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Pulsar timing arrays (PTAs) are currently the only experiments directly sensitive to gravitational
waves with decade-long periods. Within the next five to ten years, PTAs are expected to detect the
stochastic gravitational-wave background (SGWB) collectively sourced by inspiralling supermassive
black hole binaries. It is expected that this background is mostly isotropic, and current searches
focus on the monopole part of the SGWB. Looking ahead, anisotropies in the SGWB may provide a
trove of additional information both on known and unknown astrophysical and cosmological sources.
In this paper, we build a simple yet realistic Fisher formalism for anisotropic SGWB searches with

PTAs.

Our formalism is able to accommodate realistic properties of PTAs, and allows simple

and accurate forecasts. We illustrate our approach with an idealized PTA consisting of identical,
isotropically distributed pulsars. In a companion paper, we apply our formalism to current PTAs
and show that it can be a powerful tool to guide and optimize real data analysis.

I. INTRODUCTION

The promise of timing pulsars to detect nHz gravi-
tational waves (GWs) was pointed out more than four
decades ago [1, 2], and the application to a stochas-
tic gravitational-wave background (SGWB) was studied
shortly after [3]. In that seminal paper, Hellings and
Downs derived the response of pulsar timing residual
correlations to an isotropic SGWB, and were the first
to combine several pulsars to extract upper limit on the
SGWB amplitude. Since then, several collaborations [4—
7] have been timing arrays of pulsars, some for over two
decades, and getting increasingly stringent upper limit
on the SGWB amplitude [8-10]. If our understanding
of galaxy formation and merger history is correct, pul-
sar timing arrays (PTAs) should detect the SGWB gen-
erated by inspiralling supermassive black hole binaries
(SMBHBs) within the next decade [11-13]. In addi-
tion to this astrophysical background, other, more exotic
processes could also contribute to the nHz SGWB, see
e.g. Refs. [12, 14, 15].

While most current searches assume perfect isotropy,
there is likely some level of anisotropy in the SGWB!.
For one, the finite number of SMBHBs should inevitably
imply some level of anisotropy [16-18]. On large scales,
one also expects the distribution of SMBHBs to trace

1 Given that the SGWB is the power spectrum of the gravitational-
wave strain, we are technically referring to statistical anisotropy.
However, since the gravitational-wave strain itself is necessarily
anisotropic (the only isotropic rank-2 and trace-free tensor is the
null tensor), we will drop the qualifier “statistical” when referring
to anisotropies of the (scalar) SGWB intensity, as there is no risk
of confusion.

cosmic structure [12]. Independently of their physical
origin, it is important to understand what kind and what
level of SGWB anisotropy PTAs might in principle be
able to detect. Indeed, such anisotropy might eventually
prove a powerful discriminant between different models
of the SGWB.

The standard approach to study the detectability of
SGWRB anisotropies has been to harness the full power
of Bayesian analysis pipelines used for real data [19, 20].
While this approach provides the most accurate results,
it is computationally demanding, and does not allow for
making quick estimates nor building intuition. Recently,
Ref. [21] developed a simplified approach, holding for an
idealized PTA constituted of a large number of identical,
isotropically-distributed pulsars?. In this paper, we fill
the gap between these two methods, by deriving a simple,
yet realistic, Fisher formalism for SGWB anisotropies.
We moreover break away from the spherical-harmonic
decomposition of the SGWB that most past works have
relied on thus far [17, 20, 22, 23], as we argue it is poorly
adapted to real PTAs (see Ref.[24] for a different map-
ping approach, in the case of continuous waves). Our
formalism allows for real pulsar distributions and noise
properties, and yet permits us to make quick detectability
estimates without running time-consuming Monte Carlo
Markov Chains. While our formalism is not a substi-
tute for a full-on data analysis, it provides useful tools
to make forecasts, as well as guide and optimize SGWB
searches with PTAs. Our philosophy is inspired by what

2 This underlying assumption is not explicitly spelled out in
Ref. [21], but is required for the harmonic transform of the tim-
ing residuals to be uncorrelated and have ¢-independent noise,
as assumed there.



has long been the norm in the field of cosmology, where
Fisher analyses (e.g. [25, 26]) are routinely used and have
proven extremely useful, not only to produce forecasts,
but also to make the field accessible to a broader com-
munity.

This work is the first of a series of two articles. In
the present paper, we expound the theoretical formalism,
culminating in the derivation of the PTA Fisher matrix
for an anisotropic SGWB, Eq. (63). Along the way, we
rederive some known results with a fresh approach, us-
ing only frame-independent, geometric expressions. In
the companion paper (hereafter, Paper IT), we shall ap-
ply this tool to several practical examples, and illustrate
how to make forecasts or optimize searches for SGWB
anisotropies.

This paper is organized as follows. In Section II, we
start by describing the statistical properties of the SGWB
in a new frame-independent, geometric fashion, and then
derive the response of a timing array to the SGWB. In
Section III, we derive the Fisher matrix for the SGWB
intensity, which is our main result. In Section IV, we
apply our results to the idealized case of a dense array
of identical pulsars isotropically distributed on the sky.
We presents a new calculation of the Hellings and Downs
curve in Appendix A, derive the covariance matrix of
time residual bandpowers in Appendix B, and the Fisher
matrix in the limit of a large number of identical, isotrop-
ically distributed pulsars in Appendix C. Throughout we
use units in which the speed of light is unity. A summary
of our notation can be found in Table I.

II. GEOMETRIC DESCRIPTION OF THE
RESPONSE OF PULSAR PAIRS TO A SGWB

A. Geometric decomposition of the SGWB power
spectrum

In this section we present a new, geometric and frame-
independent decomposition of the SGWB power spec-
trum. In Sec II B, we relate the new expressions, Egs.
(6), (9) and (11), to those commonly found in the PTA
literature. Our frame-independent expressions will prove
very powerful later on as they allow us to express all
relevant observables through explicit functions of scalar
products between unit vectors.

We decompose the GW strain hqp(¢, ) in the Fourier
domain as follows

hay(t, ) :/ df/cm hao(f, Q) e2™F(E=23) (1)

where hgp(f, Q) is symmetric, trace-free, and transverse

to the direction of propagation €2, i.e. Q“hab(f, Q) =0.
If we assume that the SGWB is a stationary Gaussian

random field (as would be the case if it is generated by a

large number of uncorrelated sources), it is entirely deter-
mined by its power spectrum P gpeq, which we normalize
as follows:

Sp (Y, Q) on(f — f)
4 2
XPabcd(fv Q)v (2)

where 0p is the Dirac function. The Dirac function in fre-
quency stems from time-translation invariance (i.e., sta-
tionarity) of the correlation function (hap(t)hea(t + At)),
and the angular Dirac function dp(€Y,Q) stems from
spatial-translation invariance (i.e., statistical isotropy).

