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Abstract—Artificial-intelligence (AI) techniques are revolu-
tionizing modern safety-critical real-time systems by enabling
autonomous features never seen before. However, Al-based
workloads are typically expressed as processing graphs that are
subject to complex tradeoffs involving parallelism and dataflow
dependencies. Due to such complexities, exact analysis of graph-
based tasks is challenging under most (if not all) schedulers.
This paper presents a periodic server-based scheduling policy
for periodic graph-based task systems and provides an exact
response-time analysis under this policy. This analysis entails
pseudo-polynomial time complexity for pseudo-harmonic peri-
odic graph-based tasks, which are commonly used in practice.

I. INTRODUCTION

Recent advances in artificial-intelligence (AI) techniques
have fueled increased demand for autonomous features in
safety-critical real-time systems. Al-based workloads that re-
alize such features often have complicated dataflow depen-
dencies that are modeled as processing graphs, where nodes
represent sequential computation and edges represent data
dependencies. The temporal correctness of a graph-based task
system is often validated via response-time analysis; recent
work on this topic includes [4], [20], [26], [28], [30], [34].

Unfortunately, most existing work on response-time bounds
for graph-based tasks on multiprocessors does not provide
exact response-time bounds. In fact, existing response-time
analysis for graph-based tasks incurs pessimism by over-
approximating intra- and inter-task interference. The lack
of exact response-time bounds hinders the quantification of
such pessimism inherent in efficiently computable existing
response-time bounds. However, determining exact response-
time bounds for graph-based tasks on multiprocessors is a
challenging problem that requires accounting for (i) intra-
task interference, (ii) inter-task interference, (iii) inter-instance
dependencies, and (iv) instance-level parallelism.

In this paper, we show that exact response-time bounds can
be obtained for directed-acyclic-graph-(DAG)-based periodic
task systems under a server-based global scheduler via a
simulation-based strategy that accounts for all of (i)—(iv).
According to a recent survey, more than 80% of industrial real-
time systems have periodic activities [3]. Our work was in-
spired by prior seminal work on simulation-based strategies for
globally scheduled independent, periodic (non-DAG) tasks [1],
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[9], [12], [21]. The method we present enables the computation
of exact response-time bounds in pseudo-polynomial time
for pseudo-harmonic DAG-based tasks where every period
divides the maximum period. Pseudo-harmonic tasks (which
generalize harmonic tasks) are common in practice [16].

Why server-based scheduling? A simulation-based approach
involves upper bounding both the time to reach schedule
repetition and the period of schedule repetition. This is difficult
for DAG tasks under schedulers without servers. Such diffi-
culties are mainly due to variations in node activation times
due to precedence constraints. Per-node reservation servers
provide an upper bound on the processor capacity allocated
to a node over a hyperperiod, a property that we exploit to
ensure schedule repetition of DAG tasks. Moreover, server-
based scheduling is useful for other purposes, e.g., to deal
with inaccurate worst-case execution time (WCET) estimates.

It’s not so easy. Our considered task model is subject to all
of (i)—(iv), so per-node reservation servers have both inter-
instance dependencies and instance-level parallelism. While
schedule repetition of independent non-DAG tasks is well-
studied, to our knowledge, no work has considered task models
with instance-level parallelism. Such parallelism complicates
the schedule analysis as a node can have multiple ready
instances at the same time. Translating the schedule repetition
from servers to DAGs poses added challenges due to unused
server budgets, e.g., a schedule at the DAG level may not start
repeating when the sever-level schedule starts to repeat.

Related work. Most prior work on DAG-based task systems
has focused on task models that obviate inter-instance inter-
ference (e.g., hard real-time systems with constrained dead-
lines) [13], [19], [23]-[25], [34], inter-instance dependencies
(e.g., systems with unrestricted parallelism) [11], [14], [17],
[22], [30], [32], or inter-task interference (e.g., systems with a
single DAG) [5], [6]. Work that has considered all of the above
mostly precludes instance-level parallelism by forcing depen-
dencies between consecutive DAG instances [18], [31], [33].
Recent work by Amert et al. [4] provides non-exact response-
time bounds for task models allowing both inter-instance
parallelism and dependencies. Work on tighter response-time
bounds of DAG tasks has focused on systems without inter-
instance and inter-task interference [7], [27], [29].

Contributions. Our contributions are threefold. First, we give
a server-based scheduling policy for periodic DAG tasks that
are subject to all of (i)—(iv) mentioned earlier. Second, utilizing



the repetition of server schedules, we give a simulation-based
approach to derive exact response-time bounds for periodic
DAG tasks under our proposed scheduling policy. To our
knowledge, this is the first work that considers exact response-
time bounds of DAG tasks under any scheduler in the presence
of (i)-(iv). We also give slack-reallocation methods to reclaim
unused budget (if possible) without violating our response-
time bounds. Third, we provide results from simulation ex-
periments that show the benefit of our approach.

Organization. After covering needed background (Sec. II),
we describe our server-based approach (Sec. III), explain how
to obtain exact DAG response-time bounds (Sec. IV), discuss
our experiments (Sec. VI), and conclude (Sec. VII).

II. PRELIMINARIES

We consider a task system I' consisting of NV DAG tasks
globally scheduled on m identical processors. Each DAG task
G" has n” nodes that represent tasks {77,74,..., 7%} A
directed edge from 7, to 7 represents a precedence constraint
between the predecessor task 7 and the successor task 7;.
The set of predecessors of 77 is denoted by pred(r). Each
DAG task G" has a unique source task 7 with no incoming
edge and a unique sink task 72, with no outgoing edge.

Each DAG task GY has a period T". G" releases a DAG
job every TV time units. The j** DAG job of G is denoted
by GY. G has an offser O”, which is the time when GY
is released The DAG job G7 consists of a job 7;; for
each task 7 in that DAG. Each job 77, is preemptive. The
release time and finish time of 77 . are denoted by (7} j) and
f(77;), respectively. The source task 7 releases its j*" job
when G is released. The 4t job of each non-source task
is released once the j'* job of all of its predecessor tasks
finish, i.e., r(77;) = ma‘XT”Epred(T"){f(T]q j)}- The response
time of 7, is f(77;) — ’I"(TLJ) Task 77'’s response time is
R(rP) = max;{f(7/;) — r(7{;)}. G} completes when 7, ;
finishes. G}’s response time equals 7,,.. ;’s response time. G*’s
response t1me equals 7%, ’s response time, i.e., R(77.).

The WCET of 77 is denoted by C > 0. The utilization of
¥ is u? = C?/T". The utilization of GV is U” = 327" u?.
The total utilization of all DAG tasks is U = Zivzl U®. We
let Troe = max, IV, Cpae = max,;C}, and Oner =
max, OV. The hyperperiod H is the least common multiple of
all periods. A task system is pseudo-harmonic if each period
divides T4z, i.e., H = T4, holds. We do not require I'
to be pseudo-harmonic, i.e., our results apply to non-pseudo-
harmonic task systems too. We summarize all introduced
notation in Tbl. L.

We assume time to be discrete and a unit of time to be 1.0.
All scheduling decisions are taken at integer points in time.
We also assume all task parameters to be integers. Therefore,
when a job 77, executes during an unit interval [t —1,¢), it
continuously executes during [t — 1,¢).

v

Restricted parallelism. We allow a job of each task to execute
in parallel with other jobs of that task according to a recently
introduced model for specifying intra-task parallelism called

TABLE I: Notation summary.

[ Symbol | Meaning [[ Symbol | Meaning
N No. of DAG tasks Py Parallelization level of 77
m No. of processors uy cy / T“
T Task system [0hd 5\,
G? vt DAG task U > oe U v
n? No. of nodes in G cy ”’ WCET and S?’s budget
e ith task of GV Cmax maxv,z cy
oy § job of ¥ d(Sy;) | Deadline of S} ;
v Period of GV H Hyperperiod
Sy Server of 7 R(-) Response-time bound
SY; §t" job of SY Tmaz max, T
Ts Set of servers 70 Finish time
ov offset of GV r(-) Release time
Omaz max, OV h? H/T"
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Fig. 1: Example illustrating restricted parallelism. Sub-
sequent jobs are shaded darker.

the restricted parallelism (rp) model [4]. Under the rp model,
each task 77 has a parallelization level P}, which denotes the
number of consecutive jobs of 7 that can execute in parallel
at any time instant. In particular job 7, with j > P} cannot
start execution until 7;’ —py completes

Ex. 1. Fig. 1 deplcts a task 77 with P = 2. Assume that
m = 3. Jobs 7,77, and 75 are released at times 50, 54,
and 58, respectrvely At time 59 7.6 is scheduled. Assume that
7.7 and 75 become one of the top-m-priority jobs at time 60.
Since P? =2, 777 is scheduled at time 60. However, 7’5 is not
scheduled until time 62 when T 6 completes execution. O

Task 77 has unrestricted intra-task parallelism if P’ > m,
and no intra-task parallelism if P’ = 1. A task’s response time
may decrease with increased parallelism [4], but unrestricted
parallelism is not always possible, e.g., if job 7,7, requires
output from job 77 with k < j, then P}’ < j — k holds.
Feasibility conditions. Under the rp model, the following
condition ensures a bounded response time for each DAG task:
U< mA (Vi,v:ul < PP)[4]. We assume that I' admits
this condition.

