), since L(cos s) = 0 we see that the term555

v1(γ0 ∗ v1) = (cos s)(δ0 sin s) = − iδ0
4
e2is + c.c.,556

is nonresonant, provided L̂(±2) ̸= 0 as we have assumed. However the terms in δ1 and µ1 are557

resonant. Since cos s = 1
2e

is + c.c. we find these terms yield (iδ1 + µ1ĝ1(1))
1
2e

is + c.c. Since we558

presume Re ĝ1(1) ̸= 0 from (3.15), solvability of (3.26) requires µ1 = 0, and also δ1 = 0. The559

solution for v2 is560

(3.29) v2(s) = v̂2(2)e
2is + c.c., v̂2(2) =

iδ0
4

1

2iδ0 + ĝ0(2)
.561

Next, we consider the solvability of (3.27). The terms involving δ1 and γ1 vanish. It remains562

to show that the resonant terms are removed by a particular choice of δ2 and µ2. For this purpose,563

noting ĝ0(1) = −iδ0 we observe564

γ0 ∗ v1 = ĝ0(1)v̂1(1)e
is + c.c. = − iδ0

2
eis + c.c., γ0 ∗ v2 = ĝ0(2)v̂2(2)e

2is + c.c.,565
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therefore the resonant terms on the right hand side of (3.27) are566

eis

(δ2i+ µ2ĝ1(1))v̂1(1) + v̂2(2)ĝ0(1)v̂1(1) + v̂1(1)ĝ0(2)v̂2(2)


+ c.c.567

=
1

2
eis (δ2i+ µ2ĝ1(1) + (iδ0 + ĝ0(2))v̂2(2)) + c.c.,568

569

Since iδ0 + ĝ0(2) = L̂(2)− iδ0, the resonant terms vanish if µ2 and δ2 are given by570

µ2 Re ĝ1(1) = −Re


iδ0
4

L̂(2)− iδ0

L̂(2)


=

−δ20

4|L̂(2)|2
Re ĝ0(2),(3.30)571

δ2 + µ2 Im ĝ1(1) = − Im


iδ0
4

L̂(2)− iδ0

L̂(2)


= −δ0

4
+

δ20

4|L̂(2)|2
(2δ0 + Im ĝ0(2)).(3.31)572

573

4. Ranges of parameters yielding bifurcation. In this section we provide some numerical574

and analytical information regarding the occurrence and direction of Hopf bifurcations as one varies575

the removal factor η in the limit model (3.2)–(3.4), for a variety of cases involving the exponents576

β = r/(1 − α) and ν = α/(1 − α) from (3.5). A particularly intriguing finding is that an infinite577

number of bifurcation points appear when ν = α = 0 and β = r is an odd integer greater than 1.578

4.1. The case β = r = 0, ν ≥ 0. We have explicit formulas in this case, since whenever579

Reλ > −1, the substitution (1 + λ)y = s and a contour deformation argument shows580

G0,ν(λ) =
Γ(ν + 1)

(1 + λ)ν+1
.581

This case corresponds to removal of clusters in (1.10) at rate independent of size, since r = 0. When582

ν is an integer, equation (3.7) can be reduced to an ODE of some order by repeated differentiation.583

We comment on the connection to similar models in the literature in the Appendix A.584

In the present case, we can rigorously describe all eigenvalue crossings and prove transversality.585

Proposition. In case β = 0 and ν ≥ 0, an eigenvalue λ = it with t > 0 occurs for some η > 0586

if and only if587

tan−1 t = ωk :=
π

2

1 + 4k

1 + ν
for some integer k satisfying 0 ≤ 4k < ν.588

The transversal crossing condition (3.15) holds for all k, with signRe dλ
dϑ < 0.589

The reason this is true is that the condition (3.14) for eigenvalue crossings takes the form590

−argG0,ν(it) = (ν + 1) arg(1 + it) = (ν + 1) tan−1 t =
π

2
(mod 2π),591

and transversality follows from (3.13). We note that large η (or ϑ) corresponds to small t, so that592

as η decreases from large values (where one has linear stability), a first crossing appears at593

(4.1) t0 = tanω0, η0 =
ϑ0

Γ(ν + 1)
=

cosν+2 ω0

sinω0
, κ0 = cosν+1 ω0.594

In summary, for β = 0 we find that whenever ν > 0, bifurcation from a stable state should595

occur at wave number κ0 as η decreases through the value in (4.1). However, no bifurcation occurs596

for ν = 0. The values of η2 and κ2 are in principle explicitly computable, but the expressions597

become quickly impractical.598

This manuscript is for review purposes only.



