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Abstract—Graphics Processing Units (GPUs) are widely used
in safety-critical real-time systems such as autonomous vehicles
due to their high performance on artificial intelligence (AI) work-
loads. As the computing power of recent GPUs keeps growing,
it becomes increasingly possible to allow multiple independent
programs to access the GPU concurrently. This complicates
timing analysis, as contention for shared GPU resources renders
execution times less predictable and worst-case execution times
(WCETs) difficult to estimate. This paper provides a method
for producing enemy programs that intentionally contend for
GPU resources in order to enable more confident measurement-
based WCET estimations. This paper provides an experiment-
driven method to design effective enemy programs for several
different interference channels—specific shared resources within
the GPU through which concurrent computations may impact
others’ execution times. The method is flexible and can be applied
to different GPU sharing mechanisms. The enemies are evaluated
against a large number of real GPU applications, and the results
indicate that these enemies cause higher slowdowns for GPU
tasks than other baseline resource-stressing methods.

Index Terms—real-time systems, graphics processing units,
measurement-based timing analysis, interference channels

I. INTRODUCTION

With advances in artificial intelligence (AI) and computer
vision (CV), safety-critical real-time systems such as au-
tonomous vehicles increasingly depend on graphics processing
units (GPUs) to accelerate highly parallel workloads. As GPUs
grow more powerful, more opportunities arise for scheduling
multiple computations (called kernels) concurrently on one
device [1]. However, in real-time systems, concurrent GPU
kernels complicate timing analysis due to the presence of
interference channels.1 Interference channels are hardware
resources such as compute units, cache, and registers that may
be shared by more than one concurrent kernel, allowing one
kernel to impact the timing properties of another.

Avoiding or accounting for interference channels is a prob-
lem for any real-time system running on sufficiently com-
plex hardware. For example, timing analysis, which seeks to
establish worst-case execution times (WCETs), is incredibly
difficult even for multicore CPUs. Establishing a formally
“guaranteed” worst-case execution time for real-time tasks
running on a multicore system is nearly impossible, with all
known methods either being highly pessimistic or requiring
adherence to strict restrictions such as disabling processor
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1This term is commonly used in certification requirements such as the FAA
certification authority document CAST32-A [2] where it means “a platform
property that may cause interference between independent applications.”

cores or caches. Instead, there seems to be growing consensus
that formal guarantees may need to be abandoned in favor
of thorough measurement-based approaches, which seek to
statistically estimate WCETs by sampling many execution
times running on the hardware in question.

Timing analysis on GPUs. Unfortunately, problems facing
timing analysis on multicore CPUs are often more severe on
GPUs, due to even more extensive parallelism and the lack of
detailed hardware specifications [3]. Some research proposes
static timing analysis for GPUs, which attempts to analyze
program code in order to compute WCETs offline, but these
approaches are often overly pessimistic or limited in the size
or complexity of compatible programs [4–7]. Measurement-
based analysis has been used to estimate WCETs for individual
GPU kernels [3, 8, 9], but these methods do not consider
interference from concurrent GPU tasks.

Given modern GPUs’ ever-growing capabilities for concur-
rent usage, we contend that timing analysis on GPUs must
account for interference channels. Some prior works employ
resource partitioning to attempt to reduce or remove the
impact of interference [10–12], but these works require com-
plicated reverse engineering, or otherwise were not intended
to measure the impacts of resource sharing.

In this paper, we explore a different approach: we address
the need for accurate measurement-based timing analysis on
GPUs by presenting a methodology for stressing a GPU
program, following the enemy program approach proposed
for multicore CPUs [13]. Our focus on interference channels
makes our goal with respect to an enemy program clear: it
must be tailored to a specific victim program to maximize
stress on its most sensitive interference channels. A reliable
means of creating stress affords greater confidence in any
measured WCET estimate for the given victim. To our knowl-
edge, ours is the first work to discuss methods for generating
interference between arbitrary, concurrent GPU kernels.

Contributions. Our contributions are twofold. First, we
introduce an experiment-driven methodology for designing
enemy programs that approximate worst-case interference for
arbitrary GPU workloads. We identify a wide range of GPU
interference channels and define empirical techniques for con-
figuring enemies to stress them. Our study focuses on NVIDIA
GPUs, a choice that is justified by their market dominance.

Second, we provide measurements of the execution times
of a wide range of real GPU benchmarks when executed con-
currently with our enemies. As opposed to simply designating
a small number of basic categories such as “compute-bound”



Warp Schedulers

CUDA 
Cores

L1 Cache

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

... ...

SM 0

SM 19SM 1SM 0 ...

GTX 1080

Bank 0 ...

DRAM

Bank 1 Bank 2

Set 0 ...

L2 Cache

Set 1 Set 2

Fig. 1. Organization of computational hardware in the NVIDIA GTX 1080.

or “memory-bound,” we identify the sensitivity of each task
to a collection of interference channels.
Organization. In this rest of this paper, we provide relevant
background (Sec. II), describe the methodology with which we
design experiments for stressing various interference channels
(Sec. III), present our specific experiments and their results
(Sec. IV), evaluate and compare our method to existing base-
lines (Sec. V), discuss limitations and future work (Sec. VI),
and conclude (Sec. VII).

II. BACKGROUND

In providing the needed background, we begin by providing
an overview of basic concepts relevant to NVIDIA GPUs.
CUDA basics. CUDA is the C/C++ programming interface
for applications written for NVIDIA GPUs.2 As mentioned
already, code that executes on the GPU is called a kernel—
CUDA allows programmers to write kernels, and to specify
the number of parallel GPU threads used when executing a
kernel. GPU threads are grouped into blocks, and, in order
to launch a kernel, CUDA requires programs to specify the
number of threads per block and the total number of blocks.
In addition, each kernel is associated with a CUDA context,
which contains state information needed when using the GPU.
Typically, the CUDA runtime creates one such context for
each CPU process, and kernels from different contexts will
not execute on the GPU concurrently.
GPU hardware. Our work uses the NVIDIA GTX 1080
GPU as a test platform. Fig. 1 shows the layout of the GPU’s
hardware. NVIDIA GPUs, including the GTX 1080, consist
of multiple streaming multiprocessors (SMs), each capable of
executing a large number of GPU threads. Blocks, mentioned
above, are important within GPU hardware: in order to execute
a kernel, the GPU assigns the kernel’s blocks to SMs. Once
assigned to an SM, threads within each block will only execute
on the same SM until completion—threads within a single
block are never divided among SMs or migrate between SMs.

While threads running on separate SMs execute indepen-
dently, within a single SM threads are organized into groups of
32 threads called warps. All threads in the same warp execute
identical instructions but on potentially different data: a model

2Many frameworks such as PyTorch or TensorFlow expose GPU accelera-
tion to higher-level languages, but still interact with CUDA under the surface.

known as single-instruction, multiple-data (SIMD). Warps are
the smallest units of scheduling on an SM. In an SM, warps are
managed by one or more warp schedulers, as shown in Fig. 1
(our GTX 1080 has four warp schedulers per SM). In each
instruction-dispatch cycle, a warp scheduler dispatches one or
two instructions from a ready warp onto the SM’s computing
hardware. If a warp becomes not ready (e.g., if it is waiting for
outstanding memory requests or available functional units), it
is stalled, and cannot be selected for execution.

