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Abstract—Artificial-intelligence (AI) techniques are revolu-
tionizing modern safety-critical real-time systems by enabling
autonomous features never seen before. However, AI-based
workloads are typically expressed as processing graphs that are
subject to complex tradeoffs involving parallelism and dataflow
dependencies. Due to such complexities, exact analysis of graph-
based tasks is challenging under most (if not all) schedulers.
This paper presents a periodic server-based scheduling policy
for periodic graph-based task systems and provides an exact
response-time analysis under this policy. This analysis entails
pseudo-polynomial time complexity for pseudo-harmonic peri-
odic graph-based tasks, which are commonly used in practice.

I. INTRODUCTION

Recent advances in artificial-intelligence (AI) techniques
have fueled increased demand for autonomous features in
safety-critical real-time systems. AI-based workloads that re-
alize such features often have complicated dataflow depen-
dencies that are modeled as processing graphs, where nodes
represent sequential computation and edges represent data
dependencies. The temporal correctness of a graph-based task
system is often validated via response-time analysis; recent
work on this topic includes [4], [20], [26], [28], [30], [34].

Unfortunately, most existing work on response-time bounds
for graph-based tasks on multiprocessors does not provide
exact response-time bounds. In fact, existing response-time
analysis for graph-based tasks incurs pessimism by over-
approximating intra- and inter-task interference. The lack
of exact response-time bounds hinders the quantification of
such pessimism inherent in efficiently computable existing
response-time bounds. However, determining exact response-
time bounds for graph-based tasks on multiprocessors is a
challenging problem that requires accounting for (i) intra-
task interference, (ii) inter-task interference, (iii) inter-instance
dependencies, and (iv) instance-level parallelism.

In this paper, we show that exact response-time bounds can
be obtained for directed-acyclic-graph-(DAG)-based periodic
task systems under a server-based global scheduler via a
simulation-based strategy that accounts for all of (i)–(iv).
According to a recent survey, more than 80% of industrial real-
time systems have periodic activities [3]. Our work was in-
spired by prior seminal work on simulation-based strategies for
globally scheduled independent, periodic (non-DAG) tasks [1],
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[9], [12], [21]. The method we present enables the computation
of exact response-time bounds in pseudo-polynomial time
for pseudo-harmonic DAG-based tasks where every period
divides the maximum period. Pseudo-harmonic tasks (which
generalize harmonic tasks) are common in practice [16].
Why server-based scheduling? A simulation-based approach
involves upper bounding both the time to reach schedule
repetition and the period of schedule repetition. This is difficult
for DAG tasks under schedulers without servers. Such diffi-
culties are mainly due to variations in node activation times
due to precedence constraints. Per-node reservation servers
provide an upper bound on the processor capacity allocated
to a node over a hyperperiod, a property that we exploit to
ensure schedule repetition of DAG tasks. Moreover, server-
based scheduling is useful for other purposes, e.g., to deal
with inaccurate worst-case execution time (WCET) estimates.
It’s not so easy. Our considered task model is subject to all
of (i)–(iv), so per-node reservation servers have both inter-
instance dependencies and instance-level parallelism. While
schedule repetition of independent non-DAG tasks is well-
studied, to our knowledge, no work has considered task models
with instance-level parallelism. Such parallelism complicates
the schedule analysis as a node can have multiple ready
instances at the same time. Translating the schedule repetition
from servers to DAGs poses added challenges due to unused
server budgets, e.g., a schedule at the DAG level may not start
repeating when the sever-level schedule starts to repeat.
Related work. Most prior work on DAG-based task systems
has focused on task models that obviate inter-instance inter-
ference (e.g., hard real-time systems with constrained dead-
lines) [13], [19], [23]–[25], [34], inter-instance dependencies
(e.g., systems with unrestricted parallelism) [11], [14], [17],
[22], [30], [32], or inter-task interference (e.g., systems with a
single DAG) [5], [6]. Work that has considered all of the above
mostly precludes instance-level parallelism by forcing depen-
dencies between consecutive DAG instances [18], [31], [33].
Recent work by Amert et al. [4] provides non-exact response-
time bounds for task models allowing both inter-instance
parallelism and dependencies. Work on tighter response-time
bounds of DAG tasks has focused on systems without inter-
instance and inter-task interference [7], [27], [29].
Contributions. Our contributions are threefold. First, we give
a server-based scheduling policy for periodic DAG tasks that
are subject to all of (i)–(iv) mentioned earlier. Second, utilizing
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the repetition of server schedules, we give a simulation-based
approach to derive exact response-time bounds for periodic
DAG tasks under our proposed scheduling policy. To our
knowledge, this is the first work that considers exact response-
time bounds of DAG tasks under any scheduler in the presence
of (i)–(iv). We also give slack-reallocation methods to reclaim
unused budget (if possible) without violating our response-
time bounds. Third, we provide results from simulation ex-
periments that show the benefit of our approach.
Organization. After covering needed background (Sec. II),
we describe our server-based approach (Sec. III), explain how
to obtain exact DAG response-time bounds (Sec. IV), discuss
our experiments (Sec. VI), and conclude (Sec. VII).

II. PRELIMINARIES

We consider a task system Γ consisting of N DAG tasks
globally scheduled on m identical processors. Each DAG task
Gv has nv nodes that represent tasks {τv1 , τv2 , . . . , τvnv}. A
directed edge from τvi to τvk represents a precedence constraint
between the predecessor task τvi and the successor task τvi .
The set of predecessors of τvi is denoted by pred(τvi ). Each
DAG task Gv has a unique source task τv1 with no incoming
edge and a unique sink task τvnv with no outgoing edge.

Each DAG task Gv has a period T v . Gv releases a DAG
job every T v time units. The jth DAG job of Gv is denoted
by Gv

j . Gv has an offset Ov , which is the time when Gv
1

is released. The DAG job Gv
j consists of a job τvi,j for

each task τvi in that DAG. Each job τvi,j is preemptive. The
release time and finish time of τvi,j are denoted by r(τvi,j) and
f(τvi,j), respectively. The source task τvi releases its jth job
when Gv

j is released. The jth job of each non-source task
is released once the jth job of all of its predecessor tasks
finish, i.e., r(τvi,j) = maxτv

k∈pred(τv
i ){f(τvk,j)}. The response

time of τvi,j is f(τvi,j) − r(τv1,j). Task τvi ’s response time is
R(τvi ) = maxj{f(τvi,j) − r(τv1,j)}. Gv

j completes when τvnv,j

finishes. Gv
j ’s response time equals τvnv,j’s response time. Gv’s

response time equals τvnv ’s response time, i.e., R(τvnv ).
The WCET of τvi is denoted by Cv

i > 0. The utilization of
τvi is uv

i = Cv
i /T

v . The utilization of Gv is Uv =
∑nv

i=1 u
v
i .

The total utilization of all DAG tasks is U =
∑N

v=1 U
v . We

let Tmax = maxv T
v , Cmax = maxv,i C

v
i , and Omax =

maxv O
v . The hyperperiod H is the least common multiple of

all periods. A task system is pseudo-harmonic if each period
divides Tmax, i.e., H = Tmax holds. We do not require Γ
to be pseudo-harmonic, i.e., our results apply to non-pseudo-
harmonic task systems too. We summarize all introduced
notation in Tbl. I.

We assume time to be discrete and a unit of time to be 1.0.
All scheduling decisions are taken at integer points in time.
We also assume all task parameters to be integers. Therefore,
when a job τvi,j executes during an unit interval [t − 1, t), it
continuously executes during [t− 1, t).
Restricted parallelism. We allow a job of each task to execute
in parallel with other jobs of that task according to a recently
introduced model for specifying intra-task parallelism called

TABLE I: Notation summary.
Symbol Meaning Symbol Meaning
N No. of DAG tasks P v

i Parallelization level of τvi
m No. of processors uv

i Cv
i /T

v

Γ Task system Uv
∑nv

i=1 u
v
i

Gv vth DAG task U
∑N

v=1 U
v

nv No. of nodes in Gv Cv
i τvi ’ WCET and Sv

i ’s budget
τvi ith task of Gv Cmax maxv,i C

v
i

τvi,j jth job of τvi d(Sv
i,j ) Deadline of Sv

i,j
T v Period of Gv H Hyperperiod
Sv
i Server of τvi R(·) Response-time bound

Sv
i,j jth job of Sv

i Tmax maxv T v

Γs Set of servers f(·) Finish time
Ov offset of Gv r(·) Release time
Omax maxv Ov hv H/T v

Time

τv
i,6

τv
i,7

τv
i,8τvi

50 55 60

Release

Deadline

Completion

Execution

Fig. 1: Example illustrating restricted parallelism. Sub-
sequent jobs are shaded darker.

the restricted parallelism (rp) model [4]. Under the rp model,
each task τvi has a parallelization level P v

i , which denotes the
number of consecutive jobs of τvi that can execute in parallel
at any time instant. In particular, job τvi,j with j > P v

i cannot
start execution until τvi,j−Pv

i
completes.

Ex. 1. Fig. 1 depicts a task τvi with P v
i = 2. Assume that

m = 3. Jobs τvi,6, τ
v
i,7, and τvi,8 are released at times 50, 54,

and 58, respectively. At time 59, τvi,6 is scheduled. Assume that
τvi,7 and τvi,8 become one of the top-m-priority jobs at time 60.
Since P v

i = 2, τvi,7 is scheduled at time 60. However, τvi,8 is not
scheduled until time 62 when τvi,6 completes execution. ♢

Task τvi has unrestricted intra-task parallelism if P v
i ≥ m,

and no intra-task parallelism if P v
i = 1. A task’s response time

may decrease with increased parallelism [4], but unrestricted
parallelism is not always possible, e.g., if job τvi,j requires
output from job τvi,k with k < j, then P v

i ≤ j − k holds.
Feasibility conditions. Under the rp model, the following
condition ensures a bounded response time for each DAG task:
U ≤ m ∧ (∀i, v :: uv

i ≤ P v
i ) [4]. We assume that Γ admits

this condition.