The definition (2) implies the following hermiticity
property:

<hab(f7 Q>h:d<fl? Ql» =

Pedas(f: Q) = Plpealf. Q). (3)

In addition, the reality of hgp(t,T)
hao(— £, ) = h%, (£, ), in turn implying

implies that

Pabcd(_fv Q) = P:bcd(f’ Q) (4)

The GW power spectrum P gpcq is a rank-4 tensor, which
is symmetric and trace-free for the first and last pair of
indices, and transverse to {2 in each index. Hence it has
4 independent components, which are a priori complex.
The hermiticity property (3) reduces the number of inde-
pendent component to 4 real quantities. This is the same
number of components as the (rank-2) electromagnetic
intensity tensor, i.e. the power spectrum of the electro-
magnetic field. Just like the latter, we may decompose
Pabed into a component proportional to its trace (the
total intensity)

Z(f,Q) =

Pabab(fv Q)a (5)

=

a component proportional to a real pseudo-scalar V(f, Q)
(the circular polarization), and a real, fully trace-free
linear-polarization tensor Lgpeq(f, Q), carrying the two
remaining independent components. More specifically,
we want to decompose the power spectrum as follows:

Pabcd(f7 Q) = I(f, Q) jabccl(Q) + ZV(f, Q) Q]abcd(Q)
+£abcd(fa Q)7 (6)

where the (real) tensors Jgpcqa(€2) and Vapeq(§2) are purely
geometric, frequency-independent objects. The traces of
the tensors appearing in Eq. (6) are

jabab = 4) mabab = 07 L"abad =0. (7)
The reality condition (4) implies that Z(f,) and
Lopealf, Q) are even functions of f, while V(f, Q) is an
odd function of f. X .

The geometric objects Japed(§2) and Yapeq(€2) must be
built exclusively out of isotropic tensors, i.e. the Kroneker
delta and the Levi-Civita tensor €4y, and of 2, which is
the only preferred direction. For Z to be a real scalar,



Symbol Description Dimensions ‘ Defining equation
1(0) isotropic map equal to unity for all directions € dimensionless 1) =1 vQ
Cry covariance of estimators of time-residual band-power time* Crj = COV(ﬁ], ﬁj)
53;170 identity tensor in the plane orthogonal to Q dimensionless (10)

At, observation cadence of pulsar p time
Af frequency bandwidth for bandpowers frequency
f gravitational-wave frequency frequency (1)
F(, Q) Fisher matrix of band-integrated GW intensity dimensionless (55)

F(Q,Q) reduced Fisher matrix for identical pulsars dimensionless (69)

Fry Npair X Npair discretized reduced Fisher matrix dimensionless (84)
'ypq(Q) =~,(Q)| pairwise timing response function at pulsar pair I = (p, q) dimensionless (39)
vi(€) dual map of ~,(Q) dimensionless Iy =0r1J

b (t, ) gravitational-wave strain dimensionless (27)

hav (f,€2) Fourier transform of hqs(t) 1/frequency (1)
he(f) characteristic gravitational-wave strain dimensionless (13)
H () Hellings and Downs function (response to an isotropic SGWB) | dimensionless (45)
1,J labels of unique pulsar pairs indices I=(p,q),J=,q)

Z(f, Q) total intensity of the SGWB 1/frequency (5)

Z;(Q) or Z(Q) band-integrated SGWB intensity dimensionless (49)
Tabed( A) geometric dependence of the SGWB total intensity piece dimensionless 9)
Lavea(f, ) linear polarization tensor of the SGWB 1/frequency (6)
Np(t) intrinsic time-residual noise of pulsar p time (47)

Np(f) Fourier transform of Np(t) time/frequency

Q gravitational-wave direction of propagation unit vector (1)
D, q labels of individual pulsars indices
D, q unit vectors pointing in the direction of individual pulsars unit vectors
Pavea(f, Q) rank-4 power spectrum of the SGWB 1/frequency (2)

RSY(t) gravitational-wave-induced time residual of pulsar p time (30)

RSWY(f) Fourier transform of RS (t) time/frequency (32)

R, (t) total time residual of pulsar p time (47)

Ry(f) Fourier transform of R, (t) time/frequency

Rr1(f) = Rpq(f)|cross-power spectrum of time residuals of pulsar pair I = (p, q)|time? /frequency (33)
Rri,yor Rr band-integrated time-residual power spectrum time? (51)
7@1 estimator for Ry time?
a2 (f) pulsar timing noise power spectrum time? /frequency (48)
oy or oy band-integrated pulsar timing noise time? (50)
To(f) timing-model-fitting transmission function of pulsar p dimensionless (63)
T total observation time of pulsar p time
Thq effective total observation time of pulsar pair p, q time Tpq = min(Ty, Ty)
V(f,Q) circular polarization amplitude of the SGWB 1/frequency (12)
Q?abcd(fl) geometric dependence of the SGWB circular polarization piece| dimensionless (11)
yem(fz) real spherical harmonics dimensionless

TABLE I. Summary of the notation used in this paper, in alphabetic order, with the defining equations.




the tensor J,p.¢ must only contain Kronecker deltas and

Q, i.e. be of the form

Jabcd( ) X OabOcds -5 0ab 2e82dy -y a2 204, (8)
where the ... include all permutations of indices. By
imposing that J,peq has the symmetries of Pgpeq, and,
from Eq. (3), is symmetric under exchange of the first
and last pair of indices, one finds that the only rank-4
tensor satisfying these properties, with the appropriate

normalization Jgpep = 4 is

Tabea( )ng Sy 5 — 64 5Pd, (9)

where (5ij is the identity tensor projected on the plane

orthogonal to Q,
552 = 5, — Q. (10)

For V to be a pseudo-scalar, the geometric object
Vabea(2) must be proportional to Q%gp., and other-
wise be built out of Kronecker deltas and €. It must
have the same symmetry properties as Papcq and sat-
isty Uegab = —Vaped- Up to a proportionality constant
(which we chose in order to match existing derivations,
as we will see shortly), the only possible tensor with the
appropriate symmetry properties is

sz]abcd(Q) = Q (fea(c(S d)b + 6eb((‘(sd)a) ) (11)

where X (q5) = (Xap + Xpa)/2 represents symmetrization.

With this convention, we have U,peq = QQeeebd, thus
the amplitude of circular polarization ¥V can be obtained
from

1 ~
V= 4 P abad €vde 2°. (12)

Finally, £.p.q contains information about the linear po-
larization of the SGWB.

To conclude, Egs. (6), (9) and (11) form a geomet-
ric, frame-independent decomposition of the GW power
spectrum, with the most general frequency and angular
dependence. In the remainder of this paper, we will focus
on the total-intensity part of the SGWB, i.e. assume that
the circular and linear polarization components are sub-
dominant (it is conceptually straightforward to general-
ize our formalism to a polarized SGWB). In the majority
of works on the SGWB, the intensity is assumed to be
isotropic, Z(f,Q) = Z(f). In this case, the SGWB inten-
sity is just half of the one-sided GW strain spectral den-
sity Sn(f) = h2(f)/f, where h.(f) is the characteristic

strain [27]. More generally, these quantities are related
to the angle-average of Z(f, Q) through
B2(f) a0
S == =2 | —I 13
un=" =2 [Tzge, oy

as can be seen from taking the trace of Eq. (2) and inte-
grating it over angles, and comparing to, e.g., Ref. [28].

4

The authors of Ref. [17] consider the possibility of an
anisotropic GW intensity, with a factorized frequency
and angular dependence. Their convention corresponds
to Z(f,Q) = 8rH(f)P(2). A similar convention is
adopted (up to a factor of 2) in Ref. [22].