The GTX 1080 has a multi-level memory hierarchy. Each
SM contains its own local L1 (data3) cache and 96KB of
shared memory, and all SMs share a global L2 unified cache
and DRAM memory. The L1 and L2 caches contain multiple
cache lines: consecutive sequences of bytes in memory. When
a memory address is requested, the SM first visits its L1 cache.
If the address falls into a line currently in the cache, there is
a cache hit, and data at the requested address can be read or
written immediately. Otherwise, there is a cache miss, and the
line causing the miss must be copied to the L1 cache from the
shared L2 cache. This process repeats for the L2 cache, except
in this case the GPU will fetch an L2 line from DRAM on a
miss. Cache misses have a higher memory latency than hits
due to the time required to fetch data from a higher level of the
hierarchy, though the GPU attempts to mitigate this via latency
hiding: while one or more warps are waiting for cache misses
to be resolved, instructions from other ready warps can still
be dispatched by the warp scheduler. In this way, the GPU’s
parallelism compensates for the impact of additional latency
in some threads by allowing other threads to make progress.

A. GPU Concurrency and Interference Channels
The term concurrency on a GPU may take on more mean-

ings than on a CPU. For example, multiple kernels may
be launched “concurrently” from different CUDA contexts.
Despite being launched in overlapping segments of time and
sharing a single GPU, they may not actually execute at the
same time. By default, CUDA enforces time slicing, allowing
only one context to access GPU hardware at a time. However,
threads launched from the same CUDA context can execute
truly simultaneously. Two kernels may experience SM-level
concurrency, running on the same GPU, but independently
on different SMs. Kernels may also encounter warp-level
concurrency, where the warps of one or more independent
kernels execute concurrently on the same SM. As the form of
concurrency changes from SM-level to warp-level, the number
of shared resources, and thus interference channels, increases.

For the rest of this paper, we only consider true, non-
time-sliced, GPU concurrency, so we assume that kernels are
launched from a single CUDA context. Once again, interfer-
ence channels are shared resources between concurrent ker-
nels, where contention for these resources causes potentially
unpredictable increases in kernel execution times.
Inter-SM interference channels. When kernels do not
share SMs, they will not share SM-local resources, so the

3Each SM also has an instruction cache. We use “L1” to mean the data
cache.



primary remaining sources of interference are the L2 cache
and DRAM. When sharing the L2 cache, kernels can evict
cache lines used by other kernels in order to make space for
their own data, causing them to experience more cache misses
and longer execution times. Another channel associated with
the L2 cache is the miss status holding registers (MSHRs),
a limited number of registers used in non-blocking caches.
Each time a cache miss occurs, an MSHR is reserved until the
missed line has been fetched from DRAM. If no MSHRs are
available, then a pending miss must wait until an ongoing miss
has been resolved and an MSHR is freed. Therefore, multiple
kernels experiencing frequent cache misses may contend for
MSHRs, compounding the issue of increased memory latency.

Beyond the L2 cache, concurrent kernels may also contend
for DRAM access. The DRAM of the GTX 1080 consists of
multiple banks, each containing multiple fixed-size memory
elements called rows. Each bank contains a row buffer, which
contains the last row referenced in that bank. If an incoming
memory request requires data that is not already contained
in the row buffer, then the current contents of the row buffer
are evicted and written back to DRAM. Afterwards, the newly
requested row is copied into the row buffer. If multiple kernels
reference addresses corresponding to different rows in the
same bank, they will evict each other’s data from the row
buffer, causing row buffer conflicts. As with cache evictions,
this increases memory latency. Still more DRAM-related in-
terference channels exist such as DRAM bus contention, but
we choose not to discuss these as their effects are difficult to
empirically distinguish on our available NVIDIA GPUs.

Intra-SM interference channels. When kernels share an SM,
they may contend for the per-SM hardware units shown in
Fig. 1. These include the 32-bit CUDA cores (which include
FPUs: floating-point units), special function units (SFUs), or
load/store units (LD/ST) [14]. For example, if all available
FPUs are in use, additional floating-point operations will stall,
meaning that one kernel’s use of FPUs can delay another ker-
nel. In addition to compute hardware, warps on the same SM
may also contend for SM-local memory resources including
the L1 cache and shared memory (and also the instruction
cache). The contention may cause mutual interference similar
to the L2 cache and DRAM interference described above.

B. Prior Work

We now discuss relevant prior work in several topic areas.

CPU timing analysis. A wide variety of timing-analysis
techniques have been developed over the years for CPUs.
Many works, especially for single-core CPUs, make use of
static analysis to analyze program code in order to compute
WCETs [15–17]. Static analysis for multicore CPUs is usually
infeasible, as the number of possible interactions between tasks
increases explosively with the number of cores and possible
ways in which different segments of code may overlap. There-
fore, measurement-based analysis is frequently employed,
generating WCET estimations from observed task execution
samples. Under this method, resource-sharing impacts must

be accounted for. Partitioning is a common approach, dividing
platform resources among tasks rather than sharing them, thus
preventing interference. Many works (representative examples
include [18–22]) enforce isolation on shared CPU resources,
including cache, DRAM, and memory bandwidth.

Unfortunately, partitioning techniques may be inflexible
and put unnecessary constraints on individual tasks. Instead
of partitioning, one may allow tasks to share resources but
account for the interference in analysis methods. One work
accounts for cache contention by introducing cache-related
preemption delays to the schedulability analysis [23]. Other
works take an enemy workload approach [13, 24–27], the same
as ours, albeit for multicore CPUs.

GPU timing analysis. Some work has been done on pro-
viding robust timing analysis for a single GPU kernel. For
example, one work proposes timing models for GPU kernels
on NVIDIA’s Fermi GPU architecture [28], but the methods
apply to limited workloads, and may not extend to other
architectures. In two works, statistical theories are utilized
to enhance the reliability of measurement-based WCET es-
timations [3, 8], but these efforts are limited by some less-
practical assumptions, such as statistical independence among
samples. Other earlier work proposes methods for statically
deriving the WCETs of a group of threads on a single SM,
but these methods do not extend to multiple SMs [4, 5]. Other
works employ a hybrid approach, combining both static and
measurement-based analysis [6, 7], but these methods entail
using GPU simulators and are limited to small kernels.

GPU sharing. We now turn to works on safely sharing the
GPU among multiple tasks. One work introduces methods
for predictable multi-tasking on NVIDIA GPUs but it too
uses simulators [10]. One extensive work implements both
cache and DRAM partitioning via page coloring on NVIDIA
GPUs [11]. This approach improves predictability for concur-
rent GPU tasks but required complicated reverse engineering
and places some undesirable constraints on concurrent kernels.
Our work is largely orthogonal; we allow for concurrent
GPU sharing, but aim to account for worst-case interference
without partitioning. Other works present management frame-
works that enable the sharing of NVIDIA GPUs with varying
tradeoffs and limitations [12, 29, 30]. A study has also been
presented involving the sharing of embedded GPUs between
common workloads [31]. While useful in other contexts,
all of these previous works either do not measure resource
interference under arbitrary GPU sharing, or were limited in
their capacity to handle real applications.

