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We present the new recombination code hyrec-2, holding the same accuracy as the state-of-the-
art codes hyrec and cosmorec and, at the same time, surpassing the computational speed of the
code recfast commonly used for CMB-anisotropy data analyses. hyrec-2 is based on an effective
4-level atom model, accounting exactly for the non-equilibrium of highly excited states of hydrogen,
and very accurately for radiative transfer effects with a correction to the Lyman-α escape rate. The
latter is computed with the original hyrec, and tabulated, as a function of temperature, along
with its derivatives with respect to the relevant cosmological parameters. This enables the code to
keep the same accuracy as the original hyrec over the full 99.7% confidence region of cosmological
parameters currently allowed by Planck, while running in under one millisecond on a standard
laptop. Our code leads to no noticeable bias in any cosmological parameters even in the case of
an ideal cosmic-variance limited experiment up to ` = 5000. Beyond CMB anisotropy calculations,
hyrec-2 will be a useful tool to compute various observables that depend on the recombination and
thermal history, such as the recombination spectrum or the 21-cm signal.

I. INTRODUCTION

The recombination history of the Universe is a key part
of the physics of Cosmic Microwave Background (CMB)
anisotropies, the epoch of the dark ages leading to the for-
mation of the first stars, as well as the formation of cos-
mic structure. When exactly free electrons got bound in
the first helium and hydrogen atoms determines, first, the
epoch of photon last scattering, thus the sound horizon.
This scale is imprinted into CMB power spectra and the
correlation function of galaxies, and serves as a standard
ruler [1]. The abundance of free electrons also sets the
photon diffusion scale, hence the damping of small-scale
CMB anisotropies [2]. Lastly, the free-electron fraction
determines the epochs of kinematic and kinetic decou-
pling of baryons from photons, hence the thermal history
of the gas, as well as the formation of the first stars and
structures.

The basic physics of hydrogen recombination were laid
out in the late sixties in the seminal works of Peebles
[3] and Zeldovich, Kurt, and Sunyaev [4]. Their sim-
ple but physically accurate effective 3-level model was
largely unchanged until the late nineties (see Ref. [5] for
an overview of recombination studies till then), except for
improvements in the atomic-physics calculations of case-
B recombination coefficients [6]. In 1999, motivated by
the approval of the WMAP [7] and Planck [8] satellites,
Seager, Sasselov & Scott conducted the first modern, de-
tailed recombination calculation [9], explicitly account-
ing for the non-equilibrium of highly excited hydrogen
energy levels (but assuming equilibrium amongst angu-
lar momentum substates). They found that the result
of their 300-level calculation could be accurately repro-
duced by an effective 3-level atom model, with the case-B
recombination coefficient multiplied by a “fudge factor”
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F = 1.14 [10]. This model was implemented in the code
recfast, which was used for cosmological analyses of
WMAP data [11], for which it was sufficiently accurate.

It was realized in the mid-2000’s that the rec-
fast model for hydrogen recombination would not be
sufficiently accurate for the analysis of Planck data, as it
neglected a variety of physical effects that matter at the
required sub-percent level of accuracy (see Ref. [12] for
an overview of progress by the end of that decade). On
the one hand, the angular momentum substates of the
excited states of hydrogen are out of equilibrium, which
leads to an overall slow-down of recombination [13–16].
On the other hand, a variety of radiative transfer effects
have to be accounted for, such as feedback from higher-
order Lyman transitions, frequency diffusion due to res-
onant scattering, and two photon transition from higher
levels [17–24].

While conceptually straightforward, the inclusion of
hydrogen’s angular momentum substates presented a
considerable computational challenge with the standard
multilevel method. Indeed, Refs. [15, 16] showed that
a recombination history converged at the level needed
for Planck requires accounting for at least 100 shells of
hydrogen energy levels, corresponding to about 5000 sep-
arate states. The standard multilevel approach required
solving large linear systems at each time step, and even
the fastest codes took several hours per recombination
history on a standard single-processor machine [16]. This
aspect of the recombination problem was solved conclu-
sively a decade ago in Ref. [25], where it was shown that
the non-equilibrium dynamics of the excited states can
be accounted for exactly with an effective few-level atom
model (in practice, 4 levels are enough), with effective
recombination coefficients to the lowest excited states ac-
counting for intermediate transitions through the highly
excited states (see also [26, 27] for an independent dis-
covery of the method). In contrast with recfast’s
fudged case-B coefficient, these effective rates are exact,
temperature-dependent atomic physics functions. Once
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this computational hurdle was cleared, efficient methods
to solve the radiative transfer problem were developed
shortly after, leading to the fast state-of-the-art public
recombination codes hyrec [28] and cosmorec [29], in
excellent agreement with one another despite their differ-
ent radiative transfer algorithms. The residual theoret-
ical uncertainty of these codes is estimated at the level
of a few times 10−4 during hydrogen recombination, due
to the neglect of subtle radiative transfer effects [30] and
collisional transitions [16], whose rates are uncertain.

The accuracy requirement for helium recombination is
not as stringent as it is for hydrogen, given that it re-
combines well before the time at which most CMB pho-
tons last scattered. Still, a variety of important radia-
tive transfer effects must be accounted for at the level
of accuracy required for Planck, such as the photoioniza-
tion of neutral hydrogen atoms by resonant 584 Å pho-
tons and the emission of intercombination-line photons
at 591 Å [31–35]. These effects are included numerically
in cosmorec and through fast analytic approximations
in hyrec, accurate within 0.3%, which is sufficient for
Planck. In the rest of this paper, we focus on hydro-
gen recombination. We defer the task of extending our
approach to helium to future work.