III. SERVER-BASED SCHEDULING OF DAGS

To schedule DAG tasks, we adopt a server-based policy
where a global scheduler allocates time to per-node reservation
servers, upon which task jobs are scheduled.

Reservation servers. For each task 7/, we define a periodic
reservation server S;. We denote the set of all servers as I';.
Each server S} has a period T and a budget C;. Note that
S?’s period and budget are the same as G"’s period and 7’s
WCET, respectively. Each server S} releases a (potentially
infinite) sequence of server jobs S},,S/,,.... The relative
deadline of S} is denoted by D(.S}); we assume implicit dead-
lines, i.e., D(SY) = T". The release time, (absolute) deadline,
and finish time of S}, are denoted by r(S?,), d(S7;), and
f (S”’ :), respectively. Server SY releases its ﬁrst job S ', at
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(b) A schedule of G'.

Fig. 2: Tllustration of server-based scheduling. Blue arrows
between job and server job releases represent job linking.

time OV. Its subsequent jobs are released periodically, i.e.,
S} is released at time O" + (j — 1)T". Therefore, we have
Vv, i,5 (S ;) = (1)

We do not require deadlines to be hard, i.e., server jobs can
miss their deadlines. Server S} has a parallelization level of

P} matching that of 7.

Server jobs are scheduled according to a global earliest-
deadline-first (GEDF) scheduler, but our results apply under
a wider class of schedulers called global-EDF-like (GEL)
schedulers.! Before elaborating on the scheduling of servers,
we first give budget consumption and replenishment rules.

Replenishment Rule. The budget of S?
to C? when it is released.

; is replenished

Consumption Rule. S?; consumes budget at the rate of
one execution unit per umt of time when it is scheduled
until its budget is exhausted.

Def. 1. A server job S7; is complete after its budget is ex-
hausted. S} ; is pending at timet ifr(S7;) <t < f(S7;). S,
is ready 1f1t is pending and S} ; _ p. (if j > P}’) is complete.

Under GEDF scheduling, the (up to) m ready server jobs
with earliest deadlines are scheduled. We assume ties are
broken arbitrarily but consistently by DAG and task indices,

e, if d(S7;) = d(Sy,) and d(S},) = d(Sy ), then S},
has higher priority than Sy, if and only if S” has higher
priority than Sk The response time of SY (resp., SY) is

ACH i G )(reSP max; { f(57;) — (m)})-

'Under a GEL scheduler, each job has a priority point within a constant
distance of its release; an earliest-priority-point-first order is assumed.

Ex. 2. Fig. 2(a) depicts a DAG G consisting of four nodes.
The period of G' is 5.0 time units. Assume that C} =
2.0,C3 = 3.0,C% = 2.0, and C} = 3.0. The paralleliza-
tion level of each task is one. There are four servers each
corresponding to a task. Each server has a period of 5.0 time
units and releases is first server job at time O when 7 releases
its first job. The server S3 corresponding to the task 74 has
a budget of 3.0 units. Server job SJ ;’s budget is replenished
to 3.0 units when S2 1 is released at time 0. It consumes its
budget by one unit per unit of time when it is scheduled. 52 1
completes at time 3 when its budget is exhausted. O

Scheduling tasks on servers. In describing how jobs are
scheduled on servers, we use the following terminology.

Def. 2. A job 7, is pending at time ¢ if r(7};) <t < f(7};)
holds T ; 18 ready at time t if it is pending at time t and ]ob
T Py (if j > P}) finishes execution by time t.

Jobs are scheduled on servers via the following rules.

R1 Jobs of 7 are scheduled on server jobs of S;’. A job 7,
is linked to a single server job S7, (via Rule R2 given
below) and at most one job can be linked to a server job.
Assume that a server _]Ob Si, is released at time ¢. If
7(7{1) <t holds and 77, is not linked to any server job
at time ¢, then T/ 1s linked to Si . Otherwise, if 7;/; is
the last job of T” that is linked to some server job and
r(T, w+1) <t holds then 7 L+l is linked to S7,.

R2

R3 If 7/, is linked to S, then 77, executes whenever S,
is scheduled until 7,7, completes.

Ex. 2 (Cont’d). Fig. 2(b) depicts a schedule of G'. At time 0,
the first job of each server is released. Since 711’1 is released
at time 0, by Rule R2, it is linked to S} ;. By Rule R3, 7'11’1
executes when S, is scheduled during [0,2). At time 2, 7
and 73 1 are released. At time 5, when 52 1 (resp., S3 1) 1s
released, 75, (resp., S ) is linked to it. O

As seen in Fig. 2(b), an unlinked server job has unused
budget. In Sec. V, we give slack-reallocation rules to utilize
such unused budgets without violating response-time bounds.

IV. RESPONSE-TIME BOUNDS

In this section, we give response-time bounds for DAG tasks
under the server-based scheduling given in Sec. III. Our goal
is to use these response-time bounds as a basis for deriving
exact response-time bounds in Sec. V.

Server response-time bounds. As server tasks are periodic
and have restricted parallelism, previously derived response-
time bounds apply to them [4].

Def. 3. Let ub = Zb largest values of 7 with P <m, uz and Cb =

> uy
b largest values of 77 with PY <m i *
From [4], S? has a response-time bound R(S}), where

R(S:Ll)) =TV + (m - 1)Cma:1: + 2Cm71 + CZU (1)
m—Un_1

Response-time bounds of DAG tasks. Using the response-
time bounds of servers given in (1), we now derive response-
time bounds of DAG tasks under server-based scheduling.



Lemma 1. If S?; and S are ready at timet where j < k and
S;j & 1s scheduled at time t, then S” is also scheduled at time t.

Proof. Since j < k and S} releases periodically, r(S57;) <
7(S7)) holds. Thus, d(Sﬁj) < d(S57)) holds. Having hrgher
priority and being ready, S;; is thus scheduled if 57 is. O

Sij) < F(SER)-
Proof. Assume for a contradiction that the lemma does not
hold, in which case j < k clearly holds. Let ¢ be the first time
instant such that there are server jobs S ; and S}, such that
J <k t<f(S;),andt= f(S{;). Since, by the budget
Consumption Rule, S?; and S?, are scheduled for C} time
units before their completron and f(SY;) > f(S7},), there is
a time instant ¢’ < ¢ such that Sy 1s not scheduled at ¢/ , but
57}, is scheduled at #'.

We now prove that 57 ; is ready at time t', which by Lem. 1
implies it is scheduled at time ¢/, a contradiction. Since S},
is scheduled at ¢’ and j < k, r(S7;) < r(S7;) <t holds. By
the definition of ¢ and ', #' < f(S} ;). If j < P?, then S} i
ready at time ¢’ as claimed, so assume j > P?. Since S}, is
scheduled (hence ready) at time ¢/, S¥,_ p. completes by time
t'. As j < k, by the definition of ¢, f(S” IPU) < f(SPupy)-
Thus, S7; _py completes by time ¢’ and S i ; 1s ready then. 'O

Lemma 2. Forany j and k such that j < k, f(

Lemma 3 If a job 7;’; is ready when the server job S”’k to
which it is linked is first scheduled, then f(77;) < f(S}})-

Proof. By the budget Consumption Rule, 57, is scheduled for
C} time units. Since 7;”; is ready when 57, is first scheduled,
by Rule R3, 7, completes execution at or before S ik S budget
is exhausted. Therefore, f(7;';) < f(S7},) holds. O

From Rule R2, we have the followmg lemmas whose proofs
are given in an online appendix [2].

Lemma 4. If T;j J is linked to a server job S} ks then j < k.
and 1/

Lemma 5. If 7, i j+c are linked to SY, and S},
respectively, then ¢ — k > ¢ holds.
We now define a response-time bound R(7}) for each 77.