III. METHODOLOGY

Our goal in constructing enemies is to enable robust
measurement-based timing analysis for workloads involving
the concurrent execution of GPU kernels. As such, we must
consider as thoroughly as possible all interference channels
that may influence kernel execution times.



We introduce a methodology for generating and measuring
the interference from channels influencing a victim4 that may
be concurrently executing with unknown kernels competing
for device resources. Our approach, based on prior work on
multicore CPU computing, is to execute a victim concurrently
with enemies made up of one or more synthetic kernels
that contend for GPU resources. The end goal is to produce
enemies that are more harmful to the victim’s execution time
than any actual competing kernels.

GPU kernels are highly parallel, so concurrent kernels in
particular have many possible interleavings of instructions,
each with a different pattern of resource usage and degree of
contention among kernels. It is unreasonable to assume that
a kernel in a concurrent workload will experience the worst-
possible interference with any observable regularity. However,
a carefully designed enemy program can consistently and
effectively stress an interference channel, even with relatively
simple code. The process defined in this section consists of
a framework for setting up a sequence of experiments to
maximize the interference effects obtained in an enemy kernel.
Victim selection. For our experiments, we selected victims
from a set of publicly available benchmark applications. To
cover a wide range of applications and types of kernels, we
chose to evaluate each kernel in a set of 24 CUDA programs
chosen from a variety of sources. These include nearly all
programs from the Tango DNN suite [32] and a set of CUDA
imaging samples—we exclude only the imaging programs that
require graphical user interfaces.

Table I shows the full list of victim benchmark programs.
Some of the benchmarks execute several kernels, giving 117
different victim kernels in total. Individual kernels may be
invoked multiple times with different inputs. These GPU-using
programs cover a variety of domains relevant to real-time GPU
usage including image processing, computer vision, and neural
networks.
Methodology overview. All of the code and data used
in our experiments are available online.5 After selecting a
victim, Sec. III-A describes our methodology for defining
and implementing the environment in which we execute the
victim and potential enemies. An environment includes the
hardware, CUDA software version, and other constraints on
how kernels may compete. After establishing a victim and
an environment, Sec. III-B discusses our process for selecting
an enemy template and enemy parameters to form potential
enemies. To evaluate these enemies, we use the metrics defined
in Sec. III-C, which we obtain using an experiment structure
described in Sec. III-D.

A. Environment Implementation

We now discuss the way we implement our environments,
including how we run victims and enemies concurrently, and

4We use the term victim here in a generic sense, to refer to a full GPU-using
application. If the distinction between an application or a specific kernel is
important, we will clarify using terminology like “victim kernel.”

5https://github.com/tylerdy/Modified-NVIDIA-Linux-x86 64-460.67/tree/
RTSS22

Benchmark Source Benchmark # Kernels

Basic CUDA Samples

matrixMult 1
vectorAdd 1
scalarProd 1

fastWalshTransform 3

CUDA Imaging Samples

bilateralFilter 1
boxFilter 2

convolutionSeparable 2
convolutionFFT2D 10

dct8x8 8
dwtHaar1D 2

dxtc 1
histogram 4

HSOpticalFlow 6
imageDenoising 1

NV12toBGRandResize 3
recursiveGaussian 2
stereoDisparity 1

FastHOG [33] fastHOG 7

Tango DNN Suite [32]

AlexNet 7
CifarNet 8

GRU 1
LSTM 1

ResNet 14
SqueezeNet 30

TABLE I
POTENTIAL VICTIMS.

how we enforce resource constraints.
Running victims and enemies. In order to allow victim
kernels to run concurrently with enemies, we make use of
NVIDIA’s multi-process service (MPS) [34]. MPS multiplexes
kernels launched from separate Linux processes into a single
CUDA context, allowing them to execute concurrently on the
GPU (see Sec. II). With MPS active, we use basic scripts to
first launch an enemy and then launch the victim. Furthermore,
we ensure that the enemy kernel runs for longer than the
victim, so that interference occurs for the victim’s entire
duration. We shall see later in this subsection that this launch
order is crucial to our ability to manage GPU resources.

Even if MPS is in use, some CUDA API functions are
unfortunately capable of causing blocking in other processes
or being blocked themselves. For example, a victim that calls
the cudaDeviceSynchronize function may be forced to
wait for enemy kernels to complete, even though the victim’s
code should not logically depend on any enemy activity [35].
To avoid this problem, we modified the source code of some
of our benchmarks, to remove or replace calls to such blocking
functions. This was the only type of modification we made to
victim source code.
Hardware platform. Our chosen hardware platform is the
NVIDIA GeForce GTX 1080, running CUDA 11.1. We dis-
cussed its relevant architectural details in Sec. II.
Resource constraints. Resource constraints can take on
many forms, e.g., maximum available memory, maximum
total concurrent kernels, etc. In our work, however, the most
important resource constraint is the number of SMs that
competing kernels are allowed to run on, or the number of
warps per SM they are allowed to occupy.

Constraining computational resources is essential in our
experiments. For example, if we allow enemies to fully occupy
all SMs on the GPU, our measurements would end up being
dominated by the time the victims spend waiting for SMs to
become available, rather than any slowdown associated with



interference channels. Likewise, if we allow a victim to fully
occupy all of the available SMs, the enemy would be unable
to run, causing the victim to experience no interference at all.

Environment definitions. We define two environments,
which each uses different tactics to ensure the enemy and
victim always have consistent access to the GPU’s SMs:

• We use the SMK6 environment to measure intra-SM
interference. It limits the enemy to at most 32 warps per
SM (half of an SM’s capacity), ensuring the remaining
warps on each SM are available to the victim.

• We use the spatial multitasking environment to measure
inter-SM interference. It forces the enemy to fully occupy
eight out of the GTX 1080’s twenty SMs, allowing the
victim to execute only on the remaining twelve SMs.7

Two key factors underlie our implementation of both en-
vironments. First, we always start executing enemies be-
fore victims, and second, blocks execute until completion on
whichever SM they are initially assigned (discussed in Sec. II).
In combination, these two properties allow us to control both
enemy and victim SM assignments: by launching the enemy
first (while the GPU is idle), we allow the enemy to “claim”
all the resources that we wish to allocate to it. The enemy
never relinquishes these resources prior to completion, so as
long as the enemy executes for longer than the victim, the
victim is forced to execute only on whichever resources have
not been allocated to the enemy.

Implementing the SMK environment. Following the princi-
ples outlined in the previous paragraph, we can construct our
SMK environment, in which the victim and enemy are forced
to share SMs. We do so by launching an enemy kernel using
exactly one block per SM, with each block containing the exact
number of warps per SM that we wish the enemy to occupy.8

We know from prior work that a GPU starting in an idle state
will evenly distribute a kernel’s blocks across all SMs [37],
and we always launch enemies first, while the GPU is idle.
Therefore, launching one enemy block per available SM will
ensure that exactly one enemy block is assigned to every SM
on the GPU. After launching the enemy in this configuration,
we launch the victim, which must share each SM with the
enemy warps.

Due to device resource limits (e.g., registers per SM),
it was not possible to execute all kernels from AlexNet,
CifarNet and ResNet concurrently with our enemies under
SMK. Therefore, we conducted SMK experiments using only
the remaining 88 kernels.