Both hyrec and cosmorec are interfaced with the
commonly used Boltzmann codes camb [36, 37] and
class [38], and are able to compute a recombination
history in about half a second on a standard laptop.
Still, the default code for the cosmological analysis of
Planck data has remained recfast [39], further modi-
fied to approximately reproduce the output of hyrec and
cosmorec. The non-equilibrium of angular momentum
substates is approximately accounted for by lowering the
case-B coefficient fudge factor from 1.14 to 1.125. Radia-
tive transfer physics are approximately mimicked by in-
troducing a double-Gaussian “fudge function”, correcting
the net decay rate in the Lyman-α line1. The advantage
of this re-fudged recfast over hyrec and cosmorec re-
mains speed: by not explicitly solving a radiative transfer
problem, recfast computes a recombination history in
about 0.03 second on a standard laptop. The recombi-
nation calculation is not parallelizable, in contrast with
the computation of the transfer functions of independent
Fourier modes in a Boltzmann code. Therefore, the ad-
ditional time spent by hyrec and cosmorec can be the
bottleneck of CMB anisotropy calculations, which may
explain the choice of using recfast over its more mod-
ern, accurate and versatile counterparts for Planck anal-
yses.

As we confirm in this work, the re-fudged recfast is
sufficiently accurate for the analysis of Planck data, in
the sense that it leads to biases in cosmological para-

1 To our knowledge, there is no publication describing how the
form of the fudge function and the best-fit parameters were de-
termined, nor quantifying the residual error and its impact on
cosmological parameter estimation for future experiments.

maters much smaller than their statistical uncertainties.
However, Planck is not the final CMB-anisotropy mis-
sion: the Simons Observatory [40] and CMB stage-IV [41]
which are ground-based surveys, will have more than 10
times better sensitivity with a comparable sky coverage;
the proposed CORE satellite [42] will have 10-30 times
better sensitivity with full sky coverage. It is unclear
whether recfast is sufficiently accurate for future CMB
missions, nor whether simple additional fudges would be
sufficient.

In this paper, we describe the new recombination code
hyrec-22, able to compute a recombination history with
virtually the same accuracy as the original hyrec, in un-
der 1 millisecond on a standard laptop. Our new code
therefore surpasses recfast in both accuracy and speed,
and ought to become the standard tool for the analysis
of future CMB-anisotropy data. hyrec-2 is based on
an effective 4-level atom model, accounting exactly for
the non-equilibrium of excited states of hydrogen [25],
hence accurately capturing the low-redshift tail of recom-
bination, without requiring any fudge factors. Radiative
transfer effects are accounted for with a redshift- and
cosmology-dependent correction to the Lyman-α net de-
cay rate, exact up to errors quadratic in the deviations
of cosmological parameters away from the Planck 2018
best-fit cosmology [39]. We check the accuracy of our new
code extensively by sampling the full 99.7% confidence
region of the Planck posterior distribution (assuming a
Gaussian distribution), and verifying that the tiny dif-
ference with hyrec leads to negligible biases, even for
futuristic CMB missions for which recfast would be in-
sufficiently accurate.

The rest of this paper is organized as follows. In Sec-
tion II, we briefly review hydrogen recombination physics
and lay out the exact effective 4-level atom equations. In
Section III, we describe hyrec-2, and quantify its accu-
racy in Section IV. We conclude in Section V. Appendix
A provides explicit equations for the correction functions
used in hyrec-2. In Appendix B, we provide the equa-
tions used in recfast in our notation, for completeness
and ease of comparison.

II. HYDROGEN RECOMBINATION PHYSICS

A. Recombination phenomenology

The basic phenomenology of hydrogen recombination
has been well understood since the late sixties, with the
seminal works of Peebles [3] and Zeldovich, Kurt, and
Sunyaev [4]. We briefly summarize the essential physics
here (see e.g. [43] for more details) and introduce some
of the notation along the way.

2 hyrec-2 is available at https://github.com/nanoomlee/HYREC-
2
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Direct recombinations to the ground state are ineffec-
tive, as the emitted photons almost certainly reionize an-
other hydrogen atom. Therefore, recombinations proceed
through the excited states, with principal quantum num-
ber n > 1. Once an electron and a proton bind together,
the newly formed excited hydrogen atom undergoes rapid
transitions to other excited states, and eventually either
gets photoionized again by thermal CMB photons, or
reaches the lowest excited state n = 2, with angular mo-
mentum substates 2s and 2p. The net flow of electrons
to the 2s and 2p states is described by effective recom-
bination coefficients A2s(Tm, Tr),A2p(Tm, Tr), which are
pure atomic physics functions depending on matter and
radiation temperatures only [25] (see also [26, 27]).

Once in one of the n = 2 states, a hydrogen atom
has three possible fates. First, it may get directly or
indirectly photoionized by thermal CMB photons, with
effective photoionization rates B2s(Tr), B2p(Tr), depend-
ing on the radiation temperature only [25] and related to
the effective recombination coefficients through detailed
balance relations. Second, it may indirectly transition
to the other n = 2 state through intermediate tran-
sitions to higher excited states; the effective transition
rates R2s,2p(Tr) = 3R2p,2s(Tr) are also pure functions
of atomic physics which only depend on the radiation
temperature [25]. Last, but not least, it may decay to
the ground state. From the 2p state, hydrogen can ef-
ficiently decay to the ground state through the allowed
Lyman-α transition; this resonant line is highly optically
thick, however, and the vast majority of Lyman-α pho-
tons end up re-exciting another ground-state atom. The
net transition rate in the Lyman-α line is therefore, ap-
proximately the rate at which photons redshift out of
the resonance due to cosmological expansion. For a sub-
percent accuracy, one must calculate the net decay rate
by solving the radiative transfer equation for resonant
photons, accounting for feedback from higher-order Ly-
man lines [17, 18], two-photon transitions from higher
levels [19, 20], time dependent effects [21], and frequency
diffusion in Lyman-α [22–24]. From the 2s state, hydro-
gen may directly decay to the ground state through a
“forbidden” two-photon transition. While this transition
is optically thin, the net decay rate is affected by the
re-absorption of non-thermal photons redshifting out of
the Lyman-α resonance [44], and the two-photon transi-
tion rate must be computed within the radiative transfer
calculation. We denote by ẋ2s|1s, ẋ2s|1s the net rates
of change of the fractional populations of n = 2 excited
states through transitions to the ground state.