B. Connection with standard frame-dependent
notation

We now relate the geometric, frame-independent de-
scription given above to the more standard frame-
dependent expressions found in the literature. For a
given direction of GW propagation ), one may pick two
arbitrary vectors m and n = Qxm orthogonal to Q, and
define the two polarization basis tensors

+

€ = MaMp + g Mp. (14)

LS PPN X —
MagMmp — NNy, eab =

Since the triad 7,7, Q) forms an orthonormal basis, we
have
JN Ao A A _ sLO
Moy + NNy = ap — Laflp = 5ab ) (15)
mpNg — NpMqg = Qeeebd, (16)

independent of the choice of m,n. From these expres-
sions, one can show that the tensors J,pcq and Ugpeq de-
fined in Egs. (9) and (11) are given by

Jabed = €450 + €apops (17)

esel. (18)

Let us now project the strain onto the basis ejb, ey
hab(fa Q) = h"‘r(fa Q)ejb+h><(f7§2)e:b' (19)

For the sake of compactness, for any two stochastic vari-
ables XY, we define the quantity (XY ™)’ such that

Ky (7.0 = DI =) yey o)

In words, (XY ™)’ is the cross-power spectrum of X and
Y. With this convention, the GW power spectrum is

Pabed = (havhlg)'

<|h+| )'e ;rbe:rd

_ t X
Vaped = €ab€ed —

<h+h*> abecd
+ (hxhi)'e :b‘f; + (|hx[? ) €apon: (21)

Now using Egs. (17) and (18), we see that we can write
the GW power spectrum in the form (6), with

T= (el + Y, (22
(o) (@)

enpCoq) T U(eher; + enedy) (24)
hx|?), (25)

1 * *
V = Z<h+hx — hxh+>/ = Im
Loped = Q( :bez_d -
[

2<
1
= S{hehy + hoh) = Re(hihy)'. (26)



These relations clearly show the analogy with the stan-
dard Stokes parameters of electromagnetic waves (see
e.g. [29]). Our normalization matches precisely that of
Ref. [30] — see Ref. [31] for similar expressions, with a
different normalization.

C. Concise derivation of the timing residuals from
GWs

A common derivation of the time-residual induced by
GWs consists of deriving expressions for a null geodesic
in the presence of gravitational plane-waves using Killing
vectors [2, 32, 33]. Here we provide a new and concise
derivation in the spirit of the first calculation by Ref. [1].
Our derivation has the advantage of not being limited
to a plane wave, but directly applies to a generic super-
position of waves, with no special symmetries hence no
Killing vector fields. Consider null geodesics in the met-
ric

ds® = —dt? + (bap + hap)da"da®, (27)

where the GW strain hgp(t, Z) is symmetric, trace-free
and transverse (0%hg, = 0). Specifically, consider light
rays originating at a pulsar p (event P) and received on
Earth (event E). We define d¢?> = §,,dz?dz”. The null
geodesic condition implies that

1/2
ag..b\1/2 dx® dl’b
it = 0+ haas) " = (1 v G
1, dax®dab
—de (14 222 B2 )
(*2 b ar dﬂ)JrO( ) (28)

where we have expanded to linear order in hyp,. At this
order, we only need to compute dz®/d¢ along unper-
turbed geodesics. For unperturbed geodesics traveling
along the direction —p (so that the unit vector p points
from Earth to the pulsar), we have dz®/d¢ = —p®. Inte-
grating Eq. (28), we therefore get

1 te
tp—tp = lg — lp + 7 / dt hay(t E(1),  (29)

tp

where we have substituted d¢ by dt in the integral, as
they are equal to zero-th order in hyp, and Z(t) is the
spatial position along the geodesic. Now, in this gauge
the pulsar and Earth (seen as test particles) stay at the
same spatial coordinates [34]. This implies (i) g — £p
takes the same value with and without GWs and (i4)
the proper time measured at Earth is also the coordinate
time t. Therefore the last term in Eq. (29) is precisely
the sought-after GW-induced timing residual RSW. As-
suming the Earth is at the origin of spatial coordinates,
we have

t
REW (1) = L paph /t L halt (= 100). (30)

P

DN | =

where D, is the distance (or time) between Earth and
the pulsar.

It is useful to recast this result in terms of the Fourier
transform of the strain. Inserting Eq. (1) into the time-
residual (30), we obtain

L pagp / df / 02 hoy(£.)

RIW(t) = 5

t )
y / gt 2mif (' —pO(t—t"))
t—D,

/df M REW (). (31)

Upon performing the time integral, we find the Fourier
transform of the GW-induced time residual Rffw( f):

08 [ g )
Amif (14+Q-p)

% (1 _ e—27ripo(1+ﬁ~Q)) . (32)

RSV (f)

The first term in the parenthesis corresponds to the
“Earth term” and the second term to the “pulsar term”.

D. Time-residual correlations

We define the (one-sided) cross-power spectrum
RSW(f) of the GW-induced time residuals at different
pulsars p, g as follows:

RSV (R () = P mewiny )

Using Eq. (2), we find

L [ &0 p"9" 44 Paseal S, )
R (f) = — - )
/) (47rf)2/ AT (1+p- Q)1 +¢-Q)

% (1 _ efszpp(uﬁ-fz)) (1 _ eszpq(uqﬁ)) .(34)

We can think of the pulsar-term contributions as taking
the harmonic transform of the integrand at multipole £ ~
27 f D (note that the numerator vanishes as {2 — —p and
QO - —¢ so the integrand is well behaved there). In
practice, we have D ~ kpc ~ 3 x 10% lightyears and
f ~1/yr, thus

D
2rfD ~ 2 x 10— /
kpc yr—

. (35)

Therefore, as long as angular fluctuations of the SGWB

on a scale £ > 10* are negligible, we may safely approxi-
mate the terms in parenthesis by

(1 _ 672772'po(1+;&~§2)> (1 _ e27rifDq(1+zj~Q)> (14 8py),

where the Kronecker delta accounts for the factor of two
if the two pulsars are identical, i.e. have the same location



on the sky and are at the same distance. See Ref. [35]
for an explicit proof of the validity of this approximation
for an isotropic SGWB, and [36] for an anisotropic one.

It will be useful in what follows to introduce some com-
pact notation to denote integrals over the sky. For any
two functions of angle on the sky (which from here on
we refer to as “maps”, and represent by bolded symbols
throughout) M;(Q) and M (), we denote for short
the scalar product

Ml-Mgz/dQQ M1 (Q) My(Q). (36)

Specializing to the total-intensity piece of the SGWB
power spectrum, Eq. (34) then becomes

RV () = i [ 4 L0 OT(.9)

— (@) 1), (37)

where we have defined the geometric quantity

@) = PUPPGG T apea(2)
(1+p - Y(1+4-Q)°

(38)

which can be written explicitly in terms of dot products
as follows:

1
(1-G-9Q). (39)

In what follows, we shall refer to 'yﬁé(Q) as the pairwise
timing response function. It can be expressed in the stan-
dard, frame-dependent, notation in terms of the so-called
antenna beam patterns Fgr , Fﬁxz

7ﬁ¢j(Q) =4 Z F;(Q)F;(Q% (40)
A=+,x
AR :1 ﬁaﬁb eA A
F@) = 5 el (41)

as can be seen from Egs. (17) and (38). Our geometric
approach allowed us to obtain the explicit and clearly
frame-independent expression for this function, Eq. (39).
The so-called overlap reduction function is then obtained
by integrating the angular dependence of the SGWB in-
tensity multiplied by the pairwise timing response func-
tion.

The kernel 'yﬁq(fl) is symmetric in P, ¢, and so Rpq(f)
is symmetric in p,q. We show plots of ’ym(ﬂ) in Fig. 1
as a function of the separation between pulsars p, § (see
also Ref. [37] for similar plots).