Implementing the spatial multitasking environment. Using
the same assumptions, we are able to implement the spatial
multitasking environment, in which the enemy and victim

6We take the term SMK, simultaneous multi-kernel, from prior work that
investigated SM sharing [36].

7While somewhat arbitrary, this 8-12 split enables some convenient simpli-
fications to our L2-cache-related experiments, discussed in Sec. IV-D.

8Our SMK experiments always used 32 enemy warps per SM, which is
exactly equal to the maximum number of threads within a single block: (32
warps) × (32 threads per warp) = 1,024 threads.

Template Type Parameter Possible Values

Compute Enemy
Operation to execute ADD, MULT, etc.

Operand type Integer or Floating-point
Operand Size 16-bit, 32-bit, or 64-bit

Memory Enemy

Array size 960 KB—16 MB∗

Stride Length 8 bytes—128 bytes∗
Per-thread or Per-warp Accesses Per-thread, Per-warp

Memory-Access Operation Read or Write

TABLE II
ENEMY TEMPLATES AND PARAMETERS.

∗MORE VALUES ARE POSSIBLE; THESE ARE JUST WHAT WE USE IN THE PAPER.

never share SMs. Once again, our approach depends on the
fact that we launch enemies before victims, allowing the
enemy kernel to “claim” SMs. Unlike under SMK, for spatial
multitasking we configure the enemy to launch 64 warps per
SM, fully occupying every SM on the entire GPU. Next, we
apply a technique used in prior work (e.g., [11]) to force
kernels to use only a specified set of SMs: we instrument the
enemy kernel code so that every thread checks its assigned SM
ID9 and immediately exits if running on an SM we wish to
allocate to the victim. In other words, the spatial multitasking
environment causes the enemy to immediately relinquish any
victim SMs, while fully occupying all other SMs.

B. Enemy Implementation

We base all of our enemy kernels on templates within which
parameter values may be varied to cause more or less stress on
portions of hardware. This approach is based on similar works
for multicore CPUs [13, 24, 26, 27]. We have two templates
for two types of enemy kernels—one designed to contend for
compute resources, and one designed to contend for memory
and cache. Table II lists these two templates along with their
associated parameters. We discuss the meaning and utility of
each of these parameters next.
Compute enemy template. Our compute-oriented enemies
are designed to maximize stress on a single compute re-
source.10 The template for our compute enemies repeatedly
executes some chosen instructions to target specific hardware
units, i.e., the CUDA cores or SFUs described in Sec. II-A.

The three parameters required by the compute-enemy tem-
plate are shown in the first three rows of Table II: the operation
executed (e.g., ADD, MULT, etc.), the operand type (i.e., integer
or floating point), and the operand size (i.e., 16, 32, or 64-
bit). We combine these three parameters to determine the
instruction the enemy will execute.
Memory enemy template. The template for stressing mem-
ory and/or cache resources is more complicated, involving
the four parameters shown in the latter rows of Table II. All
kernels based on the memory-enemy template make strided
accesses to an array, repeatedly performing reads or writes to
load data into a cache line or a row buffer, attempting to cause
hardware to evict the victim’s data.

9In CUDA kernel code, this is accomplished by using inline assembly to
read the special smid register.

10To keep our experiments feasible for this paper, our compute enemies only
target a single resource at a time. However, we expect detailed information
about single-resource enemies to remain relevant should we attempt to develop
multi-compute-resource enemies in the future.
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Naturally, some memory-enemy parameters will take differ-
ent values depending on the level of the memory hierarchy
we intend to stress. For example, when stressing the L2
cache, the array size parameter must be at least the size of
the L2 cache: 2 MB on the GTX 1080. Next, the stride
length parameter determines the number of bytes between
the enemy’s subsequent array accesses. Continuing with the
L2-cache example, we expect the most effective enemy will
have a stride length matching the cache’s line size (128 bytes
on the GTX 1080), so that every subsequent array access
falls into a different cache line. Granted, these are simply
initial assumptions, intended to illustrate potential relations
between hardware and memory-enemy parameters—we revisit
this topic in Sec. IV’s experiments.

The third memory-enemy parameter shown in Table II
can take one of two values, per-thread or per-warp access.
A memory enemy makes per-thread array accesses if every
thread in every warp accesses a different element of the array,
and it makes per-warp accesses if different warps access
different elements while all threads within a given warp access
the same element. This distinction is depicted in Fig. 2. Per-
warp access is only important in our L1-cache experiments
(Sec. IV-B), because the smaller array size used to generate
L1 stress is not large enough for every enemy thread to each
access an individual array element. All of our other memory
enemies (Secs. IV-D, IV-E, and V) use per-thread access.

The final memory-enemy parameter is the memory-access
operation: whether our accesses to the array consist of reading
or writing array data. We evaluate this parameter in both our
L1 and L2 experiments, in Secs. IV-B and IV-D.

GPU driver modifications. Our GTX 1080 GPU uses
physical addresses to determine L2 cache lines. This can cause
a problem: when we attempt to allocate an array in CUDA, the
array’s memory is only guaranteed to be contiguous in virtual
memory—some of the underlying physical pages may map to
identical cache lines, causing the array to not utilize the full
cache. In order to solve this problem, we modified open-source
portions of NVIDIA’s Linux driver code. More details about
this problem and its solutions are covered in prior work [11],
to which we refer interested readers.

C. Enemy Evaluation

We wish to measure the impact an enemy has on a victim,
but we cannot simply compare a victim’s performance in
isolation (i.e., with access to the entire GPU) to the victim’s
performance in the presence of an enemy. The problem arises
from the mechanism we use to constrain the victim’s resource
usage. As discussed at length in the preceding section, we limit
the victim’s SM (or warp) usage indirectly: by allowing the

__global__ void OccupyResources(uint64_t iterations) {

uint64_t i = 0;

if (threadIdx.x == 0) {

// Only executed by the first thread in the block

while (i < iterations) i++;

}

// All threads stall here until the first thread finishes

__syncthreads();

}

Fig. 3. Simplified CUDA code for our occupation kernel.

enemy to occupy all remaining warps or SMs. This means that
even if a particular enemy causes no interference whatsoever
for a given victim, the victim will still execute more slowly
than it would in isolation, simply due to having access to fewer
of the GPU’s SMs or warps.
Occupation kernels. Rather than attempting to base our
evaluation metrics on a victim’s performance in isolation, we
implemented what we call an occupation kernel: a kernel that
occupies the same number of SMs and warps as an enemy
while otherwise causing as little interference as possible. Fig. 3
shows a simplified version11 of our occupation kernel’s code.
Our occupation kernel makes no memory references, and only
a single thread per block executes compute instructions in
order to waste time. While the one thread is executing trivial
computations, all remaining threads in the kernel use CUDA’s
__syncthreads directive to intentionally stall.
Sensitivity. With an occupation kernel, we can finally define
a metric for enemy interference that factors out the effects of
some SMs or warps being unavailable to the victim. Our metric
is sensitivity: defined as the victim’s execution time when run
concurrently with the enemy divided by its execution time
when run concurrently with the occupation kernel.