At z & 800, atoms reaching the n = 2 states are more
likely to be photoionized than reaching the ground state.
Transitions to the ground state are thus the bottleneck
of the recombination process at high redshifts, and as a
consequence any error on the rates ẋ2s|1s, ẋ2p|1s directly
translates to an error on the overall recombination rate.
At z . 800, atoms that reach n = 2 almost certainly
decay to the ground state before being photoionized, and
the recombination dynamics is controlled by the rate of

recombinations to excited states, rather than decays to
the ground state.

B. General recombination equations

Once helium has fully recombined, the following equa-
tion governs the evolution of the free-electron fraction
xe:

ẋe =
∑

`=s,p

(
x2`B2` − nHx

2
eA2`

)
, (1)

where nH is the total hydrogen density (both neutral and
ionized), and x2s, x2p are the fractional abundances of
hydrogen in the first excited states. They are in turn de-
termined by solving the coupled quasi-steady-state rate
equations

0 ≈ ẋ2` = nHx
2
eA2` − x2`B2` + x2`′R2`′,2` − x2`R2`,2`′

+ ẋ2`|1s, (2)

where `′ = p if ` = s and vice-versa.
The state-of-the-art recombination codes hyrec [25,

28] and cosmorec [29] accurately compute the rates
ẋ2`|1s, hence the populations of the first excited states
x2` and the net recombination rate from Eq. (1) in their
default modes (in hyrec, the default mode is the “full”
mode). They do so by solving the time-dependent ra-
diative transfer equation, with different numerical algo-
rithms, and agree with each other within their quoted
uncertainty of a few parts in 104. While they are much
faster than the previous generation of recombination
codes, the ∼ 1 second per recombination history can be-
come the bottleneck of CMB power spectra calculations,
as it is not parallelizable.

C. Exact effective four-level equations

We may always formally write the net decay rate from
2` to the ground state in the form

ẋ2`|1s = −R2`,1s(z)
(
x2` − g2`x1se

−E21/Tr

)
, (3)

where g2s = 1 and g2p = 3 are the statistical weights
of the 2s and 2p states, and E21 ≈ 10.2 eV is the en-
ergy difference between the first excited state and the
ground state. In contrast with the effective rates A2`,
B2`, andR2`,2`′ , the ratesR2`,1s(z) are not just functions
of temperature: they depend on cosmological parameters
through the expansion rate and hydrogen abundance, as
well as on the full recombination history up to redshift z,
due to the time-dependent nature of radiative transfer.

Inserting Eq. (3) into the steady-state equations, one
can find explicit expressions for x2`:

x2` − g2`x1se
−E21/Tr =

nHx
2
eA2` − g2`x1se

−E21/TrB2`

Γ2` −R2`,2`′R2`′,2`/Γ2`′

+
R2`′,2`

Γ2`′
× nHx

2
eA2`′ − g2`′x1se

−E21/TrB2`′

Γ2`′ −R2`′,2`R2`,2`′/Γ2`
, (4)
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where Γ2` is the effective inverse lifetime of 2`:

Γ2` ≡ B2` +R2`,2`′ +R2`,1s, (5)

Inserting these expressions into Eq. (1), one finds [25]

ẋe = −
∑

`=s,p

C2`

(
nHx

2
eA2` − g2`x1se

−E21/Tr B2`

)
,(6)

where the C2`-factors are given by

C2` ≡
R2`,1s +R2`,2`′

R2`′,1s
Γ2`′

Γ2` −R2`,2`′
R2`′,2`

Γ2`′

(7)

The C2` factors generalize Peebles’s C-factor [28]: they
represent the effective probabilities that an atom starting
in 2` reaches the ground state rather than the continuum,
either directly, or after first transitioning to the other
n = 2 state. This is best seen by rewriting them in the
form

C2` =
R2`,1s +R2`,2`′

R2`′,1s
Γ2`′

B2` +R2`,2`′
B2`′
Γ2`′

+R2`,1s +R2`,2`′
R2`′,1s

Γ2`′

. (8)

These simple equations are exact, provided that one uses
exact rates R2`,1s. They form the basis of hyrec-2,
which we describe in the next Section.

III. HYREC-2 EQUATIONS

The computational bottleneck of the exact calculation
of the recombination history comes from the evaluation
of the net decay rates from the first excited states to the
ground state, ẋ2s|1s and ẋ2p|1s, or equivalently, the coef-
ficients R2s,1s, R2p,1s. The basic idea of hyrec-2 is to
use a simple analytic base model for these rates, along
with numerical corrections pre-tabulated with hyrec.
We now describe the simple base model.

A. The base approximate model

Neglecting stimulated 2-photon decays [19], and ab-
sorption of non-thermal photons redshifted out of the
Lyman-α line [44, 45], as well as Raman scattering [45],
and higher-order Lyman transitions3 [17, 18], the net
2s − 1s decay rate can be approximated as the spon-
taneous 2s − 1s 2-photon decay rate Λ2s,1s [46], as was
originally done in [3, 4]:

R2s,1s ≈ Λ2s,1s ≈ 8.22 s−1. (9)

3 Since the 3p state is very nearly in thermal equilibrium with the
2s state at early times, Ly-β decays can be recast in terms of
effective 2s− 1s transitions, see [28].