R(7}) is recursively computed according to 7,”’s predecessors’
response-time bounds. Let

R(r) =@} + R(S}) + T, 2
0 1=1
where @} = max { R(T}’)} otherwise. )

Ty €pred(ty)

In Thm. 1, we show that R(7) is a response-time bound of
77 using Lems. 6-9 given below.

Lemma 6. Forany job7/;, 7, is ready at or before the server
Jjob 57, to which it is linked starts execution.

Proof. Assume otherwise. Let ¢ be the first time instant such
that there is a job 7;7; that is not ready, but the server job S,
to which it is linked starts execution at time t. By Rule R2,
T(T”) < t. Since 7;/; is not ready at time ¢, j > P, holds
and 7;’;p. does not complete execution at or before time ¢.
By Lem. 4, k > j > P? holds.

We now prove that 7, _py completes by time ¢, i.e.,

f ( T Pv) < t, thereby reachrng a contradiction. By Lem. 5,

_ppy 1s linked to 57, with £ < k — P. Let ' be the first
tlme instant when S? ¢ 1s scheduled. Smce 57k, 1s scheduled at
time ¢, f(S7)_ Pu) < t. Thus, by Lem. 2, f(SZ’Z) < t. Since
CY >0, we have ' < f(S7,) < t. Hence, by the definition
of t, 7{;_p» is ready when S i ¢ 1s first scheduled. By Lem. 3,
flrl Pu)<f(8fe)<t Thus 77; is ready at time t. [

By Lems. 6 and 3, we have the following lemma.

v

Lemma 7. For any job 7;, 7;'; completes execution at or

before the server job S}, to which it is linked completes.
Using (2) and (3), we have the following lemma.

Lemma 8. For any non-source task 7', ®7 > ®}+R(S})+T"

holds, where ;] € pred(r”).

Lemma 9. For any job 7;, T

before time r (77 ;) + @7 + T”

; 1s linked to a server job at or

Proof. Assume for a contradiction that ¢ is the first time instant
such that a job 7.7, is not linked to any server job and ¢ =

r(71;)+®7 +T" holds. Let S7; be the latest server job of S}
released at or before time ¢. We w111 show that 7 is linked to
S}y thereby reaching a contradiction. Since S“ Teleases jobs
periodically, r(S7)) >t =T" = r(r};) + ®}. By Rule R2, it
suffices to prove that r(7;) < r(ry J) + @Y holds and 77
(if j > 1) is linked to a server job by time r(77 ;) + ®7.

i,7—1

Claim 9.1. 77; is released at or before r (77 ;) + 7.

Proof. Assume otherwise. Since 77 ; is released at time 7(77 ;)
and by (3), 7 = 0, we have ¢ # 1. Thus, 7 is a non-source
task. Since 7 releases 7;/; once the §t" job of each of its
predecessors completes there is a job 77, such that 7 €
pred(7/) and f(7; ;) > r(77 ;)+®} hold. By Lem. 8, we have
¢, < ®}. Thus, r(TU)+<I>”+T” <r(r;) + @] +T" =t
Therefore by the definition of ¢, 7] ; is linked to a server job
at or before time (77 ;) +®, +7". Assume that 7, ; is linked

to Sy, Then, by Rule R2, r(S} ;) < r(7{;)+®,+T". Since
the response time of S;jyg is at most R(S;;), we have

F(Sp.e) = 7(Spe) + R(Sp)
< {Since (S} ) < r(ri ;) + 25 + 17}
r(m1;) + @, + T + R(S})
< {By Lem. 8 and since 7,/ € pred(7})}

r(m1;) + @7 4)
By Lem. 7 and (4), we have f(7; ;) < f(S,,) < r(r;)+P7,
a contradiction. O

Claim 9.2. Ifj > 1, then T,
before time r (77 ;) + ®}.

7 ;_1 s linked to a server job at or

Proof. Since source task 7 releases jobs periodically, we have
r(m;) = r(m1,;-1) + T% Thus, r(r{,;_;) + @} + T¥ =

r(r;) + @ < r(TfJ) + @Y + T holds. Therefore, by the
definition of t, T 1 1s hnked to a server job at or before
time 7(77;_ 1)+<I>”+T“—r(71j)+<l> O
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Fig. 3: An ideal schedule of 77 and 7% of G' in Fig. 2(a).
Server jobs are not shown as they have the same schedule.

These two claims yield a contradiction, as noted above. [J

By (2) and Lems. 9 and 7, we have the following theorem.

Theorem 1. The response time of any job 7;’; is at most R(r; ).

V. EXACT RESPONSE-TIME BOUNDS

In this section, we give a simulation-based method to
compute exact response-time bounds of DAG tasks under the
server-based scheduling policy given in Sec. III. We initially
assume the following, which we relax later.

A Each job of any task 7 executes for its WCET CY.

Note that the response-time bounds (and associated lemmas
and theorems) given in Sec. IV do not rely on Assumption A.

A. Definitions and Notation

We denote a GEDF schedule of I'y as G. We denote a
schedule of T" on the server schedule G as S.
Ideal schedule. Let {7],7},..., 7N} be 320" n proces-
sors, where 7¥ has speed of w!. In an ideal schedule T,
each task 7 and corresponding server S} is partitioned to be
scheduled on processor 77 Each server’s budget is replenished
according to the budget Replenishment Rule given in Sec. IV.
However, its budget is consumed via the following rule.

Ideal Consumption Rule. 57 consumes budget at the
rate of u execution unit per unit of time when it is
scheduled until its budget is exhausted.

Each server job S} ; is scheduled at time (S} ;) = r(77 ;) and
remains scheduled unt11 its budget is exhausted Therefore, SZ” j
completes at time (57 ;) + Cf /uj = r(Sv )+ 1.

Each job 7', executes at a rate of u; whenever S7;
scheduled. Thus, 7;7; begins execution at time r(ry ]) and
completes executlon at time r(ry;) + 7. Therefore, all
jobs corresponding to a DAG job G complete execution at
time (77 ;) +7" when G, | is released Note that precedence
constraints among tasks are not maintained in Z.

Ex. 2 (Cont’d). Fig. 3 depicts an ideal schedule Z correspond-
ing to the tasks 7| and 7] of DAG task G! in Fig. 2. Although
job 7'11,1 is not complete at time 0, 75 ; starts execution at time 0
at the rate of 3/5 execution units pér unit of time. O

We now define the term allocation. To avoid repetition, we
use the notation J;’; to denote 7;; or 57 ;. Similarly, we use
J? (resp., ¥) to denote Ty or S} (resp., ForT ). Finally, we
use H to denote a schedule which can be either S or G or Z.

Allocation. The cumulative processor capacity allocated to

JP;s JP, and W in a schedule H over an interval [t,t') is

denoted by A(J7;,t,t', 1), A(J7, t, ', H), and A(V, ¢, ', H),

respectively. Therefore, we have the following equations.

ATt H) = ZA TPt t M) (5)
AT, Lt H) ZAJ”tt?—L (6)

Since the processor capacity allocated to a job or server job
over an interval is non-negative, for any intervals [¢,¢') and
[t,t") with t"” > ¢ > ¢, we have the following properties.

ATt H) < ATt t" H) @)
ATt H) = AT, 0,8, H) — AT, 0,6, H)  (8)

In Z, server job S}, and job 77, are scheduled when G7 is
released, i.e., at time 7"(7'{’7 j). Sf, j (resp., Tl?j j) consumes budget
(resp., executes) at a rate of w until its completion. Therefore,
for any interval [r(77;),t), we have

A(szy (Tf,j)7t7z) = min{uf(t - T(Tf,j))ﬂ sz} )
Similarly, for interval [¢,t") with t > O (resp., t > Opaz)-

A(JY 6, T) = ul(t' —t) (10)

Uit —t) (11)

AW, ', T) =
lag and LAG. The lag of job J;; in schedule H is defined as
lag(J7;,t,H) = A( ”,OtI) A(JY 0,8, H).  (12)
The lag (resp., LAG) of J; (resp., V) at time ¢ in # is given by

lag(J7,t, H) Zlag it H

2,77

= A(JZ’,O,LI) —A(J,0,t,H) (13)
LAG(W,t, 1) =Y _lag(J},t, H)
= A(\I/,O,t,l-) —A(\I/,O,t,H) (14)

Since lag(J?,0,H) = 0 and LAG(¥,0,H) = 0, for ' > ¢ we
have the following equations.

lag(J}', ', 1) = lag(J!, 1, 1) + A(JY 1,1, )

— ALt H) (15)
LAG(V,t', 1) = LAG(Y, ¢, H) +A(Y, ¢, ', T) - A(T, ¢, 1, H)
(16)

Def. 4. Let h* = H/T".