When running multiple trials, we define sensitivity slightly
differently. Unless otherwise noted, most of the sensitivity
measurements in this paper are based on the victim’s 90th
percentile time vs. the enemy, divided by the victim’s median
time vs. the occupation kernel. In line with prior work [13],
we choose the 90th percentile time for the enemy scenario
because we are interested in the highest-stress trials, but
wish to ignore extreme outliers due to uncontrollable device
operations that are unrelated to our stress methods. We wish to
establish a stable “baseline” measurement in the occupation-
kernel scenario, which is better served using the median time
rather than a sample near the end of the distribution. Recall
that some victim benchmarks launch a given kernel multiple
times. In these cases, we base the kernel’s sensitivity on the
invocation for which we observed the highest sensitivity value.

D. Generic Experiment Structure

All experiments in the following section use the same
procedure:

1) Choose a template stress kernel, either compute or
memory. Note that some experiments require multiple
kernels to combine multiple types of stress.

2) Set all but one enemy parameter to be constant through-
out the experiment. The constant parameters are set to

11The actual occupation kernel requires additional boilerplate, e.g., to allow
for SM assignment using the techniques from Sec. III-A.



either a default value (e.g., the array size for cache
experiments), or to a value that produced maximal stress
in prior experiments.

3) For the non-constant parameter, select a number of
values to evaluate. These values define the set of enemy
kernels we will run concurrently with the victim.

4) Take multiple measurements of the victim’s time against
both each enemy kernel and the occupation kernel. (We
took at least ten samples for the results covered in
Sec. IV and at least five for Sec. V.)

5) Compute the victim’s sensitivity to each enemy kernel
based on the previous step’s measurements.

In our experiments with large numbers of victims, we occa-
sionally make simplifications about which values to consider in
future experiments. Tracking the most effective value for each
parameter for each victim can lead to an intractable number
of combinations of parameter values. If one particular enemy
is only effective against a relatively small number of victim
kernels, or the difference between victim sensitivities to two
enemies is small, we may omit it from consideration in fu-
ture experiments. We will explicitly mention any experiments
involving such simplifications in Secs. IV and V.

IV. STRESS EXPERIMENTS

This section presents the experiments we conducted using
the methodology discussed in Sec. III. For each experiment,
we state the goals, provide the background information needed
to understand the issues involved, specify the details of the
experimental setup, and then present and explain the results.
We organize these experiments based on the interference chan-
nel or channels they target. We first present our experiments
evaluating intra-SM interference in Secs. IV-A through IV-C,
followed by our inter-SM experiments in Secs. IV-D and IV-E.

A. Intra-SM: Compute Interference

In assessing intra-SM interference channels, we first con-
sidered hardware units used for instruction execution.
Goal. We designed this experiment to select an instruction to
use in the enemy kernel template for compute resources dis-
cussed in Sec. III-A. We used this selection in any subsequent
experiments that require a compute enemy.
Background. This experiment measures interference caused
by an enemy’s repeated execution of a single computational
instruction (we leave experiments with sequences of various
instructions for future work). Such interference results from
the victim and enemy contending for a limited number of per-
SM hardware resources used for instruction execution. The
particular hardware resources in our GTX 1080’s SMs (e.g.,
CUDA cores, etc.) are discussed in Sec. II.
Experimental setup. Our preliminary analysis of source
code for the benchmarks listed in Table I found heavy usage
of floating-point operations. Thus, in this experiment, we
measured the sensitivity of the victim kernels to six enemy
kernels that execute the instruction for one of the combinations
of floating-point operation (ADD or MULT) and operand size
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Fig. 4. Victim sensitivities to compute enemies, sorted by sensitivity to the
FP16 MULT kernel.

(16, 32, or 64 bits). We also included two enemy kernels
that execute ADD and MULT on 32-bit integer operands to
provide a comparison with heavily used integer operations.
This experiment used the SMK environment, as it focuses on
intra-SM interference.

Results. Fig. 4 plots the sensitivities of each of the 88 SMK-
environment victim kernels to the eight enemy kernels just
described. Each victim kernel is represented by a point along
the x-axis and the corresponding eight markers on the y-axis
give that victim’s sensitivity to each of the eight enemies. The
victims are ordered along the x-axis by increasing sensitivity
to the FP16-ADD enemy.

Observation 1: 90% of the victim kernels are most sensitive
to enemies executing half-precision floating-point operations.

Observation 2: There is little distinction between ADD and
MULT for each of the operand types and sizes.

These results for the FP16 enemies are likely due to some
unknown artifact of our GTX 1080 platform. None of the
victim kernels use half-precision instructions, so there should
be no conflicts for the GTX 1080’s per-SM half-precision unit.
We eliminated the possibility of unknown additional sources of
contention using NVIDIA’s official profiling tools (nvprof)
and disassembler (nvdisasm). With nvdisasm, we verified
that compiling the FP16 enemy kernels generated the expected
low-level (SASS) GPU instructions: HADD2 and HMUL2. With
nvprof, we were able to verify that these half-precision
instructions were actually executed by the enemy kernels,
while the victims executed no half-precision instructions. We
have found no affirmative evidence for our FP16 results, so
we assume Obs. 1 must be the result of some undocumented
property of the GTX 1080’s half-precision implementation.

Considering only the non-FP16 sensitivity results, we found
that 73% of the victim kernels were more sensitive to INT32
operations than to any floating-point operation. Overall, these
results indicate that, in general, INT32 operations would
be the most significant source of interference on this intra-
SM channel, were it not for the overwhelming interference
caused by FP16 operations. Based on the discussion above,
we eliminated FP16 operations from all experiments described
below to avoid our results becoming overly platform-specific.

Mixed-operations enemies. Many victim kernels use some
mix of floating-point and integer operations. We designed



an additional experiment to evaluate enemies which execute
mixes of floating-point and integer operations. Our experimen-
tal setup remained the same except for the operations executed
by the compute enemies. We tested five enemies, with five
ratios of FP32-ADD to INT32-ADD warps: 32:0, 24:8, 16:16,
8:24, and 0:32.

Observation 3: 84% of victim kernels are more sensitive to
32-warp INT32 than to any mixture of INT32 and FP32.

Observation 4: 83% of victim kernels are more sensitive to
32-warp FP32 than to any mixture of FP32 and INT32, other
than the one with the most INT32 operations.

These results indicate that single-operation enemies tended
to create greater interference than mixed-operation enemies,
and that the interference of INT32 operations remained greater
than FP32. In our environment, the greatest stress comes from
using all warps to fully saturate either the FP or INT hardware
on victims most sensitive to that type of compute operation.

B. Intra-SM: L1 Cache

Having determined the instruction to be used in enemy
kernels for intra-SM compute interference, we next turn to
the other intra-SM interference channel—the L1 cache.

Goal. This experiment was designed to measure interference
caused by contention for the L1 cache among concurrent
kernels. The enemy creates interference when its data accesses
evict cached data belonging to the victim.

Background. The L1 cache is the only SM-local memory
interference channel that we chose to consider in our ex-
periments.12 When the threads of a warp execute a load or
store instruction, each thread typically references a different
address to access thread-dependent data. These addresses may
be highly coalesced into one or a small number of cache lines,
or they may reference as many as 32 different cache lines.

The L1 cache on our GTX 1080 has a size of 48 KB
with a line size of 128 bytes. Several other properties are
relevant to cache interference, including the write policy
(write-through) [39] and potential usage of MSHRs to allow
multiple outstanding requests when misses occur [40]. The
write-through policy means that writes in the L1 cache are
immediately written to the L2 cache, incurring added latency.
Since the MSHRs are also relevant for the L2 cache, we defer
further consideration of them to Sec. IV-E.