III. SERVER-BASED SCHEDULING OF DAGS

To schedule DAG tasks, we adopt a server-based policy
where a global scheduler allocates time to per-node reservation
servers, upon which task jobs are scheduled.
Reservation servers. For each task τvi , we define a periodic
reservation server Sv

i . We denote the set of all servers as Γs.
Each server Sv

i has a period T v and a budget Cv
i . Note that

Sv
i ’s period and budget are the same as Gv’s period and τvi ’s

WCET, respectively. Each server Sv
i releases a (potentially

infinite) sequence of server jobs Sv
i,1, S

v
i,2, . . .. The relative

deadline of Sv
i is denoted by D(Sv

i ); we assume implicit dead-
lines, i.e., D(Sv

i ) = T v . The release time, (absolute) deadline,
and finish time of Sv

i,j are denoted by r(Sv
i,j), d(Sv

i,j), and
f(Sv

i,j), respectively. Server Sv
i releases its first job Sv

i,1 at
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(a) DAG G1.
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(b) A schedule of G1.

Fig. 2: Illustration of server-based scheduling. Blue arrows
between job and server job releases represent job linking.

time Ov . Its subsequent jobs are released periodically, i.e.,
Sv
i,j is released at time Ov + (j − 1)T v . Therefore, we have

∀v, i, j : r(Sv
i,j) = r(τv1,j).

We do not require deadlines to be hard, i.e., server jobs can
miss their deadlines. Server Sv

i has a parallelization level of
P v
i matching that of τvi .
Server jobs are scheduled according to a global earliest-

deadline-first (GEDF) scheduler, but our results apply under
a wider class of schedulers called global-EDF-like (GEL)
schedulers.1 Before elaborating on the scheduling of servers,
we first give budget consumption and replenishment rules.

Replenishment Rule. The budget of Sv
i,j is replenished

to Cv
i when it is released.

Consumption Rule. Sv
i,j consumes budget at the rate of

one execution unit per unit of time when it is scheduled
until its budget is exhausted.

Def. 1. A server job Sv
i,j is complete after its budget is ex-

hausted. Sv
i,j is pending at time t if r(Sv

i,j) ≤ t < f(Sv
i,j). S

v
i,j

is ready if it is pending and Sv
i,j−Pv

i
(if j > P v

i ) is complete.

Under GEDF scheduling, the (up to) m ready server jobs
with earliest deadlines are scheduled. We assume ties are
broken arbitrarily but consistently by DAG and task indices,
i.e., if d(Sv

i,j) = d(Su
k,ℓ) and d(Sv

i,p) = d(Su
k,q), then Sv

i,j

has higher priority than Su
k,ℓ if and only if Sv

i,p has higher
priority than Su

k,q . The response time of Sv
i,j (resp., Sv

i ) is
f(Sv

i,j)− r(Sv
i,j) (resp., maxj{f(Sv

i,j)− r(Sv
i,j)}).

1Under a GEL scheduler, each job has a priority point within a constant
distance of its release; an earliest-priority-point-first order is assumed.

Ex. 2. Fig. 2(a) depicts a DAG G1 consisting of four nodes.
The period of G1 is 5.0 time units. Assume that C1

1 =
2.0, C1

2 = 3.0, C1
3 = 2.0, and C1

4 = 3.0. The paralleliza-
tion level of each task is one. There are four servers each
corresponding to a task. Each server has a period of 5.0 time
units and releases is first server job at time 0 when τ11 releases
its first job. The server S1

2 corresponding to the task τ12 has
a budget of 3.0 units. Server job S1

2,1’s budget is replenished
to 3.0 units when S1

2,1 is released at time 0. It consumes its
budget by one unit per unit of time when it is scheduled. S1

2,1

completes at time 3 when its budget is exhausted. ♢

Scheduling tasks on servers. In describing how jobs are
scheduled on servers, we use the following terminology.

Def. 2. A job τvi,j is pending at time t if r(τvi,j) ≤ t < f(τvi,j)
holds. τvi,j is ready at time t if it is pending at time t and job
τvi,j−Pv

i
(if j > P v

i ) finishes execution by time t.

Jobs are scheduled on servers via the following rules.
R1 Jobs of τvi are scheduled on server jobs of Sv

i . A job τvi,j
is linked to a single server job Sv

i,ℓ (via Rule R2 given
below) and at most one job can be linked to a server job.

R2 Assume that a server job Sv
i,ℓ is released at time t. If

r(τvi,1) ≤ t holds and τvi,1 is not linked to any server job
at time t, then τvi,1 is linked to Sv

i,ℓ. Otherwise, if τvi,j is
the last job of τvi that is linked to some server job and
r(τvi,j+1) ≤ t holds, then τvi,j+1 is linked to Sv

i,ℓ.
R3 If τvi,j is linked to Sv

i,ℓ, then τvi,j executes whenever Sv
i,ℓ

is scheduled until τvi,j completes.
Ex. 2 (Cont’d). Fig. 2(b) depicts a schedule of G1. At time 0,
the first job of each server is released. Since τ11,1 is released
at time 0, by Rule R2, it is linked to S1

1,1. By Rule R3, τ11,1
executes when S1

1,1 is scheduled during [0, 2). At time 2, τ12,1
and τ13,1 are released. At time 5, when S1

2,1 (resp., S1
3,1) is

released, τ12,1 (resp., S1
3,1) is linked to it. ♢

As seen in Fig. 2(b), an unlinked server job has unused
budget. In Sec. V, we give slack-reallocation rules to utilize
such unused budgets without violating response-time bounds.

IV. RESPONSE-TIME BOUNDS

In this section, we give response-time bounds for DAG tasks
under the server-based scheduling given in Sec. III. Our goal
is to use these response-time bounds as a basis for deriving
exact response-time bounds in Sec. V.
Server response-time bounds. As server tasks are periodic
and have restricted parallelism, previously derived response-
time bounds apply to them [4].

Def. 3. Let Ub =
∑

b largest values of τv
i with Pv

i <m uv
i and Cb =∑

b largest values of τv
i with Pv

i <m uv
i .

From [4], Sv
i has a response-time bound R(Sv

i ), where

R(Sv
i ) = T v +

(m− 1)Cmax + 2Cm−1

m− Um−1
+ Cv

i . (1)

Response-time bounds of DAG tasks. Using the response-
time bounds of servers given in (1), we now derive response-
time bounds of DAG tasks under server-based scheduling.
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Lemma 1. If Sv
i,j and Sv

i,k are ready at time t where j < k and
Sv
i,k is scheduled at time t, then Sv

i,j is also scheduled at time t.

Proof. Since j < k and Sv
i releases periodically, r(Sv

i,j) <
r(Sv

i,k) holds. Thus, d(Sv
i,j) < d(Sv

i,k) holds. Having higher
priority and being ready, Sv

i,j is thus scheduled if Sv
i,k is.

Lemma 2. For any j and k such that j ≤ k, f(Sv
i,j) ≤ f(Sv

i,k).

Proof. Assume for a contradiction that the lemma does not
hold, in which case j < k clearly holds. Let t be the first time
instant such that there are server jobs Sv

i,j and Sv
i,k such that

j < k, t < f(Sv
i,j), and t = f(Sv

i,k). Since, by the budget
Consumption Rule, Sv

i,j and Sv
i,k are scheduled for Cv

i time
units before their completion and f(Sv

i,j) > f(Sv
i,k), there is

a time instant t′ ≤ t such that Sv
i,j is not scheduled at t′, but

Sv
i,k is scheduled at t′.
We now prove that Sv

i,j is ready at time t′, which by Lem. 1
implies it is scheduled at time t′, a contradiction. Since Sv

i,k

is scheduled at t′ and j < k, r(Sv
i,j) < r(Sv

i,k) ≤ t′ holds. By
the definition of t and t′, t′ < f(Sv

i,j). If j < P v
i , then Sv

i,j is
ready at time t′ as claimed, so assume j ≥ P v

i . Since Sv
i,k is

scheduled (hence ready) at time t′, Sv
i,k−Pv

i
completes by time

t′. As j < k, by the definition of t, f(Sv
i,j−Pv

i
) ≤ f(Sv

i,k−Pv
i
).

Thus, Sv
i,j−Pv

i
completes by time t′ and Sv

i,j is ready then.

Lemma 3. If a job τvi,j is ready when the server job Sv
i,k to

which it is linked is first scheduled, then f(τvi,j) ≤ f(Sv
i,k).

Proof. By the budget Consumption Rule, Sv
i,k is scheduled for

Cv
i time units. Since τvi,j is ready when Sv

i,k is first scheduled,
by Rule R3, τvi,j completes execution at or before Sv

i,k’s budget
is exhausted. Therefore, f(τvi,j) ≤ f(Sv

i,k) holds.

From Rule R2, we have the following lemmas whose proofs
are given in an online appendix [2].

Lemma 4. If τvi,j is linked to a server job Sv
i,k, then j ≤ k.

Lemma 5. If τvi,j and τvi,j+c are linked to Sv
i,k and Sv

i,ℓ,
respectively, then ℓ− k ≥ c holds.

We now define a response-time bound R(τvi ) for each τvi .
R(τvi ) is recursively computed according to τvi ’s predecessors’
response-time bounds. Let

R(τvi ) = Φv
i +R(Sv

i ) + T v, (2)

where Φv
i =

0 i = 1

max
τv
j ∈pred(τv

i )
{R(τvj )} otherwise. (3)

In Thm. 1, we show that R(τvi ) is a response-time bound of
τvi using Lems. 6–9 given below.

Lemma 6. For any job τvi,j , τvi,j is ready at or before the server
job Sv

i,k to which it is linked starts execution.