As an aside, it is interesting to consider the response
function for a single pulsar (p = §):

’7;3;3(Q) =(1-p- Q)2
4 o (o1
= g — 2p Q + a QaQb — géab . (42)

Therefore a single pulsar is sensitive to a specific linear
combination of the SGWB monopole, dipole projected
onto p, and quadrupole twice projected onto p. Single-
pulsar upper limits typically assume an isotropic back-
ground. These limits would be weakened if accounting
for anisotropies (see, e.g., models 1, 2A-2D considered in
Ref. [10]).

E. Response to an isotropic SGWB

Let us now compute the response to an isotropic
SGWB. We define the unit-norm monopole map

1(Q) =1, vQ (43)

If the SGWB intensity is isotropic, Z(f,) o 1(Q2). In
that case the time-residual power spectrum R, only de-
pends on the scalar product u = p-g, with the well-known
Hellings and Downs functional dependence [3]. We define

d2Q) A
Hpg =155 = / ——755(§2)

@ =HE-D. (49

We provide a new and concise derivation of this func-
tion in Appendix A, making use of our geometric, frame-
invariant formalism. With our normalization convention,

it is given by
1—
— 1)In (2”> . (45)

III. PTA FISHER MATRIX FOR THE GWB
INTENSITY

3+
ERA T

H(p) = 3

A. DMotivations and general considerations

The analyses of real PTA data are typically built on a
Bayesian framework, and deal directly with the times of
arrival (TOAs) of pulsar pulses [8, 10]. The final product
of such analyses is to estimate how likely a GWB signal

Z(f, Q) is given the data. If the data sample is sufficiently

large, the likelihood £ of the GWB intensity Z(f,)
ought to be approximately Gaussian (see e.g. Fig. 2 of
[38]), i.e. formally of the form

—21In L(

ffurz

where G (€,Q) is a generalized inverse-covariance
and Z™(f,Q) is the maximum-likelihood

(Z) = const +

—I™(N)]-Grp - [Z(f1) = T™()),(46)

“matrix”,
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FIG. 1. Pairwise timing response function 'yﬁﬁ(fl), as function of sky location Q, for four different pulsar separations. The
pulsars locations p, ¢ are shown as stars, and the angle between them is indicated on top of each figure.

SGWB intensity. In full generality, Gy itself ought to
depend on the SGWB intensity (so that the likelihood
is not actually Gaussian); nevertheless, we expect that
this dependence should only be important once the GWB
is detected to sufficient significance, as we will quantify
shortly. Until then, a weak-signal Fisher matrix is suffi-
ciently accurate.

Our goal here is to provide an approzimate Fisher ma-
trix, that can be used as a guide to data analysis. This
bears similarities with the study of cosmic microwave
background (CMB) anisotropies (see e.g. Ref. [39]): while
the full analysis of CMB data uses a Bayesian framework
and deals with the temperature and polarization maps
directly, the simple Fisher matrix of CMB power spectra
allows to make quick and rather accurate detectability
forecasts, which serve to inform full data analyses.

B. Approximate Fisher matrix of band-integrated
GWB intensity

In addition to the stochastic timing residual caused by
a SGWB, arrival times are noisy, due to intrinsic pulsar
noise and instrumental noise:

R,=RSY 4 N, (47)

where N, is the (non-GWB-sourced) timing noise, which
we assume to be uncorrelated between pulsars®, and

whose power spectrum is o7 (f):

(Np(FING(f1)) = bpg——5——0,(f)-  (48)

The standard pulsar analysis fits for several different
pulsar-specific sources of noise (e.g., [38, 40]).

In the remainder of this paper, we will work with band-
integrated quantities: given a frequency bandwidth Af,
we define the dimensionless band-integrated SGWB in-
tensity

) FrAf/2 .
IpQ) = / i’ (', ), (49)
f—Af/2

and the band-integrated noise (with dimensions of time
squared)

) f+Af/2 )
Op = / df" a,(f"). (50)
f=Af/2

3 A more realistic analysis includes several additional sources of
common noise, correlated among pulsars, such as global clock
errors, or ephemeris errors [10]. These additional noise sources
do not appear to significantly affect current upper limits on the
amplitude of the SGWB [10] and we do not include them here.
We leave to future work a more detailed treatment including
these common noise sources within our Fisher framework.



We denote by Rpg(f) = REV(f) + Opqo(f) the to-
tal timing-residual cross power spectrum, and by Rpq. ¢
the timing-residual cross-bandpowers (with dimensions
of time squared), given by

el 2
Rpa.f = Rpg,p +0paTy.s
1+ dpq 2

= (47-(-f)2 "qu -If—i-(quO’p’f. (51)
In what follows, and unless explicitly specified, we
always work with band-integrated quantities centered at
frequency f. To keep the notation manageable, we drop
the subscripts f on all band-powers.

We label unique pairs of distinct pulsars by capital in-
dices I, J, K. For instance, I = (p,q) = (q,p) represents
a unique pair of distinct pulsars p # ¢. For Npe, pulsars,
there are Npair = Npgr(Npsr — 1)/2 such distinct pairs.
For a pair of distinct pulsars I, assuming the SGWB
is the only source of correlated noise between distinct
pulsars, Eq. (51) simplifies to Ry = v, - Z/(4n f)%.

Let us denote by R 7 unbiased estimators of the band-
powers. Let us assume that these estimators are con-
structed from a large number of effectively uncorrelated
samples, implying that they are approximately Gaussian-
distributed. Their statistics are thus entirely determined
by their Npair X Npair covariance matrix C, with elements
Cr; (with dimensions of (time)*). Note that this matrix
depends on frequency f. Under the Gaussian approxima-
tion, the joint probability distribution L of the estimators
R is therefore

—21n L = const
~ T B . T
3 (Ri- i) e (R - 75 ) 52

As is standard in Bayesian data analysis, we view this
probability distribution as the likelihood of the signal —
the GWB background bandpower Z(€)) — given the data.
To be precise, this statement assumes a uniform prior on
the amplitude of Z(£2).

_In order to write an estimator for the SGWB intensity
Z, we define the dual maps v%(€) (not to be mistaken
with complex-conjugates), which are the unique linear

combinations of the ~;(2) satisfying

Y1V =017 (53)
We then define

T(Q) = (4nf)* ) Ricvi(9), (54)
K
which satisfies (v, -i')/(47rf)2 = R;. We are now fi-

nally in the position of defining the Fisher matrix for the
bandpowers,

1
(4 f)*

F(9,Q)

Yo Q€ v Q)] (55)
1,J

With these definitions, we see that the likelihood for tim-
ing residual bandpowers can be rewritten as

1 . _
Locexpd =5 Y. Ty I Fp (T - Zg] p (56)
band(f)

It might appear at first sight that Eq. (56) is a prob-
ability distribution on the inifinite-dimensional space of
maps Z(§2). However, the Ny pairwise-time-residual
correlations Ry can only possibly measure Npair projec-
tions of the SGWB map. To see what these are precisely,

decompose Z(£2) onto a piece which is a linear combina-~
tion of the functions ~;(€2) — hence of the v3(£2) — and a
piece which is orthogonal to all of them:

Z(0) = Z)|(Q) + Z.(),

Ij(Q) = nf)* Y Ruvic (), (57)
K

T, -~v;,=0, VI

We purposefully denoted by R the coeflicient of v7,, as
it is indeed the time-residual correlation measured by the
pulsar pair K (see Eq. (51)). From the expression of F,
we see that F-Z | = 0. Thus the likelihood function only
depends on Z|, which spans a Npaj-dimensional space,
and contains no information about Z,. Put differently,
the components of Z orthogonal to the space spanned by
the v;’s have infinite noise. A consequence of this prop-
erty is that one cannot hope to simultaneously constrain
more than Np,ir statistically independent components of
the SGWB map — be they harmonic coefficients, inde-
pendent pixels, or any other linear projections.