Experimental setup. The warps of the enemy kernels evict
data from their SM-local L1 caches by continuously iterating
through addresses that are 128 bytes (one cache line) apart
in a 48 KB (L1 cache size) array of data that is unique for
each SM. All threads in a warp reference the same address
(per-warp access as described in Sec. III-B) so victim data,

12 As mentioned in Sec. II, there is also an instruction cache on each SM
which is discussed in Sec. VI. CUDA’s shared memory, used for scratchpad
communication between threads within a single block, is another intra-SM
memory resource, but we do not consider it in our experiments, since, unlike
the L1, it directly limits GPU occupancy, possibly preventing concurrency
altogether [37, 38].
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Fig. 5. Victim sensitivities to L1 cache eviction enemies, sorted by sensitivity
to enemy W memory references. Note that this plot contains two W outliers
with sensitivities of 8.9 and 9.9, which we clamped to y = 8.

if present in the cache, is evicted from one cache line on
each memory reference by an enemy warp. Note that it is
impossible to generate interference only in the L1 cache since
the enemy may also evict victim data from the L2 cache with
some of its memory references.

In this experiment, we measured the sensitivity of the
victim kernels to two variants of the L1 cache enemy kernel.
These variations use one load (read, R) or store (write, W)
instruction to reference memory. Write operations store an
arbitrary constant value.

Results. Fig. 5 shows the sensitivities to the L1-cache enemy
kernels of each of the 88 victim kernels used for the SMK
environment mentioned in Sec. III-A. Each victim kernel is
represented by a point along the x-axis and the corresponding
two markers on the y-axis gives the sensitivity of that victim
to one of the enemy kernels as indicated by the legend. The
victims are ordered along the x-axis by increasing sensitivity
to the write enemy.

Observation 5: Over 98% of victim kernels are more sensitive
to cache evictions created by enemy write operations.

These results indicate that the write-through policy used in
the L1 data cache may have a significant effect on interference.
The added latency necessary to update the L2 cache likely
increases the time that the victim kernel will stall waiting for
data in the L1. 75% of the victim kernels are more sensitive
to enemy writes than reads by 50% or less. The sensitivity
difference is much greater for the remaining kernels, which
likely perform a high number of write operations themselves.

Based on Obs. 5, enemy kernels designed for L1 cache
interference should use write instructions to access memory.

Observation 6: The sensitivities of the victim kernels to L1
cache interference are much smaller than their sensitivities to
compute interference.

Obs. 6 is supported by comparing Figs. 4 and 5, which
show a large difference in sensitivities to these two sources
of interference (note the different y-axis scales). 100% of
kernels are more sensitive to interference caused by some
compute operations than they are to L1 interference from
enemy memory-write operations. Granted, this may be due
to the complete dominance of FP16 enemies in these initial
experiments. Our experiments in the following subsection



indicate that intra-SM compute interference remains potent
even without relying on FP16 operations.
Mixed-operations enemies. Most victim kernels use some
mix of read and write operations. We designed an additional
experiment to evaluate enemies which execute mixes of read
and write operations. Our experimental setup remained the
same except for the operations executed by the L1 cache
enemies. We tested five enemies, with ratios of read (R) to
write (W) warps: 32:0, 24:8, 16:16, 8:24, and 0:32.

Observation 7: 93% of victim kernels are more sensitive
to an enemy with 32 write-only warps than to an enemy
configuration involving reads.

Observation 8: Only 6% of victims are more sensitive to an
enemy that mixes reads and writes.

These results indicate that the added latency of the L1
write-through policy, or other details of the hardware write
mechanism, tend to dominate any potential stress-inducing
properties unique to reads.

C. Intra-SM: Combining Intra-SM Interference Channels

We have now established the implementation of enemy
kernels to generate interference on the compute and L1 cache
intra-SM channels. We next determine if combinations of the
compute and memory interference channels have a greater ef-
fect than either of them alone. We also reexamine mixtures of
compute operations (INT32 and FP32) and memory operations
(R and W) in the context of combining compute and memory
interference channels.
Goal. This experiment is designed to assess the sensitivity of
the victim kernels to enemy kernels that create a combination
of compute and L1-cache interference using mixtures of
compute and memory operations.
Background. It is an oversimplification to assume that a
real GPU kernel is entirely compute- or memory-intensive or
that the compute intensity comes only from integer operations
and memory intensity comes only from write operations.
Further, compute and memory operations in victim and enemy
kernels may be mixed and executed in arbitrary orders with
unpredictable interference effects.
Experimental setup. We set up two variants in these
experiments. The first variant is a simple baseline setup to
evaluate a combination of interference channels. We selected
the most effective compute and L1-cache enemy for each
victim and changed how the warps were allocated in these
enemies. As in all of our SMK experiments, we continued to
divide each SM’s 64-warp capacity evenly between the victim
and the enemy. We considered three possible allocations of
the 32 warps dedicated to the enemy: all-compute (a 32-warp
INT32 compute enemy), all-L1 (a 32-warp write L1 cache
enemy), and 16/16 hybrid combination (a 16-warp INT32
enemy, and a 16-warp write L1 cache enemy).

The second variant is designed to evaluate combined in-
terference channels each having a mixture of operations. We
kept the number of enemy warps per SM the same (32),
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Fig. 6. Victim sensitivities to 32-warp enemies with different combinations
of compute and L1 cache warps, sorted by sensitivity to the all-compute
combination.

with 16 warps for compute operations and 16 warps for
memory operations as in the baseline setup. For describing the
combinations and mixtures, we use CF to be the number of
warps executing FP32-ADD operations, CI for INT32-ADD
warps, MR for memory read warps and MW for memory
write warps. For compute warps, we used ratios CF :CI
of 4:12, 8:8 and 12:4. Similarly, the memory warp ratios
MR:MW are also 4:12, 8:8 and 12:4. Combining all instances
of compute and memory warps gives 9 scenarios in total.

Baseline combinations: results. Fig. 6 shows the sensitiv-
ities of the 88 victim kernels used for the SMK environment
to each of the three combinations. Each victim kernel is
represented by a point along the x-axis, and the corresponding
three markers on the y-axis give the sensitivity of that victim to
the different enemy warp allocations. The victims are ordered
along the x-axis by increasing sensitivity to the all-compute
combination.

Observation 9: 39% of victim kernels are more sensitive to
the hybrid 16/16 enemies than to the all-compute enemy.

Observation 10: 94% of victim kernels are more sensitive to
the hybrid 16/16 enemy than to the all-L1 enemy.

These baseline results show that considering interfering
kernels to be simply compute-bound or memory-bound is
likely to be an oversimplification and that combinations of
compute and cache enemy kernels should be considered in
many cases for generating interference.

Combinations and mixtures: results. We compared the
sensitivities of each victim to the 9 mixed-operation enemies
and the 3 enemies in the baseline setup. We found that all
victims remain the most sensitive to the same enemy as in the
baseline setup except for one (bilateralFilter). This
one victim was the most sensitive to the enemy with parameter
4:12:4:12 (in the form CF :CI:MR:MW ). Out of the 35
victims that were the most sensitive to the 16/16 hybrid enemy
in the baseline setup, only this victim was more sensitive to
a variant of the 16/16 hybrid enemy that mixed operations.
Comparing with single-channel results, we conclude that most
victims remain more sensitive to single-operation enemies,
with a few being the most sensitive under a mixed-operation
enemy. These results are consistent with previous findings
where combining multiple channels may create heavier stress.