OSCILLATIONS IN A BECKER–DÖRING MODEL 19
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4.2. Numerical bifurcation curves. In Figure 3, we plot the largest value of η0 correspond-599

ing to a solution of the bifurcation criteria (3.14) against the parameter β for various values of ν.600

The transversality condition (3.15) and nonresonance condition (3.28) are verified numerically in601

the supplementary material SM2 (see Table SM1 and Table SM2). In Figure 4, we plot values of602

η2 and κ2 from (3.23) to numerically determine the direction of bifurcation. The fact that η2 < 0603

indicates that η < η0 along the bifurcating branch, so we expect a supercritical Hopf bifurcation604

with stable periodic solutions. The values of κ2 are also negative, which shows that wavenumber605

decreases as amplitude increases along the branch.606

4.3. The case β = r > 0, ν = 0. First, we claim that no bifurcation occurs for any η > 0 if607

ν = 0 and β = r ∈ (0, 1]. Note608

Hβ,0(t) := ReGβ,0(it) =
1

2

 ∞

−∞
exp


−|y|β+1

β + 1
− ity


dy .609
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Fig. 5: Contours of ImG(λ)/λ = 0 (black) and ReG(λ)/λ = −ϑ0 for values ϑ0 given in Table 1 (blue to
lemon). (Left: unscaled. Right: real axis expanded to compensate the exponential factor in (4.2))

For β = 1 this is a Gaussian and it never vanishes. For 0 < β < 1, the function hβ(y) =610

exp(−|y|β+1/(β + 1)) is the characteristic function (Fourier transform) of a symmetric α-stable611

distribution from probability theory, with α = β + 1, see [15, Sec. XVII.6]. Hence Hβ,0(t) is a612

positive multiple of this distribution’s density, which can have no zeros due to its scaling invariance613

under convolution. Hence (3.14) cannot hold.614

For β > 1, the inverse Fourier transform of hβ is known not to be a probability density, and615

this means Hβ,0(t) must cross zero for some t. Transverse crossings would then ensure bifurcation,616

since ImGβ,0(it) = −
∞
0

hβ(y) sin(y) dy < 0 due to the monotonic decrease of hβ .617

Odd β > 1. Strikingly, asymptotics suggests that infinitely many bifurcations occur for odd618

integers β > 1 in particular. For in this case, hβ is an entire function, and its Fourier transform619

Hβ,0(t) → 0 as |t| → ∞ at a super-exponential rate. A standard saddle-point analysis (details620

omitted) indicates621

(4.2) Hβ,0(t) ∼


2π

β
t
1−β
2β exp


t
β+1
β cβ


cos


t
β+1
β sβ − π

4

β − 1

β


as t → ∞,622

623

where cβ =
β

β + 1
cos

π

2

β + 1

β
< 0, sβ =

β

β + 1
sin

π

2

β + 1

β
> 0.624

Furthermore Gβ,0(it) ∼ 1/it as t → ∞ (integrate (3.10) by parts). Hence, at the bifurcation points625

that approximate the zeros of (4.2), the bifurcation parameter η and wave number in (3.16) satisfy626

ϑ = η
1

β+1Gβ,0(0) ∼
1

t2
, κ ∼ t−1

Gβ,0(0)
.627

In Figure 5 we observe that at successive bifurcation points, evidently eigenvalues cross the imag-628

inary axis in opposite directions, according to (3.13). Numerics1 (see column RelErr in Table 1)629

indicates that for β = 3, the approximation in (4.2) is reasonably good already for the first zero,630

where Re dλ
dϑ < 0 by (3.24).631

1The integrals G(λ) and roots are computed in Julia [7] using the QuadGK [20] and Roots package.
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index ϑ0 η0 κ0 η2 κ2 Re ĝ1(1) |L̂(2)| RelErr

