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OSCILLATIONS IN A BECKER-DORING MODEL
WITH INJECTION AND DEPLETION *

B. NIETHAMMER', R.L. PEGO}, A. SCHLICHTINGS, AND J. J. L. VELAZQUEZ'

Abstract. We study the Becker-Doring bubblelator, a variant of the Becker-Déring coagulation-fragmentation
system that models the growth of clusters by gain or loss of monomers. Motivated by models of gas evolution
oscillators from physical chemistry, we incorporate injection of monomers and depletion of large clusters. For a
wide range of physical rates, the Becker—Doring system itself exhibits a dynamic phase transition as mass density
increases past a critical value. We connect the Becker—-Doring bubblelator to a transport equation coupled with an
integrodifferential equation for the excess monomer density by formal asymptotics in the near-critical regime. For
suitable injection/depletion rates, we argue that time-periodic solutions appear via a Hopf bifurcation. Numerics
confirm that the generation and removal of large clusters can become desynchronized, leading to temporal oscillations
associated with bursts of large-cluster nucleation.
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1. Introduction. Becker and Doéring [5] provided one of the original descriptions of a mech-
anism of particle growth in the theory of nucleation from supersaturated vapor. The main as-
sumptions of their model are that individual clusters consist of atomic parts called monomers,
and that the growth and shrinkage of clusters occurs only by the addition and removal of single
monomers. Although this process is not necessarily realized by chemical kinetics, it is convenient
to be interpreted as a reaction network of the form
(1.1) (1} +{k} == {k+1}, k=123,....

br11
As noted by Slemrod [34], the Becker-Doring equations provide perhaps the simplest model capable
of a realistic description of several phenomena associated with the dynamics of phase changes.
Starting from the seminal work of Ball, Carr and Penrose [2], the mathematical theory for these
equations has been developed in great detail. Many aspects of the long-time behavior of solutions
and the implications for the emergence of phase transitions are understood, but there are also still
open questions; see [19] for a recent review.

In this work we add to (1.1) two reaction mechanisms, which are motivated by the dynamics of
chemical oscillators, and in particular bubblelators, also known as gas evolution oscillators (cf. [35,
8, 39, 4]). First, we suppose monomers are injected into the system at a constant source rate S > 0:

(1.2) 02 {1y,
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Second, we suppose clusters are removed at a rate proportional to a power law with removal
coefficient R > 0 and exponent r > 0 :

(1.3) ky 250, k=23

The resulting chemical reaction network (1.1), (1.2), (1.3) is open and no longer satisfies a detailed
balance condition, in contrast to (1.1) alone. By consequence, solutions may no longer dissipate
free energy, and it becomes unclear whether long-time convergence to equilibrium always holds,
or whether some more complicated dynamic behavior becomes possible. In this work we will
provide evidence for the persistence of oscillations in time for a suitable approximate model of the
network (1.1), (1.2), (1.3).

1.1. The classical Becker—Do6ring model. The Becker-Déring equations [5] form an infi-
nite system of kinetic equations that describes phase transitions in two-component mixtures where
one of the phases has much smaller volume fraction than the other. In this case, the dilute phase
consists of clusters of size k € N, where k denotes the number of atoms, or monomers, in the cluster.
The main assumption in the Becker—Déring theory is that clusters evolve only by gain and loss of
monomers. If n; denotes the density of clusters with & monomers, and J denotes the net rate of
the reaction in (1.1), the equations read

(1.4) Oy =—J1 =Y _Ji,
k=1
Ong = Jp—1 — J, k>2,

Jr = apning — bpr1ni1

where ay, b, are the respective attachment and detachment rate coefficients. The system of equa-
tions (1.4)-(1.6) conserves the total mass p; that is,

(1.7) ank(t) = ank(O) =p.
k=1 k=1

Following work in statistical mechanics done by Penrose and collaborators [28, 29, 30] to model the
dynamics of phase transitions, we take the coefficients to be of the form

(1.8) ap = k%, bk:k“(ﬂ—k%), with ¢ >0, y € (0,1), a €[0,1).
The exponents « and « depend upon the geometry of clusters and the dominant mechanism of
monomer transport: For three-dimensional spheres dominated by diffusive transport, o = 1/3 and
~ = 1/3, while if cluster growth is limited by reactions on the interface, we have a = 2/3 and v = 1/3.
In the two-dimensional situation we have v = 1/2 and a = 0 and « = 1/2, respectively.

The coefficient ¢ arises from the Gibbs-Thomson law and is proportional to surface tension. It
plays a key role in determining a critical cluster size k¢t during the process of nucleation, a process
which will prove fundamental throughout this paper.

We have chosen units for convenience such that the density of monomers in equilibrium with a
planar phase boundary is
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OSCILLATIONS IN A BECKER-DORING MODEL 3

This is also the maximum monomer concentration for which finite-mass steady states exist. The
equilibrium state with this critical monomer concentration gives rise to a critical mass ps > 0
such that for any p € [0, ps] an equilibrium solution 7 exists, which then has f; < z,. For initial
data with supercritical mass p > ps, it has been established in [2, 29] that the solution converges
weakly in the long-time limit to the equilibrium solution with density ps. The excess mass p — p; is
transferred to larger and larger clusters as time proceeds and their evolution can be approximated
by the classical LSW model for coarsening (see also [26, 33]). Furthermore, it has been shown in
[28] that for certain initial data with small excess density it takes at least exponentially long time
(in terms of the excess density) until large clusters are created. Even though the proof is for specific
data only, one expects that such metastable behavior appears for all generic data. (See also [11] for
numerical simulations.)

1.2. The Becker—Doring model with injection and depletion. In this paper we are
interested in the Becker—Doring equations with injection of monomers and depletion of large clusters.
More precisely for a given source rate S > 0, removal rate R > 0 and removal exponent r > 0, we
consider the system

(1.9) Oy =—J1 =Y Jp+S,
k=1
(110) 8tnk = Jk—l — Jk — ernk, k Z 2,

with Ji as in (1.6) and coefficients as in (1.8).

It is well documented in the chemistry literature that temporal oscillations can persist in
chemical-physical systems in which a phase transition creates strong nucleation peaks that lead
to rapid growth of supercritical agglomerations which are later removed. Specifically, the sys-
tem (1.9)—(1.10) has many similarities to models of bubblelator dynamics describing oscillatory
release of a gas (cf. [25, 1, 35, 31, 17]). For more background, we refer to Section 1.7.

Our goal is to obtain oscillatory solutions for an approximation of the model (1.9)-(1.10) under
suitable choices of the source term S and the removal term R. The rough heuristics explaining
the appearance of oscillatory solutions are the following. For small S and R, the solution of (1.9),
(1.10) first evolves as in the classical model without source and removal terms—indeed, it evolves to
a metastable steady state with locally constant nonzero fluxes Jj. Slowly, the source term S kicks
in and raises the monomer density to a supercritical value with a small positive excess n; —1 > 0 of
order ¢ for small € > 0. This triggers the creation (or nucleation) of clusters larger than a critical
size. The nucleated supercritical clusters then grow by a process that depletes the monomer density
by a smaller amount of order ¢'/* which is nevertheless enough to shut down large-cluster creation.
Large clusters eventually get destroyed, nucleation resumes, and the scenario repeats.

In order for this picture to be realized, the source term S and the removal term R have to be
chosen in such a way that all the relevant terms balance. At steady state, source-driven nucleation
balances removal of very large clusters. But the time it takes for nucleated clusters to grow large
enough for effective removal introduces a delay that allows creation and removal to get out of phase.