In the limit of an infinitely narrow Lyman-α reso-
nance, and neglecting corrections due to higher-order
two-photon transitions [45, 47, 48], frequency diffusion
[23, 24], and feedback from higher-order Lyman transi-
tions [17, 18], the net 2p− 1s decay rate can be approxi-
mately obtained with the Sobolev approximation [9]:

R2p,1s ≈ RLyα ≡
8πH

3nHx1sλ3
Lyα

, (10)

where H is the Hubble rate, λLyα ≈ 1216 Å is the wave-
length of the Lyman-α transition, and x1s ≈ 1−xe is the
fraction of hydrogen in the ground state.
hyrec’s-emla2s2p mode consists in solving the 4-

level equations (6)-(7), withR2s,1s = Λ2s,1s andR2p,1s =
RLyα. While this mode neglects a variety of radiative
transfer effects, listed earlier, it accounts exactly for non-
equilibrium of the excited states of hydrogen, up to an
arbitrarily high number of states, through the effective
rates A2`, B2`, and R2`,2`′ .

Fig. 1 shows the difference between the time deriva-
tives ẋe in the full and emla2s2p modes, both evalu-
ated at the same redshift and same value of xe. We see
that the difference becomes negligible at z . 800. This is
expected, as at low redshifts the net recombination rate
is controlled by the efficiency of recombinations to the
excited states (which are modeled exactly through the
effective recombination coefficients), rather than decays
to the ground state. We see that the fractional differ-
ence ∆ẋe/ẋe (blue dotted curve) remains at the level of
a few percent even at z ∼ 1700. Nevertheless the differ-
ence ∆ẋe/Hxe (orange solid curve) becomes negligible at
z & 1600. As a consequence this high-redshift fractional
difference does not result in significant absolute differ-
ences in the free-electron fraction, let alone observable
effects in CMB anisotropies.

B. Correction function

The idea behind hyrec-2 is simple: we want to find
a correction to the net 2p − 1s decay rate that repro-
duce exact calculations as accurately as possible. Our
approach is similar in spirit to the analytic approxima-
tions presented in Refs. [23, 45], except the correction we
compute is numerical and exact, for a given cosmology.
Similar corrections are implemented in the current ver-
sion of recfast, as well as in recfast++ [29], but our
implementation improves on both of these codes in the
following ways. First and foremost, the base model of
hyrec-2 accounts exactly for the effect of highly-excited
states, through the effective rates, while the base model
of recfast and recfast++ is Peebles’ effective three-
level atom. We describe this model in Appendix B for
completeness. Second, we tabulate the corrections as a
function of radiation temperature, rather than fit them
with phenomenological functions as is done in recfast.
Third, we implement corrections directly at the level of
the free-electron fraction derivative ẋe rather than at the
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FIG. 1. Blue dotted curve: Fractional difference in the
rate of change of the free-electron fraction as a function of
redshift between hyrec-emla2s2p and hyrec-full. Note
that this difference is computed at the same value of xe.
This difference shows the additional effect of solving radia-
tive transfer equations for the photon population. Orange
solid curve: Absolute difference in the logarithmic derivative
d lnxe/d ln a = ẋe/(Hxe). This shows that at low redshifts
z . 800 and high redshifts z & 1600 the emla2s2p model
is accurate enough, but in the intermediate region a detailed
radiative transfer calculation is important.

level of the free-electron fraction as done in recfast++.
Last but not least, we compute the correction function
not just at a fiducial cosmology, but around it, by also
tabulating its derivatives with respect to relevant cosmo-
logical parameters.

In more detail, hyrec-2 solves the 4-level equations
(6)-(7), with

R2s,1s = Λ2s,1s, R2p,1s =
RLyα

1 + ∆(z)
. (11)

The dimensionless correction ∆(z) is solved for by impos-
ing that ẋhyrec-2e (z, xfulle ) = ẋfulle (z, xfulle ). Note that
the two derivatives are evaluated at the same value of
the free-electron fraction, computed in hyrec’s default
full mode. This enforces that the two solutions are also
identical (within machine precision), xhyrec-2e = xfulle .
Given that the emla2s2p mode is obtained by setting
∆ = 0, the correction ∆ is proportional to ẋemla2s2pe −
ẋfulle . For completeness, we provide the explicit equa-
tion for ∆ in Appendix A.

In principle, one could define two correction functions:
one for the 2-photon decay rate R2s,1s in addition to
the correction to the net Lyman-α decay rate R2p,1s.
One could solve for the two corrections by imposing that
Eq. (4) reproduces the fractional abundances x2s, x2p

computed in hyrec’s full mode. We have opted to not
follow this route, however, as one single correction func-
tion is sufficient to reproduce the exact ẋe. Moreover, at
z & 800 the populations of the excited levels depend only

weakly on the rates of decay to the ground state, as they
are subdominant to photoionizations and indirect tran-
sitions to the other excited state, thus the problem may
be numerically ill-posed – in other words, corrections in
the 2s − 1s and 2p − 1s net decay rates are essentially
degenerate at high redshift, thus it is more robust to only
compute one single correction.

C. Cosmology dependence

The recombination rate, thus correction function ∆(z),
depend not only on redshift, but also on cosmological
parameters, through the hydrogen abundance nH, radia-
tion temperature today T0 and the Hubble rate H. It was
shown in Ref. [49] that the dependence on T0 can be fully
reabsorbed by expressing H and xe as a function of radi-
ation temperature Tr = T0(1 + z), rather than redshift,
and as a function of the baryon-to-photon and matter-
to-photon number ratios, proportional to the rescaled pa-
rameters

ω̂b ≡ ωb(TFIRAS
0 /T0)3, (12)

ω̂cb ≡ ωcb(TFIRAS
0 /T0)3, (13)

where TFIRAS
0 ≡ 2.7255 K is the fiducial CMB tempera-

ture measured by FIRAS [50], and ωb, ωcb are the density
parameters for baryons and baryons + cold dark matter,
respectively.