Proof. Assume otherwise. Let t be the first time instant such
that there is a job τvi,j that is not ready, but the server job Sv

i,k

to which it is linked starts execution at time t. By Rule R2,
r(τvi,j) ≤ t. Since τvi,j is not ready at time t, j > P v

i holds
and τvi,j−Pv

i
does not complete execution at or before time t.

By Lem. 4, k ≥ j > P v
i holds.

We now prove that τvi,j−Pv
i

completes by time t, i.e.,
f(τvi,j−Pv

i
) ≤ t, thereby reaching a contradiction. By Lem. 5,

τvi,j−Pv
i

is linked to Sv
i,ℓ with ℓ ≤ k − P v

i . Let t′ be the first
time instant when Sv

i,ℓ is scheduled. Since Sv
i,k is scheduled at

time t, f(Sv
i,k−Pv

i
) ≤ t. Thus, by Lem. 2, f(Sv

i,ℓ) ≤ t. Since
Cv

i > 0, we have t′ < f(Sv
i,ℓ) ≤ t. Hence, by the definition

of t, τvi,j−Pv
i

is ready when Sv
i,ℓ is first scheduled. By Lem. 3,

f(τvi,j−Pv
i
) ≤ f(Sv

i,ℓ) ≤ t. Thus, τvi,j is ready at time t.

By Lems. 6 and 3, we have the following lemma.

Lemma 7. For any job τvi,j , τvi,j completes execution at or
before the server job Sv

i,k to which it is linked completes.

Using (2) and (3), we have the following lemma.

Lemma 8. For any non-source task τvi , Φv
i ≥ Φv

k+R(Sv
k)+T v

holds, where τvk ∈ pred(τvi ).

Lemma 9. For any job τvi,j , τvi,j is linked to a server job at or
before time r(τv1,j) + Φv

i + T v .

Proof. Assume for a contradiction that t is the first time instant
such that a job τvi,j is not linked to any server job and t =
r(τv1,j)+Φv

i +T v holds. Let Sv
i,k be the latest server job of Sv

i

released at or before time t. We will show that τvi,j is linked to
Sv
i,k, thereby reaching a contradiction. Since Sv

i releases jobs
periodically, r(Sv

i,k) ≥ t− T v = r(τv1,j) +Φv
i . By Rule R2, it

suffices to prove that r(τvi,j) ≤ r(τv1,j) + Φv
i holds and τvi,j−1

(if j > 1) is linked to a server job by time r(τv1,j) + Φv
i .

Claim 9.1. τvi,j is released at or before r(τv1,j) + Φv
i .

Proof. Assume otherwise. Since τv1,j is released at time r(τv1,j)
and by (3), Φv

1 = 0, we have i ̸= 1. Thus, τvi is a non-source
task. Since τvi releases τvi,j once the jth job of each of its
predecessors completes, there is a job τvp,j such that τvp ∈
pred(τvi ) and f(τvp,j) > r(τv1,j)+Φv

i hold. By Lem. 8, we have
Φv

p < Φv
i . Thus, r(τv1,j) + Φv

p + T v < r(τv1,j) + Φv
i + T v = t.

Therefore, by the definition of t, τvp,j is linked to a server job
at or before time r(τv1,j)+Φv

p+T v . Assume that τvp,j is linked
to Sv

p,ℓ. Then, by Rule R2, r(Sv
p,ℓ) ≤ r(τv1,j)+Φv

p+T v . Since
the response time of Sv

p,ℓ is at most R(Sv
p ), we have

f(Sv
p,ℓ) ≤ r(Sv

p,ℓ) +R(Sv
p )

≤ {Since r(Sv
p,ℓ) ≤ r(τv1,j) + Φv

p + T v}
r(τv1,j) + Φv

p + T v +R(Sv
p )

≤ {By Lem. 8 and since τvp ∈ pred(τvi )}
r(τv1,j) + Φv

i . (4)
By Lem. 7 and (4), we have f(τvp,j) ≤ f(Sv

p,ℓ) ≤ r(τv1,j)+Φv
i ,

a contradiction.

Claim 9.2. If j > 1, then τvi,j−1 is linked to a server job at or
before time r(τv1,j) + Φv

i .

Proof. Since source task τv1 releases jobs periodically, we have
r(τv1,j) = r(τv1,j−1) + T v . Thus, r(τv1,j−1) + Φv

i + T v =
r(τv1,j) + Φv

i < r(τv1,j) + Φv
i + T v holds. Therefore, by the

definition of t, τvi,j−1 is linked to a server job at or before
time r(τv1,j−1) + Φv

i + T v = r(τv1,j) + Φv
i .
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Fig. 3: An ideal schedule of τv1 and τv2 of G1 in Fig. 2(a).
Server jobs are not shown as they have the same schedule.

These two claims yield a contradiction, as noted above.

By (2) and Lems. 9 and 7, we have the following theorem.

Theorem 1. The response time of any job τvi,j is at most R(τvi ).

V. EXACT RESPONSE-TIME BOUNDS

In this section, we give a simulation-based method to
compute exact response-time bounds of DAG tasks under the
server-based scheduling policy given in Sec. III. We initially
assume the following, which we relax later.

A Each job of any task τvi executes for its WCET Cv
i .

Note that the response-time bounds (and associated lemmas
and theorems) given in Sec. IV do not rely on Assumption A.

A. Definitions and Notation

We denote a GEDF schedule of Γs as G. We denote a
schedule of Γ on the server schedule G as S .
Ideal schedule. Let {π̂1

1 , π̂
1
2 , . . . , π̂

N
nN } be

∑N
v=1 n

v proces-
sors, where π̂v

i has speed of uv
i . In an ideal schedule I,

each task τvi and corresponding server Sv
i is partitioned to be

scheduled on processor π̂v
i . Each server’s budget is replenished

according to the budget Replenishment Rule given in Sec. IV.
However, its budget is consumed via the following rule.

Ideal Consumption Rule. Sv
i,j consumes budget at the

rate of uv
i execution unit per unit of time when it is

scheduled until its budget is exhausted.
Each server job Sv

i,j is scheduled at time r(Sv
i,j) = r(τv1,j) and

remains scheduled until its budget is exhausted. Therefore, Sv
i,j

completes at time r(Sv
i,j) + Cv

i /u
v
i = r(Sv

i,j) + T v .
Each job τvi,j executes at a rate of uv

i whenever Sv
i,j is

scheduled. Thus, τvi,j begins execution at time r(τv1,j) and
completes execution at time r(τv1,j) + T v . Therefore, all
jobs corresponding to a DAG job Gv

j complete execution at
time r(τv1,j)+T v when Gv

j+1 is released. Note that precedence
constraints among tasks are not maintained in I.
Ex. 2 (Cont’d). Fig. 3 depicts an ideal schedule I correspond-
ing to the tasks τ11 and τ12 of DAG task G1 in Fig. 2. Although
job τ11,1 is not complete at time 0, τ12,1 starts execution at time 0
at the rate of 3/5 execution units per unit of time. ♢

We now define the term allocation. To avoid repetition, we
use the notation Jv

i,j to denote τvi,j or Sv
i,j . Similarly, we use

Jv
i (resp., Ψ) to denote τvi or Sv

i (resp., Γ or Γs). Finally, we
use H to denote a schedule which can be either S or G or I.
Allocation. The cumulative processor capacity allocated to
Jv
i,j , Jv

i , and Ψ in a schedule H over an interval [t, t′) is

denoted by A(Jv
i,j , t, t

′,H), A(Jv
i , t, t

′,H), and A(Ψ, t, t′,H),
respectively. Therefore, we have the following equations.

A(Jv
i , t, t

′,H) =
∑
j

A(Jv
i,j , t, t

′,H) (5)

A(Ψ, t, t′,H) =
∑
v,i

A(Jv
i , t, t

′,H) (6)

Since the processor capacity allocated to a job or server job
over an interval is non-negative, for any intervals [t, t′) and
[t, t′′) with t′′ ≥ t′ ≥ t, we have the following properties.

A(Jv
i,j , t, t

′,H) ≤ A(Jv
i,j , t, t

′′,H) (7)

A(Jv
i,j , t, t

′,H) = A(Jv
i,j , 0, t

′,H)− A(Jv
i,j , 0, t,H) (8)

In I, server job Sv
i,j and job τvi,j are scheduled when Gv

j is
released, i.e., at time r(τv1,j). S

v
i,j (resp., τvi,j) consumes budget

(resp., executes) at a rate of uv
i until its completion. Therefore,

for any interval [r(τv1,j), t), we have
A(Jv

i,j , r(τ
v
1,j), t, I) = min{uv

i (t− r(τv1,j)), C
v
i }. (9)

Similarly, for interval [t, t′) with t ≥ Ov (resp., t ≥ Omax).
A(Jv

i , t, t
′, I) = uv

i (t
′ − t) (10)

A(Ψ, t, t′, I) = U(t′ − t) (11)

lag and LAG. The lag of job Jv
i,j in schedule H is defined as

lag(Jv
i,j , t,H) = A(Jv

i,j , 0, t, I)− A(Jv
i,j , 0, t,H). (12)

The lag (resp., LAG) of Jv
i (resp., Ψ) at time t in H is given by

lag(Jv
i , t,H) =

∑
j

lag(Jv
i,j , t,H)

= A(Jv
i , 0, t, I)− A(Jv

i , 0, t,H) (13)

LAG(Ψ, t,H) =
∑
v,i

lag(Jv
i , t,H)

= A(Ψ, 0, t, I)− A(Ψ, 0, t,H) (14)
Since lag(Jv

i , 0,H) = 0 and LAG(Ψ, 0,H) = 0, for t′ ≥ t we
have the following equations.

lag(Jv
i , t

′,H) = lag(Jv
i , t,H) + A(Jv

i , t, t
′, I)

− A(Jv
i , t, t

′,H) (15)

LAG(Ψ, t′,H) = LAG(Ψ, t,H)+A(Ψ, t, t′, I)−A(Ψ, t, t′,H)
(16)

Def. 4. Let hv = H/T v .