1.3. Limit model. In Section 2 we identify the relevant scales, determine suitable S and R
and derive a simplified model formally valid in the limit ¢ — 0. This consists of an evolution
equation for a rescaled monomer density u, defined in terms of the excess monomer density via

1/~
(1.11) ni—l=c+ (2) u,
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and a transport equation for a rescaled density f of large clusters with rescaled continuous size
x € (0,00). Section 2.5 contains the precise definition of the scales and a rescaled removal rate
7 > 0. Taking those for granted, we formally derive the system

(1.12) Oru(t) =1— / x f(x,t),dz,

0
(113) arf(va) + Oy (xaf(xaT)) = —Uffrf(ffﬁ) ’ x>0,
(1.14) 2 f(z,7) = e x—0.

The key ingredients that go into the derivation of this system are the following. First, the distribu-
tion of clusters for k£ around the critical size k..t or smaller is taken as quasistationary, corresponding
to constant-flux states for the Becker-Doring equations, which are parametrized by the monomer
density. The transport equation arises by a continuum approximation to the difference equation
(1.5) in the supercritical range = ~ (k — kepit)/X > 0, with size scale X exponentially large in
€. The two size regimes are related by matching fluxes around k ~ k.. For the quasistationary
states, a continuum approximation results in an Arrhenius law giving the exponential dependence
on u in (1.14). The precise scaling of u by ¢'/7 leads to a change of order one in the Arrhenius
factor in the boundary condition (1.14) when u has a change of order one.
We remark that a simple computation yields the mass balance law

(1.15) o, (U(T) +/OOO 2f(2,7) d:v) . —n/ooo 2 f (2, 7) da

Hence, the total mass in the system increases though the influx of monomers in (1.12) at unit rate,
and decreases due to the removal of large clusters on the right hand side of (1.13).

1.4. Oscillations via Hopf bifurcation. For the approximate model (1.12)—(1.14), time-
periodic solutions satisfy a delay-differential equation with infinite delay horizon. To our knowledge,
a mathematically rigorous Hopf bifurcation theorem has been proven only for finite delay horizons.
Nevertheless, we argue in Section 3 that Hopf bifurcations from stationary solutions should occur
as one varies the removal parameter n. In particular, we make a careful analysis of the spectrum of
the linearized problem around a steady state solution and track the dependence of the eigenvalues
of the linearized operator upon the removal parameter n. We identify points where eigenvalues cross
the imaginary axis transversely, and we perform a formal expansion to determine the direction that
bifurcation should occur, which should indicate when stable periodic solutions appear. We provide
analytical and numerical evidence regarding bifurcation points and their dependence on « and r in
Section 4.

1.5. Oscillations via desycronization of source and removal. In Figure 1 a numerical
solution of the limit model (1.12)—(1.14) is shown. The oscillations are large amplitude, indicating
that the chosen parameters are already far beyond the Hopf bifurcation point. The flux profiles in
this regime develop an interesting structure involving the transport of rather sharp peaks, which
one can understand in a physical way that we wish to explain.

Before discussing that, we remark that stable oscillations should also exist in the full Becker—
Doéring model with injection and depletion (1.9), (1.10). The numerical computation of such oscilla-
tions seems to be a challenging matter, however, due to the multiscale nature of the Becker—Doring
system, as already observed in [11]. The main difficulty is that the scales associated to the problem
depend exponentially on the small parameter €. For instance, we obtain for € = 0.1 that the typical
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Fig. 1: Time evolution of u (top left), and semi-log plots of flux z®f at times 7 = 523 (top right),
7 = 533 and 543 (middle row), 7 = 553 and 563 (bottom row). The times 7 = 523,...,563 are
indicated by circle marks in the top left plot. Parameters: n = 0.1, a = %, vy = %, r=

winN

size of clusters that are involved in the dynamics of the system (1.9), (1.10) is of order 10'? with
a typical time-scale of order 10° (cf. Subsection 2.5). For larger values of € a numerical approach
might be feasible, but the formal asymptotic approximation done in this paper may not apply.

In Figure 2, different fluxes in the Becker—Déring model relevant for the description of the
oscillation mechanism are shown, superimposed on a schematic and highly exaggerated plot of ny
vs k. The first crucial quantity is the critical size keit, as in [28]. This depends on the monomer
excess € = n1—1, and is defined for simplicitiy here as the value of k for which axn; — by vanishes
(cf. Section 2.1). For the rates (1.8) and recalling that z; = 1, it holds

(1.16) ke = (9)"

In the following, the critical size k..t is used to distinguish small from supercritical clusters. It also
provides the relevant next scale for the monomer expansion in (1.11), since n; — 1 = € + u/keyit-
The first driving mechanism is the flux of mass through the small clusters to beyond the critical size
kerit, denoted by Juye. In the literature (cf. Friedlander [17]), this process is called homogeneous
nucleation. Because this process is diffusion-dominated for k& around k.., we obtain a boundary
layer with size of order e~'/7, resulting in an Arrhenius relation for the flux. This is reflected in the
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Vtransport

1 kcrit

Fig. 2: Tlustration of transport mechanisms (not to scale). For explanation, see text.

limit model through the exponential boundary condition (1.14).

A second flux J.,, depletes the monomer concentration through the mechanism of large-cluster
growth by direct absorption of monomers, also called condensation. This flux is reflected in the
limit model as the integral loss term in (1.12), and also leads to the transport term in (1.13).

These two fluxes need to be balanced with the source term S, and the time-scale chosen ac-
cordingly, which is done in a careful analysis of the scales in Section 2.5.

Both systems, the Becker-Déring model (1.9)—(1.10) and the limit model (1.12)—(1.14), allow
for stationary states with time-independent concentration of monomers, and we believe that these
are stable for large depletion parameters R or 7, respectively. However, our results indicate that
time-periodic solutions of the limit model exist for small particle-removal rates.

An explanation is that in this case clusters must grow very large for effective removal. This
depletes the monomer concentration due to the condensation flux J.o, that drives the growth of
large clusters, and leads to time delays in replenishing those clusters. It takes more time both
to restart nucleation from a lower monomer level and to grow supercritical clusters to sizes large
enough for removal. In this way the generation and removal of large clusters can desynchronize,
resulting in temporal oscillations.

In somewhat more detail, the mechanism for oscillations works as follows. Peaks in the size
distribution of large clusters form through a process mediated by the sensitive (exponential) depen-
dence of the nucleation rate upon the concentration of monomers: A sufficient excess of monomers
above the critical concentration n; = 1 triggers rapid growth of the number of supercritical clusters
through nucleation. The creation of enough supercritical clusters then produces a large condensa-
tion flux J.on which forces the concentration of monomers to decrease in spite of the source term.
This stops, or drastically slows, the nucleation reaction transferring mass through the critical size.

The peak of supercritical clusters generated in this way then continues to be transported to ever-
larger sizes by the condensation mechanism, which continues to consume monomers. At sufficiently
large sizes, the rate that clusters are removed from the system becomes dominant and the peak is
eliminated. This makes the condensation flux J.o, small again, which allows the source term to
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force the monomer concentration higher, and start the cycle over.

1.6. Sharp peak model. The mechanism for oscillations just described can be implemented
in a simple model with only two elements, namely the excess monomer density u(t) and the size
distribution f(z,t) for clusters of supercritical size * > x. The clusters increase their size at
some constant rate by absorbing monomers, and they are removed instantaneously when size reaches
some terminal value ., > Z¢yt. If the source of monomers drives their excess to reach a certain
nucleation threshold un,c, a sudden sharp peak of large clusters is created just above the critical
size.