1 2.810−1 2.310−3 5.353−1 −4.355−1 −1.089−1 7.6111 2.9470 1.461−2

2 3.456−2 5.284−7 1.293−1 −2.702−1 −6.755−2 −7.2822 1.0910 2.729−3

3 2.236−2 9.259−8 1.189−1 −3.414−1 −8.535−2 9.8132 1.5760 1.106−3

4 1.326−2 1.143−8 8.942−2 −3.314−1 −8.284−2 −6.7082 1.4820 5.941−4

5 9.327−3 2.803−9 7.538−2 −3.335−1 −8.339−2 3.2402 1.5020 3.700−4

6 6.962−3 8.700−10 6.507−2 −3.332−1 −8.330−2 −1.2662 1.4990 2.524−4

7 5.459−3 3.288−10 5.763−2 −3.333−1 −8.333−2 4.2921 1.5000 1.831−4

8 4.427−3 1.422−10 5.190−2 −3.333−1 −8.333−2 −1.3131 1.5000 1.388−4

9 3.683−3 6.818−11 4.735−2 −3.333−1 −8.333−2 3.7180 1.5000 1.089−4

10 3.127−3 3.542−11 4.362−2 −3.333−1 −8.333−2 −9.911−1 1.5000 8.766−5

11 2.698−3 1.962−11 4.052−2 −3.333−1 −8.333−2 2.517−1 1.5000 7.209−5

Table 1: Numerical values of the first 11 roots of H3,0(t), the transversal crossing condition (3.24),
the nonresonance condition (3.28) and relative error to approximate solution from (4.2).

Thus as η decreases through the largest bifurcation point, one pair of eigenvalues emerges into632

the right half plane and the stable constant state becomes unstable. Decreasing across the next633

bifurcation point, some pair of eigenvalues must cross back into the left half plane, and it must be634

the same pair. So the constant state alternates stability between successive bifurcation points.635

For small η the instabilities are extremely weak, however. The unstable eigenvalue becomes636

super-exponentially close to the imaginary axis since |G′(λ)| decays only algebraically. Thus for637

small η the constant state becomes essentially neutrally stable.638

Since Table 1 indicates η2 < 0 in (3.23) in every case, our study of the direction of bifurcation639

in section 3.3 indicates that a branch of periodic solutions emerges for η below each bifurcation640

point η0. We expect that the emerging periodic solutions alternate between stable and unstable,641

corresponding to the stability of the constant flux solution just above η0.642

Regarding what may happen to bifurcating solutions in the large we have no firm information.643

One relatively simple possibility is that, as η decreases, each bifurcating branch reconnects with644

the next branch, but only after folding over at some lower value of η and changing its stability.645

Other β > 0 not odd. It is possible to show that some eigenvalue crossing must always occur646

when β ∈ (4k + 1, 4k + 3) for some k ∈ N0. For in this case we can study the asymptotics of large647

roots of equation (3.11), and show the constant flux solution becomes unstable as η → 0. From648

Section 3.1 we know it is stable for large η, so some eigenvalue must cross the imaginary axis.649

We approximate G(λ) = Gβ,0(λ) as |λ| → ∞ with Re(λ) ≥ 0 by integrating by parts to get650

(4.3) G(λ) =
1

λ
− 1

λ

 ∞

0

exp


− yβ+1

β + 1


e−λyyβ dy =

1

λ
+O


1

|λ|2+β


.651

Thanks to the first exponential factor in the integrand, this expansion is valid for any β ≥ 0 in the652

region Re(λ) ≥ −1 + δ for any δ > 0. We obtain the leading order approximation653

(4.4) ϑλ+
1

λ
= 0, hence λ ≃ ± i√

ϑ
as ϑ → 0 .654
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In order to check the stability of these roots, we need to compute the next order of G(λ) in (4.3).655