Proof overview. We aim to derive an upper bound on the
length of the prefix of a schedule of DAG tasks after which
the response times of DAG tasks do not increase (Thm. 2). We
do so by showing that if the LAG of Γ remains the same at
hyperperiod boundaries for a sufficiently long interval of time,
then it continues to remain the same at hyperperiod boundaries
at any time in the future (Lem. 40). Furthermore, when this
happens, response times do not increase afterwards (Lem. 41).
The key steps in our proof are as follows.

Step 1. The amount of time a server job Sv
i,j+hv is sched-

uled by time t+H is at most the amount of time Sv
i,j is

scheduled by time t (Lem. 18). The amount of time Sv
i
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(resp., Γs) is scheduled over an an interval [t, t+H) is at
most Huv

i (resp., HU ) (Lems. 23 and 24).
Step 2. If the time allocated to Γs over an interval [t, t+H)
equals HU , then scheduling decisions and the state of Γs

are identical at times t and t+H (Lem. 31).
Step 3. If the time allocated to Γ over H-sized intervals
remains HU for sufficiently long, then Γ continues to be
scheduled for HU time units in any future H-sized interval
(Lem. 40) and each DAG task’s maximum response time
has stabilized (Lem. 41).

Step 4. There is a time instant when the condition men-
tioned in Step 3 holds (Lem. 43).

We cover Steps 1 and 2 in Sec. V-B and Steps 3 and 4 in
Sec. V-C. Due to space constraint, we omit some proofs, which
are provided in an online appendix [2].

B. Analysis of Servers

We begin by addressing Steps 1 and 2. To complete Step 1,
we will first show, in Lem. 18, that the amount of time
allocated to a server job Sv

i,j+hv by time t+H is at most the
amount of time allocated to Sv

i,j by time t. We will prove the
existence of higher-priority jobs that cause Sv

i,j+hv to maintain
this property under GEDF. We begin by proving Lems. 10–
16, which establish the existence of such higher-priority jobs.
The lemma below holds as servers release jobs periodically.

Lemma 10. For any integer c, r(Sv
i,j+chv ) = r(Sv

i,j)+cH and
d(Sv

i,j+chv ) = d(Sv
i,j) + cH hold.

The following two lemmas show that the pending jobs of
a task are consecutive at any time instant. Informally, this is
because, by Lem. 2, a server job cannot finish before a prior
server job of the same server finishes.

Lemma 11. If Sv
i,j and Sv

i,ℓ with j ≤ ℓ are pending at time t,
then each server job Sv

i,k with j ≤ k ≤ ℓ is pending at time t.

Proof. By Def. 1, we have r(Sv
i,ℓ) ≤ t. Since k ≤ ℓ, we have

r(Sv
i,k) ≤ r(Sv

i,ℓ) ≤ t. By Def. 1, we have f(Sv
i,j) > t. Since

k ≥ j, by Lem. 2, we have f(Sv
i,k) ≥ f(Sv

i,j) > t. Thus, by
Def. 1, Sv

i,k is pending at time t.

Using Lem. 11, we have the following lemma.

Lemma 12. If at least p server jobs of Sv
i are pending at time t

and Sv
i,j is the highest-priority server job of Sv

i that is pending at
time t, then Sv

i,j+1, S
v
i,j+2, . . . , S

v
i,j+p−1 are pending at time t.

Similar to Lem. 12, we have the following lemma.

Lemma 13. If at least p server jobs of Sv
i are ready at time t

and Sv
i,j is the highest-priority server job of Sv

i that is pending
at time t, then Sv

i,j , S
v
i,j+1, . . . , S

v
i,j+p−1 are ready at time t.

Proof. Since P v
i ≥ 1 and no server job of Sv

i with higher
priority than Sv

i,j is pending, Sv
i,j is ready at time t. By

Lem. 12, server jobs Sv
i,j+1, S

v
i,j+2, . . . , S

v
i,j+p−1 are pending

at time t. Assume that Sv
i,j+k such that 1 ≤ k ≤ p− 1 is not

ready at time t. Then, j + k > P v
i , and Sv

i,j+k−Pv
i

does not
finish execution by time t, i.e., f(Sv

i,j+k−Pv
i
) > t. As there

are at least p ready jobs at time t, there is a ready job Sv
i,j+ℓ

at time t such that ℓ > k (thus, j + ℓ > P v
i ). By Lem. 2,

f(Sv
i,j+ℓ−Pv

i
) ≥ f(Sv

i,j+k−Pv
i
) > t. Thus, Sv

i,j+ℓ is not ready
at time t, a contradiction.

Lemma 14. If at least p server jobs of Sv
i are pending at time t,

then at least min{p, P v
i } server jobs are ready at time t.

Lemma 15. For any integer c and job index j such that
j + chv ≥ 1, if Sv

i,j is pending at time t and A(Sv
i,j , 0, t,G) ≥

A(Sv
i,j+chv , 0, t + cH,G) holds, then Sv

i,j+chv is pending at
time t+ cH .

Def. 5. Let hp(Su
k,ℓ, S

v
i , t) denote the number of ready jobs of

Sv
i at time t that have higher priority than Su

k,ℓ.
Using Lems. 10–15, the following lemma shows that the

number of ready jobs at time t + H with higher priorities
than Su

k,ℓ+hu is no smaller than the number of ready jobs at
time t with higher priorities than Su

k,ℓ, when A(Sv
i,j , 0, t,G) ≥

A(Sv
i,j+hv , 0, t +H,G) holds for each server job. Informally,

this is because, for any ready server job at time t, there exists
a unique ready server job at time t+H .

Lemma 16. Assume that, for each server job Sv
i,j of a

server Sv
i , A(Sv

i,j , 0, t,G) ≥ A(Sv
i,j+hv , 0, t + H,G) holds at

time t ≥ Ov . Then, for any server job Su
k,ℓ, hp(S

u
k,ℓ, S

v
i , t) ≤

hp(Su
k,ℓ+hu , Sv

i , t+H) holds.

Proof. Let p = hp(Su
k,ℓ, S

v
i , t). If p = 0, then the lemma

trivially holds, so assume p ≥ 1. By Defs. 1 and 5, p ≤
P v
i . Let Sv

i,j be the highest-priority server job of Sv
i that is

pending at time t. By Lem. 13, Sv
i,j , S

v
i,j+1, . . . , S

v
i,j+p−1 are

ready at time t. Therefore, by Lem. 15 (replacing c by 1),
server jobs Sv

i,j+hv , Sv
i,j+1+hv , . . . , Sv

i,j+p−1+hv are pending
at time t + H . Let Sv

i,x be the highest-priority server job of
Sv
i that is pending at time t+H . Then, x ≤ j+hv holds. By

Lem. 11, each server job Sv
i,y such that x ≤ y ≤ j+p−1+hv

is pending at time t+H . Therefore, there are at least j+ p−
1 + hv − x + 1 = j + p + hv − x pending server jobs of Sv

i

at time t+H . By Lem. 14, at least min{j + p+ hv − x, P v
i }

server jobs of Sv
i are ready at time t+H . Since x ≤ j + hv ,

we have j + p+ hv − x ≥ p. Since by Defs. 1 and 5, p ≤ P v
i

holds, we have p ≤ min{j + p + hv − x, P v
i }. Thus, there

are at least p ready jobs of Sv
i at time t + H . By Lem. 13,

Sv
i,x, S

v
i,x+1, . . . , S

v
i,x+p−1 are ready at time t.

We now prove that each server job Sv
i,x+b with 0 ≤ b ≤ p−1

has higher priority than Su
k,ℓ+hv . Since x ≤ j + hv , we have

x + p − 1 ≤ j + p − 1 + hv . Thus, each Sv
i,x+b with 0 ≤

b ≤ p− 1 has higher or equal priority than Sv
i,j+p−1+hv . So,

it suffices to prove that Sv
i,j+p−1+hv has higher priority than

Su
k,ℓ+hv . As Sv

i,j is the highest-priority ready job of Sv
i at t, by

Def. 5, each of Sv
i,j , S

v
i,j+1, . . . , S

v
i,j+p−1 has higher priority

than Su
k,ℓ. Thus, d(Sv

i,j+p−1) ≤ d(Su
k,ℓ) holds, and by Lem. 10,

d(Su
k,ℓ+hv ) = d(Su

k,ℓ) +H

≥ {Since d(Sv
i,j+p−1) ≤ d(Su

k,ℓ)}
d(Sv

i,j+p−1) +H

= {By Lem. 10}
d(Sv

i,j+p−1+hv ). (17)
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Since ties are broken consistently, Sv
i,j+p−1+hv has higher

priority than Su
k,ℓ+hv if Sv

i,j+p−1 has higher priority than Su
k,ℓ.

Thus, there are at least p ready jobs of Sv
i at time t+H that

have higher priorities than Su
k,ℓ+hv .

The following lemma gives necessary conditions for
A(Sv

i,j , 0, t,G) ≥ A(Sv
i,j+hv , 0, t + H,G) to not hold for the

first time in G.

Lemma 17. Let t ≥ Ov be the first time instant (if any) such
that for a job Sv

i,j , A(Sv
i,j , 0, t,G) < A(Sv

i,j+hv , 0, t + H,G)
holds. Then, the following hold.
(a) t > Ov .
(b) Sv

i,j is not scheduled during [t − 1, t), but Sv
i,j+hv is

scheduled during [t+H − 1, t+H).
Lem. 17(a) holds as, by Def. 4 and Lem. 10, Sv

i,j+hv is
released after time Ov+H . By the definition of t, A(Sv

i,j , 0, t−
1,G) ≥ A(Sv

i,j+hv , 0, t +H − 1,G) holds. Thus, Lem. 17(b)
must hold to satisfy the lemma assumptions. Using Lems. 16
and 17, we now prove the following lemma.