The balance law for the monomer excess takes the form

(1.17) du(t) =1— / Fla,t) da,

crit

and one starts with initial excess ©(0) < uyyc below the nucleation threshold. The size distribution f
is advected at constant speed 1, satisfying the transport equation

(1.18) Orf +0.f =0, Terit < T < Trm-

We specify a zero influx condition f(xeit,t) = 0 as long as the monomer flux remains below
threshold, i.e., u(t) < upyc. When the monomer excess reaches the threshold at some time ¢,,
however, a delta-mass concentration of supercritical clusters is instantly nucleated at x = x¢yit,
giving the jump condition

(1'19) f()tj) = f()t*_) + fO(chm if ’U,(t*) = Unuc-

For fy > 1 and f = 0 initially, say, this model produces a sawtooth evolution for u, with dyu =1 > 0
during time intervals when no supercritical clusters exist in the system, and dyu = 1 — fy < 0 during
intervals after a peak of clusters has been nucleated and before it is removed upon reaching the
outflow boundary = = xyp,.

The resulting oscillatory evolution in this model clearly illustrates desynchronization of super-
critical cluster generation and removal. The first two equations (1.17) and (1.18) of this model are
very similar to (1.12) and (1.13) by setting @ = 0 and letting r — oco. The only main difference
is that the exponential boundary condition (1.14) is changed to the jump condition (1.19), leading
here to the periodic production of sharp peaks.

1.7. Related literature. Oscillations in chemical reaction networks have been well known
ever since the Belousov—Zhabotinsky reaction was described [6, 40] and the Brusselator found by
Prigogine and Lefever [32] (see [37] for the name). Later, the Oregonator was introduced by Field
and Noyes [16] as a simpler model that develops temporal oscillations involving only five species.
The mathematical analysis of these systems reveals that the basic mechanism behind the oscillations
is of Lotka—Volterra type [21, 22, 38].

In contrast to this, the model from Section 1.2 is motivated by mechanisms found in the
dynamics of bubblelators, also known as gas evolution oscillators [35, 8, 39, 4]. These are chemical—-
physical systems [36] in which, due to some reaction mechanism, a dissolved gas is constantly
generated in a solvent, leading to a steady increase in supersaturation and an eventual burst of
nucleation and growth of gas bubbles. The first experimental report of such a system is ascribed
to Morgan [25], who observed an oscillatory release of gas during dehydration of formic acid in
concentrated sulfuric acid. The dynamics and growth of bubbles resembles a mechanism similar to
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the Becker—Doring paradigm: The growth of bubbles is effected mainly through the absorption of
gas emerging from the supersaturated solution into the expanding bubbles. Upon discretization in
size, this suggests that the physical growth mechanism is reflected by fluxes resembling those in (1.6).
Lastly, large bubbles randomly leave the solvent, depending on the setup of the experiment, mainly
due to buoyancy, and this is loosely reflected in the system (1.10) by the removal term —Rkrny.

More experimental evidence of oscillatory concentrations in a mixture of nitric oxide and coal
gas was obtained by Badger and Dryden [1]. A theoretical model of Becker-Déring type was
proposed by Pratsinis, Friedlander, and Pearlstein [31] (cf. also [17]). The model in [31] has some
physical similarities with the limit model obtained in Section 1.3. More precisely, the model uses
the exponent o = 2/3 in (1.8) and » = 0 in (1.10). In this case, it is possible to obtain a closed
system of ODEs for the evolution of the three lowest-order moments of the distribution of radii
of supercritical clusters. This system of ODEs is coupled with the concentration of monomers
n1 by means of an Arrhenius formula yielding the nucleation rate of supercritical clusters as a
function of the monomer concentrations. The resulting model in [31] is a system of ODEs for which
the existence of periodic solutions is demonstrated using a Hopf bifurcation argument. A similar
reduction of a Becker—Déring model to a system of ODEs which has periodic solutions can be found
in [24]. We can show (see the Appendix A) that, for some particular choices of exponents, the limit
model from Section 1.3 can be reduced to a system of ODEs which has the same structure as those
obtained in [17, p. 293ff].

A boundary condition similar to (1.14) was derived by Farjoun and Neu [14] in a physical study
describing the depletion of a supercritical concentration of monomers (without source) due to the
nucleation of supercritical clusters. The nucleation rate is approximated using an Arrhenius law
(or Frank-Kamanetskii) type of formula. A key observation made in [14] in the derivation of this
boundary condition is that small changes in the concentration of monomers ny yield significant
changes in the nucleation rate. This same point underpins the present study.

Recently, oscillations for a Becker-Doring model with atomization were proved to exist by two
of the present authors in [27]. The model in [27] is closed and has no external source or removal
terms (S = r = 0 in (1.9)—(1.10)). The atomization of clusters of a maximal size M into M
monomers provides a closed feedback mechanism from large clusters to monomers, which could be
considered to replace injection and depletion. This model has a Hopf bifurcation for suitable small
atomization rate, when M is large.

In the physical literature, temporal oscillations in coagulation-fragmentation models permitting
interactions of clusters of any sizes (thus not of Becker-Doring type) have been reported in numerical
simulations, by R. C. Ball et al. [3] for cases with monomer injection and cluster removal above a
fixed size, and in the works [23, 9] for cases incorporating a nonlinear atomization mechanism. The
onset of a Hopf bifurcation for a model consisting of coagulation with monomers and atomization
has been recently shown numerically in [10].

Lastly, Doumic et al. [13] consider a model for prion dynamics of Becker—Déring type, which
exhibits very slowly damped oscillations. The model in [13] assumes that the polymer chains interact
with two types of chemicals yielding respectively increase and decrease of the length of the polymer
chain. These chemicals interact between themselves by means of a modified Lotka—Volterra type of
equation, which is coupled with the Becker—Doring part of the system. It is well known that Lotka—
Volterra models may admit periodic solutions. The interaction of the Lotka—Volterra equation with
the Becker—Déring part is responsible for the damping of the oscillations observed in [13], but the
specific form in which this damping takes place is not well understood at the moment.
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2. Derivation of the limit model. In this section, we describe a regime in which the discrete
Becker-Déring model with source and depletion (1.9)—(1.10) can be formally approximated by the
limit model (1.12)—(1.14).

Our analysis is based on understanding the interaction between small and large clusters, where
the separation scale is given by the critical size (1.16). We shall argue that for clusters smaller or
comparable to ki, solutions are close to a constant-flux steady state of the Becker—Déring equation
parametrized by the monomer concentration, and we derive an Arrhenius law relating the flux and
monomer concentration. We provide additional discussion of the quasistationary assumption in the
supplementary material SM1, where we describe the time scale for a drift-diffusion approximation
in the boundary layer where k is near critical size.

In Section 2.2, we show that the dynamics of large clusters are well approximated by a transport
equation, which will rescale to (1.13). The boundary condition for this transport equation is
obtained in Section 2.3 by matching with the fluxes from Section 2.1. Then in Section 2.4, we
study the evolution of the monomer fluctuation « in (1.11). This is a balance between (i) the
nucleation flux towards large clusters through the critical size ki and (ii) a condensation flux due
to the growth of large clusters.

Finally, in Section 2.5, we will identify a time scale T', a macroscopic cluster size scale X much
larger the critical cluster size (1.16), a macroscopic cluster density F, as well as the source rate
S and the depletion rate R for which the Becker—Doring system (1.9)—(1.10) with injection and
depletion can be approximated by the limit model (1.12)—(1.14).