Proof overview. We aim to derive an upper bound on the
length of the prefix of a schedule of DAG tasks after which
the response times of DAG tasks do not increase (Thm. 2). We
do so by showing that if the LAG of I" remains the same at
hyperperiod boundaries for a sufficiently long interval of time,
then it continues to remain the same at hyperperiod boundaries
at any time in the future (Lem. 40). Furthermore, when this
happens, response times do not increase afterwards (Lem. 41).
The key steps in our proof are as follows.

Step 1. The amount of time a server job S, ;. is sched-
uled by time ¢ + H is at most the amount of time S;; is
scheduled by time ¢ (Lem. 18). The amount of time S}



(resp., I's) is scheduled over an an interval [t,t+ H) is at
most Hu; (resp., HU) (Lems. 23 and 24).

Step 2. If the time allocated to I'; over an interval [¢,t+ H)
equals HU, then scheduling decisions and the state of I',
are identical at times ¢ and ¢ + H (Lem. 31).

Step 3. If the time allocated to I' over H-sized intervals
remains HU for sufficiently long, then I" continues to be
scheduled for HU time units in any future /7-sized interval
(Lem. 40) and each DAG task’s maximum response time
has stabilized (Lem. 41).

Step 4. There is a time instant when the condition men-
tioned in Step 3 holds (Lem. 43).

We cover Steps 1 and 2 in Sec. V-B and Steps 3 and 4 in

Sec. V-C. Due to space constraint, we omit some proofs, which

are provided in an online appendix [2].

B. Analysis of Servers

We begin by addressing Steps 1 and 2. To complete Step 1,
we will first show, in Lem. 18, that the amount of time
allocated to a server job S}, . by time ¢ + H is at most the
amount of time allocated to S7’; by time ¢. We will prove the
existence of higher-priority JObS that cause 57 j+ho to maintain
this property under GEDF. We begin by provmg Lems. 10—
16, which establish the existence of such higher-priority jobs.

The lemma below holds as servers release jobs periodically.

Lemma 10. For any integerc, (S} ;| .,.) = 7(S};)+cH and
d(S} jyen») = d(S};) + cH hold.
The following two lemmas show that the pending jobs of
a task are consecutive at any time instant. Informally, this is
because, by Lem. 2, a server job cannot finish before a prior

server job of the same server finishes.

Lemma 11. If S}, and S}, with j < { are pending at time t,
then each server ]Ob S? 'k with j < k </ is pending at time t.

Proof. By Def. 1, we have r(S?,) < t. Since k < ¢, we have

r(S7) <7(S7,) <t. By Def. 1 we have f(S};) > t. Since
k > j, by Lem. 2, we have f(S;fk) > f(SZ’J) > t. Thus, by
Def. 1, S}, is pending at time ¢. O

Using Lem. 11, we have the following lemma.

Lemma 12. If at least p server jobs of S? are pending at time t
and S} ; is the highest-priority server job of S’ that is pending at
timet, then S i4195% j42s -+ 57 j4p—1 are pending at time t.

Similar to Lem. 12, we have the following lemma.

Lemma 13. If at least p server jobs of S} are ready at time t
and S} ; is the highest-priority server job of S’ that is pending

at t1met then 57 ;, 5711, .., 5 j1p—1 are ready at timet.

Proof. Since P’ > 1 and no server job of Sy with higher
priority than S, is pending, S}, is ready at time ¢. By
Lem. 12, server jobs Sy, 1, 5710, -.,5] ;4,1 are pending
at time ¢. Assume that Sy, such that 1 <k <p—1 is not
ready at time ¢. Then, j —|— k > P?, and S”HC Py does not
finish execution by time ¢, ie., f(S? # ik pr) > t. As there

are at least p ready jobs at time ¢, there is a ready job S} e

at time t such that ¢ > k (thus, j + ¢ > P/). By Lem. 2,
F(SYjie—po) = f(SY 4 k_pv) > t. Thus, 5P, is not ready
at time ¢, a contradiction. O

Lemma 14. If at least p server jobs of S} are pending at time t,
then at least min{p, P!’} server jobs are ready at time t.

Lemma 15. For any integer ¢ and job index j such that
J+ch? > 1,if SY; is pending at time t and A(Sfj, 0,t,G) >
A(S? j4ene»0,t + cH,G) holds, then S}, . is pending at
timet + cH.

Def. 5. Let hp(Sy ,, S, t) denote the number of ready jobs of
S} at time t that have higher priority than S ,.

Using Lems. 10-15, the following lemma shows that the
number of ready jobs at time ¢ + H with higher priorities
than Sj ;. is no smaller than the number of ready jobs at
time ¢ with higher priorities than Sk e when A(S7;,0,t,G) >

A(S} ;1n0»0,t + H,G) holds for each server job. Informally,
this is because, for any ready server job at time ¢, there exists
a unique ready server job at time t + H.

Lemma 16. Assume that, for each server job S7; of a
server S7, A(S7;,0,t,G) > A(S} 440, 0,t + H,G) holds at
time t > O". Then, for any server job S ,, hp(S}; ,, 57, t) <

hp(S} ¢4 s SYot + H) holds.

Proof. Let p = hp(Sy,,S7,t). If p = 0, then the lemma
trivially holds, so assume p > 1. By Defs. 1 and 5, p <
Py. Let 57, be the highest-priority server job of S that is
pending at tlme t. By Lem. 13, 57,57 11, ..., 5] ;4,1 are
ready at time ¢. Therefore, by Lem. 15 (replacing c by 1),
server jobs Y.\ 0, Sy i1 hvse e Sf jip_14pe are pending
at time ¢ + H. Let 57, be the highest-priority server job of
S? that is pending at time ¢ + H. Then, x < j+ h" holds. By
Lem. 11, each server job Sf’y suchthat x <y < j+p—1+h"
is pending at time ¢ 4+ H. Therefore, there are at least j +p —
1+h"—2+1=j+p+ h” — z pending server jobs of S}
at time ¢ + H. By Lem. 14, at least min{j +p+ h" —x, P}
server jobs of SY are ready at time ¢t 4+ H. Since z < j + h",
we have j +p+ h” —x > p. Since by Defs. 1 and 5, p < P!
holds, we have p < min{j + p + h¥ — x, P’}. Thus, there
are at least p ready jobs of S} at time ¢ + H. By Lem. 13,
SY iy St ai1s - Sl gyp—1 are ready at time ¢.

We now prove that each server job S?, , with0 < b < p—1
has higher priority than Sy, .. Since x < j + h", we have
r+p—1< j+p—1+h” Thus, each 57, ., with 0 <
b < p — 1 has higher or equal priority than Sz tp—1thve SO
it suffices to prove that S} j+p—1+ne has higher priority than
Sk o4no- As S} ; is the highest-priority ready job of S}’ at ¢, by
Def. 5, each of S¢S 415+ -+ 57 j4p—1 has higher priority

2,

than S}’ ,. Thus, d(S o )< d(Sk e) holds, and by Lem. 10,
d(Sk pno) = d(Sg ) + H
> {Since d(S”er 1) < d(S}:’e)}
d(S7 jip—1) + H
= {By Lem. 10}

A(Sy j1p—14nv)- amn



Since ties are broken consistently, SZ jbp—1+hv has higher
priority than S}é ¢no 1 57 ;4,1 has higher priority than Sy ,.
Thus, there are at least p ready jobs of S at time ¢ + H that

have higher priorities than S ;... O
The following lemma gives necessary conditions for
(S;UJ7O t,G) > A(S} ;s 0,t + H,G) to not hold for the

first time in G.

Lemma 17. Lett > OV be the first time instant (if any) such

that for a job S} ;. A(S};,0,t,G) < A(S{; 0,0t + H,G)

holds. Then, the following hold.

(a) t> O".

(b) S7; is not scheduled during [t — 1,t), but Sfijrhv is
scheduled during [t + H — 1,t + H).

Lem. 17(a) holds as, by Def. 4 and Lem. 10, S} e 18
released after time OV + H. By the definition of ¢, A(SZ” 420, t—
1,G6) > A(SZ’JJrhU,O,t + H — 1,G) holds. Thus, Lem. 17(b)
must hold to satisfy the lemma assumptions. Using Lems. 16
and 17, we now prove the following lemma.

Lemma 18. For any server job S} ; and time instantt > O,
A(S?;:0,t,G) = A(S} ;110 0, t+H G) holds.

Proof. Assume otherwise. Let ¢ be the first time instant such
that ¢ > OV and there is a job S}, satisfying the following.