Lemma 18. For any server job Sv
i,j and time instant t ≥ Ov ,

A(Sv
i,j , 0, t,G) ≥ A(Sv

i,j+hv , 0, t+H,G) holds.

Proof. Assume otherwise. Let t be the first time instant such
that t ≥ Ov and there is a job Sv

i,j satisfying the following.
A(Sv

i,j , 0, t,G) < A(Sv
i,j+hv , 0, t+H,G) (18)

By Lem. 17(a), t > Ov holds. Thus, by the definition of t,
∀u, k, ℓ : t− 1 ≥ Ou :: A(Su

k,ℓ, 0, t− 1,G) ≥
A(Su

k,ℓ+hu , 0, t+H − 1,G). (19)
Since Sv

i,j+hv is scheduled for Cv
i time units in total, we have

A(Sv
i,j+hv , 0, t+H,G) ≤ Cv

i . (20)
By Lem. 17(b), Sv

i,j+hv is scheduled during [t+H−1, t+H),
so r(Sv

i,j+hv ) ≤ t+H − 1 holds, and by Lem. 10,
r(Sv

i,j) = r(Sv
i,j+hv )−H ≤ t− 1. (21)

We now prove two claims.

Claim 18.1. Sv
i,j is pending at time t− 1.

Proof. By (21), Sv
i,j is released at or before time t−1. Thus, it

suffices to prove that f(Sv
i,j) > t− 1. Assume to the contrary

that f(Sv
i,j) ≤ t−1. Thus, A(Sv

i,j , 0, t−1,G) = Cv
i . By (7), we

have A(Sv
i,j , 0, t,G) ≥ Cv

i . By (18), A(Sv
i,j+hv , 0, t+H,G) >

A(Sv
i,j , 0, t,G) ≥ Cv

i , contradicting (20).

Claim 18.2. Sv
i,j is ready at time t− 1.

Proof. By Clm 18.1, Sv
i,j is pending at time t − 1. If

j ≤ P v
i , then Sv

i,j is also ready at time t − 1, so as-
sume j > P v

i . Since Sv
i,j+hv is scheduled (hence, ready) at

time t + H − 1, Sv
i,j+hv−Pv

i
completes by time t + H − 1.

Hence, A(Sv
i,j+hv−Pv

i
, 0, t + H − 1,G) = Cv

i . By (19), we
have A(Sv

i,j−Pv
i
, 0, t − 1,G) ≥ Cv

i . Thus, Sv
i,j−Pv

i
completes

by time t− 1 and Sv
i,j is ready at time t− 1.

By Clm 18.2 and Lem. 17(b), Sv
i,j is ready but not scheduled

at time t−1. Therefore, at time t−1, there are at least m ready
server jobs that have higher priorities than Sv

i,j . By (19) and

Lem. 16, each server Su
k with p ready server jobs of higher

priority than Sv
i,j at time t− 1 has at least p ready server jobs

of higher priority than Sv
i,j+hv at time t+H − 1. Thus, there

are at least m ready server jobs of higher priority than Sv
i,j+hv

at time t+H − 1. Therefore, Sv
i,j+hv cannot be scheduled at

time t+H − 1, which contradicts Lem. 17(b).

The following lemma generalizes Lem. 18 for the case of
multiple hyperperiods.

Lemma 19. For any server job Sv
i,j , positive integer c, and time

instant t ≥ Ov , A(Sv
i,j , 0, t,G) ≥ A(Sv

i,j+chv , 0, t+ cH,G).

Proof. By Lem. 18, for any k ≥ 0, we have A(Sv
i,j , 0, t +

kH,G) ≥ A(Sv
i,j+hv , 0, t + (k + 1)H,G). Therefore,

A(Sv
i,j , 0, t,G) ≥ A(Sv

i,j+chv , 0, t+ cH,G).
We now give Lems. 20–24 that complete Step 1. Since

server job Sv
i,j consumes budget at the rate of uv

i in I during
[r(Sv

i,j), r(S
v
i,j) + T v), we have the following lemma.

Lemma 20. For any job Sv
i,j , positive integer c, and time

instant t ≥ Ov , A(Sv
i,j , 0, t, I) = A(Sv

i,j+chv , 0, t+ cH, I).
Lemma 21. For any server job Sv

i,j , positive integer c, and time
instant t ≥ Ov , lag(Sv

i,j , t,G) ≤ lag(Sv
i,j+chv , t+ cH,G).

Proof. By Lems. 20 and 19, A(Sv
i,j , 0, t, I)−A(Sv

i,j , 0, t,G) ≤
A(Sv

i,j+chv , 0, t + cH, I) − A(Sv
i,j+chv , 0, t + cH,G). Thus,

by (12), the lemma holds.

Since each server job Sv
i,j completes at time r(Sv

i,j)+T v =
r(Sv

i,j+1) in I, and Sv
i,hv+1 is released at time Ov +H , each

server job Sv
i,j with j ≤ hv is complete by time Ov +H in

I. Using this fact, we have the following lemma.

Lemma 22. For any integer c ≥ 1, server job Sv
i,j with 1 ≤

j ≤ chv , and time t ≥ Ov + cH , lag(Sv
i,j , t,G) ≥ 0 holds.

Lemma 23. For any server Sv
i , positive integer c, and time

instant t ≥ Ov , the following hold.
(a) lag(Sv

i , t,G) ≤ lag(Sv
i , t+ cH,G).

(b) A(Sv
i , t, t+ cH,G) ≤ cHuv

i .

Proof. (a) By (13), we have
lag(Sv

i , t,G)
=

∑
j>chv

lag(Sv
i,j−chv , t,G)

≤ {By Lem. 21}∑
j>chv

lag(Sv
i,j , t+ cH,G)

≤ {By Lem. 22}∑
1≤j≤chv

lag(Sv
i,j , t+ cH,G) +

∑
j>chv

lag(Sv
i,j , t+ cH,G)

= {By (13)}
lag(Sv

i , t+ cH,G).
(b) Assume that for Sv

i and time instant t ≥ Ov , A(Sv
i , t, t+

cH,G) > cHuv
i holds. Then, by (10), we have A(Sv

i , t, t +
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cH, I) − A(Sv
i , t, t + cH,G) < cHuv

i − cHuv
i = 0. Thus,

by (15), lag(Sv
i , t+ cH,G) < lag(Sv

i , t,G), which contradicts
(a).

Lemma 24. For any integer c and time instant t ≥ Omax,
(a) LAG(Γs, t,G) ≤ LAG(Γs, t+ cH,G),
(b) A(Γs, t, t+ cH,G) ≤ cHU .

Proof. (a) By Lem. 23(a), we have
∑

v,i lag(S
v
i , t,G) ≤∑

v,i lag(S
v
i , t+ cH,G). Thus, by (14), the lemma holds.

(b) By Lem. 23(b), we have
∑

v,i A(S
v
i , t, t + cH,G) ≤∑

v,i cHuv
i . Since

∑
v,i u

v
i = U , by (6), we have A(Γs, t, t+

cH,G) ≤ cHU .

We now address Step 2. We will show, in Lem. 31, that if
A(Γs, t, t +H,G) = HU holds, then scheduling decisions in
G are identical at times t and t + H . We begin by proving
some lemmas (Lems. 25–28) that establish server- and server-
job-level properties at times t and t + cH , when Γs’s LAG
values are equal. The next lemma follows from (16) and (11).

Lemma 25. For any positive integer c and time instant t ≥
Omax, LAG(Γs, t,G) = LAG(Γs, t + cH,G) holds if and only
if A(Γs, t, t+ cH,G) = cHU .

By Lem. 23(a), we have the following lemma.

Lemma 26. For any positive integer c and time instant t ≥
Omax, if LAG(Γs, t,G) = LAG(Γs, t + cH,G) holds, then for
any Sv

i , lag(Sv
i , t,G) = lag(Sv

i , t+ cH,G) holds.

Similarly, by Lem. 21, we have the following lemma.

Lemma 27. For any positive integer c and time instant t ≥
Omax, if LAG(Γs, t,G) = LAG(Γs, t + cH,G) holds, then for
any server job Sv

i,j , the following hold.
(a) lag(Sv

i,j , t,G) = lag(Sv
i,j+chv , t+ cH,G).

(b) A(Sv
i,j , 0, t,G) = A(Sv

i,j+chv , 0, t+ cH,G).
Lemma 28. Assume that a server Sv

i , job index j, integer c,
and time t exist such that j + chv ≥ 1, min{t, t + cH} ≥
Ov , and A(Sv

i,j , 0, t,G) = A(Sv
i,j+chv , 0, t + cH,G). Then,

f(Sv
i,j) ≤ t if and only if f(Sv

i,j+chv ) ≤ t+ cH .

Proof. Necessity. Assume that f(Sv
i,j) ≤ t holds. Then,

we have A(Sv
i,j , 0, t,G) = Cv

i . Therefore, A(Sv
i,j+chv , 0, t +

cH,G) = Cv
i holds. Thus, f(Sv

i,j+chv ) ≤ t+ cH .
Sufficiency. Assume that f(Sv

i,j) > t holds. Then, we have
A(Sv

i,j , 0, t,G) < Cv
i . Therefore, A(Sv

i,j+chv , 0, t + cH,G) <
Cv

i holds. Thus, f(Sv
i,j+chv ) > t+ cH .

Similar to Lem. 2, we have the following lemma.

Lemma 29. For any positive integers j and k such that j ≤ k
and time instant t, A(Sv

i,j , 0, t,G) ≥ A(Sv
i,k, 0, t,G) holds.

If the schedule over the interval [t, t + H) in G repeats
during [t + H, t + 2H), then for each server job Sv

i,j that is
ready (resp., not ready) at time t, Sv

i,j+hv must be ready (resp.,
not ready) at time t + H . The lemma below shows that this
condition holds if Γs’s LAG values at time t and t + H are
the same.