2.1. Steady states with constant flux. We recall results from [28] about steady states
with constant flux. We consider in particular the case of small excess density and find suitable
asymptotic expressions of the steady states in this regime. It is convenient to recall first the
formulas for equilibrium solutions with zero flux, given by

k-1
_ _ aj
2.1 g = Qrnt Qi = —_—
& ot o=l

where the parameter n; represents the equilibrium concentration of monomers. With coefficients
as in (1.8) we find

22)  log(arQy) = log (ﬁ Z;) _ Zkzlog< ! > T o)) ask o oo

g _
=1 =1 1+ 4] 1—v

Thus we see that the series EZOZI kQxn¥, which represents the mass of (7 ), has radius of conver-
gence 1 and converges for 7; = 1. The corresponding critical mass is denoted as ps = 21;“;1 kQp.
For super-critical monomer density 7; > 1, the zero-flux equilibrium solution Qpn¥ grows
exponentially at infinity and those solutions will not play a role. As in [28] we consider in this
regime steady states with constant flux, where the flux is chosen such that the steady state remains
bounded as k — oco. More precisely, we look for given 77 for bounded solutions { Ny (7i1)}r=n of

(23) Ni=m and ak_lﬁlNk_l(le) — kak(’f_ll) = J(T_Ll) , k>2,
where J(7i1) is part of the unknown. It has been shown in [28, Lemma 1] that for each 7i; > 1 there

exists a unique solution to this problem, given by the formula

oo

1 1 = 1
24 Ni(ny) = J(n nk —_— where = .
(24) ) = T Y T~ 2 gl
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Furthermore, for fixed 71, ap Ny (1) decreases monotonically with & (which implies that Ny (721) is
bounded and Ny(71) — 0 as k — oo if & > 0), while for fixed &, %ﬁ”) increases monotonically
with 727 and we have for 77 > 1 that Q < Ny (1) < Qgn¥ for k € N.

Asymptotics of steady states and flux. We are particularly interested in the asymptotic

behavior of {Ng(71)}k=n and J(71) for slightly supercritical density 77 > 1. Thus we introduce
the small parameter

(2.5) e=nm—1<1.

We shall argue that the asymptotics for the constant flux are given by

(2.6) J(fg) = Joo i= 7 5 e exp(— 7 qialvw> ase =0,
2wq~ 1—n»

and for the corresponding steady states by

J(m)  J(n g
(27) Nk(ﬁl) ~ m = (Ll) for k > ke = (g) .
cay, ek €
Derivation of (2.6). The critical cluster size ke from (1.16) is a crucial quantity occurring in
the analysis of this paper, as in [28]. Improving on (2.2), we can write

k
(2.8) =M1 40(1)),  with G(k):—klogﬁl—i-/ log(1+ql~7)dl + C.
1

a,Qrnk

The series for 1/7(a;) in (2.4) is dominated by terms with [ near the point where k — G(k) is
maximized, and it happens exactly at ke = (4/c)'/7, which is consistent with (1.16). Laplace’s
method provides an approximation to the series: Noting that

—ygk~ 7!
14 qgk=
and G (k)/G" (k) = O(Y/k), the expansion G(k )—G(kcm) +2G" (kerit) (k — kerie)2 (14 0(1)) is valid

for |k — kerig| < kP, for any p < 1. Choosing p > (1 + ) allows k_J,~ 1(/{ kerit)? to be large,
whence we find

1 G(keri X LG (kerie) (b—kerit)? G(keri 2
Z — ~ e ( cnt) / 65 ( cnt)( - crlt) dk —e ( cnt) 7 as € — O.
= kerie | <k? lanl —o0o -G (kcrit)

G//(k) —

crit

crit

The remaining part of the series for 1/s(n,) is small relative to this, and since n; ~ 1 it follows (2.6)
from J(ny) ~ \/We’c;(k““) and by noting that

k!
qli“t (1+ 0(1)) — kerit log g ~

Keritey _ 7
1—7v 1—7v
Derivation of (2.7). Similarly we obtain by recalling the relation (2.8) for k > k. that

~ o~ G(k) G() ~ G (k) ~ Z
arQrn} E e E e _/ dl = ~ =
! — 0 -G'(k) e

and hence, from (2.4), we obtain (2.7).

1 1
q7517?.

(2.9) G (Kerit) =~

aszl
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2.2. Transport equation for large clusters. For clusters much larger than the critical size,
exceeding the macroscopic cluster size scale X that will be determined below in Section 2.5, we
have

(210) Jr = ay, (nlfl)nk - %nk + bpng — bpr1nk+1 >~ ageng for k> X > ke -

Hence, we can approximate the evolution of clusters in this regime by

(2.11) on(k,t) + ey (k“n(k,t)) = —rk"n(k,t)

where for large cluster sizes, we treat k a continuous variable and we represent the discrete concen-
tration ny(t) by a continuous concentration n(k,t).

2.3. Monomers and the nucleation flux. The behavior of n for clusters that are much
larger than the critical size, but much smaller than X, is given by the quasistationary solutions
depending on n4(t), that is (2.7) implies

J(m (1))

(2.12) k“n(k,t) ~ for ket < k< X .

We see from (2.6) that small changes in ¢ yield large changes in the flux J(1 + ¢). In order
to obtain variations of order one during the evolution we introduce a rescaled concentration of
monomers. More precisely, we introduce for fixed 0 < ¢ < 1 the new variable u via

ni(t)=14+¢e+ (Z)}{u(t) =7y + @

kcrit

Note also that we have n;—1 ~ ¢ at leading order as long as u = O(1). Hence, as long as u remains
of smaller order, we may approximate J(n;) with n; in place of 7y in the derivation of (2.6) to
arrive at

(2.13) J(ny) = Jee.

Indeed, the relation (2.13) follows by maximizing

k
G(k) = —klogn, —I—/ log(1+¢l™")dl +C = G(k) — klog (;“) .
1 1

The maximum occurs at k satisfying ny =1 + q/;:_'y7 SO

1 . _1 _1

~ q v q\5 (n1—1\ ~ u K -1
k= =\= :kcri 1 :kcri .
<n1—1> (6) < g ) t< +5kcrit> t+0(€ )

Hence, by following the same derivation as for (2.6), we arrive at J(ni) ~ J(ﬁl)e_é(’;)‘*‘c(kmt).
Now k = ket (1 4 o(1)), so

klog (m) = klog <1 + ui ) =u+o(l),
nq Kerigha

while G(k) — G(kexit) = O(G" (kexit) (k — kerit)?) = O(ki7e=2) = O(e7 1) justifying the asymp-
totic expansion (2.13).
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2.4. Evolution of monomers. We introduce a constant L > 1 as a multiplicative cutoff
between subcritical and supercritical clusters, and approximate the equation for the monomers by

Lkcrit oo
Omi=—D— > Je— Y. J+S.
k=1 k=Lkeyis+1

In the second sum we use the approximation (2.10) for the fluxes J;, and approximate the sum by
an integral

DR/ES (nl—l)/ n(k, Ok k. for L > 1.
k=Lkerio+1 Lkerig+1

In the supplementary material SM1, we justify that in the region of of subcritical clusters, the
evolution follows a quasistationary law on an algebraically large time scale in e~!, which allows us
to approximate Ji by J(ni(t)) for 1 < k < Lkcyit.