C. Weak-signal limit for the Fisher Matrix

In Appendix B, we derive the following approxima-
tion of the covariance matrix of the estimators for the
pairwise-time-residual band powers R,,: for two pairs
I=(p,q) and J = (p/,q’), we have:

CIJ = Cpq,p’q’ = COV(qu, Rp’q/)
N 1
T Af
where Ty is the effective total time of observation of

the four pulsars p, q,p’, ¢’, which we found to be approx-
imately

(Rpp'qu' + qu’qu’) ,(58)

T1y ~ max [min(7}, Ty), min(Ty, Ty/)] (59)

if each pulsar p is observed for a total time 7},. This
equation is a generalization of the radiometer equation
for electromagnetic intensity [41], and holds provided the
bandwidth Af satisfies

1/T < Af < f, (60)

where T is the minimum of all observation times. In
particular, it only applies for f > 1/T.



We now specialize to the weak-signal limit, i.e. assume
that, for every pulsar p (and in particular, for the least
noisy pulsar),

I < (4nf)’op. (61)

In other words, we assume that the SGWB-induced sig-
nal is subdominant to the intrinsic pulsar noise in each
individual pulsar. In this limit, we may approximate
Rpg & Opgos in the right-hand-side of Eq. (58). As a
result, the weak-signal correlation matrix Cy; is diago-
nal, and so is its inverse:

o202 2T, A f
~ P~ 4q 5 —1 ~ Pq 5 9
Cry I, AF 1J5 C )1 70127 2 17, (62)
I=(p,q), Tpq = min(Ty, Ty).

In addition to stochastic contributions discussed thus
far, the timing residual R, contains a deterministic piece,
resulting from the pulsar’s intrinsic motion, spin down,
etc.... To account for these deterministic contributions,
a timing model is fitted to pulsars’ times of arrival. This
process results in a loss of information, quantified by a
“transmission function” 7,(f) [40]. For our purposes, let
us note that for all pulsars 7,(f) ~ 1 for f 2 1/T and
To(f) = (fT,)¢ for fT, < 1 for most pulsars* [40]. In
addition (and more relevantly to us for us since we only
consider the regime fT, 2 1), the transmission function
filters out harmonics of 1/year due to degeneracies of
timing-model parameters with the motion of the Earth
around the Sun.

Combining Eq. (55) with Eq. (62) and multiplying the
contribution of each pair I = (p,q) by 7,7, our final
expression for the Fisher matrix for the band-integrated
SGWRB is therefore

X 55— ’Yﬁq(Q)’)’pq(Q/)~ (63)

This weak-signal Fisher matrix is the main result of this
paper®. It allows us to estimate the signal-to-noise ratio
(SNR) of the GWB band-integrated intensity Z¢(€2)
with an arbitrary angular dependence:

SNR*[Z;| =Z; - F; Iy

SR A AN, [M’

s Am f)20p,10q.5

r. (64)

4 This scaling applies to pulsars with a quadradic spin-down.

5 Note that the “point-spread function” defined in Ref. [37] is pro-
portional to our Fisher matrix, in the case where all pulsars have
identical noise.

Provided the bandwidth is much wider than the inverse
of the observation time for each pulsar, Af > 1/T, dif-
ferent bands are uncorrelated, so that the total SNR? is
obtained from summing that of each band:

SNR’[total] & > SNR’[Z;]~2) Ty,

band(f) p#q
fumax Y pg Z(f) ?
. /1/qu & T 1) Talf) {(4ﬂf)20p(f)0q(f)] 65)

where we replaced the sum over bands by an integral un-
der the assumption that Af < f. The lower frequency
bound is such that fyin = max(1/T},1/Ty) = 1/Tp,, and
depends on the pulsar pair. The upper frequency bound
is the Nyquist frequency fmax = min(1/At,, 1/At,)/2,
inversely proportional to the observation cadence. Given
the factor f~* in the integrand, unless the SGWB is sig-
nificantly blue the total SNR is typically dominated by
the lowest frequencies, and the upper cutoff has little im-
pact.

Equation (65) generalizes Eq. (17) of Ref. [42] in sev-
eral ways. First, it accounts for different observation
times for each pulsar. Second, it accounts for the loss of
information in the timing-model-fitting process, through
the transmission functions 7,(f). Last but not least,
it accounts for an arbitrary angular dependence of the
SGWB, rather than assuming a monopole.

Before moving on to applications, let us quantify when
the weak-signal limit applies. Suppose all pulsars have a
typical observation time 7T and noise 012«. Consider more-
over frequencies for which 7,(f) ~ 1 (note that for our
simple covariance matrix to hold, we require f > 1/T,
thus 7(f) ~ 1 except at harmonics of 1/year). Eq. (64)
then gives

2
SNR?[Z(Q)] = Npair 2TAf (W) . (66)

The weak-signal approximation (61) requires the last
term in parentheses to be less than unity. It is thus
self-consistent as long as the band-integrated SGWB is
detected with a signal-to-noise ratio SNR < Npor vVTAf
in each band. Unless the SGWB is significantly blue, the
total SNR is dominated by the lowest frequencies, so that
for the weak-signal limit to be appropriate we must have
a total (frequency-integrated) SNR < Npg,.

IV. IDEALIZED CASE: ISOTROPICALLY
DISTRIBUTED IDENTICAL PULSARS

In this section we apply our results to an idealized PTA
consisting of Npsy > 1 identical pulsars approximately
isotropically distributed on the sky. This limiting case
is amenable to analytic approximations, and will serve
to cross-check our numerical algorithms when we apply
our formalism to real PTAs. We moreover compare our
results with those of Ref. [21], which apply in this limit.



A. Analytic expression for Nps — 00

Suppose all the pulsars have the same noise o, = o, are
observed for the same time 7', and have the same trans-
mission function 7(f). In that limit the Fisher matrix
F is given by

F(O,Q) =C F(Q,Q0), (67)
_ T(f)?*2TAf
C= (47Tf)4 o4 Npaira (68)
FO,0) = S0 @n@). (69
pair "7

In the limit that Nps, — oo, assuming the pulsars are
isotropically distributed, we find

F(Q7Q/) N ” foo(Q ' Q/)
psr—00
d2ﬁ d2cj A A
= In dn ’qu(Q)’Yﬁ@(Q/)~ (70)

By symmetry, this is a function of y = Q- only, which
we compute explicitly in Appendix C. We derive the fol-
lowing analytic expression:

16
ool = gy
1—x? 1—x 1—x 2
2 — 3 log —=
xl( 1 + X+ 1+Xog 5
(2 y 43X g lox : (71)
X 14+ x 79

We show Foo () as a solid line in Fig. 2. For comparison,
we also show the reduced Fisher matrix F(,) for a
finite number of identical, quasi-isotropically distributed
pulsars?, for 1000 randomly selected pairs of sky direc-
tions (€2,€’). Only in the limit Npg — oo is the Fisher
matrix a function of the angle A(Q, Qo ) only; otherwise,
it depends on both and Q’ , which translates into a
scatter of the values of F'(€),€) when plotted as a func-
tion of Z(, ). We see that F(£2,€) indeed converges
to the function F as Npg increases, with a difference
(both in running mean and scatter) scaling as ~ 1/Npg,.