Lemma 30. If there is a time instant t ≥ Omax such that
LAG(Γs, t,G) = LAG(Γs, t + H,G) holds, then Sv

i,j is ready
at time t if and only if Sv

i,j+hv is ready at time t+H .

Proof. By Lem. 27, we have
∀v, i, k : A(Sv

i,k, 0, t,G) = A(Sv
i,k+hv , 0, t+H,G). (22)

Sufficiency. Assume that Sv
i,j+hv is ready at time t + H ,

but Sv
i,j is not ready at time t. Since Sv

i,j+hv is ready (hence,
pending) at time t + H , by (22) and Lem. 15 (replacing j,
t, and c with j + hv , t + H , and −1, respectively), Sv

i,j is
pending at time t. Since Sv

i,j is not ready at time t, by Def. 1,
j > P v

i and f(Sv
i,j−Pv

i
) > t hold. By (22) and Lem. 28, we

have f(Sv
i,j+hv−Pv

i
) > t+H . Thus, by Def. 1, Sv

i,j+hv is not
ready at time t+H , a contradiction.

Necessity. Assume that Sv
i,j is ready at time t, but Sv

i,j+hv

is not ready at time t + H . Since Sv
i,j is ready at time t,

by (22) and Lem. 15, Sv
i,j+hv is pending at time t. Since

Sv
i,j+hv is not ready at time t +H , by Def. 1, j + hv > P v

i

and f(Sv
i,j+hv−Pv

i
) > t+H hold. We now consider two cases.

Case 1. j > P v
i . By (22) and Lem. 28, f(Sv

i,j−Pv
i
) > t.

Thus, by Def. 1, Sv
i,j is not ready at time t. Contradiction.

Case 2. j ≤ P v
i . In this case, j+hv−P v

i ≤ P v
i +hv−P v

i =
hv . Since Sv

i,j+hv is pending but not ready at time t + H ,
A(Sv

i,j+hv , 0, t + H,G) = 0. By Lem. 29, for each b ≥ j,
A(Sv

i,b+hv , 0, t+H,G) = 0 holds. Therefore, we have

A(Sv
i , t, t+H,G)

=
∑

1≤b≤j+hv

A(Sv
i,b, t, t+H,G)

= {By (8)}∑
1≤b≤j+hv

(A(Sv
i,b, 0, t+H,G)− A(Sv

i,b, 0, t,G)). (23)

By (22), A(Sv
i,b, 0, t,G) = A(Sv

i,b+hv , 0, t+H,G) for each 1 ≤
b ≤ j. Thus, for each 1 ≤ b ≤ j, applying A(Sv

i,b+hv , 0, t +
H,G)− A(Sv

i,b, 0, t,G) = 0 in (23),

A(Sv
i , t, t+H,G)

=
∑

1≤b≤hv

A(Sv
i,b, 0, t+H,G)−

∑
j+1≤b≤j+hv

A(Sv
i,b, 0, t,G)

≤
∑

1≤b≤hv

A(Sv
i,b, 0, t+H,G)

= { Since j + hv − P v
i ≤ hv}

A(Sv
i,j+hv−Pv

i
, 0, t+H,G) +

∑
1≤b≤hv∧

b̸=j+hv−Pv
i

A(Sv
i,b, 0, t+H,G)

< {Since A(Sv
i,b, 0, t+H,G) ≤ Cv

i and Sv
i,j+hv−Pv

i
is

pending at time t+H}
Cv

i + (hv − 1)Cv
i

= {By Def. 4}
Huv

i . (24)
By (15), (10), and (24), we have lag(Sv

i , t + H,G) >
lag(Sv

i , t,G)+Huv
i −Huv

i = lag(Sv
i , t,G), which contradicts

Lem. 26.
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We now complete Step 2 by giving the following lemma.
Using Lem. 30, we show that if the time allocated to Γs over
an interval [t, t + H) equals HU , then Sv

i,j is scheduled at
time t if and only if Sv

i,j+hv is scheduled at time t+H .

Lemma 31. For any t ≥ Omax, if A(Γs, t, t + H,G) = HU
holds, then the following hold.
(a) For any Sv

i,j , A(Sv
i,j , t, t + 1,G) = A(Sv

i,j+hv , t +H, t +
H + 1,G).

(b) For any Sv
i , A(Sv

i , t, t+1,G) = A(Sv
i , t+H, t+H+1,G).

(c) A(Γs, t, t+ 1,G) = A(Γs, t+H, t+H + 1,G).

Proof. (a) By Lem. 25, we have LAG(Γs, t,G) = LAG(Γs, t+
H,G). Thus, by Lem. 30, Sv

i,j is ready at time t if and only
if Sv

i,j+hv is ready at time t+H . By Lem. 10, d(Sv
i,j+hv ) =

d(Sv
i,j)+H holds. Thus, for each pair of server jobs Sv

i,j and
Su
k,ℓ, we have d(Sv

i,j) − d(Su
k,ℓ) = d(Sv

i,j+hv ) − d(Su
k,ℓ+hu).

Since ties are broken consistently, Sv
i,j has higher priority than

Su
k,ℓ if and only if Sv

i,j+hv has higher priority than Su
k,ℓ+hu .

Thus, Sv
i,j is the pth highest-priority ready job at time t if

and only if Sv
i,j+hv is the pth highest-priority ready job at

time t+H . Therefore, Sv
i,j is scheduled at time t if and only

if Sv
i,j+hv is scheduled at time t+H . Thus, (a) holds.

(b) Follows from (a) and (5).
(c) Follows from (b) and (6).

We have the following lemma, which is useful for Step 3.

Lemma 32. For any positive integer c and time t′ ≥ Omax, if
A(Γs, t

′, t′ + cH,G) = cHU holds, then, for each time instant
t ∈ [t′, t′ + (c− 1)H], A(Γs, t, t+H,G) = HU holds.

Proof. We first prove the following claim.

Claim 32.1. A(Γs, t
′, t′ +H,G) = HU .

Proof. For c = 1, the claim holds by the lemma assumptions,
so assume c ≥ 2. Assume for a contradiction that A(Γs, t

′, t′+
H,G) ̸= HU . Then, by Lem. 24(b), we have A(Γs, t

′, t′ +
H,G) < HU . Since [t′, t′+cH) = ∪c−1

i=0 [t
′+iH, t′+(i+1)H),

we have
A(Γs, t

′, t′ + cH,G)

= A(Γs, t
′, t′ +H,G) +

c−1∑
i=1

A(Γs, t
′ + iH, t′ + (i+ 1)H,G)

< {By Lem. 24(b) and since A(Γs, t
′, t′ +H,G) < HU}

HU + (c− 1)HU

= cHU,

a contradiction.

We now prove the lemma. Assume for a contradiction that
time t ∈ [t′, t′+(c−1)H] exists such that A(Γs, t, t+H,G) ̸=
HU . By Clm. 32.1, t > t′. Thus, A(Γs, t− 1, t+H− 1,G) =
HU . Since [t, t +H) = ([t − 1, t +H−1) ∪ [t +H−1, t +
H)) \ [t−1, t), we have A(Γs, t, t+H,G) = A(Γs, t− 1, t+
H − 1,G) + A(Γs, t +H − 1, t +H,G) − A(Γs, t − 1, t,G),
which by Lem. 31(c) equals A(Γs, t−1, t+H−1,G) = HU ,
a contradiction.

C. Analysis of DAG Tasks.

We now give an analysis of schedule S that completes
Steps 3 and 4. We begin by showing, in Lems. 33–38 that
there are properties of lag and LAG in S that are analogous to
the properties in G. Intuitively, these properties hold as a job
of Γ can execute only when its linked server job is scheduled.

Lemma 33. If τvi,j is linked to Sv
i,k, then for any time instant t,

A(τvi,j , 0, t,S) = A(Sv
i,k, 0, t,G) holds.

Proof. Follows from the budget Consumption Rule, Assump-
tion A, and Rule R3.

By Lems. 5, 29, and 33, we have the following lemma.

Lemma 34. For any positive integers j and k such that j < k
and time instant t, A(τvi,j , 0, t,S) ≥ A(τvi,k, 0, t,S) holds.

Lemma 35. For any job τvi,j , positive integer c, and time instant
t ≥ Ov , A(τvi,j , 0, t,S) ≥ A(τvi,j+chv , 0, t+ cH,S) holds.

Proof. Assume τvi,j (resp., τvi,j+chv ) is linked to Sv
i,k (resp.,

Sv
i,ℓ). By Lem. 19, A(Sv

i,k, 0, t,G) ≥ A(Sv
i,k+chv , 0, t+cH,G).

By Lem. 5, ℓ ≥ k + chv . Thus, by Lem. 29, we have
A(Sv

i,k+chv , 0, t + cH,G) ≥ A(Sv
i,ℓ, 0, t + cH,G). Hence,

A(Sv
i,k, 0, t,G) ≥ A(Sv

i,ℓ, 0, t + cH,G) holds. By Lem. 33,
A(τvi,j , 0, t,S) ≥ A(τvi,j+chv , 0, t+ cH,S).

By Lem. 35, we can prove lemmas analogous to Lems. 20–
27 and 32 for Γ. Among those, we list the important ones that
we use in the later proofs.

Lemma 36. For any positive integer c and time t ≥ Omax, if
LAG(Γ, t,S) = LAG(Γ, t + cH,S), then for any job τvi,j , the
following hold.
(a) lag(τvi,j , t,S) = lag(τvi,j+chv , t+ cH,S).
(b) A(τvi,j , 0, t,S) = A(τvi,j+chv , 0, t+ cH,S).
Lemma 37. For any positive integer c and time t ≥ Omax, if
LAG(Γ, t,S) = LAG(Γ, t+ cH,S), then the following hold.
(a) A(Γs, t, t+ cH,G) = cHU .
(b) If a server job Sv

i,j is scheduled at time t′ ∈ [t, t + cH),
then a job is linked to it.