A(S7;,0,t,G) < A( ”Jrhu,O t+ H,G) (18)

By Lem. 17(a), t > OV holds. Thus, by the definition of ¢,
Vu, k£t —12> 0" A(Sy 4, 0,6 —1,G) >

A(SE pyne, 0,t+ H—1,G).  (19)

Since S, . is scheduled for C’ time units in total, we have

A(Syj1ne,0,t + H,G) < CF. (20)

By Lem. 17(b), Sﬁﬁhv is scheduled during [t+H —1,t+H),

) r(Sgij+h,L,) < t+ H — 1 holds, and by Lem. 10,
r(Sf}j) = r(S;‘fj+hv) —H<t-1.

We now prove two claims.

2n

Claim 18.1. S;ij is pending at time t — 1.

Proof. By (21), S is released at or before time t— 1. Thus, it
suffices to prove that f(S7;) >t—1. Assume to the contrary

that f(S?,) < t—1. Thus, A(S?,,0,¢—1,G) = C?. By (7), we
have A(S;’j,O t,G) > CY. By (18), A(SY; u, 0, t+ H,G) >
(Sf],O t,G) > C?, contradicting (20). O

Claim 18.2. S}, is ready at time ¢ — 1.

Proof: By Clm 18.1, S?, is pending at time ¢ — 1. If
J < PP, then SP; is also ready at time ¢ — 1, so as-
sume j > P. Since S, ;. is scheduled (hence, ready) at
time ¢ + H — 1, SY, po_ py completes by time ¢t + H — 1.
Hence, A(S}; po_pe0, t+H—1,G) = C'. By (19), we
have A(S};_pv,0,t —1,G) > C7. Thus, S57;_p. completes
by time ¢ — 1 and S7; s ready at time ¢ — 1. O

By Clm 18.2 and Lem. 17(b), S} ; is ready but not scheduled
at time t— 1. Therefore, at time ¢t —1, there are at least m ready
server jobs that have higher priorities than S ;. By (19) and

Lem. 16, each server S} with p ready server jobs of higher
priority than S} ; at time ¢ — 1 has at least p ready server jobs
of higher pr10r1ty than 57, . at time ¢ + H — 1. Thus, there
are at least m ready server JObS of higher priority than S}, jhv
at time ¢ + H — 1. Therefore, S}, . cannot be scheduled at
time ¢t + H — 1, which contradlcts Lem. 17(b). O]

The following lemma generalizes Lem. 18 for the case of
multiple hyperperiods.

Lemma 19. For any server job S} ;, positive integer c, and time
instantt > OY, A(S?.,0,t,G) > A(SZ’jJrchv,O,t +cH,G).

0,77
Proof. By Lem. 18, for any k > 0, we have A(S};,0,t +
kH,G) > A(S}ipe,0,t + (k + 1)H,G). Therefore,
A(S};,0,t,G) > A(SY 4 opo, 0, + cH, G). O

We now give Lems. 20-24 that complete Step 1. Since
server job S7; consumes budget at the rate of u; in 7 during
[r(S7;),7(S7;) +T"), we have the following lemma

Lemma 20. For any job S} ;, positive integer c, and time
instantt > O%, A(S};,0,t,Z) = A(S} ;| o, 0,t + cH, I).
Lemma 21. For any server job S} ;, positive integer c, and time
instantt > OV, lag(S};,t,G) < Iag(S”Hhu,t +cH,G).
Proof. By Lems. 20 and 19, A(S;’J,O t,I)=A(S},,0,t,G) <
(SZUHC,LU,O t+cHT) — (Sfﬁchv,o t + cH,G). Thus,
by (12), the lemma holds. L]

Since each server job S}, completes at time (S} ;) +T" =
7(S741) in Z, and S}, is released at time O + H, each
server job S7; with j < h" is complete by time O + H in
7. Using this fact, we have the following lemma.

Lemma 22. For any integer ¢ > 1, server job S} ; with 1 <
j < ch?, and timet > OV + cH, lag(S, Dists G)> 0 holds.

Lemma 23. For any server S}, positive integer c, and time
instant t > OV, the following hold.
(a) lag(S?,t,G) < lag(S?,t+cH,G).
(b) A(SY,t,t+ cH,G) < cHu}.
Proof. (a) By (13), we have
lag(Sy',t,G)
= Z lag(szvj ch“7t’g)
Jj>chv
{By Lem. 21}
Z lag(S; ;,t + cH,G)
Jj>chv
< {By Lem. 22}
> lag(Sy; t+cH,G)+ Y lag(Sy;,t + cH,G)
1<5<ch” j>ch”
= {By (13)}
lag(S},t +cH,G).
(b) Assume that for SY and time instant ¢ > O, A(S?,t,t +
cH,G) > cHu! holds. Then, by (10), we have A(S?,¢,t +

IN



cH,T) — A(S?,t,t + cH,G) < cHu! — cHuY = 0. Thus,
by (15), lag(S?,t+ cH,G) < lag(S?,t,G), which contradicts
(a). O

Lemma 24. For any integer c and time instantt > O 4,
(@) LAG(T,,t,G) < LAG(T's,t + cH,G),
(b) A(Ts,t,t+cH,G) < cHU.

Proof. (a) By Lem. 23(a), we have Zmlag(S” t,G) <
> .. 128(57 .t + cH, G). Thus, by (14), the lemma holds.

(b) By Lem. 23(b), we have ) ,A(S},t,t + cH,G) <
>y cHuf. Since 3 uf =U, by (6) we have A(T's, t,t +
cH,G) < cHU. O

We now address Step 2. We will show, in Lem. 31, that if
A(Ts,t,t + H,G) = HU holds, then scheduling decisions in
G are identical at times ¢ and ¢ + H. We begin by proving
some lemmas (Lems. 25-28) that establish server- and server-
job-level properties at times ¢ and ¢t + ¢H, when I'y’s LAG
values are equal. The next lemma follows from (16) and (11).

Lemma 25. For any positive integer ¢ and time instant t >
0,10z LAG(Ts,t,G) = LAG(T's, t 4+ cH, G) holds if and only
ifA(Ts,t,t +cH,G) = cHU.

By Lem. 23(a), we have the following lemma.

Lemma 26. For any positive integer ¢ and time instant t >
O,z If LAG(FS, t,G) = LAG(FS, t + cH, G) holds, then for
any S?, lag(SY?,t, g) lag(SY,t+ cH,G) holds.

Similarly, by Lem. 21, we have the following lemma.

Lemma 27. For any positive integer ¢ and time instant t >
0,000 IFLAG(T,t,G) = LAG(Ts,t + ¢H, G) holds, then for
any server job S} ;, the following hold.

lag( zj+chv,15+ cH,G).

(a) lag( z]7t g)
(b) A(S7;,0,t,G) = A(S} 4 epe 0, + cH, G).

Lemma 28. Assume that a server S, job index j, integer c,
and time t exist such that j + ch’ > 1, min{t,t + cH} >
0", and A(S’“ 0,t,G) = A(S}’ +ene>0,t 4+ cH,G). Then,
f(se) <t 1fandon1y1ff( ”Hhu) <t+cH.

Proof. Necessity. Assume that f(S7;) < ¢ holds. Then,

we have A(S};,0,t,G) = C}. Therefore, A(Sﬁjﬂhv,o,t +

cH,G) = C} holds. Thus, f(S7,;he) <t +cH.
Sufficiency. Assume that f(S7 ;) > t holds. Then, we have
A(S?.,0,t,G) < C?. Therefore A(S”+Ch1,,0 t+cH,G) <

7 ]7
C? holds. Thus, f(S? )>t+cH. O

i,j+ch?
Similar to Lem. 2, we have the following lemma.

Lemma 29. For any positive integers j and k such that j < k
and time instant t, A(S} ;,0,t,G) > A(S};,0,t,G) holds.
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If the schedule over the interval [t,¢ + H) in G repeats
during [t + H,t + 2H), then for each server job S}, that is
ready (resp., not ready) at time ¢, S}  j+pv Must be ready (resp.,
not ready) at time ¢ + H. The lemma below shows that this
condition holds if I'y’s LAG values at time ¢ and ¢ + H are
the same.

Lemma 30. If there is a time instant t > O,,,. such that
LAG(T's,t,G) = LAG(T's,t + H,G) holds, then S} ; is ready
at time ¢ if and only if S}’ ;. is ready at time t + H.