The Hubble rate, expressed as a function of photon
temperature, then only depends on ω̂cb, the effective
number of relativistic species Neff (assuming the stan-
dard neutrino-to-photon temperature ratio), and neu-
trino masses. Given the current upper limits on the sum
of neutrino masses

∑
mν < 0.12 eV [39], neutrinos are

relativistic at the relevant redshifts z & 800, thus the
Hubble rate and ∆ is very weakly dependent on

∑
mν .

We checked explicitly that the dependence of ∆ on neu-
trino masses is completely negligible, given the current
upper limits.

In principle, the correction function ∆(z) depends on
both ω̂b and the helium mass fraction YHe: the hydrogen
density is proportional to ω̂H ≡ ω̂b(1−YHe), and the evo-
lution of the matter temperature depends on the total
number density of free particles, hence on the helium-to-
hydrogen number ratio fHe = (mH/mHe)YHe/(1 − YHe).
However, the matter temperature only starts departing
from the radiation temperature at z . 200, and is in tight
equilibrium with it at z & 800, during which the radia-
tive transfer correction is relevant. The dominant effect
of helium abundance variations is therefore included in
the parameter ω̂H, and we do not account for any de-
pendence of ∆(z) on YHe beyond this parameter. To be
clear, the code does self-consistently include the YHe de-
pendence on the matter temperature evolution, but we
do not propagate this dependence to ∆(z), as it is neg-
ligible at z & 800. Throughout this paper YHe is set by
the BBN constraint [51] and not considered as a free pa-
rameter for the bias analysis in Section IV C. However,
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our formulation of the cosmology dependence in terms of
ω̂H is fully general and allows for arbitrary values of YHe,
including outside the BBN relation.

Lastly, the recombination history can be affected by a
variety of processes that might have injected energy, such
as particle annihilation [52–54] or decay [55–59], primor-
dial black hole evaporation [60, 61] or accretion [62–64].
These effects are accounted for in hyrec-2 by adding
source terms in the differential equations for xe and Tm
(see e.g. Ref. [54, 64] for details). In principle, the cor-
rection function ∆ also depends on these effects. For
instance, ∆ does depend on the dark matter annihilation
parameter pann = 〈σv〉/mχ. We checked explicitly that,
neglecting this dependence leads to a fractional error in
xe under 3× 10−4 when pann is increased up to Planck’s
3σ upper limit. This error is comparable to the esti-
mated uncertainty in hyrec and is certainly well below
the theoretical uncertainty on the effect of dark matter
annihilation on the recombination history. It is therefore
safe to neglect the dependence of the correction function
on pann and other energy-injection parameters.

In summary, the correction function ∆(z) = ∆(Tr; ~p)
depends on cosmology through 3 cosmological parame-
ters which we group in the vector ~p:

~p ≡ (ω̂H, ω̂cb, Neff). (14)

Since cosmological parameters are already tightly deter-
mined by CMB observations, the correction function at
any set of cosmological parameters ~p is well approximated
by a linear expansion around the Planck best-fit param-
eters ~pf , which we refer to as the fiducial model:

∆(Tr; ~p) ≈ ∆(Tr, ~pf ) + (~p− ~pf ) · ∂∆

∂~p
|~pf . (15)

We therefore compute and store a total of four functions
of radiation temperature, or equivalently fiducial redshift
zf ≡ Tr/TFIRAS

0 −1. We list the adopted fiducial param-
eters in Table I. We show the function ∆(z, ~p) for param-
eters near the fiducial model in Fig. 2, and its derivatives
with respect to cosmological parameters in Fig. 3. We
tabulate the correction functions over the fiducial red-
shift range 650 ≤ zf ≤ 1620.

D. Numerical integrator and runtime

The radiative transfer equation solved in hyrec’s de-
fault full mode is a partial differential equation, and
as a consequence the timestep is tied to the frequency
resolution, and must be sufficiently small to ensure con-
vergence. For reference, the default logarithmic step in
scale factor is ∆ ln a = 8.49 × 10−5 (to compute the
correction functions at high redshift, we used an even
smaller timestep for increased accuracy). On the other
hand, hyrec-2 only solves an ordinary differential equa-
tion (ODE), and the timestep can be considerably in-
creased at no noticeable cost in accuracy, provided one

Parameter Fiducial Value

ω̂H ≡ ωb(1 − YHe)(TFIRAS
0 /T0)3 0.01689

ω̂cb ≡ ωcb(T
FIRAS
0 /T0)3 0.14175

Neff 3.046

(mν1,mν2,mν3) (0, 0, 0.06) eV

TABLE I. Cosmological parameters relevant to hydrogen re-
combination, along with the adopted fiducial values (derived
from the Planck 2018 results [39]), at which we compute the
correction function and its first derivatives. For neutrinos, we
adopt the same fiducial cosmological model as the Planck col-
laboration, with two massless neutrinos, one massive neutrino
with mass 0.06 eV, and Neff = 3.046. Note that we only use
derivatives of the correction function with respect to ω̂H, ω̂cb
and Neff , as we found that its dependence on neutrino masses
is negligible.

800 1000 1200 1400 1600

z

−0.15

−0.10

−0.05

0.00

0.05

0.10
Correction Function

recfast

hyrec-2

FIG. 2. Correction to the Lyman-α decay rate ∆(z) for the
fiducial cosmology, defined in Eq. (11) (orange). Note that
the correction function is technically a function of radiation
temperature ∆(Tr); it is shown as a function of redsfhift for
the fiducial value of T0 = TFIRAS

0 . The gray band shows the
span of the correction function when varying cosmological pa-
rameters within Planck ’s full confidence region (see Fig. 4).
For reference, the blue dashed curve shows the cosmology-
independent fudge function adopted in recfast, which is a
sum of two Gaussians in redshift. Note that the base models
used in hyrec-2 and recfast are different, so the two cor-
rection functions dot not strictly have the same definition, see
Appendix B for more details.