Using also that n; — 1 is of order € we obtain the following equation for the concentration of
monomers

o0

O =~ (Lhuse + ) (m(0) ~¢ [yt dy+ S,

Lkcrit+1

1

kcrit

(2.14)

together with equation (2.11) for the supercritical clusters and the boundary condition (2.12). We
will see later that the term (Lkcit+1)J in the contribution of the monomers is negligible compared
to the integral term during the whole dynamics. We assume that for the moment and will check
that a posteriori.

2.5. Identification of scales. We introduce new units and variables for the cluster size X,z
time 7', 7 and cluster density F, f, respectively, via

(2.15) k=Xux, t=1r, n=Ff.

We will obtain the limit model (1.12)—(1.14) by choosing the scales

1
€ 2= lea kcrit 1 n
2.16 X = T = F = S = R =
( ) (kcritJoo> ’ e ’ X2’ chrit, TXr’

with Keyit as defined in (1.16) and Jo given in (2.6). We have also included the size of the monomer
source S in this formula and introduce a rescaled depletion rate nn > 0. Notice that from (2.6), Joo
is exponentially small in the parameter £, which implies similar exponential dependencies for all
scales X, T, F, and S.

Using the scales in (2.15), the monomer equation (2.14) becomes

o0

(2.17) oru=— (chm + 1)J(’Il1(T))chrit — e XN PT ks / fla,)z%dx + STkeyit

Lkcrigt+1
X

and similarly the transport equation for the large clusters (2.11) together with its boundary condi-
tions (2.12) take the form

(2.18) Or f(x,T) 02 (2% f(x,7)) = = (TX"R)a" f(x,7)

Te
+ leoc
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J(m (7)) for Ferit LrkKl.

We recall from (2.13) that J(ni(7)) = Jooe™™), where J., is an exponentially small quantity
defined in (2.6) that gives the order of magnitude of the fluxes through the critical size. As explained
in Section 1.5, the nucleation rate, given by the flux through the critical size manifested as the
boundary condition in (2.19), and the condensation rate, given by the coagulation rate of monomers
with macroscopic clusters manifested as the scale of the integral in (2.17), need to be of the same
order of magnitude. It is readily checked that (2.16) implies

I

Foxa = 1 and eEX TP Tkey = 1.

The time scale that yields growth of the macroscopic clusters due to the transport on the left hand
side of (2.18) in that scale is given by T'e/ X1~ which becomes equal to one by the choice (2.16).

Notice that the choice of S in (2.16) implies that the changes of w in (2.17) are of order one. This
justifies the expansion of the flux in (2.13) a posteriori This formula yields the relation between
¢ and the source S. A different choice of S might still result in oscillatory behavior, with an
amplitude change in u not of order O(1), although the expansion of the flux in (2.13) is valid for u
up to order 0(87%).

In order to conclude the derivation of the limit model (1.12)—(1.14), it only remains to justify
neglecting the fluxes in the subcritical region, or equivalently to show that the term (Lkeis +
1)J(n1(7))Tkeis in (2.17) is negligible. The contribution Lk + 1 is algebraically large in e~1.
We estimate the exponential terms contained in the product J(nq(7))7T, which are

1 \z=a 1-i=a 1z
(2.20) oo (—) = Joo T = JE" .
Joo
Since ﬁ > 0, it follows that this term is exponentially small. Therefore the flux terms due

to subcritical particles yield a negligible contribution and (2.17) can be formally approximated
by (1.12).

3. Periodic solutions for the limit problem. Our goal is to argue, by formal means, that
steady state solutions of the limit model (1.12)—(1.14) undergo a Hopf bifurcation as the rescaled
removal parameter 7 is varied, for a wide range of values of o and r.

To our knowledge, a rigorous Hopf bifurcation theorem has not yet been proven for a model of
this type, though it seems plausible that one might extend existing methods for retarded functional
differential equations with finite delays (RFDE) which are based upon rescaling to fix the temporal
period and Lyapunov-Schmidt reduction [18, 12].

It is well known, that in order to prove the existence of periodic solution by means of a Hopf
bifurcation, one has to show:

1. existence of steady states for a family of dynamical systems parametrized by 6 € O;

2. the linear stability of these steady states changes at a critical value 6.,y due to fact that
two complex conjugated eigenvalues of the linearized system cross from {Re(A) < 0} to
{Re(A) > 0};

3. for generic dynamic systems, the periodic solutions exists for small |6 — 0.,i¢| either in the
parameter region {6 < Oeyit} or {6 > Oyt . These periodic solutions are stable if the steady
states found in 1. are unstable for the range of 6, where the periodic solutions exist.

This manuscript is for review purposes only.
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We carry out the three steps of this program for the limit model (1.12)—(1.14) in Subsections 3.1,
3.2, 3.3, respectively. To simplify the Hopf bifurcation analysis, it is convenient to introduce a new
size variable z and relabeled flux h(z,7) defined by

(3.1) z =gl and h(z,7) = ) ,
1-a
In those variables the system (1.12)—(1.14) takes the form
(3.2) oru=1-— / h(z,7)z" dz,
0
(3.3) Orh(z,7) + 0.h(z,7) = —n2°h(z,7), z2>0,

(3.4) h(0,7) = e,

where the exponents § and v are nonnegative and given by

r (0%

(3.5) 8= v =

1—a’ S l-a

For any solution of this system, such as a steady-state or time-periodic solution, which exists
for all times 7 € R, one finds, by integrating (3.3) along characteristics emerging from z = 0, that
necessarily

(3.6) h(z,7) = exp(u(T—=2)) exp(—#zm'l) .

Using this expression in (3.2) we find that v must satisfy an RFDE with infinite delay, namely

—1_ > u(t—2z) _L B+1)\ v
(3.7) Oru=1 /0 e exp( ﬁ—i—lz )z dz.

3.1. Steady states and their stability. For any n > 0 we have a constant solution u = g
of this equation, given by

> n 1 v
3.8 1= et (-2t ) 2z,
(3.8) e /0 exp 5+1z 2Vdz

The corresponding steady state h = hg(z) is then given by (3.6) with u replaced by wy.
Next we consider the linear stability of these steady states as solutions of (3.2)—(3.4). After
linearizing about ug, hg, we find nonzero solutions proportional to e” exist, A € C, if and only if

_ u > n B+1 v
3.9 A= —e" - - A dz.
(3.9) e /0 exp( ﬁ—l—lz z)z z

It is convenient to study this equation after the rescaling n_ﬁ)\ — A. With

(3.10) Goo()) = /OOO exp(—

i lzﬂ'H — )\z)z”dz,

the eigenvalue equation (3.9) then takes the form

(3.11) A+ Gp,(\) =0,  where 9 =n71Gg,(0).
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Note A = 0 is never an eigenvalue since Gg,,(0) > 0. Also note G5 ,(A) = —Gg+1()),
(3.12) Gp.(0) > |Gp(N)| and |G} ,(0)] > |G, (A)| whenever Re A > 0.

It follows that we have linear stability for large values of the parameter :

LEMMA. There are no eigenvalues in the closed right half plane if 9 > |G} (0], i.e.,
n> (Gb’wﬂ(o))ﬁ+1
Gs.0(0)
The reason is that if Re A > 0, then with G = G, we have
0> |G'(0)] = Re (G(O) < G(A)) > —Re —G(AA).