Lemma 38. For any positive integer c and time t′ ≥ Omax,
if LAG(Γ, t′,S) = LAG(Γ, t′ + cH,S) holds, then for each
t ∈ [t′, t′ + (c− 1)H], LAG(Γ, t,S) = LAG(Γ, t+H,S).
Def. 6. Let ∆ = ⌈maxv,i{R(Sv

i )}/H⌉H . Note that ∆ ≥
maxv,i{R(Sv

i )} and ∆ ≥ H hold.
We now address Step 3 by giving Lems. 39–41. The

repetition of the graph-level schedule S at time t′ requires that
the server-level schedule G repeats at time t′ and each server
job scheduled at or after t′ has a linked job. To ensure the latter,
we need to consider a larger interval of length (2H +∆) as
shown in the following lemma.

Lemma 39. If LAG(Γ, ts,S) = LAG(Γ, ts+2H+∆,S) holds
such that ts ≥ Omax, then the following hold.
(a) If a server job Sv

i,j is released during [ts, ts + 2H), then a
job is linked to it.
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(b) For each v and j ≤ hv , f(τvnv,j) ≤ ts + 2H +∆ holds.

Proof. (a) Assume that there is a server job Sv
i,j such that

ts ≤ r(Sv
i,j) < ts+2H holds, but no job is linked to it. Since

Sv
i,j’s response time is at most R(Sv

i ), by Def. 6, we have
f(Sv

i,j) ≤ r(Sv
i,j) + R(Sv

i ) < ts + 2H +∆. Therefore, there
is a time instant tb such that ts ≤ tb < ts + 2H + ∆ and
Sv
i,j is scheduled during [tb, tb + 1). Since H divides ∆, by

Lem. 37(b), a job is linked to Sv
i,j , a contradiction.

(b) We first prove the following claim.

Claim 39.1. f(τvnv,1) ≤ ts +H +∆.

Proof. Let Sv
nv,k be the first server job of Sv

nv that is released
at or after ts. Since server jobs are released periodically and
ts ≥ Omax, r(Sv

nv,k) < ts +H holds. Since Sv
nv,k’s response

time is at most R(Sv
nv ), by Def. 6, we have f(Sv

nv,k) < ts +
H + R(Sv

nv ) ≤ ts + H + ∆. By (a), Sv
nv,k is linked to a

job τvnv,j . By Lem. 7, f(τvnv,j) ≤ f(Sv
nv,k). If j = 1, then

the claim holds, so assume j > 1. Let Sv
nv,ℓ be the server

job to which τvnv,1 is linked. By Lems. 5 and 2, ℓ < k and
f(Sv

nv,ℓ) ≤ f(Sv
nv,k) hold. Therefore, by Lem. 7, f(τvnv,1) ≤

f(Sv
nv,ℓ) ≤ f(Sv

nv,k) < ts +H +∆ holds.

We now prove the lemma. By Clm 39.1, we have f(τvnv,1) ≤
ts +H +∆. Hence, since H divides ∆ and LAG(Γ, ts,S) =
LAG(Γ, ts + 2H +∆,S), by Lem. 38, we have LAG(Γ, ts +
H +∆,S) = LAG(Γ, ts +2H +∆,S). Thus, by Lem. 36(b),
we have A(τvnv,hv+1, 0, ts + 2H + ∆,S) = A(τvnv,1, 0, ts +
H + ∆,S) = Cv

nv . By Lem. 34, for each j ≤ hv , we have
A(τvnv,j , 0, ts + 2H + ∆,S) = Cv

nv . Thus, for each j ≤ hv ,
τvnv,j completes at or before time ts + 2H +∆.

Using Lems. 37–39, we now prove that if Γ’s LAG values
at time t and t+2H+∆ are the same, then this value remains
the same over any future H-sized interval.

Lemma 40. If LAG(Γ, ts,S) = LAG(Γ, ts+2H+∆,S) holds
such that ts ≥ Omax, then for each t ≥ ts, LAG(Γ, t,S) =
LAG(Γ, t+H,S) holds.

Proof. Let t be the first time instant at or after ts such that
LAG(Γ, t,S) ̸= LAG(Γ, t +H,S) holds. Since H divides ∆,
by Lem. 38 and Def. 6, we have the following.

t > ts +H +∆ ∧ t > ts + 2H (25)
We first prove the following claim.

Claim 40.1. If a server job Sv
i,j is released during [ts+2H, t),

then a job is linked to it.

Proof. Assume otherwise. Let Sv
i,j be the first job of Sv

i

released during [ts + 2H, t) to which no job is linked. Let
tr = r(Sv

i,j). By Lem. 39(a) and the definition of tr, we have:
(P) Each server job of Sv

i released during [ts, tr) has a job
that is linked to it.

Since H divides ∆ and tr ∈ [ts +2H, t), by the definition of
t, we have

LAG(Γ, tr −H,S) = LAG(Γ, tr,S). (26)

trtr − Tmaxts tr − T v

r(Sv
i,j−hv+1) r(Sv

i,j)r(Sv
i,j−1)

r(τ vi,ℓ−hv+2) r(τ vi,ℓ+1)r(τ vi,ℓ)

r(Sv
i,j−hv)

r(τ vi,ℓ−hv+1)

Time

τ vk,ℓ+1 not completeτ vk,ℓ−hv+1 complete

Sv
i

τ vi

Fig. 4: Illustration of Clm 40.1. Blue arrows from job releases
to server job releases represent linking.

Since server jobs are released periodically, r(Sv
i,j−1) = tr−

T v ≥ tr −H ≥ ts + 2H −H = ts +H . Thus, by (P), a job
τvi,ℓ is linked to Sv

i,j−1. We now prove that τvi,ℓ+1 is linked to
Sv
i,j , thereby reaching a contradiction. By Rule R2, it suffices

to prove that r(τvi,ℓ+1) ≤ tr. We now prove the claim by
considering two cases.

Case 1. i = 1. Thus, τvi is the source node of Gv . Therefore,
r(τvi,ℓ+1) = r(τvi,ℓ) + T v . Since τvi,ℓ is linked to Sv

i,j−1, by
Rule R2, we have r(τvi,ℓ) ≤ r(Sv

i,j−1) = tr − T v . Since τvi
releases job periodically, we have r(τvi,ℓ+1) ≤ tr.

Case 2. i > 1. Thus, τvi is a non-source node. Assume to the
contrary that r(τvi,ℓ+1) > tr (see Fig. 4). Since a non-source
node’s (ℓ+1)st job is released once each of its predecessors’
(ℓ + 1)st job completes, there is a job τvk,ℓ+1 such that τvk ∈
pred(τvi ) and f(τvk,ℓ+1) > tr. Therefore, we have

A(τvk,ℓ+1, 0, tr,S) < Cv
k . (27)

Since tr ∈ [ts+2H, t), we have tr−H ∈ [ts, t). By Lem. 10,
Sv
i,j−hv is released at time tr − H (thus, j > hv). By (P),

each server job of Sv
i released during [tr−H, tr) has a job to

which it is linked. Thus, since Sv
i,j−hv and Sv

i,j−1 are released
at time tr−H and tr−T v , respectively, each server job Sv

i,j−b

such that 1 ≤ b ≤ hv has a job to which it is linked. Since
τvi,ℓ is linked to Sv

i,j−1, by Rule R2, for each 1 ≤ b ≤ hv ,
τvi,ℓ−b+1 is linked to Sv

i,j−b. Thus, τvi,ℓ−hv+1 (hence, ℓ+ 1 >
hv) is linked to Sv

i,j−hv . Since τvi,ℓ−hv+1 is linked to Sv
i,j−hv

and τvk ∈ pred(τvi ), f(τ
v
k,ℓ−hv+1) ≤ r(Sv

i,j−hv ) = tr − H .
Therefore, we have A(τvk,ℓ−hv+1, 0, tr−H,S) = Cv

k . By (26),
Lem. 36(b), we have A(τvk,ℓ+1, 0, tr,S) = A(τvk,ℓ−hv+1, 0, tr−
H,S) = Cv

k , which contradicts (27).

Claim 40.2. If a server job Sv
i,j is scheduled during [t − 1, t),

then a job is linked to it.

Proof. By (25), t > ts +H +∆ holds. By Def. 6, any server
job released before ts completes at or before time ts+∆ < t.
Therefore, no server job released before ts is pending at
time t − 1. Thus, Sv

i,j is released at or after time ts. By
Lem. 39(a) and Clm 40.1, a job is linked to Sv

i,j .

Using the above claims, we now prove the lemma. By (25)
and the definition of t, we have

LAG(Γ, t−H − 1,S) = LAG(Γ, t− 1,S). (28)
By (28) and Lem. 37(a), we have A(Γs, t−H−1, t−1,G) =
HU . Therefore, by Lem. 31(c), we have

A(Γs, t−H − 1, t−H,G) = A(Γs, t− 1, t,G). (29)
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By (28) and Lem. 37(b), any server job scheduled during [t−
H − 1, t−H) has a job linked to it. By Clm 40.2, any server
job scheduled during [t−1, t) has a job linked to it. Therefore,
by (29), we have

A(Γ, t−H − 1, t−H,S) = A(Γ, t− 1, t,S). (30)
By (28), (11), and (30), we have LAG(Γ, t− 1,S) +A(Γ, t−
1, t, I)−A(Γ, t− 1, t,S) = LAG(Γ, t−H − 1,S) +A(Γ, t−
H − 1, t−H, I)− A(Γ, t−H − 1, t−H,S). Thus, by (16),
LAG(Γ, t,S) = LAG(Γ, t−H,S) holds, a contradiction.

We now complete Step 3 by giving the following lemma.

Lemma 41. If LAG(Γ, ts,S) = LAG(Γ, ts+2H+∆,S) holds
such that ts ≥ Omax and Rv is the maximum response time of
DAG jobs of Gv that complete at or before time ts + 2H +∆
in S , then the response time of Gv is Rv in S .