Proof. By Lem. 27, we have
Vo, ikt A(S] ), 0,8,G) = A(S] oy po, 0,1 + H,G).  (22)

Sufficiency. Assume that S}, ;. is ready at time ¢ + H,
but S7; is not ready at time ¢. Since S}, . is ready (hence,
pendmg) at time ¢t + H, by (22) and Lem 15 (replacing ],
t, and ¢ with j + h", t + H, and —1, respectively), S7; i
pending at time ¢. Since S;; is not ready at time ¢, by Def 1
Jj > P? and f(S7;_p.) >t hold. By (22) and Lem. 28, we
have f(S? § g — Pv)>t+H Thus, by Def. 1, S? is not
ready at time ¢ + H, a contradiction.

Necessity. Assume that .57 ; is ready at time ¢, but .57, .
is not ready at time ¢ + H. Slnce 5”7» is ready at time ¢,
by (22) and Lem. 15, S”Jrhv is pending at time ¢. Since
S{ j4nv 18 not ready at time ¢ + H, by Def. 1, j + h” > P/
and f(S? ;4 ho_pe) > t+H hold. We now consider two cases.

Case 1. j > P” By (22) and Lem. 28, f(S7;_ Pv) > t.
Thus, by Def. 1, S”’- is not ready at time t. Contradiction.

Case 2. j < PY. Inthis case, j+h"—P < PP+h"—P} =
hv. Since S“ﬁhu is pending but not ready at time ¢t + H,
A(S? ;1he, 0,0 + H,G) = 0. By Lem. 29, for each b > j,
A(SzbJrhv,O,t + H,G) = 0 holds. Therefore, we have

A(SY,t,t+ H,G)

= > AS!tt+HG)
1<b<j+h?

{By ®)}

> (A(S,0,t+ H,G) -

1<b<j+hv
By (22), A(574,0,t,G) = A(S} 1 1,0, 0,t+H, G) foreach 1 <
b < j. Thus, for each 1 < b < j, applying A(Si”,b+h,,,0,t +
H,G) - A(Sgb,O,t,g) =0 in (23),

A(SY t,t+ H,G)
=D A(SE, 0.t + H,G) = > A(S,,0,t,6)

i,j+h

A(575,0,1,G)).  (23)

1<b<h® JH1<b<j+h"
<> A(SH,0,t+ H,G)

1<b<hY

= { Since j + h* — Py < h"}

A(Szj,j+h"7P7“7Oat+H7g +ZA 7,b70 t+ H, g)

1<b<h"A
bAj R — Py

< {Since A(S;;,0,t + H,G) < Cyand S jo_po is
pending at time ¢ + H }
Y+ (Y =1)CY
= {By Def. 4}
Hu?. (24)

By (15), (10), and (24), we have lag(Sy,t + H,G) >
lag(SY,t,G) + HuY — HuY = lag(S?,t,G), which contradicts
Lem. 26. O



We now complete Step 2 by giving the following lemma.
Using Lem. 30, we show that if the time allocated to ' over
an interval [t,¢ + H) equals HU, then S} ; is scheduled at
time ¢ if and only if .57, . is scheduled at time ¢ + H.

Lemma 31. Foranyt > O,,,., if A(Ts,t,t + H,G) = HU

holds, then the following hold.

(a) ForanySZ”], (Sfj,t t+1,G) =
H+1,G).

(b) Forany SY,A(S?,t,t+1,G) = A(SY,t+H,t+H+1,G).

(C) A(F‘Jat7t+ 17g) = A(F‘lat + Hat + H + 17g)

A(SY jpert + H t +

Proof. (a) By Lem. 25, we have LAG(T,¢,G) = LAG(Ts, t+
H,G). Thus, by Lem. 30, S} ; is ready at time ¢ if and only
if S}, is ready at time ¢ —|— H. By Lem. 10, d(S7; ) =

(5“7 ;) + H holds. Thus, for each pair of server jobs .S} ; and
Sty we have d(SY;) — d(SE,) = d(SE ) — (St pre):
Since ties are broken consistently, .S’ ; has higher priority than
Sj; ¢ if and only if S?, ;. has hlgher priority than Sy, p..
Thus, S, is the pth hlghest pr10r1ty ready job at time ¢ if
and only 1f SZ"J 4po 18 the p" highest-priority ready job at
time ¢ + H. Therefore, S} ; is scheduled at time ¢ if and only
if 57 Lit+ho is scheduled at time ¢ + H. Thus, (a) holds.

(b) Follows from (a) and (5).

(¢) Follows from (b) and (6). L]

We have the following lemma, which is useful for Step 3.

Lemma 32. For any positive integer ¢ and time t' > O, .., if
A(Ts,t',t' + ¢H,G) = cHU holds, then, for each time instant
telt,t' +(c—1)H], Als,t,t+ H,G) = HU holds.

Proof. We first prove the following claim.
Claim 32.1. A(T,,t',¢' + H,G) = HU

Proof. For ¢ = 1, the claim holds by the lemma assumptions,
so assume ¢ > 2. Assume for a contradiction that A(T's, ¢, '+
H,G) # HU. Then, by Lem. 24(b), we have A(T,,¢',t' +
H,G) < HU. Since [t',t'+cH) = US_; [t/ +iH,t'+(i+1)H),
we have
AT, t',t' +cH,G)
c—1
=A@t '+ H,G)+ Y ALt +iH,t' + (i + 1)H,G)
i=1
< {By Lem. 24(b) and since A(T's,t',t' + H,G) < HU}
HU + (¢ —1)HU
=cHU,
a contradiction. O

We now prove the lemma. Assume for a contradiction that
time t € [t',t'+ (c—1)H] exists such that A(T's, t,t+ H,G) #
HU. By Clm. 32.1, t > t'. Thus, A(Ts,t—1,t+ H—1,G) =
HU. Since [t,t + H) = (t -1, t+ H-1)Ut+ H-1,t +

H))\ [t—1,t), we have A(T's,t,t + H,G) = A(Ts,t — 1,t +
H-1,6)+ATs,t+H—-1,t+ H,G) — AT, t — 1,t,G),
which by Lem. 31(c) equals A(T's,t—1,t+ H—1,G) =

a contradiction. O

C. Analysis of DAG Tasks.

We now give an analysis of schedule S that completes
Steps 3 and 4. We begin by showing, in Lems. 33-38 that
there are properties of lag and LAG in S that are analogous to
the properties in G. Intuitively, these properties hold as a job
of I' can execute only when its linked server job is scheduled.

Lemma 33. If 7} J
A(r}.,0,t,8) =

is linked to S}, then for any time instant t,
A(S71,0,t,G) holds.

z NE
Proof. Follows from the budget Consumption Rule, Assump-
tion A, and Rule R3. O

By Lems. 5, 29, and 33, we have the following lemma.

Lemma 34. For any positive integers j and k such that j < k

and time instant t, A(7};,0,t,S) > A(7/},0,t,S) holds.

Lemma 35. Forany jobT}’;, positive integer c, and time instant

t>0v, A(r},0,t,8) > (;)j+c,Lv,o,t+cH,S)holds.

Proof. Assume ;; (resp., 7", ) is linked to Siy (resp.,
S7¢). By Lem. 19, A( D1 0 ¢ g) > A(S? ks enes 0, t+cH, G).
By Lem. 5, ¢ > k + ch. Thus, by Lem. 29, we have
A(Sﬁk+c,1v,0,t + cH,G) > A(S7,,0,t + cH,G). Hence,

A(S71,0,t,G) > A(S},,0,t + cH,G) holds. By Lem. 33,

A(”,O,t,S)>A(Zj+chv,0,t+cH,$). O
By Lem. 35, we can prove lemmas analogous to Lems. 20—
27 and 32 for I'. Among those, we list the important ones that

we use in the later proofs.

Lemma 36. For any positive integer ¢ and time t > Omax, if
LAG(I',t,S) = LAG(I',t + cH,S), then for any job 7;’;, the
following hold.

(@) lag(7?;,t,S) =
(b) A(T? O t,S) =

lag(T T jtehvst+ cH,S).

hv,o t+CH 8)

L]7 (zy+c

Lemma 37. For any positive integer c and time t > O,,, ..., if

LAG(T,t,S) = LAG(T',t + cH, S), then the following hold.

(@) A(Ts,t,t+cH,G)=cHU.

(b) If a server job S7 . v is scheduled at time t' €
then a job is Imked to it.

€ [t,t + cH),

Lemma 38. For any positive integer ¢ and time t' > O, ..,
if LAG(T,t',S) = LAG(T,t' + cH,S) holds, then for each
teltt'+ (c—1)H], LAG(T,t,S) = LAG(T,t + H,S).

Def. 6. Let A = [max, ;{R(SY)}/H]H. Note that A >
max, ;{R(SY)} and A > H hold.