By a change of variables z = λy and using a contour deformation for large values of z to keep the656

contour in the region with Re(z) ≥ 0, we get657  ∞

0

exp


− yβ+1

β + 1


e−λyyβdy =

1

λ1+β


λ
|λ|R

exp


− zβ+1

(β + 1)λ1+β


e−zzβdz658

≃ 1

λ1+β

 ∞

0

e−zzβdz =
Γ(β + 1)

λ1+β
as |λ| → ∞ .659

660

This is valid for any β ≥ 0 in the region Re(λ) ≥ −1 + δ for δ > 0. Hence from (4.3), we get the661

asymptotics G(λ) ≃ λ−1 − Γ(β + 1)λ−(β+2) for |λ| ≫ 1. Here, the branch of the analytic function662

is chosen by extending analytically such that 12+β = 1. We then approximate equation (3.11) as663

(4.5) ϑλ2 + 1− Γ(β + 1)

λ1+β
≃ 0 .664

We consider the approximation of the root with positive imaginary part in (4.4). By dividing (4.5)665

by ϑ and taking the square root, we get666

λ =
i√
ϑ


1 +

Γ(β + 1)

λ1+β

 1
2

≃ i√
ϑ


1− Γ(β + 1)

2λ1+β


for |λ| ≫ 1 .667

668

With the leading approximation of λ from (4.4), we obtain669

(4.6) λ ≃ i√
ϑ


1− Γ(β + 1)ϑ

1+β
2

2
exp


− iπ(β + 1)

2


as ϑ → 0 ,670

where we used i1+β = e
iπ(β+1)

2 . For β = 0, we obtain Re(λ) ≃ −1
2 , consistent with the result from671

Section 4.1 that the constant flux state is linearly stable. Regarding the general case, we find672

(4.7) sign

Re(λ)


≃ − sign


sin


π(β + 1)

2


as ϑ → 0 .673

Thus we obtain linear instability for β ∈ (4k + 1, 4k + 3) with k ∈ N0, as mentioned above. In674

case β ∈ (4k − 1, 4k + 1) for k ∈ N0, we have Re(λ) < 0 for a root of (3.11) satisfying (4.6), but675

we do not know about other roots. Nevertheless, this analysis suggests that in the limit ϑ → 0,676

the constant flux state changes its stability as β passes an odd integer, which is exactly when the677

system shows infinitely many bifurcations as discussed in Section 4.3.678

The case β ≥ 0 not odd and ν ≪ 1. We close this section by indicating that an analysis is679

possible for the case β ≥ 0 not odd with ν ≪ 1 but positive. In the supplementary material SM3,680

we arrive, consistent with (4.4), at the approximation of the root λ of (3.11) with positive imaginary681

real part to second order as682

λ ≃

Γ(ν + 1)

ϑ

 1
ν+2

(i+ λ2) as ϑ → 0,683
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with λ2 = O(ϑ
β+1
ν+2 ). The real part of λ2 determines the stability of the stationary solution. Ap-684

proximating λ2 in the limit ν → 0, we find685

(4.8) Re(λ2) ≃
πν

4
− Γ(β + 1)

2
ϑ

β+1
ν+2 sin

π(β + 1)

2


as ν → 0.686

First, for ν = 0, we recover the stability condition (4.7). Next, for ν > 0, the stationary solution687

becomes unstable as soon as ϑ is small enough and oscillatory behavior can be expected, in accor-688

dance to the asymptotics from Section 3.3. Finally, we obtain a curve of stability with ν depending689

on ϑ if sin
π(β+1)

2


> 0, that is β ∈ (4k − 1, 4k + 1) for some k ∈ N0.690

Appendix A. Moment models. In [17, p. 293ff] a model is suggested for the distribution of691

diameter sizes of supercritical particles in the presence of homogeneous and heterogeneous nucleation692

having similarities to the limit model in Section 1.3. Homogeneous nucleation is modeled using693

an Arrhenius law, and specific power laws for the particle growth and the particle removal are694

assumed. In [17, (10.46)] constant growth of this diameter is assumed, which translates for our695

coefficients (1.8) to the case α = 2/3. Part of the analysis of this case can also be found in [31].696

For this choice of the coefficients, the limit model (1.12)–(1.14) becomes697

∂tf(x, t) + ∂x

x

2
3 f(x, t)