3.2. Eigenvalue crossings. A Hopf bifurcation should occur provided that some branch of
solutions A = A(9) of (3.11) crosses the imaginary axis transversely. This means that Re A = 0 and
Re 93 # 0 at some particular ¥ = . Since (9 + G’()))%3 = —\ along the branch, we find

(3.13) sign Re @ = sign Re( A0+ G’(A))) = sign d— Re G(it) = sign % arg G(it),
if A = 4t with ¢ > 0. Thus the criteria for Hopf bifurcation become the following: First, there should
exist tg > 0 such that for t = ¢,

(3.14) ReGp,(it)=0 and ImGpg,(it) <0, or equivalently argGp,,(it) = —g (mod 27r) .

This is necessary and sufficient for (3.11) to hold with ¥ = —G(it) /it > 0. Second, the transversality
condition holds if and only if

(3.15) dt Re Gg,,(it) # 0, or equivalently a4 arg G, (it) # 0.

d dt

Thus we can provide evidence that a Hopf bifurcation occurs (for some 1) and infer the direction
of eigenvalue crossings by identifying zero crossings on the graph of 5 +arg G(it) (mod 27). In the
original time scale 7 of the model, such zeros correspond to oscillations with wave number

1 t v+1
— 1 = 1
(3.16) =t = s G0 = (B DT ().

3.3. Direction of bifurcation. In this section we identify computable criteria that should
determine the direction of bifurcation (i.e., whether small time-periodic solutions appear for n > 7
or n < 1g). We posit bifurcating solutions have variable period 27/k and scale time using the
variable wave number x near a value ko given by (3.16) at a putative bifurcation point ¢ = tg.
Rewriting (3.7) in terms of the constant solution g from (3.8) and rescaled variables given by

(3.17) u(r) =uo + U(s), s = KT, Y = Kz,

we find that the 27-periodic function U, constant x and bifurcation parameter n should satisfy

0o _ B+1 euo
U(s— ny —
(3.18) kOsU —i—/o (e (s=9) _ 1) exp <ﬁ 1 HB+1> Y dy o 0.
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It will be convenient to work with the variables and parameters given by

v+2

K n

’ = W? 9k, y) = y” exp(—py

(319) w(s)=e"® -1, §= AL,

euo

Thus we seek a 27-periodic function v, constant ¢ and bifurcation parameter u so

(3.20) 00sv 4+ (L+v)(y*v) =0, where (yx*v)(s) = /000 g, y)v(s —y) dy.

The function v = 0 is a trivial solution for any ¢ and p, and the problem is equivariant with respect
to translation in s. We expect bifurcation from this branch for §, p respectively near values dq, 1o
coming from the parameters ty, 19 by the formulas above.

In terms of an amplitude parameter ¢, we seek formal expansions

v=ev;+ 209 +..., §=00+e0 +e%br+..., M=M0+€u1+€2M2+---~

We will find §; = g3 = 0 as is typical for Hopf bifurcation. Provided certain nondegeneracy
conditions hold, we find the quantities do and us can be expressed in terms of the quantities

(3.21) g (k) :/ e Mgy dy,  gi(y) = Fglpo,y) = (—y Ty exp(—poy” ).
0

In fact, our computations will show that po and do are determined by the relations

—62Re o (2) So  03(200 +Im go(2))
2 (1) = —0Rego@) s a1y = %0 4 %
(B22) e Reh) = g5 oy aige 2T = Ty gy i

provided the transversal crossing condition and the nonresonance condition go(2) + 2idg # 0 hold.
Returning to the original parameters n = ng(1+¢&%n2 +...), kK = ko(1 + €%k +...), and taking

from (3.8) into account that e*°Gpg ,,(0) = n%, we find
P v+1pus 92

H2
3.23 — W+ LB+ 12, k= H2 | %2
(3.23) n2 = ( >,uo (B )50 2= 3 im %

The sign of 72 determines the direction of the bifurcation. It is plausible that this determines
the stability of the bifurcating periodic solutions in a similar way as for ODEs, and RFDEs with
finite delays [12]. Namely, if the constant flux solution with u = wg is stable for n on one side of
the bifurcation point 7, then bifurcating periodic solutions are stable if they appear for 1 on the
opposite side, and unstable otherwise. As the constant-flux solution is stable for 7 sufficient large,
we therefore expect that at the largest bifurcation point 1y, the new branch of periodic solutions
is stable provided that ns is negative. We call this case supercritical and will provide numerical
evidence that indeed such bifurcations occur in Section 4.2.

In the remainder of this section we derive the relations in (3.22). By an integration by parts
starting from (3.13), we have A = it = —)\, since d%e_“y = —ite™"™. Moreover, G (\) =
—Gpg,p+1(A) and hence by using (3.11), we obtain

-2\G! (A) = —itGp41(it) = /OO (de—ity) g+t eXp(_ y )dy
v 7 0 dy B+1
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0o ) yﬁ"rl
—— [ e g -y exp(-
0

B+1)dy

= —(v+1)Gpu(it) + Gpp1+5(it)

: 91(1)
= (V + 1)(7/1:)19 — W.
Here, we used (3.21) and thus arrive at
. dA . .
(3.24) sign Re o9 = ~sien Reg1(1).

We require this quantity is nonzero, which is equivalent to transversal eigenvalue crossing.
We proceed to compute. Expanding v = v + ey1 + €272 + ... we find 79 = go, 71 = H191,
Y2 = p2g1 + %u%gg. Plugging into (3.20), at the respective orders ¢, €2, and €% we find

(325) 0= L'Ul = 60851)1 + Yo * v,
(3.26) 0= Lva + (6105 + y1%)v1 + v170 * V1,
(3.27) 0 = Lug + (0205 + vax)v1 + va(y0 * v1) + v1 (Y0 * v2)

+ (0105 + 1%)v2 + v1(71 * v1).

By what we have said in subsection 3.2, equation (3.25) should have two-dimensional kernel N

spanned by coss and sins (or e*®). Due to translation equivariance of the problem, we may

suppose that the amplitude and phase of this mode of v are normalized so that vy (s) = coss.
Now, in terms of Fourier series v =), _, d(k)e™*, an equation Lv = w corresponds to

L(k)o(k) = w(k) forallkeZ,  L(k)=ikéo+ jo(k).

This is solvable if and only if the nonresonance condition holds, namely L(k) # 0 for all k such that
(k) # 0. Since L(£1) = 0 by assuming the first criteria (3.14) for a Hopf transition, we always
require w(=£1) = 0.

Moreover, for the following formal analysis we require the nonresonance condition

(3.28) L(k) = L(—k) = ikdo + go(k) #0  holds for k = +2.
Applying these considerations to (3.26), since L(coss) = 0 we see that the term
5
v1 (Y0 *v1) = (cos s)(dp sins) = —%62” + c.c.,

is nonresonant, provided ﬁ(iQ) # 0 as we have assumed. However the terms in é; and pp are
resonant. Since coss = %eis + c.c. we find these terms yield (id; + ulgl(l))%eis + c.c. Since we
presume Reg1(1) # 0 from (3.15), solvability of (3.26) requires p; = 0, and also 6; = 0. The

solution for vq is

ido 1

4 2id0 + go(2)

Next, we consider the solvability of (3.27). The terms involving §; and 7; vanish. It remains

to show that the resonant terms are removed by a particular choice of do and po. For this purpose,
noting go(1) = —idy we observe

(3.29) va(8) = 92(2)e* + c.c., 02(2) =

~ ~ 18 0 s ~ ~
Yo *v1 = Go(1)01(1)e"® + c.c. = —706 "+, Yo * v2 = go(2)02(2)e

2is

+c.c.,
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therefore the resonant terms on the right hand side of (3.27) are

e’ ((522' + w21 (1))01(1) + 92(2)go (1)1 (1) + 171(1);}0(2)172(2)) + c.c.