The dense-PTA Fisher matrix can be decomposed into
Legendre polynomials:

Fool Q- Q) = D" (20+ 1)F, P(Q- )
4

=4n Z Fe yem(Q)yem (Q/)a (72)

Lm

6 To place pulsars quasi-isotropically we arrange them in equal
intervals in the azimuthal angle and with the polar angle 8 =
cos~1(U), where U are a set of uniformly spaced ranging from -1
to 1.
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FIG. 2. Values of the rescaled Fisher matrix for a finite num-
ber of quasi-isotropically distributed identical pulsars (10, 30
and 90, respectively), for 1000 randomly selected pairs of
SGWB directions in the sky (£2,€'), as a function of the an-
gle between them. The solid black line shows our analytic re-
sult, holding for an infinite number of isotropically distributed
identical pulsars. We also show the difference between F' and
its infinite-pulsar limit, Fo. We see that the difference de-
creases as |F — Foo| ~ 1/Nps: (note the different y-axis scales
in the difference plots).

where the )y, are the real spherical harmonics.

We show the Legendre coefficients Fy in Fig. 3. Inter-
estingly, the amplitude of Legendre coefficients decreases
monotonically with ¢, except for F; ~ Fy/7, which is
significantly lower than F3, and comparable to F3.
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FIG. 3. First few Legendre coefficients of the dense-PTA
Fisher matrix.

B. Minimum detectable dipolar anisotropy

Suppose the GWB takes the form

I=T |14+ D gmVm |- (73)

>1,m

From Eq. (72), we see that in the limit of a dense array
of identical pulsars, the spherical harmonic coefficients of
the SGWB are uncorrelated, with noise proportional to
1/Fe. Explicitly, the signal-to-noise ratio of the coeffi-
cients gg, is such that

SNR®[ZogemVem] _ 93 F (74)
SNR?[Zy1]

47 .7:0’

where we used the fact that 1 = v/47Yyg. In particular,
in order to detect the ¢m-th harmonic with SNR > 3
requires an amplitude

[Fo 647
> in =1\ =
9em = Gem,min ]:Z SNRQ? (75)

where SNRy = SNR[Zy1] is the signal-to-noise ratio of
the monopole. For the dipole, we find

28
SNRy’

(76)

91m,min ~

which is identical to the result of Ref. [21] in the weak-
signal limit.

C. Hot spot in the SGWB

Now consider a SGWB with a hot spot” in a known
direction g. Such a hot spot could be generated, for

7 A GW “beam” in the nomenclature of Ref. [21].
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instance, by a concentration of supermassive black hole
binaries, sufficiently numerous that the GW background
can still be approximated as stochastic. Specifically, we
assume

Z(Q) = Ty + Tog (4m5D(Q; Qo) — 1) .

where we chose the normalization such that the fraction
of GW energy density (proportional to the SGWB inten-
sity) in the hot spot is g. With this convention, a physical
SGWB ought to have g < 1.

The joint probability distribution of the monopole and
hot spot amplitudes can be obtained from Eq. (56), and
is a 2-dimensional uncorrelated Gaussian distribution:

L(Zo,Tog)  exp [—27C (I3 Fo + (Zog)*(Foo(1) — F0))]

8
= exp fﬁc (73 + 5(Zog)?) |, (78)

where the coefficient C' is given in Eq. (68), and in the
second line we used Fy = 4/27 and Foo(1) = 8/9. The
variances of the monopole and hot spot amplitudes are
thus given by

27
To) = 5 var[Zog] = —C 1. 79
var[Zo] var[Zyg] T6n (79)
Hence, for the hot spot to be detectable at the 3-o level,
its amplitude needs to be

var[Tog]  3/V5
Ty ~ SNRy’

where SNRg = Zy/+/var[Zp] is again the signal-to-noise
ratio of the monopole amplitude. This estimate is in
agreement with the numerical result of Ref. [21] in the
weak-signal limit. We thus conclude that, provided with
the knowledge of the direction of the hot spot, an ideal-
ized PTA would be able to detect a hot spot with ampli-
tude g ~ 1 shortly after the monopole is detected. With-
out any prior information on the hot spot’s direction, of
course, this conclusion does not hold.

D. Eigenmaps

From Eq. (72), we can see that the eigenmaps of the
dense-PTA Fisher matrix are the real spherical harmon-
ics. As one can expect, and as we shall see in greater
detail in Paper II, the real spherical harmonics are no
longer the eigenmaps of realistic PTAs, and therefore do
not provide a particularly well adapted basis for searches
for anisotropies. To illustrate this, we diagonalize the re-
duced fisher matrix F(£2,€") of an idealized array of a
finite number of identical, quasi-isotropically distributed
pulsars. Specifically, we seek unit-norm maps M., (2)
such that

M, (81)



This continuous eigenvalue problem can be transformed
into a regular, discrete, eigenvalue problem by seeking
M, as a linear combination of the ~;:

Ma(Q) =D M), (82)
I

The eigenvalue problem (81) is then equivalent to the
discrete Npair X Npair eigenvalue-problem

1
> FM; = ngu (83)
J n
_ Y17
Frj=——. 84
7 Npair ( )

We thus see that there are exactly Np,ir principal maps.
They do not form a complete set of all possible maps.
However, they are a complete set of observable maps for
a given PTA. Note that the eigenmaps that we derive
here are scalar maps, corresponding to the intensity of
a stochastic GW background; this is to be contrasted
with the strain eigenmaps derived in Ref. [24], which
apply to continuous (i.e. deterministic) GW searches.
There does not appear to be a straightforward connec-
tion between our Npai SGWB intensity eigenmaps and
the 2N, strain eigenmaps of Ref. [24].

We show the first 50 eigenvalues Fig. 4 for Nps =
10, 30,90, where we compare them against the dense-
pulsar limit Nps, — 0o. We see that, as Ny, increases,
the eigenvalues do converge towards the dense pulsar
limit. For N,e; = 90, one recognizes the sequences of
quasi-degenerate eigenvalues, corresponding to the de-
generate harmonics for N, — oco. For lower Ny, as
the Fisher matrix departs further from its Nps, — o0
limit, eigenmaps “mix” and are no longer grouped in sub-
sets with similar eigenvalues. This is very similar to the
breaking of degeneracy in atomic levels in the presence of
a perturbed Hamiltonian. We show the first five eigen-
maps in Fig. 5, as a function of Nps,. We see that as
Npsr becomes large, the first eigenmap approaches the
monopole, and the next two become quadrupolar. For
Npsr = 10, however, the eigenmaps do not at all resem-
ble spherical harmonics. More importantly, as we shall
see in Paper II, for realistic pulsar distributions, there
exist anisotropies to which a PTA is much more sensitive
than the lowest-order spherical harmonics.

V. CONCLUSIONS

We have derived a band-integrated Fisher matrix for
the intensity of a weak, anisotropic SGWB measured by
a PTA, Eq. (63). This Fisher matrix provides a versa-
tile tool with which we can better study the detectability
of anisotropies in the SGWB by PTAs. We derived a
simple expression of the SNR of an anisotropic SGWB,
Eq. (65), generalizing previous results. We moreover de-
rived an exact analytic expression for the Fisher matrix
of an idealized PTA consisting of a dense and isotropic
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FIG. 4. First fifty eigenvalues of quasi-isotropically dis-
tributed identical pulsars compared against the dense-pulsar
limit Npsr — 0o0. The sequences of equal-noise black dots cor-
respond to multipoles ¢ = 0,2,1,3,4,5, in that order. Hav-
ing a finite number of pulsars perturbs the eigenmaps away
from spherical harmonics and breaks the degeneracies in their
eigenvalues.

distribution of pulsars on the sky. With this matrix, we
could recover the results of Ref. [21] for the detectabil-
ity of dipolar and hot-spot anisotropies. We illustrated
how our formalism is better adapted to realistic PTAs
by quantifying the convergence of the Fisher matrix of
a finite number of pulsars to that of the dense-pulsar
limit. In particular, we showed that, for a finite num-
ber of pulsar pairs, the eigenmaps of the Fisher matrix
are not spherical harmonics, commonly used to study
SGWB anisotropies. These Npair eigenmaps best char-
acterize the information content of the Fisher matrix. In
a follow-up paper, we will further explore the information
content of real PTAs, with unevenly distributed pulsars
of unequal noise properties.