We now address Step 3 by giving Lems. 39—41. The
repetition of the graph-level schedule S at time ¢ requires that
the server-level schedule G repeats at time ¢’ and each server
job scheduled at or after ¢’ has a linked job. To ensure the latter,
we need to consider a larger interval of length (2H 4+ A) as
shown in the following lemma.

Lemma 39. IfLAG(T,t,,S) = LAG(T, t;+2H+A,S) holds
such thatts > O,,,... then the following hold.

(a) Ifaserver job S} ; is released during [ts,ts + 2H), then a
job is linked to 1t



(b) Foreachwv andj < h’, f(r7, .) <ts+ 2H + A holds.
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Proof. (a) Assume that there is a server job SZ j such that
ts <7(S7;) <ts+2H holds, but no job is linked to it. Since
S} ;’s response time is at most R(S}), by Def. 6, we have
F0SY;) <r(SY;) + R(SY) < ts +2H + A. Therefore, there
is a time instant ¢; such that ¢, < ¢, < t, + 2H + A and
S} ; is scheduled during [t,t, + 1). Since H divides A, by
Lem. 37(b), a job is linked to S} . s a contradiction.

(b) We first prove the following claim.

Claim 39.1. f(7}. ;) <ts+ H +A.

Proof. Let Sy, . be the first server job of S}, that is released
at or after ¢. Since server jobs are released periodically and
ts > Oppaws (S ) < ts + H holds. Since S}, * ’s response
time is at most R(S,‘{v) by Def. 6, we have f( o) <ts+
H—|—R(S”) ts + H+ A. By (a), S Uklshnkedtoa
job 70, ;. By Lem. 7, f(7, n“j) < f(Spv ). If § = 1, then
the clalm holds so assume j > 1. Let S v ¢ be the server
job to which 77, ; is linked. By Lems. 5 and 2, ¢ < k and
f(Sh. ) < f(S” ) hold. Therefore, by Lem. 7, f(7. ;) <

O

f( nue)<f(8:;uk)<t + H + A holds.

We now prove the lemma. By Clm 39.1, we have f(7,,. ;) <
ts + H + A. Hence, since H divides A and LAG(T, ¢, S) =
LAG(T',t; +2H + A, S), by Lem. 38, we have LAG(T', ¢; +
H+AS) = LAG(I‘ ts+2H 4+ A,S). Thus, by Lem. 36(b),
we have A(7,, j011,0,ts + 2H + A, S) = A(70 1,0,t5 +

H+AS) = Cn,, By Lem. 34, for each j < h", we have
A(rpo 55 0,ts + 2H + A, S) = Cy.. Thus, for each j < A",
T, ; completes at or before time ¢s + 2H + A. O

Using Lems. 37-39, we now prove that if [’'s LAG values
at time ¢ and ¢+ 2H + A are the same, then this value remains
the same over any future H-sized interval.

Lemma 40. IFLAG(T,t,,S) = LAG(T, t,+2H + A, S) holds
such thatts > O,,,.., then for each t > ts, LAG(T,t,S) =
LAG(T,t + H,S) holds.

Proof. Let t be the first time instant at or after ¢, such that
LAG(T,t,S) # LAG(T,t + H,S) holds. Since H divides A,
by Lem. 38 and Def. 6, we have the following.

t>ts+H+ANt>ts+2H

We first prove the following claim.

(25)

Claim 40.1. If a server job S} ; is released during [ts +2H, t),
then a job is linked to it.

Proof. Assume otherwise. Let S}, be the first job of Sy
released during [ts + 2H,t) to which no job is linked. Let
t, = T(S:J). By Lem. 39(a) and the definition of ¢,., we have:

(P) Each server job of S? released during [ts,t,) has a job
that is linked to it.

Since H divides A and ¢, € [t; + 2H,t), by the definition of

t, we have

LAG(T,t, — H,S) = LAG(T, t,,S). (26)
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Fig. 4: Nllustration of Clm 40.1. Blue arrows from job releases
to server job releases represent linking.

Since server jobs are released periodically, r(S7;_;) = t, —
">t —H>t;,+2H - H=t,+ H. Thus by (P), a job
7 is linked to S7;_;. We now prove that 7/, ; is linked to
SZ ';» thereby reachlng a contradiction. By Rule R2, it suffices
to prove that r(7/,,,) < t,. We now prove the claim by
considering two cases.

Case 1. ¢ = 1. Thus, 77 is the source node of G. Therefore,
r(70e11) = () + T*. Since 77, is linked to S?;_;, by
Rule R2, we have 7(77)) < 7(S7;_ 1) =t, — T". Since 7}
releases job penodlcally, we have (77, 1) < .

Case 2.7 > 1. Thus, 77 is a non-source node. Assume to the
contrary that 7(77,,,) > t, (see Fig. 4). Since a non-source
node’s (£+ 1) job is released once each of its predecessors’
(€ +1)*" job completes, there is a job 7{,, , such that 7/ €
pred(7/) and f(7},,,) > t.. Therefore, we have

AT 41,0, t,S) < CY. 27)
Since ¢, € [ts+2H,t), we have ¢, — H € [ts,t). By Lem. 10,
S”J po 1s released at time ¢, — H (thus, j > h"). By (P),
each server job of S? released during [t, — H,t,) has a job to
which it is linked. Thus, since S}, . and S ;_, are released
at time ¢, — H and ¢, —T", respectively, each server job S? b
such that 1 < b < h” has a job to which it is linked. Since
fg is linked to S7;_;, by Rule R2, for each 1 < b < h",
T o—p+1 is linked to SY, . Thus, 77, Bt (hence, £ +1 >
h?) is linked to Si i po- Slnce T o—potq 18 linked to S7 .

and 77 € pred(r; ), f(TH hv+1) <7r(SY;_p) =t — H.

Therefore, we have AT p—poy1, 0.t —H,8) = C}. By (26),
Lem. 36(b), we have A(Tk 04150, tT,S) (T,”g’e_h,,ﬂ, 0,t.—
H,S) = C}, which contradicts 7). O

Claim 40.2. If a server job S} ; is scheduled during [t — 1,t),
then a job is linked to it.

Proof. By (25), t >ty + H + A holds. By Def. 6, any server
job released before ¢, completes at or before time ¢+ A < .
Therefore, no server job released before t; is pending at
time ¢t — 1. Thus, Si”, j is released at or after time t;. By
Lem. 39(a) and Clm 40.1, a job is linked to Sﬁj. O]

Using the above claims, we now prove the lemma. By (25)
and the definition of ¢, we have

LAG(I,t — H — 1,8) = LAG(T',t — 1,S). (28)

By (28) and Lem. 37(a), we have A(T's,t — H—1,t—1,G) =
HU. Therefore, by Lem. 31(c), we have

ATs,t—H—-1,t—H,G) =ATs,t —1,t,G). 29)



By (28) and Lem. 37(b), any server job scheduled during [t —
H —1,t— H) has a job linked to it. By Clm 40.2, any server
job scheduled during [t—1,t) has a job linked to it. Therefore,
by (29), we have

AT,t—H-1,t—H,S8)=Al,t-1,t,85). (30)
By (28), (11), and (30), we have LAG(T',t —1,S8) + A(T', ¢t —
1,t,7) — AT, t—1,t,8) = LAG(TI,t — H — 1,5) + AT, t —
H-1,t—HT)—A(l,t—H—1,t— H,S). Thus, by (16),
LAG(T,t,S) = LAG(T',t — H,S) holds, a contradiction. [

We now complete Step 3 by giving the following lemma.

Lemma 41. IfLAG(T,t,,S) = LAG(T', ts+2H+ A, S) holds
such thatts > O,,,,, and R" is the maximum response time of
DAG jobs of GV that complete at or before time t, + 2H + A
in S, then the response time of G¥ is R” in S.

Proof. Assume for a contradiction that G} is the first DAG job
of GV with response time more than R". Assume that 7,7,
completes at time ¢, i.e., t = f(7%, J) Thus, we have
t—r(ry,;) > R". 31)
Since RY is the maximum observed response time of GV at
or before t, +2H + A, we have t > t, + 2H + A. Therefore,
by Lem. 39(b), j > h" holds. At time ¢ — 1, 7,7, ; is pending.
Thus, A(7,. ;,0,t —1,8) < C}. Since t =1 > ts +2H + A,
by Lem. 40, we have LAG(T',t — 1,S) = LAG(I',t — H —
1,8). Then, by Lem. 36(b), A(T:{v’j_hv,(),t -H-1,8) =
A(ry ;,0,t = 1,8) < C}. Thus, Thv j—po completes after
time t — H — 1, ie., f(T;jU,j_hv) > t — H. Thus, we have
S jopw) =7(10;_pe) 2t = H —7(77;_.). By Lem. 10,
t—H—r(r{;_;.) =t—r(r};), which by (31), exceeds R".
Therefore, we have f(Tg,,’j_h,,) — 7"(7{’7]-_,11,) > RY. Thus,
G}’_ v S Tesponse time is more than R”, a contradiction. [J

»J

We now complete Step 4. Our goal is to show that there
exists a time instant ¢, such that I'’s LAG values at time ¢,
and ts + 2H + A are the same. This, by Lem. 41, implies
that a DAG job with the maximum response time completes
execution at or before time t;+2H + A. We first give an upper
bound and a lower bound of LAG of I" at any time instant.