Real vs. idealized enemy configurations. All of our intra-
SM experiments considered a balanced allocation of the 64
warps per SM: 32 warps each for victim and enemy. When real
applications run concurrently, the number of warps assigned by
the GPU scheduler to concurrent kernels varies dynamically.
The result is that a kernel will be more or less sensitive to
interference depending on how and when warps are assigned
to it and its competitors. In addition, our intra-SM experiments
for combinations of interference channels also used a balanced
allocation of the 32 enemy warps for compute and memory
operations (16 for each). Real applications may be more
compute-intensive or more memory-intensive, and their type
of intensity may vary over the course of execution. Varying
the ratio of enemy compute warps to memory warps can alter
the sensitivity of a victim kernel to interference depending on
the execution intensity of its internal operations.

D. Inter-SM: L2 Shared Cache

Having completed our discussion of experiments for intra-
SM interference channels, we now turn to experiments for
inter-SM interference channels. Inter-SM experiments utilize
our spatial-partitioning environment, where each SM is either
allocated to the enemy or victim as discussed in Sec. III.
The interference channels now only include resources that are
shared among SMs, including the L2 cache, MSHRs, memory
buses and DRAM memory. We first consider the L2 cache.

Goal. This experiment is designed to measure interference
caused by contention for the L2 cache, which occurs when
data referenced by the enemy kernel evicts data belonging to
the victim kernel from the cache.

Background. The L2 cache is shared by all SMs.13 The L2
cache on our GTX 1080 is a 2 MB set-associative cache with
a line size of 128 bytes [11]. According to prior work [40], the
L2 cache on the GTX 1080 implements a write-back policy.
Under write-back, writes to the L2 cache are not immediately
written to DRAM, but instead are written when the modified
cache line is evicted. Thus, if the victim experiences a cache
miss and evicts a line written by the enemy, it will incur the
extra overhead of writing the dirty line back to DRAM. In
addition, MSHRs exist to allow multiple outstanding requests
to DRAM on L2 cache misses as discussed in Sec. II-A [11].

Experimental setup. Similar to our approach for the L1 cache
in Sec. IV-B, we set the array size and stride length of the
L2 enemy to the cache size (2 MB) and the line size (128
bytes). Each thread in a warp now has a choice between per-
thread access and per-warp access as described in Sec. III-B.
Under per-thread access, victim data, if present, can be evicted
from up to 32 cache lines on each memory access by an
enemy warp. However, per-thread access may lead to higher
memory latency and slow down the enemy since the size of
data accessed is increased by a factor of 32. With a quick test,

13The L2 cache also serves as a second-level cache for the instruction
caches local to each SM, but we continue to assume this effect is small (see
Footnote 12). We also do not consider L2 interference caused by CUDA
memcpy operations, which also can place data in the L2 cache.
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Fig. 7. Victim sensitivities to L2-cache enemies executing different memory
access operations, sorted by sensitivity to the W enemy.

we found that 98% of the victim kernels are more sensitive to
the enemy with per-thread access than to the enemy with per-
warp access given all other parameters identical. We thus used
per-thread access for L2 cache and later inter-SM enemies.

We measured the sensitivity of all 117 victim kernels to
two enemy kernels intended to cause cache conflicts. One of
the two enemies performed a load (read, R) instruction, and
the other performed a store (write, W) instruction to access
memory. Write operations store an arbitrary constant value.

Note that it is impossible to generate interference only in
the L2 cache, since L2 misses may cause interference for the
DRAM, the MSHRs and the memory buses. We left discussion
of these other channels to Sec. IV-E.

Results. Fig. 7 shows the sensitivities of each of the 117
victim kernels to the L2 enemies. Each victim kernel is
represented by a point along the x-axis, and the corresponding
two markers on the y-axis gives the victim’s sensitivity to the
enemy kernels. The victims are ordered along the x-axis by
increasing sensitivity to write.

Observation 11: All victim kernels are more sensitive to L2
cache evictions created by enemy write operations.

The cause of higher victim sensitivities under writes may
be twofold. First, prior work suggests that the GTX 1080 is
less likely to evict L2 lines containing written data than lines
containing other data [11]. If this is true, we expect the write
enemy to maintain more of its lines in the cache at the victim’s
expense. Second, due to the write-back policy, victim cache
misses may experience extra overhead due to having to write
dirty lines back to DRAM.

The clear result from both the L2 and L1 cache experiments
is that enemy kernels designed for interference in either cache
should use write operations to access memory.

E. Inter-SM: Beyond the L2 Cache

While the results given in Sec. IV-D focus on L2 cache
evictions and the effects of write operations, they also pro-
duce interference in other shared components of the memory
hierarchy. In Sec. II-A we discussed the DRAM row buffers,
MSHRs, and memory buses as additional inter-SM interfer-
ence channels. In this section we examine whether even more
interference can be generated on these channels.
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Fig. 8. Victim sensitivities to memory enemies with different array sizes,
sorted by sensitivity to the 12 MB array enemy.

Goal. This experiment is designed to measure how in-
terference in the memory hierarchy changes when enemies
experience higher rates of L2 misses.
Background. The enemy kernels for cache evictions de-
scribed to this point generate interference by probing memory
arrays that match the size of the target cache (48 KB for
L1, 2 MB for L2). However, if the size of this memory
array increases relative to the cache size, the enemy will
start to experience misses and evict its own cache data more
frequently. While not necessarily evicting more victim data (a
cache-sized array is already sufficient to evict all victim data in
the cache), these extra misses may generate more interference
in other parts of the memory hierarchy. Extra misses cause
higher usage of the MSHRs, and extra evictions result in more
accesses to the DRAM, each giving rise to more interference.
Experimental setup. We only used write operations in this
new experiment, but we considered five enemies with different
array sizes: 2 MB, 4 MB, 8 MB, 12 MB, and 16 MB.
Otherwise, the enemies were identical to those from Sec. IV-D.
Results. Fig. 8 shows the sensitivities of each of the 117
victim kernels to the five enemies described above. Each
victim kernel is represented by a point along the x-axis and
the corresponding five markers on the y-axis give that victim’s
sensitivity to an enemy with a different array size. The victims
are ordered along the x-axis by increasing sensitivity to an
array size of 12 MB.

Observation 12: Over 99% of victim kernels are more sensi-
tive to the use of a 12MB array than to 2 MB, 4 MB, or 8
MB arrays.

Observation 13: 35% of victim kernels are more sensitive to
the use of a 16 MB array than to a 12 MB array, but only by
an average ratio of 1.05:1.

The results suggest that sensitivities to interference beyond
the L2 cache increase with larger sizes of the array referenced
by the enemy kernels, reaching a maximum at 12 MB or 16
MB. This shows that increasing the enemy cache miss rate
is an effective method to generate interference on inter-SM
channels beyond the L2 cache.