= Lo (it 12 (1) + (160 + G0(2))52(2)) + ceco

2

Since idg + §o(2) = E(?) — idg, the resonant terms vanish if uo and d9 are given by

. i6o L(2) — ido 03 .
3.30 Regi(1) = —Re | — —= = — Re go(2),
( ) p2 Re g1 (1) ( 4 1) 12! 90(2)

. 6o L(2) — idg 8o 62 .
3.31 0o + o Im N)=—-Im| ——"F—— | =——F + —/——(26p +Im §9(2)).
( ) 2 T U2 91( ) ( 4 L(2) 4 4|L(2)\2( 0 90( ))

4. Ranges of parameters yielding bifurcation. In this section we provide some numerical
and analytical information regarding the occurrence and direction of Hopf bifurcations as one varies
the removal factor 7 in the limit model (3.2)—(3.4), for a variety of cases involving the exponents
B=r/(1—a)and v = /(1 — «) from (3.5). A particularly intriguing finding is that an infinite
number of bifurcation points appear when ¥ = o« = 0 and f = r is an odd integer greater than 1.

4.1. The case § =7 = 0, v > 0. We have explicit formulas in this case, since whenever
Re A > —1, the substitution (1 + A\)y = s and a contour deformation argument shows

I'v+1)

This case corresponds to removal of clusters in (1.10) at rate independent of size, since r = 0. When
v is an integer, equation (3.7) can be reduced to an ODE of some order by repeated differentiation.
We comment on the connection to similar models in the literature in the Appendix A.

In the present case, we can rigorously describe all eigenvalue crossings and prove transversality.

Go(A) =

PROPOSITION. In case B =0 and v > 0, an eigenvalue A = it with t > 0 occurs for some n > 0
if and only if
w1+ 4k

tan~ 1t = wy = CIn for some integer k satisfying 0 < 4k < v.
v

The transversal crossing condition (3.15) holds for all k, with sign Re % < 0.

The reason this is true is that the condition (3.14) for eigenvalue crossings takes the form

—arg G, (it) = (v + 1) arg(1 +it) = (v + 1) tan ' t = g (mod 27),
and transversality follows from (3.13). We note that large n (or ¥) corresponds to small ¢, so that
as 71 decreases from large values (where one has linear stability), a first crossing appears at

I cos’ 2wy
4.1 to = tanw = = ko = cos’ T wyp.
( ) 0 07 770 F(U + 1) Sin (,()0 b 0 0

In summary, for § = 0 we find that whenever v > 0, bifurcation from a stable state should
occur at wave number kg as 1 decreases through the value in (4.1). However, no bifurcation occurs
for v = 0. The values of 1y and ko are in principle explicitly computable, but the expressions
become quickly impractical.
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Fig. 3: no (left) and ko (right) vs § for v = % (—), % (—), 1 (—), % ( ), and 9 ( ).
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Fig. 4: n (left) and ko (right) vs § for v = % (—), % (—), 1 (—), % ( ), and 9 ( ).

—0.5 |

4.2. Numerical bifurcation curves. In Figure 3, we plot the largest value of 7y correspond-
ing to a solution of the bifurcation criteria (3.14) against the parameter 8 for various values of v.
The transversality condition (3.15) and nonresonance condition (3.28) are verified numerically in
the supplementary material SM2 (see Table SM1 and Table SM2). In Figure 4, we plot values of
72 and ko from (3.23) to numerically determine the direction of bifurcation. The fact that s < 0
indicates that n < 7y along the bifurcating branch, so we expect a supercritical Hopf bifurcation
with stable periodic solutions. The values of ko are also negative, which shows that wavenumber
decreases as amplitude increases along the branch.

4.3. The case =1 > 0,v = 0. First, we claim that no bifurcation occurs for any n > 0 if
v=0and =1 € (0,1]. Note

L[~ lyl”**
Hpgo(t) :=ReGpo(it) = 5/ exp (— — ity) dy .
— o0
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Fig. 5: Contours of Im G(A)/x = 0 (black) and Re G(N)/x = = for values ¥ given in Table 1 (blue to
lemon). (Left: unscaled. Right: real axis expanded to compensate the exponential factor in (4.2))

For 8 = 1 this is a Gaussian and it never vanishes. For 0 < § < 1, the function hg(y) =
exp(—|y[**1/(8 + 1)) is the characteristic function (Fourier transform) of a symmetric a-stable
distribution from probability theory, with o = 8+ 1, see [15, Sec. XVIL6]. Hence Hg(t) is a
positive multiple of this distribution’s density, which can have no zeros due to its scaling invariance
under convolution. Hence (3.14) cannot hold.

For B > 1, the inverse Fourier transform of hg is known not to be a probability density, and
this means Hg o(t) must cross zero for some ¢t. Transverse crossings would then ensure bifurcation,
since Im Gg o(it) = — [, hs(y) sin(y) dy < 0 due to the monotonic decrease of hg.

Odd S > 1. Strikingly, asymptotics suggests that infinitely many bifurcations occur for odd
integers 8 > 1 in particular. For in this case, hg is an entire function, and its Fourier transform
Hgo(t) — 0 as |[t| — oo at a super-exponential rate. A standard saddle-point analysis (details
omitted) indicates

2m 1- -1
(4.2) Hgo(t) ~ 4 /%tl?ﬂﬁ exp (t%(:@) cos (tﬁ;frls,g — Zﬁﬂ) as t — oo,

c ZLCOSEM<0 S p 'nwﬁ—’_1
AT B117 27 8 ’

Furthermore Gg (it) ~ /it as t — oo (integrate (3.10) by parts). Hence, at the bifurcation points
that approximate the zeros of (4.2), the bifurcation parameter 7 and wave number in (3.16) satisfy

where

1 1 t=1
19:173+1Gﬂ’0(0)wtf27 K/NW

In Figure 5 we observe that at successive bifurcation points, evidently eigenvalues cross the imag-
inary axis in opposite directions, according to (3.13). Numerics' (see column RELERR in Table 1)
indicates that for § = 3, the approximation in (4.2) is reasonably good already for the first zero,
where Re 45 < 0 by (3.24).

IThe integrals G(\) and roots are computed in Julia [7] using the QuadGK [20] and Roots package.
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index Yo Mo Ko 2 Ko Re g1(1) |ﬁ(2)| RELERR
1 2.81071 231073 5.3537! —4.355"1 —1.089°! 7.6111 29470 1.461°2
2 3.45672 5.284-7 1.293! —2.7027! —6.755"2 —7.2822 1.0919 2.729-3
3 223672 9.259-8 1.189"! —3.414-! 853572 9.8132 1.576%  1.10673
4 1.32672 1.14378 8.9422 _—3.3147! —8284=2 —6.7082 1.4820 5.941—4
5 9.3277% 280379 7.538°2 —-3.335"! —8.33972 3.2402 1.5020 3.700*
6 6.96273 8.700710 6.50772 —3.3327! —8.3307%2 —1.2662 1.4999 2.524—4
7 545973 3.288°10 576372 _—3.333°! —8.33372 4.2921 1.500° 1.831~¢
8 442773 1.422710 5190-2 —3.333"!' —8.33372 —1.313! 1.5000 1.3887¢
9 3.6837% 6.81871 4.73572 —3.3337! —8.333°2 3.718° 1.500° 1.089~*
10 3.12773 3.542711 436272 —3.3337' -—833372 —9911°' 1.500° 8.766°°
11 2.6983 1.962711 4.05272 —3.333"! —8.333°2 251771 1.500° 7.209°°

Table 1: Numerical values of the first 11 roots of Hs (%), the transversal crossing condition (3.24),
the nonresonance condition (3.28) and relative error to approximate solution from (4.2).