Def. 7. Let I/ = 50, 57 R(7y)uf, F = 30,0, 50, €Y,
andG = [E+ F +1].

Since 7/’s response time is at most R(7/) (by Thm. 1),
we can show that 77’s lag at any time is at most R(7?)u?
(the proof is given in an online appendix [2]). Since no job
executes before its release, 7;°’s lag at any time is at least

—C7. Using these, we have the following lemma.

Lemma 42. For any time instantt, —F < LAG(T',¢,S) < E.

Since all task parameters are integers, if for any positive
¢, LAG(T',t 4+ cH,S) > LAG(T, t,S) holds, then I’s LAG at
time ¢ + cH is at least one unit larger than its LAG at time t.
Therefore, since LAG either increases or remains the same over
any interval [t,t+ cH), it cannot increase over G consecutive
intervals of size cH without violating the LAG upper bound.
Thus, we have the following lemma.
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Lemma 43. There is a time instant t € [O,, .0, Omaz +
G(2H + A)] such that LAG(T', t,S) = LAG(T',t +2H + A, S)
holds.

Thus, by Lem. 43 and 41, we have the following theorem.

Theorem 2. If R is the maximum response time of any DAG
job of GV completed at or before Oqy + (G + 1)(2H + A),
then GV ’s response time is R".

Thus, simulating schedule S for at most O,,4. + (G +
1)(2H + A) time units is sufficient to determine the maximum
response times of DAGs. However, the simulation can be
terminated early by checking whether the condition given
in Lem. 41 is met. For pseudo-harmonic task systems, by
Def. 7 (resp., Def. 6 and (1)), G (resp., A) is polynomial
with respect to the task and processor count and task param-
eters. Thus, for pseudo-harmonic task systems, simulating for
Omaz+(G+1)(2H + A) time takes pseudo-polynomial time.
Removing Assumption A. Let S’ be a schedule of T' when
Assumption A does not hold. Thm. 3 below ensures that no
job finishes later in S’ than S. Informally, no job is linked to
a later server job in S’ than in S.

Theorem 3. For each job 7;';, if it completes at time t and t/

in S and &', respectively, thent’ < t holds.

Slack reallocation. The response times of DAG tasks may

potentially be improved by utilizing budgets of server jobs

that have no linked job. Assuming S} ; is scheduled at time ¢,
we propose the following slack reallocation policy.

Q1 If S7; has no linked job or its linked job completes
at or before time ¢, then the highest priority ready but
unscheduled job of 7 is scheduled on S7; at time .

When each P equals 1, the bounds in Thm. 2 are also exact
with slack reallocation. This is because the allocation received
by each server over any H-sized interval is at most HU [1],
which translates to a similar task-level property.
Asynchronous releases. Instead of synchronous server re-
leases, asynchronous server releases are possible. We chose to
limit attention to the former for simplicity (e.g., asynchronous
releases would necessitate different ideal schedules for tasks
and servers). Thm. 2 remains valid with asynchronous server
releases but with a different interval length.

VI. EXPERIMENTS

We now present the results of simulation experiments we
conducted to evaluate the response-time bounds of our pro-
posed scheduler. We compared our scheduler to other sched-
ulers that provide bounded response times without utilization
loss and are subject to (i)—(iv) mentioned in Sec. L.

We generated task systems randomly for systems with 2 to
24 processors with a step size of 2.0. Such processor counts are
common in real-world use cases [3], [15]. For each processor
count, we generated task systems that have normalized utiliza-
tion, i.e., U/m, from 0.5 to 1 with a step size of 0.1. Each task
system consists of one or more DAGs. The number of DAGs
was chosen uniformly from [1, |[U/2]]. Motivated by automo-
tive use cases, each DAG’s period was uniformly selected from
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Fig. 5: Experimental results.

{1,2,5,10, 20,50, 100,200 }ms [16]. The offset of each DAG
was uniformly selected between 0 and its period. The number
of nodes per DAG was chosen uniformly from [10, 100). Each
node’s utilization was chosen uniformly following procedures
from [10]. The WCET of each node was rounded to the
nearest microsecond. Edges were generated following the
Erdés-Rényi method [8], where an edge was added between
two nodes if a uniformly generated number in [0, 1] is at most
a predefined edge-generation probability. We selected this
probability value from {0.1,0.3,0.5,0.7,0.9}. As in [25], a
minimum number of additional edges was added to make each
DAG weakly connected. Each edge was directed from a lower-
indexed task to a higher-indexed task. For each combination of
processor count, normalized utilization, and edge-generation
probabilities, we generated 1,000 random task systems.

We considered three scenarios for each generated task
system depending on task parallelism levels. In scenarios NO
and Unr, each task’s parallelism level was set to 1 and m,
respectively. In scenario Rnd, task parallelism levels were
generated uniformly between 1 and m. For scenarios No, Unr,
and Rnd, we compared our response-time bounds with those
from [18], [32], and [4], respectively. These works convert
each DAG task into an “equivalent” independent sporadic
task set and schedule the converted tasks by GEDF. The
response-time bounds from these prior works are non-exact
and can be computed in polynomial time. For each scenario,
we computed the average bound ratio, which is the ratio of
the average response-time bound of our method to that of
the corresponding prior method (so ratios below 1.0 show
improvement by our method). These ratios are plotted in
Fig. 5(a)—(c).

Observation 1. For No, Rnd, and Unr, the average improve-
ment of our bound over prior methods was around 43%, 48%,
and 31%, respectively.

The improvement is due to the pessimism inherent to prior
bounds. Prior bounds that consider arbitrary parallelism levels
suffer from pessimism present in the analysis of both no and
unrestricted parallelism. This yields a larger improvement for
the Rnd scenario. The improvement is less for Unr as prior
analysis with unrestricted parallelism is less pessimistic. Note
that asynchronous server releases, as discussed earlier, may
yield additional improvement.

Observation 2. Our method provided a larger improve-
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ment with increasing (resp., decreasing) normalized utilization
(resp., edge-generation probabilities). Except No, our method
provided larger improvement as the processor count increases.

This can be seen in Fig. 5(a)—(c). The large improvement
for higher normalized utilizations or processor counts is due to
the increased pessimism in the corresponding prior analysis.
For scenario No, the large improvement for small processor
counts is due to the usage of slack reallocation. In contrast,
for scenario Unr and small processor counts, the prior method
gave smaller bounds. This happens because prior analysis is
reasonably tight under the corresponding scheduling policy for
small processor counts, while jobs may be delayed waiting
for their linked server jobs in our scheduling strategy. With
increasing edge-generation probabilities, DAGs become more
sequential, which limits improvement under our method.

To determine the tightness of the simulation length, we
computed the analytical simulation length from Thm. 2 and the
actual simulation length by checking when the condition given
in Lem. 41 is met for the first time. The observation below
indicates that the analytical simulation length is pessimistic.

Observation 3. The average analytical simulation length
(from Thm. 2) is 3,564,060 times larger than the average
actual simulation length.

Finally, we note that our method was reasonably fast.
However, the execution time of our method depends on the
hyperperiod and the granularity of time units.

Observation 4. The average (resp., maximum) simulation time
(on a 24-core 2.50 GHz machine) was 6.83s (resp., 923.56s).
The average (resp., maximum) time to compute prior bound
was 0.10s (resp., 9.71s).

VII. CONCLUSION

We have presented a server-based scheduling policy for
DAG tasks and a method to compute exact response-time
bounds under this policy. We have focused on a generalized
DAG task model, where both inter-instance dependencies and
intra-task parallelism are allowed. Moreover, our method takes
pseudo-polynomial time for pseudo-harmonic DAG tasks.

In future work, we plan to investigate exact response-time
bounds of DAG tasks under common schedulers, e.g., GEDF,
that do not require servers. We also want to investigate exact
response-time bounds for non-preemptive DAG tasks and other
DAG task models, e.g., conditional DAGs.
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