uses a sufficiently high-order numerical integrator. We
found that we could safely increase the logarithmic step
in scale factor to ∆ ln a = 4 × 10−3 at virtually no loss
of accuracy, using a 3rd order explicit integrator. At
early times, when the ODE is stiff, we use an expansion
around the Saha equilibrium solution (see Ref. [28]). To
make the code stable we use a smaller time step during
and slightly after this phase. With our setup, we checked
that the fractional difference in xe due to the increased
timestep is less than 10−4 at all redshifts, comparable to
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800 1000 1200 1400

z

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

0.004

∂∆
∂p |~pf ×∆p

p = ŵcb, ∆p = 9.2× 10−3

p = ŵH , ∆p = 4.2× 10−4

p = Neff , ∆p = 0.53

FIG. 3. First derivatives of the correction function ∆(z) with
respect to the 3 relevant cosmological parameters p, multi-
plied by ∆p corresponding to Planck ’s 3σ confidence interval.

the estimated uncertainty in hyrec.
The simple ODE solved in hyrec-2, combined with a

larger timestep, considerably reduces the recurring com-
putation time, to less than 1 millisecond per cosmological
model on a standard laptop, see Tab. II for a compari-
son with hyrec-full and recfast. With this short run
time, the recombination history calculation is never the
bottleneck of CMB anisotropy Boltzmann codes.

Code hyrec hyrec-2 recfast

Run time (ms) 409 0.76 23

TABLE II. Default run time of each code. Note that this is
the recurring run time, which does not account for the loading
of data in hyrec-2, as this needs to be done once and for all.
The run times are calculated on a standard laptop (2.0 GHz
Intel i5 processor, 16 GB of RAM).

IV. ACCURACY OF HYREC-2

A. Sample cosmologies

To check the accuracy of hyrec-2, we ran-
domly generated ten thousand sample cosmologies
from the 8-dimensional Gaussian likelihood derived
from the Planck 2018 covariance matrix [39] (TT,
TE, EE+lowE+lensing+BAO, 2-parameter extension)4,
shown in Fig. 4. As can be seen in Fig. 4, most samples
are within the 99.7% confidence region, and there are a

4 base nnu mnu plikHM TTTEEE lowl lowE lensing BAO.covmat
from https://wiki.cosmos.esa.int/planck-legacy-
archive/index.php/Cosmological Parameters.

handful of samples outside, as expected. We use these
sample cosmologies to check the accuracy of hyrec-2
compared to the reference model, the original hyrec.

B. Accuracy of the free-electron fraction

The fractional difference in the free-electron fraction
xe(z) computed in hyrec and hyrec-2 is shown in the
top panel of Fig. 5, for a broad range of cosmological
parameters. As the plots show, the fractional difference
is less than 10−4 when cosmological parameters are varied
within Planck ’s 99.7% confidence region. This is lower
than the estimated uncertainty in hyrec.

The ∼ 5 × 10−5 feature at z ≈ 1600 is due to the dif-
ferent times at which stiff approximations are turned on,
and has no observational consequence whatsoever. Note
that even though we neglect the dependence of the cor-
rection function on neutrino masses, the code remains
accurate even when they are varied away from their fidu-
cial values, within Planck’s 3σ limits.

For comparison, we show the fractional difference be-
tween recfast and hyrec in the lower panel of Fig. 5,
for the same parameters. This difference is up to two
orders of magnitude larger: it gets as large as ∼ 4×10−3

at z & 200, and grows to ∼ 1% at z . 100. As we
will show in more detail in Section IV C, this difference
is negligible for Planck, but can lead to non-trivial biases
for next-generation CMB experiments.

C. Bias of cosmological parameters

The metric with which the accuracy of an approximate
recombination code is to be measured is the biases it in-
duces on cosmological parameters. In the limit of small
errors, these biases are directly proportional to the error
in CMB anisotropy angular power spectra, C`. For illus-
tration, we show in Fig. 6 the error in the temperature
power spectrum CTT

` for a variety of cosmological param-
eters varied within the Planck 99.7% confidence region.
We see that hyrec-2 is more accurate than recfast by
more than one order of magnitude at small angular scales.

We can estimate the biases from a simple Fisher analy-
sis. We denote by C ≡ {CTT

` , CTE
` , CEE

` , Cdd
` } the vector

containing all the temperature and polarization power
spectra and cross-spectra, as well as the power spectrum
of lensing deflection. We denote by Σ their covariance
matrix, which we describe in more detail below. The
chi-squared of a set of cosmological parameters ~p is

χ2(~p) =
(
C(~p)− Ĉ

)
·Σ−1 ·

(
C(~p)− Ĉ

)
, (16)

where Ĉ is an estimator of C constructed from the data,
with covariance Σ. The best-fit cosmology ~pbf is found by
minimizing the χ2. Taylor-expanding around some fidu-
cial cosmology ~p0, and neglecting the terms proportional
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FIG. 4. Ten thousands sample cosmologies used to check the accuracy of hyrec-2, and for the bias analysis in Fig. 7. These
samples are drawn from a Gaussian distribution with covariance matrix provided by the Planck collaboration [39]. As expected
most of samples are within 99.7% confidence region.

to second derivatives of C` [65] we get

pibf − pi0 = Bi(~p0) ·
(
C(~p0)− Ĉ

)
, (17)

Bi ≡ −(F−1)ij
∂C

∂pj
·Σ−1. (18)

where Fij is the Fisher matrix, whose inverse is the
covariance of the best-fit cosmological parameters, and
whose elements are

Fij =
∂C

∂pi
·Σ−1 · ∂C

∂pj
. (19)

Suppose the data is a (noisy) realization of the cosmology

~p0, i.e. that, upon averaging over realizations, 〈Ĉ〉 =
C(~p0). If the theoretical model is unbiased, then the
best-fit parameters are also unbiased, i.e. such that, on
average over realizations, 〈~pbf − ~p0〉 = 0.