Proof. Assume for a contradiction that Gv
j is the first DAG job

of Gv with response time more than Rv . Assume that τvnv,j

completes at time t, i.e., t = f(τvnv,j). Thus, we have
t− r(τv1,j) > Rv. (31)

Since Rv is the maximum observed response time of Gv at
or before ts +2H +∆, we have t > ts +2H +∆. Therefore,
by Lem. 39(b), j > hv holds. At time t− 1, τvnv,j is pending.
Thus, A(τvnv,j , 0, t− 1,S) < Cv

i . Since t− 1 ≥ ts +2H +∆,
by Lem. 40, we have LAG(Γ, t − 1,S) = LAG(Γ, t − H −
1,S). Then, by Lem. 36(b), A(τvnv,j−hv , 0, t − H − 1,S) =
A(τvnv,j , 0, t − 1,S) < Cv

i . Thus, τvnv,j−hv completes after
time t − H − 1, i.e., f(τvnv,j−hv ) ≥ t − H . Thus, we have
f(τvnv,j−hv )− r(τv1,j−hv ) ≥ t−H − r(τv1,j−hv ). By Lem. 10,
t−H − r(τv1,j−hv ) = t− r(τv1,j), which by (31), exceeds Rv .
Therefore, we have f(τvnv,j−hv ) − r(τv1,j−hv ) > Rv . Thus,
Gv

j−hv ’s response time is more than Rv , a contradiction.

We now complete Step 4. Our goal is to show that there
exists a time instant ts such that Γ’s LAG values at time ts
and ts + 2H + ∆ are the same. This, by Lem. 41, implies
that a DAG job with the maximum response time completes
execution at or before time ts+2H+∆. We first give an upper
bound and a lower bound of LAG of Γ at any time instant.

Def. 7. Let E =
∑N

v=1

∑nv

i=1 R(τvi )u
v
i , F =

∑N
v=1

∑nv

i=1 C
v
i ,

and G = ⌈E + F + 1⌉.

Since τvi ’s response time is at most R(τvi ) (by Thm. 1),
we can show that τvi ’s lag at any time is at most R(τvi )u

v
i

(the proof is given in an online appendix [2]). Since no job
executes before its release, τvi ’s lag at any time is at least
−Cv

i . Using these, we have the following lemma.

Lemma 42. For any time instant t, −F ≤ LAG(Γ, t,S) ≤ E.

Since all task parameters are integers, if for any positive
c, LAG(Γ, t + cH,S) > LAG(Γ, t,S) holds, then Γ’s LAG at
time t+ cH is at least one unit larger than its LAG at time t.
Therefore, since LAG either increases or remains the same over
any interval [t, t+ cH), it cannot increase over G consecutive
intervals of size cH without violating the LAG upper bound.
Thus, we have the following lemma.

Lemma 43. There is a time instant t ∈ [Omax, Omax +
G(2H+∆)] such that LAG(Γ, t,S) = LAG(Γ, t+2H+∆,S)
holds.

Thus, by Lem. 43 and 41, we have the following theorem.

Theorem 2. If Rv is the maximum response time of any DAG
job of Gv completed at or before Omax + (G + 1)(2H + ∆),
then Gv’s response time is Rv .

Thus, simulating schedule S for at most Omax + (G +
1)(2H+∆) time units is sufficient to determine the maximum
response times of DAGs. However, the simulation can be
terminated early by checking whether the condition given
in Lem. 41 is met. For pseudo-harmonic task systems, by
Def. 7 (resp., Def. 6 and (1)), G (resp., ∆) is polynomial
with respect to the task and processor count and task param-
eters. Thus, for pseudo-harmonic task systems, simulating for
Omax+(G+1)(2H+∆) time takes pseudo-polynomial time.
Removing Assumption A. Let S ′ be a schedule of Γ when
Assumption A does not hold. Thm. 3 below ensures that no
job finishes later in S ′ than S . Informally, no job is linked to
a later server job in S ′ than in S .

Theorem 3. For each job τvi,j , if it completes at time t and t′

in S and S ′, respectively, then t′ ≤ t holds.

Slack reallocation. The response times of DAG tasks may
potentially be improved by utilizing budgets of server jobs
that have no linked job. Assuming Sv

i,j is scheduled at time t,
we propose the following slack reallocation policy.
Q1 If Sv

i,j has no linked job or its linked job completes
at or before time t, then the highest priority ready but
unscheduled job of τvi is scheduled on Sv

i,j at time t.
When each P v

i equals 1, the bounds in Thm. 2 are also exact
with slack reallocation. This is because the allocation received
by each server over any H-sized interval is at most HU [1],
which translates to a similar task-level property.
Asynchronous releases. Instead of synchronous server re-
leases, asynchronous server releases are possible. We chose to
limit attention to the former for simplicity (e.g., asynchronous
releases would necessitate different ideal schedules for tasks
and servers). Thm. 2 remains valid with asynchronous server
releases but with a different interval length.

VI. EXPERIMENTS

We now present the results of simulation experiments we
conducted to evaluate the response-time bounds of our pro-
posed scheduler. We compared our scheduler to other sched-
ulers that provide bounded response times without utilization
loss and are subject to (i)–(iv) mentioned in Sec. I.

We generated task systems randomly for systems with 2 to
24 processors with a step size of 2.0. Such processor counts are
common in real-world use cases [3], [15]. For each processor
count, we generated task systems that have normalized utiliza-
tion, i.e., U/m, from 0.5 to 1 with a step size of 0.1. Each task
system consists of one or more DAGs. The number of DAGs
was chosen uniformly from [1, ⌊U/2⌋]. Motivated by automo-
tive use cases, each DAG’s period was uniformly selected from
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Fig. 5: Experimental results.

{1, 2, 5, 10, 20, 50, 100, 200}ms [16]. The offset of each DAG
was uniformly selected between 0 and its period. The number
of nodes per DAG was chosen uniformly from [10, 100). Each
node’s utilization was chosen uniformly following procedures
from [10]. The WCET of each node was rounded to the
nearest microsecond. Edges were generated following the
Erdős-Rényi method [8], where an edge was added between
two nodes if a uniformly generated number in [0, 1] is at most
a predefined edge-generation probability. We selected this
probability value from {0.1, 0.3, 0.5, 0.7, 0.9}. As in [25], a
minimum number of additional edges was added to make each
DAG weakly connected. Each edge was directed from a lower-
indexed task to a higher-indexed task. For each combination of
processor count, normalized utilization, and edge-generation
probabilities, we generated 1,000 random task systems.

We considered three scenarios for each generated task
system depending on task parallelism levels. In scenarios No
and Unr, each task’s parallelism level was set to 1 and m,
respectively. In scenario Rnd, task parallelism levels were
generated uniformly between 1 and m. For scenarios No, Unr,
and Rnd, we compared our response-time bounds with those
from [18], [32], and [4], respectively. These works convert
each DAG task into an “equivalent” independent sporadic
task set and schedule the converted tasks by GEDF. The
response-time bounds from these prior works are non-exact
and can be computed in polynomial time. For each scenario,
we computed the average bound ratio, which is the ratio of
the average response-time bound of our method to that of
the corresponding prior method (so ratios below 1.0 show
improvement by our method). These ratios are plotted in
Fig. 5(a)–(c).

Observation 1. For No, Rnd, and Unr, the average improve-
ment of our bound over prior methods was around 43%, 48%,
and 31%, respectively.

The improvement is due to the pessimism inherent to prior
bounds. Prior bounds that consider arbitrary parallelism levels
suffer from pessimism present in the analysis of both no and
unrestricted parallelism. This yields a larger improvement for
the Rnd scenario. The improvement is less for Unr as prior
analysis with unrestricted parallelism is less pessimistic. Note
that asynchronous server releases, as discussed earlier, may
yield additional improvement.

Observation 2. Our method provided a larger improve-

ment with increasing (resp., decreasing) normalized utilization
(resp., edge-generation probabilities). Except No, our method
provided larger improvement as the processor count increases.

This can be seen in Fig. 5(a)–(c). The large improvement
for higher normalized utilizations or processor counts is due to
the increased pessimism in the corresponding prior analysis.
For scenario No, the large improvement for small processor
counts is due to the usage of slack reallocation. In contrast,
for scenario Unr and small processor counts, the prior method
gave smaller bounds. This happens because prior analysis is
reasonably tight under the corresponding scheduling policy for
small processor counts, while jobs may be delayed waiting
for their linked server jobs in our scheduling strategy. With
increasing edge-generation probabilities, DAGs become more
sequential, which limits improvement under our method.

To determine the tightness of the simulation length, we
computed the analytical simulation length from Thm. 2 and the
actual simulation length by checking when the condition given
in Lem. 41 is met for the first time. The observation below
indicates that the analytical simulation length is pessimistic.

Observation 3. The average analytical simulation length
(from Thm. 2) is 3,564,060 times larger than the average
actual simulation length.

Finally, we note that our method was reasonably fast.
However, the execution time of our method depends on the
hyperperiod and the granularity of time units.

Observation 4. The average (resp., maximum) simulation time
(on a 24-core 2.50 GHz machine) was 6.83s (resp., 923.56s).
The average (resp., maximum) time to compute prior bound
was 0.10s (resp., 9.71s).

VII. CONCLUSION

We have presented a server-based scheduling policy for
DAG tasks and a method to compute exact response-time
bounds under this policy. We have focused on a generalized
DAG task model, where both inter-instance dependencies and
intra-task parallelism are allowed. Moreover, our method takes
pseudo-polynomial time for pseudo-harmonic DAG tasks.

In future work, we plan to investigate exact response-time
bounds of DAG tasks under common schedulers, e.g., GEDF,
that do not require servers. We also want to investigate exact
response-time bounds for non-preemptive DAG tasks and other
DAG task models, e.g., conditional DAGs.
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