In order to arrive at our new Fisher formalism, we re-
derived existing results with a fresh look, and presented
them in a geometric, coordinate-free form. Let us high-
light, in particular, the SGBW power spectrum (a rank-4
tensor) given in Eq. (6), and the pairwise timing response
function, Eq. (39), which characterizes the correlated re-
sponse of a pair of pulsars to a generic SGWB intensity
map. While in this paper we focused on the total inten-
sity of the SGWB, we have provided all the ingredients
needed to extend our results to a circularly or linearly
polarized SGWB. Our work could also be generalized to
non-Einsteinian polarizations [43]. Lastly, our Fisher for-
malism can easily be made more realistic: it can accom-
modate other sources of correlated pulsar timing residu-
als, such as global clock errors, and can be generalized to
a non-weak SGWB, by using the full expression for the
Fisher matrix, Eq. (55). Some elements of our Fisher for-
malism may moreover carry over to other gravitational-
wave detection techniques (such as space and ground-
based laser interferometers).
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FIG. 5. First five eigenmaps of the Fisher matrix for Ny = 10 (left column), 30 (middle column) and 90 (right column)
identical, quasi-isotropically distributed pulsars. As Ny is increased, the first eigenmap approaches the monopole, and the
next few eigenmaps become more and more quadrupolar. For Nps = 10, the eigenmaps do not resemble spherical harmonics

at all. The stars indicate the location of the identical pulsars.

The strength of the approach outlined in this paper lies
in its ability to clearly and concisely describe the informa-
tion content of GW measurements. A similar approach
for measurements of the CMB [25] has allowed accurate,
rigorous, and intuitive estimates of the CMB’s sensitivity
to a variety of effects. At the dawn of GW astronomy,
the development of such a tool is both timely and neces-
sary in order to learn as much as we can from the first
GW signals that have been and will be measured.
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Appendix A: New derivation of the Hellings and Downs function

We want to compute the following function of u = p - ¢, with p # ¢:

Hi) = [ Frraal) (A1)

where 'yﬁ@(f)) is given in Eq. (39). Let us define the new variables = p - Q, y=q- Q, so that

Ay 2(p—ay)® — (1 —a2?)(1 - y°)
7}3@(9) = (1 T LL’)(l T y) : (A2)

The numerator can be rewritten as

2 — ay)? — (1 - 22)(1 — y?) = 202 + 2 — 2wy — 1+ ) + (1 - 2?)(1 - ?). (A3)
The second part simplifies with the denominator and the integral can readily be computed, so we get
Hp) =T () + (1 +p/3), (A4)
g =2 [RERE ey o) (5)
One can show that the coordinates x,y are restricted to the region
E(pw) = {(z,9); 2 +y* = 2uay <1 - p?}. (A6)

The boundary of £(u) is an ellipse whose principal axes are at 45 degree angles from the (z,y) coordinate axes, and
with semi-major and semi-minor axes /1 + u. Moreover, we can show that the area element is

2dxdy

d?Q = . (A7)
V1= p2 =22 —y2 + 2uxy
With these new variables, the integral J(u) simplifies to
dxdy /1 — p? — 22 — y2 + 2uzy
o= [ EWY (A8)
gy T (1+z)(1+y)

For a given = € [-1,1], y € [y—,y+], where the boundaries are given by

y+ = pr £ /(1= p?)(1 - 2?). (A9)

We therefore rewrite the integral as

LK (x,
T (p) = /ldafl(+ Z), (A10)
where the inner integral is
Lo Vs —y)y—y-)
=-—- d = —(1 . All
Kr =~ [ R ol = (14 ) (A1)

After performing the simple outer integral, we arrive at

700 =21~ i (£54)). (A12)

Inserting this result into Eq. (A4), we finally arrive at the Hellings and Downs function, given in Eq. (45).

Appendix B: Probability distribution of timing power spectra

In this appendix we derive a simple estimate of the covariance matrix of the pairwise-time-residual cross power
spectra. This simple estimate is not meant to follow nor replace a realistic data analysis. Yet, it should provide
accurate qualitative scalings, and be quantitatively accurate at the factor-of-few level.
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1. Continuous sampling case

Let us suppose that we sample the time residuals R, (t) of each pulsar p continuously over some finite time interval
t € [-T,/2,T,/2]. Given a frequency f, we define

. Tp/2 )
r(=[ TR ) =T, [ dnra() sincta, (- 1)) (B1)

The covariance of these quantities is such that

By (NBG(1) = 51Ty [ dfiRy(1) sine(e T, (fy = £))sine(aT, (s — 1) (B2

where R, is the total timing residual cross-power spectrum, defined as in Eq. (33). Now, assume R,, varies on a
scale 6 f ~ f, and that T, f, T, f > 1. Suppose moreover, for definiteness, that 7}, > T,. The sinc function with 7T}, is
narrower, and can be approximated as

Tysine(x T, (f' — f)) ~ oo (f' — f). (B3)
We define T}, = min(T,,T,). We then get
(Ry (R () % 2Ry f)sine(w Ty~ 1), (B4)
Let us now define, for f >0
Ryal$) = 7= (BN () + o)1), (35)

From the previous result, (ﬁpq(f» = Rpg(f), which means that ﬁpq is an unbiased estimator of Rpq(f). Let us now
compute its covariance.

Cpqm’q’ (fv f/) = < (ﬁpq(f) - qu(f)) (ﬁp’q’(f/) - Rp’q’(f/)) > = <7€pq(f)7€p’q’(f/) - qu(f)Rp’q’(f/)>

= %{Tpp/sinc(prp/(f’ — ) Tygsine(n Ty (f = ) Rpp () Ry (f)

o Tgrsine(n Ty (' = ) Tapsine(w Ty (f' = )R (/R ()} (B6)
We now define
Trin = min(Typr, Tyq) = min(Tpy, Tgp ) = min(T,, T4, T, Ty), Th = max(Typ, Tyq), To =max(Tpy, Tey). (BT)
The broader sinc functions can be evaluated at f’ = f, and the expression above simplifies to

Tmin . .
Coarar (£ ) = e { Tisine(2 T3 (f' = )Ry (F)Rag () + Tasine(xTo(f' = )Ry (R (£) ). (BS)
pq+p'q’
This result shows that the estimators are correlated for frequencies separated by less than ~ 1/T, and that their
correlation drops for wider frequency separations.
Let us consider the bandpowers, centered at frequencies f, = nAf, where Af is some fixed bandwidth:

fnt+Af/2

Rpq,fn = /f df' Rpq(f')- (B9)

n—=Af/2

The unbiased estimator ﬁpqﬁ f,, is obtained by integrating ﬁpq( f) over a frequency band. Provided Af/f, < 1, we
have Rpq 1, = AfRpg(fn). The covariance of the bandpower estimators is obtained by integrating Eq. (B8) over the
bandwith A f for both frequencies f, f’. Provided T1Af, ToAf > 1, the sinc functions integrate out, and we are left
with