= −ηxrf(x, t) ,(A.1)698

x
2
3 f(x, t) ≃ eu as x → 0+ .(A.2)699700

Following [31], the authors use three moments, denoted as N, A, R which are the number of701

clusters, the area and the radius, respectively. In our notation these moments are702

N =

 ∞

0

f(x, t)dx , A =

 ∞

0

x
2
3 f(x, t)dx , R =

 ∞

0

x
1
3 f(x, t)dx .703

It is then possible to calculate the evolution equations for these moments, which we have to com-704

plement with the equation for the monomer concentration705

∂tu = 1−
 ∞

0

x
2
3 f(x, t)dx = 1−A.706

In order to obtain a closed system of ODEs we need to make the removal term precise. In [17], it707

is assumed that η = 0, which gives the following system for the moments:708

∂tN = eu , ∂tA =
2

3
R , ∂tR =

1

3
N , ∂tu = 1−A.709

This is a system which is not able to generate oscillations, since the moments just grow in time.710

In [31] a removal mechanism is suggested that eliminates clusters with a mean life time τ > 0,711

which is equivalent to choosing r = 0 and η = 1
τ > 0 in (A.1). With this choice, the ODEs for the712

moments take the form713

∂tN = eu − ηN , ∂tA =
2

3
R− ηA , ∂tR =

1

3
N − ηR , ∂tu = 1−A .714

This ODE system derived from (A.1) and (A.2) is almost the same as the system considered in [31]715

with only two minor differences: First, in [31] there is a term associated to the flux of area and716
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radius at the critical radius present. In our model a similar term is shown to be negligible in the717

limit that we consider (see (2.20)). Second, for the flux of clusters, as denoted in [17] by I, the full718

Arrhenius formula is used, whereas we obtain the exponential approximation (2.13) leading to the719

boundary condition (A.2).720
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Mathematical Developments, in Stochastic Processes, Multiscale Modeling, and Numerical Methods for770

This manuscript is for review purposes only.

https://doi.org/10.1039/tf9393500607
http://projecteuclid.org/euclid.cmp/1104115173
http://projecteuclid.org/euclid.cmp/1104115173
http://projecteuclid.org/euclid.cmp/1104115173
https://doi.org/10.1103/physrevlett.109.168304
https://doi.org/10.1021/j100198a034
https://doi.org/10.1002/andp.19354160806
https://doi.org/10.1137/141000671
https://doi.org/10.1021/ja00347a010
https://doi.org/10.1103/physreve.98.012109
https://doi.org/10.1103/physreve.98.012109
https://doi.org/10.1103/physreve.98.012109
https://doi.org/10.1103/PhysRevE.103.L040101
https://link.aps.org/doi/10.1103/PhysRevE.103.L040101
https://link.aps.org/doi/10.1103/PhysRevE.103.L040101
https://link.aps.org/doi/10.1103/PhysRevE.103.L040101
https://doi.org/10.1093/imanum/15.4.505
https://doi.org/10.1093/imanum/15.4.505
https://doi.org/10.1093/imanum/15.4.505
https://doi.org/10.1093/imanum/15.4.505
https://doi.org/10.1007/978-1-4612-4206-2
https://doi.org/10.1007/978-1-4612-4206-2
https://doi.org/10.1007/978-1-4612-4206-2
https://doi.org/10.1007/978-1-4612-4206-2
https://doi.org/10.1016/j.jtbi.2019.08.007
https://doi.org/10.1103/physreve.78.051402
https://doi.org/10.1063/1.1681288
https://doi.org/10.1063/1.1681288
https://doi.org/10.1063/1.1681288
https://books.google.de/books?id=fNIeNvd3Ch0C
https://doi.org/10.1007/978-1-4612-4342-7
https://doi.org/10.1007/978-1-4612-4342-7


OSCILLATIONS IN A BECKER–DÖRING MODEL 25
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[28] O. Penrose, Metastable states for the Becker-Döring cluster equations, Comm. Math. Phys., 124 (1989),790
pp. 515–541, http://projecteuclid.org/euclid.cmp/1104179294.791
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