V. ENEMY EVALUATIONS

In this section, we evaluate the enemy kernels we con-
structed for each of our victim kernels in both the SMK
and spatial partitioning environments, and compare them to

alternative choices of stress kernels from real-world code. We
constructed per-victim enemies by applying the results from
Sec. IV. Most enemy parameters can be set to values that are
highly effective against all victims, but we still tested different
values for compute/memory balance, which we found to be
slightly more victim-dependent in our discussion of Fig. 6.

As in Sec. IV-C, these experiments involve an important
caveat: we chose to use an INT32-ADD compute enemy even
though our experiments found an FP16-ADD enemy was more
effective. We did so to avoid taking advantage of what we
consider to be an artifact of our platform. We ran these exper-
iments primarily to test our methodology, so relying heavily
on a platform-specific effect would provide little evidence that
our techniques could apply to other platforms.

Alternative stressor kernels. Ideally, we hope that all victims
are more sensitive to one of our constructed enemies than to
any other real-world code. We evaluated whether this held for
a small experiment using several alternative stressor kernels.
Stressor kernels are simply real-world kernels that we can use
in place of our constructed enemies. We chose six stressor
kernels (three for each of our environments), based on two
criteria. Each selected stressor is either 1) a kernel from our
own set of victims that we expect to be effective at causing
stress, or 2) a kernel used to cause stress in prior work.14

Of our two criteria, 1) bears more explanation. We assume
that a kernel that is highly sensitive to stress is one that
contends most strongly for resources. In other words, we
assume that our most-sensitive kernels are also more capable
of causing interference themselves. After generating enemies
for all of our victims in both environments, we selected the
most-sensitive kernel from each environment to serve as an
alternative stressor: scalarProd in the SMK environment,
and the ExecuteFirstLayer kernel from SqueezeNet
in the spatial partitioning environment.

For the remaining alternative stressors, we chose the
matrixMult and stereoDisparity kernels for the
SMK environment, along with fwtBatch2Kernel from
fastWalshTransform and vectorAdd for the spatial
partitioning environment. All of these have been used by prior
work [11, 12] to evaluate GPU hardware contention.

Enemy efficacy relative to alternatives. Figs. 9 and 10 plot
the ratio between each victim’s sensitivity to its constructed
enemy and its sensitivity to the alternative stressors. For
example, if Fig. 9 shows a value of 5 for a given victim and the
stereoDisparity stressor, that victim’s sensitivity to our
constructed enemy was five times higher than its sensitivity to
stereoDisparity under the SMK environment.

Fig. 10 shows that in the spatial partitioning environment,
our enemies were more effective than all three alternatives for
98% of victims. 39% of victims were over five times more
sensitive to our enemies than any of the three alternatives.

14Note that we had to modify the original benchmarks’ source code in
order to launch these alternate stressor kernels with the block and thread
organization required of our enemies.
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Fig. 9. Ratios between each victim’s sensitivity to its constructed enemy
and alternative stressors in the SMK environment. Note that the results
contained three outliers with sensitivities of 32 (matrixMul), 45 and 49
(stereoDisparity), clamped to y=30 in this plot.
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Fig. 10. Ratios between each victim’s sensitivity to its constructed enemy
and alternative stressors in the spatial partitioning environment.

In the SMK environment, our constructed enemies gener-
ated more stress than both matrixMul and stereoDisparity for
98% of victims. However, 52% of victims were more sensitive
to scalarProd. This is seen towards the left of Fig. 9,
where the sensitivity ratio between our constructed enemy
and scalarProd is less than 1. As discussed in Sec. IV-B,
we chose a smaller array size for intra-SM enemies (used
in the SMK environment) in order to focus on maximizing
L1 interference. This is reasonable when strictly focusing on
intra-SM interference, but as we acknowledged in Sec. IV-E,
a larger array may also cause more stress higher up the
memory hierarchy. scalarProd has a 4 MB working set,
significantly larger than the L1 data cache, so the additional
stress it caused for some victims is likely due to this effect. We
also note that an all-compute FP16 ADD enemy was able to
generate more stress than scalarProd for 95% of victims.

VI. DISCUSSION

Instruction cache. Instructions are cached in a multi-level
hierarchy with the first two levels private to each SM and
a third level in the shared L2 unified data and instruction
cache. Instruction caching can be an interference channel in
two cases: cache hits causing contention for read cycles on the
SM cache levels, and cache evictions causing miss latency on
accesses. Only the first of these two sources of interference is
present in our experiments in this paper.

Instruction-cache evictions by the enemy kernels are not
present in our experiments because the memory footprints
of any single benchmark kernel and an enemy fit easily in
the per-SM instruction caches. Using NVIDIA’s disassembler,
nvdisasm, we inspected kernels’ SASS bytecode and found
the codes for eviction in our enemy kernels were all small
(less than 1 KB), and victim kernels averaged about 3 KB.

Even our largest victim kernels fit with an enemy in the 40
KB of instruction cache in each of the GTX 1080’s SMs.

We have left the construction of enemy kernels and ex-
periments to explicitly evaluate instruction caching to future
work. Such work can adapt the cache-investigation techniques
from prior work [41], creating instruction-cache enemies using
no-operation (NOP) instructions to force capacity evictions
in the SM caches (taking care that compiler optimization
does not eliminate them). Using NOP instructions prevents
the introduction of additional compute interference.
Other limitations and future work. Our objective was
not to produce the most powerful enemy for every victim,
but instead to provide a methodology for devising enemy
stressors and for raising unique GPU-related issues, filling
a crucial gap left in hardware documentation. Nonetheless,
there are still limitations to the work presented here. First, we
did not experiment with GPU architectures other than Pascal,
though our approach should be portable to different GPUs.
Second, time constraints prevented us from fine-tuning enemy
parameters for each victim over the entire configuration space.
We refer interested readers to [13] for methods that can be used
to perform heuristic searches for powerful enemy parameters.
Third, we did not explore the impact of kernel sensitivity to
interference on schedulability analysis. Finally, we did not
study the TLB as an interference channel due to the lack of
documentation and mechanisms to manipulate it. All of these
limitations remain potentially fruitful avenues for future work.

VII. CONCLUSION

Our work furthers the development of reliable interference-
aware measurement-based timing analysis for concurrent GPU
kernels. In this work, we provided an experiment-driven
method to construct GPU enemy programs, which attempt
to produce worst-case contention on shared GPU resources.
Our enemies target both inter-SM resources such as L2 cache
and DRAM, and intra-SM resources such as L1 cache and
computational units. By evaluating against a large number of
real applications, we were able to empirically identify effec-
tive parameters for the enemies, including instruction types
and memory access patterns. In addition, we independently
analyzed the sensitivity of victims to specific interference
channels. For the vast majority of victim applications, our
constructed enemies produced more stress in comparison to
baseline choices of stressing kernels, such as memory-bound
or compute-bound kernels used in prior work.

In a thorough timing-analysis process, additional resources
we chose not to consider should also be stressed (e.g., per-
SM instruction caches), additional resource-allocation choices
should be examined (e.g., additional per-SM warp-usage al-
ternatives), and more execution samples would be required.
We limited our choices in order for our experiments to
remain tractable, but our goal with this work was not to
provide definitive measurement-based timing analysis. Instead,
the value of this work lies in presenting a methodology for
examining these stress sources and highlighting which sources
we see as being the most impactful.
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