= S 6nn’Af
cov (qu,fna Rp’q’,fn/> ~ oT {Rpp’ (fn)qu’ (fn) + qu’ (fn)qu’ (fn)} = 5n,n’Af CIJ(fn)7 (BIO)
1J

where the indices I = (p, q),J = (p/, ¢') label pairs of pulsars, and
Try = max [min(T,, T,), min(T,, T,)] - (B11)
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2. Discrete sampling

Let us now consider the more realistic case where each pulsar p is timed at (N, +1) > 1 discrete times ¢, = kAty,

k=—N,/2,...,N,/2, where T,, = N,At,. Typically, At, ~ 2 — 4 weeks. We now define
Np/2 .
_ s T,(f1 — 1))
= At wifth R (tp) = T, / d sinc(n T, . B12
Rp(f) P Z € Rp( k) p flRp(fl)SinC(ﬂ'Atp(fl . f)) ( )

k=—N, /2

The derivation follows the same route as in the continuous case, except for the issue of aliasing, translated mathe-
matically by

sinc(nT(f — f)) - /

T R -1)"d — f—n/At). B13
A )~ 2 (D = f - /Al (B13)
n=-—oo

If the timing cross-power spectrum R,q(f) scales as f~%, with o > 1, then aliasing does not affect any of the
results above, as the contribution from higher-order multiples of 1/At, is negligible relative to the fundamental mode
n = 0. This is expected to be the case for p # gq. However, the single-pulsar timing residual power spectrum R, (f)

has a constant white noise piece P,(f) = 3,wnt0bs at sufficiently high frequencies, up to a maximum frequency
| fmax| = 1/tobs- Here tops is the duration of an individual observation (typically, tobs ~ 30 minutes), from which a
single, averaged “time of arrival” (TOA) is obtained, and ap wn 18 the variance of the timing residual (after fitting a

timing model) between individual observations. Thus we find

Aty /tobs
R (DR~ L Y Rypll = /Aty )sinc(aTy (1 — )) = “Lsine(xTy (' — 1)) (Ryp(F) +20%nA1y)
n=—Aty, /tobs
(B14)
Hence, the results obtained for the Continuum—sampling case carry over to the discrete-sampling case, provided one
1ncludes the white noise contribution 202 At, in pulsar autocorrelations. We emphasize that this term accounts for

p,wn
aliasing, i.e. from the white noise power at all harmonics of 1/At,, up to the maximum frequency 1/%obs.

Appendix C: Dense and isotropic pulsar distribution limit

In the limit where pulsars are densely and isotropically distributed across the sky, the Fisher matrix becomes
proportional to

a0 = [ @ @), x=0 0 )
oo (X i 47r Vpg ) X = .
Now remember that the pairwise timing response function is given by
sasbac sd
5 P9°4°¢" Tavea(2)
Y3 (82) = : (C2)
(1+p- Q1 +4-Q)
The double angular integral over pulsar directions can thus be factorized:
]:oo(Q : Q/) = ’zaba’b’ (Q; Q/)ja’b’c’d’ (Q/)’ac’d’cd((l/a Q)jcdab(Q)v (CS)
” A A d? ﬁ ﬁaﬁbﬁa’ﬁb’
ICabart Q,Q, E/ C4
abab( ) Ar (1+p Q)(1+p Q') ( )

Since JTg/prerar (Q ) is orthogonal to () in all indices, and trace-free in the first and last pairs of indices, one may replace

Kavarty (Q 94 ) by its projection orthogonal to (Y and trace free on the right two indices. The same holds for the left
two indices. Upon projecting on Z, we find

]:oo (Q . Q/) =4 ’Caba 'y’ (Q Ql)’caba'b'(Q Q/) (05)
N ~ 25 i I l ’ T 5 L/ 5%//
Kapary (2, Q) = / 9 Faty = 5() S o) (P P = 5 () 0y). (C6)
A (1+p- DA +p-2)
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where p- =p— (p- N)Q and pL' =p— (p- V).
The tensor Kupapr (£2,€)) is symmetric, trace-free and orthogonal to €2 in its first two indices, and symmetric,

trace-free and orthogonal to Q) in its last two indices. It therefore has 4 independent components.
Given the preferred directions €2,€)’, one may construct two rank-2 tensors that are symmetric, trace-free and
orthogonal to £ on both indices. Defining V' = € x )/, those two tensors are

AQ, M) = —xD) @ (Y —x) - VeV, BOY) = —xQ)oV+Ve (@ —x). (C7)

Note that both € — xQ and V have norm /1 — x2, where xy = Q- {, which is why A is indeed trace-free.
Therefore the rank-4 tensor K(€2, ') ought to take the form:

KO, Q) = AAS, Q) @ A, Q) + BB(Q, Q) @ B, Q) + CAS, ) @ B, Q) + DB(Q, Q) ALY, Q), (C8)

where A, B, C, D only depend on x. Now, K is symmetric under exchange of the first two indices and last two indices,

smlultaneously with exchange of €2, €. Slnce B(Q’ 0) = —B(Q Q) (if we do not change the definition of V' = Qx (),
then we must have D = —C. Lastly, K(—, —Q') = K(Q2, ('), which implies C = D = 0. We have thus found that

K(Q, Q) = A(x) A, Q) @ A, Q) + B(x) B(Q,Q) @ B, Q) (C9)

The desired function is the contraction of I with itself in its first two indices and in its last two indices. Using the
fact that (A : B) = AuBa = 0, we get

Fo(x) =4 [A*(A: A + B*(B:B)?]. (C10)
Lastly, we have
A:A=2(1-\*?>=B:B. (C11)
Hence we have found
Foo(x) = 16(1 — x*)* [A% + B?]. (C12)

50 (X)
The next step is now to determine A(x) and B(x). We do so by computing the following contractions:

Q) : ALY =1 -2 = eV):BQ,Q), (C13)
Q@ eV):AQQ)=0= (A Q) :B(,Y) (C14)

We therefore arrive at
(1—xD*A=( X 2Q): KO,Y): (Qe0), (C15)
1-3)*B=(Q@aV):KO,): (VeQ). (C16)

It is now “only a matter of” computing these contractions, which are scalar integrals. To do so, let us introduce some
notation:

e=p-Q y=p-Q, Pla,y,x)=1-x"—2" -y’ +2xay = (V-p)> > 0. (C17)
We then get
- N 1 1
0, (pépzf - 2(1*)25&) (y—x2)* = 51 =x)(1 =2 = S(1=x*)(1 - 2”) = Plx,y,x),  (C18)
1
i (92t~ 567255 = (4= @)V -5 = £ — X0V Pl (©19)
So we find
a?p [5(1 = x*) (1 —2?) — P(z,y,x)] [5(1 —x*)(1 —y*) — P(z,y, x)]

(1+z)(1+y)

d?p (y — xx)(z — xy) P(x, 9, x)
m T+o)+y) (C20)

_

\

=

[\

=

=

=

I
— —
5



Now recall, from Appendix A, that
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d*p = M (C21)
VP(2,y,x)
Evaluating the integrals, and simplifying, we find
1—x)? 1+ 1—
(=) = B (- a0 +30 - tog T 1Y) (c22
1—x)? 1—
(=800 = S0 (G D=2 - 300 - o 5. (c2)

After simplifying, we thus arrive at our final expression, Eq. (71).
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