Now suppose that the theoretical model for C(~p) has
a systematic error ∆C:

C(~p) = Ctrue(~p) + ∆C(~p). (20)

The biased theoretical model leads to a systematic bias
in the best fit, with average

〈pibf − pi0〉 = Bi(~p0) ·∆C(~p0) (21)

≈ Bi(~pfid) ·∆C(~p0), (22)

where Bi was given in Eq. (18). For simplicity we ap-
proximated B(~p0) ≈ B(~pfid) in Eq.(22); this will not
affect the results since ∆C(~p0) is already a small quan-
tity. The error to this approximation would be a small
correction to a correction. The advantage of this approx-
imation is that we need to compute B only at the fiducial
cosmology.

Let us now evaluate these systematic biases for a few
idealized CMB observations. The covariance matrix Σ
has components [66]

ΣXY,WZ
``′ ≡ cov[ĈXY

` , ĈWZ
`′ ]

= δ``′
C̃XW` C̃Y Z` + C̃XZ` C̃YW`

fsky(2l + 1)
, (23)
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FIG. 5. Fractional differences in the free-electron fraction xe
of hyrec-2 (upper panel) and recfast (bottom panel) with
respect to the reference model hyrec-full. The small (<
10−4) fractional difference between hyrec-2 and hyrec for
the Planck best-fit cosmology is due to the different timesteps
in the two codes (moreover the correction function were com-
puted using a higher-accuracy mode of hyrec, with a smaller-
than-default timestep). The differences are calculated by
changing each parameter with Planck ±3σ. The shaded area
corresponds to the differences calculated with the 10,000 sam-
ple cosmologies shown in Fig. 4.

where, for X = T,E, d,

C̃XW` ≡ CXW` + δXWN
XX
` , (24)

where NXX
` is the instrumental noise, of the form [41]

NXX
` = NXX

0 exp

(
`(`+ 1)θ2

X

8 ln 2

)
. (25)

We adopt the noise parameters of Ref. [67] for Planck
and of Ref. [68] for a CMB stage-IV experiment, which
we summarize in Tab. III. Further, we consider an ideal-
ized Cosmic Variance Limited (CVL) case for which we
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FIG. 6. Fractional error in CTT` when using hyrec-2
(top) or recfast (bottom) instead of hyrec (in its default
full mode). The shaded area corresponds to the differences
calculated with the 10,000 sample cosmologies shown in Fig. 4.
In all cases, the C`’s are computed with the Boltzmann code
class [38]. Note that with the default precision settings of
class, for a few sample cosmologies the C`’s showed relatively
large errors at low-` (still . 4× 10−4); we checked that those
errors disappear once the precision of class is increased.

assume no instrumental noise in both temperature and
polarization up to ` = 5000 and full sky fsky = 1. In both
cases the lensing reconstruction noises are calculated us-
ing the code developed by [69].

Experiment Stage-IV CVL

NTT
0 (µK2) 3.38 × 10−7 0

NEE
0 (µK2) 6.77 × 10−7 0

θT , θE (arcmin) 1 `max = 5000

fsky 0.4 1

TABLE III. Noise parameters and the fraction of sky adopted
in the Fisher matrix estimates.
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We randomly choose various cosmologies from Planck
full confidence level as shown in Fig. 4 and fit each input
data (hyrec-full mode) to get the best fit of cosmolog-
ical parameters using each code, recfast and hyrec-2.
We first checked that if we use the Planck settings [39],
both codes lead to biases well below statistical uncer-
tainties, which confirms that recfast is good enough
for Planck data as established in [39, 51].

The difference between the best fit parameters and the
input parameters are shown in Fig. 7. The results in the
upper panel of Fig. 7 are obtained with the CMB S-4
setting described in Ref. [41], which is 2 ≤ ` ≤ 3000
for TT and 2 ≤ ` ≤ 5000 for TE, EE, and dd. The
bottom panel shows the corresponding biases for the ide-
alized experiment, assumed to be CVL for 2 ≤ ` ≤ 5000
both in intensity and polarization. Note that in princi-
ple the Gaussian approximation for the C ′`s (on which
the simple χ2 analysis implicitly relies) is inaccurate at
low `; however, we checked that by changing `min, i.e.
`min = 10, the low multipoles do not contribute much
to the biases and should not greatly affect the answer.
We see from Fig. 7 that in some cases, biases fall outside
the 68% confidence region of the CVL experiment when
using recfast. With hyrec-2, all biases remain much
smaller than statistical uncertainties, for the full range of
cosmologies allowed within the 99.7% confidence region
of Planck.

V. CONCLUSION

We have developed the new recombination code
hyrec-2, which combines high accuracy with extreme
computational efficiency. This new code is as accurate
as the original hyrec across the full range of currently
allowed cosmological parameters, and is 30 times faster
than recfast, with a recurring runtime under one mil-
lisecond on a standard laptop. This makes hyrec-2 the
fastest recombination currently available, by far.

hyrec-2 is based on an effective 4-level atom model,
which captures exactly the late-time (z . 800) recom-
bination dynamics. Radiative transfer effects, which are
relevant at early times, are accounted for through a nu-
merical correction to the Lyman-α net decay rate, tabu-
lated as a function of temperature using hyrec. In or-
der to achieve sub-0.01% accuracy across a broad range
of cosmologies, we also tabulated the derivatives of the
correction function with respect to cosmological param-
eters. We have checked explicitly that the ∼ 10−4 frac-
tional differences with hyrec result in no bias for any
cosmological parameters for current, planned, and even
futuristic CMB missions, for which recfast would not
be sufficiently accurate.

Our new recombination code will be most useful for
fast and accurate CMB-anisotropy calculations, required
to extract unbiased cosmological parameters from CMB-
anisotropy data. In addition, it will be a key tool to study
the CMB signatures of dark matter decay or annihilation

[52–54] other sources of energy injection [55, 59, 64], or
in general any non-standard physics that may affect the
recombination and thermal history [70].