Thus as 1 decreases through the largest bifurcation point, one pair of eigenvalues emerges into
the right half plane and the stable constant state becomes unstable. Decreasing across the next
bifurcation point, some pair of eigenvalues must cross back into the left half plane, and it must be
the same pair. So the constant state alternates stability between successive bifurcation points.

For small n the instabilities are extremely weak, however. The unstable eigenvalue becomes
super-exponentially close to the imaginary axis since |G’()\)| decays only algebraically. Thus for
small n the constant state becomes essentially neutrally stable.

Since Table 1 indicates 12 < 0 in (3.23) in every case, our study of the direction of bifurcation
in section 3.3 indicates that a branch of periodic solutions emerges for n below each bifurcation
point n9. We expect that the emerging periodic solutions alternate between stable and unstable,
corresponding to the stability of the constant flux solution just above 1.

Regarding what may happen to bifurcating solutions in the large we have no firm information.
One relatively simple possibility is that, as 1 decreases, each bifurcating branch reconnects with
the next branch, but only after folding over at some lower value of n and changing its stability.

Other 5 > 0 not odd. It is possible to show that some eigenvalue crossing must always occur
when g € (4k 4+ 1,4k + 3) for some k € Ny. For in this case we can study the asymptotics of large
roots of equation (3.11), and show the constant flux solution becomes unstable as n — 0. From
Section 3.1 we know it is stable for large 7, so some eigenvalue must cross the imaginary axis.

We approximate G(X) = G o(\) as |A| = oo with Re(A) > 0 by integrating by parts to get

I Y yP TN 1 1
4. === — VP dy = = — .
(4.3) G(\) 3 )\/0 exp( 511 e My dy )\—i-O N

Thanks to the first exponential factor in the integrand, this expansion is valid for any 8 > 0 in the
region Re(\) > —1+ ¢ for any § > 0. We obtain the leading order approximation

1
(4.4) IAN+ — =0, hence A+

X as v —0.

4-
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In order to check the stability of these roots, we need to compute the next order of G()\) in (4.3).
By a change of variables z = Ay and using a contour deformation for large values of z to keep the
contour in the region with Re(z) > 0, we get

oo B+1 1 B+1
_Y MY B gy — ___Z ~2,8
/0 eXP( 5+1>e y’dy NP5 /ARexp< (5+1)/\1+6>€ 2P dz

1o T(8+1)
~ 2,84, —
_)\1+5/0 e *2Pdz = 1T as |A| = oo.

This is valid for any 5 > 0 in the region Re(A) > —1 + 6 for 6 > 0. Hence from (4.3), we get the
asymptotics G(A) =~ A™1 — T'(8 + 1)A~#+2) for |A| > 1. Here, the branch of the analytic function
is chosen by extending analytically such that 125 = 1. We then approximate equation (3.11) as

Ir'B+1)

2 ~

(4.5) I +1_/\17+g*0-

We consider the approximation of the root with positive imaginary part in (4.4). By dividing (4.5)
by ¢ and taking the square root, we get

i TB+1)\? T(B+1)

With the leading approximation of A from (4.4), we obtain

(4.6) A:%(l—Wexp(—W)) as v —0,

im(B+1)

where we used 7 = ¢~ 2 . For 8 = 0, we obtain Re(\) ~ —%, consistent with the result from

Section 4.1 that the constant flux state is linearly stable. Regarding the general case, we find

(4.7 sign(Re(\)) ~ —sign (sin<ﬂ(6;1)>> as ¥ — 0.

Thus we obtain linear instability for § € (4k + 1,4k + 3) with k& € Ny, as mentioned above. In
case B € (4k — 1,4k + 1) for k € Np, we have Re(\) < 0 for a root of (3.11) satisfying (4.6), but
we do not know about other roots. Nevertheless, this analysis suggests that in the limit ¥ — 0,
the constant flux state changes its stability as [ passes an odd integer, which is exactly when the
system shows infinitely many bifurcations as discussed in Section 4.3.

The case § > 0 not odd and v < 1. We close this section by indicating that an analysis is
possible for the case § > 0 not odd with v < 1 but positive. In the supplementary material SM3,
we arrive, consistent with (4.4), at the approximation of the root A of (3.11) with positive imaginary
real part to second order as

1

PES)
)\:(M> (i + A2) as U — 0,

)
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with Ay = 0(19%). The real part of Ay determines the stability of the stationary solution. Ap-

proximating Ag in the limit v — 0, we find

as v — 0.

(4.8) Re(\s) ~ 2 — Mgfﬁé sin(w)

4 2 2
First, for v = 0, we recover the stability condition (4.7). Next, for v > 0, the stationary solution
becomes unstable as soon as ¢ is small enough and oscillatory behavior can be expected, in accor-
dance to the asymptotics from Section 3.3. Finally, we obtain a curve of stability with v depending
on ¢ if sin(Z)) > 0, that is § € (4k — 1,4k + 1) for some k € N.

Appendix A. Moment models. In [17, p. 293ff] a model is suggested for the distribution of
diameter sizes of supercritical particles in the presence of homogeneous and heterogeneous nucleation
having similarities to the limit model in Section 1.3. Homogeneous nucleation is modeled using
an Arrhenius law, and specific power laws for the particle growth and the particle removal are
assumed. In [17, (10.46)] constant growth of this diameter is assumed, which translates for our
coefficients (1.8) to the case a = 2/3. Part of the analysis of this case can also be found in [31].

For this choice of the coefficients, the limit model (1.12)—(1.14) becomes

(A1) Onf () + 05 (23 f () = —ma” f (1),
(A.2) x%f(:zr,t) ~e" as v — 0.

Following [31], the authors use three moments, denoted as N, A, R which are the number of
clusters, the area and the radius, respectively. In our notation these moments are

N/Ooof(x,t)d:c, A/Ooong(z,t)dz, R/Oooxéf(:zr,t)dz.

It is then possible to calculate the evolution equations for these moments, which we have to com-
plement with the equation for the monomer concentration

Oyu = 17/ zgf(x,t)dx: 1- A
0

In order to obtain a closed system of ODEs we need to make the removal term precise. In [17], it
is assumed that n = 0, which gives the following system for the moments:

2 1
dN=¢". 9A=ZR, OR=3N, Odu=1-A

This is a system which is not able to generate oscillations, since the moments just grow in time.

In [31] a removal mechanism is suggested that eliminates clusters with a mean life time 7 > 0,
which is equivalent to choosing r = 0 and n = % > 0 in (A.1). With this choice, the ODEs for the
moments take the form

2 1
OyN =e" —nN 8,5A:§R—77A, (‘9,5]%:5]\[—7)]%7 Ou=1—A.

This ODE system derived from (A.1) and (A.2) is almost the same as the system considered in [31]
with only two minor differences: First, in [31] there is a term associated to the flux of area and
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radius at the critical radius present. In our model a similar term is shown to be negligible in the
limit that we consider (see (2.20)). Second, for the flux of clusters, as denoted in [17] by I, the full
Arrhenius formula is used, whereas we obtain the exponential approximation (2.13) leading to the
boundary condition (A.2).
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