Last but not least, in combination with the effective
conductance method [71], hyrec-2 can be used to ef-
ficiently compute the cosmological recombination spec-
trum [72]. This minute but rich signal is a guaran-
teed distortion to the CMB blackbody spectrum [13, 73].
Looking ahead, it may eventually become a powerful
probe of the early Universe [74–77], complementing CMB
anisotropies and opening up a new window into the Uni-
verse’s early thermal history.
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Appendix A: Explicit expression for the correction
function

Equation (6) can be rewritten as ẋe = −∑` C2`X2`,
where

X2` ≡ nHx
2
eA2` − g2`x1se

−E21/TrB2`. (A1)

In hyrec-2, R2s,1s = Λ2s,1s and R2p,1s = RLyα/(1 + ∆);
the emla2s2p mode has ∆ = 0. We therefore have

ẋhyrec−2
e (∆) =

ẋemlae +A∆

1 +B∆
, (A2)

with

A = −Λ2s,1s [(B2p +R2p,2s)X2s +R2p,2sX2p]

Γ2sΓ2p −R2s,2pR2p,2s
, (A3)

B =
Γ2s(B2p +R2p,2s)−R2s,2pR2p,2s

Γ2sΓ2p −R2s,2pR2p,2s
. (A4)

The correction ∆ is set such that ẋhyrec−2
e (∆) = ẋfulle .

Solving, we find

∆ =
ẋemlae − ẋfulle

Bẋfulle −A . (A5)

Appendix B: Equations for RECFAST in our
notation

1. Peebles’ effective three-level model

Peebles’ effective 3-level model [3] relies on two addi-
tional assumptions relative to the effective 4-level model
that we use. First, the two states 2s, 2p are assumed to
be in thermal equilibrium, x2s = x2p/3 ≡ x2/4, with
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FIG. 7. Bias in cosmological parameters when using hyrec-2 and recfast, assuming hyrec (in its default full mode) provides
the exact model. The top panel corresponds to CMB Stage-4 settings, and the bottom panel to an idealized CMB experiment,
cosmic-variance limited (CVL) in temperature and polarization up to `max = 5000. In both cases, hyrec-2 generates biases that
are negligibly small relative to the statistical uncertainty. For a CMB Stage-4 setup, the biases from recfast remain within
the 68% confidence region. For the CVL experiment, however, recfast leads to biases reaching beyond the 68% confidence
region in some instances.
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x2 ≡ x2s + x2p. The recombination rate (1) then simpli-
fies to

ẋe = x2BB − nHx2
eAB , (B1)

BB ≡
1

4
(B2s + 3B2p) , (B2)

AB ≡ A2s +A2p. (B3)

The population x2 of the first excited state is then ob-
tained by solving the steady-state equation,

0 ≈ ẋ2 = nHx
2
eAB − x2BB + ẋ2s|1s + ẋ2p|1s

≈ nHx2
eAB − x2BB

+
1

4
(Λ2s,1s + 3RLyα)×

(
4x1se

−E21/Tr − x2

)
,(B4)

where here again we used the simple approximations (9)
and (10) for the net decay rates to the ground state.
This equation can be easily solved for x2, which, upon
insertion into Eq. (B1), gives the closed form

ẋe = −C
(
nHx

2
eAB − 4x1sBBe−E21/Tr

)
, (B5)

where the Peebles C factor is given by

C ≡ Λ2s,1s + 3RLyα

4BB + Λ2s,1s + 3RLyα
. (B6)

This result can also be obtained from Eqs. (6) and (8)
using the detailed balance relation R2s,2p = 3R2p,2s,
and assuming that R2s,2p � Λ2s,1s + B2s and R2p,2s �
RLyα+B2p. This assumption is required to enforce equi-
librium between 2s and 2p regardless of the relative val-
ues of the other rates, and implies C2s = C2p = C. In
practice, it does not hold at low enough temperature,
z . 700.

In addition to this equilibrium assumption, the effec-
tive rates AB(Tm, Tr) and B(Tr) are approximated as
follows:

AB(Tm, Tr) ≈ αB(Tm) ≡ AB(Tm, 0), (B7)

BB(Tr) ≈ βB(Tr) ≡
(2πµeTr)

3/2

4h3
eE2/TrαB(Tr),(B8)

where E2 ≈ −3.4 eV is the energy of the first excited
state. In other words, the effective recombination coeffi-
cient is computed in the zero-radiation-temperature limit
and the photoionization rate is assumed to be given by
detailed balance, even though this is not self-consistent
with the zero-radiation-temperature assumption.

2. Fudge factors and functions

Since the zero-radiation-temperature effective recom-
bination coefficient systematically under-estimates the
exact effective recombination coefficient, the code rec-
fast introduces a “fudge factor” F > 1, and substitutes
αB → F × αB . The fudge factor was first estimated
to F ≈ 1.14 when enforcing equilibrium between angu-
lar momentum substates of excited states [9, 10]. Based
on the study of Ref. [12], which accounts for the non-
equilibrium of angular momentum substates, the cur-
rent version of recfast uses an updated fudge factor
F ≈ 1.125. It was shown in [25] that AB/αB lies indeed
in the range 1.12− 1.14, though it is not a constant but
depends on redshift.

The latest version of recfast corrects the net decay
rate in Lyman-α which is in our equation (11) (note,
however, that the base model is different). The function
∆(z) is a sum of two Gaussians, whose amplitudes and
widths were chosen to best mimick detailed calculations
of hyrec and cosmorec.

It should be clear that the three-level simplification
(and especially the fudging of AB) does not provide any
computational advantage over the already very simple ef-
fective 4-level model on which hyrec-2 is based.

[1] D. J. Eisenstein, W. Hu, and M. Tegmark, ApJL 504,
L57 (1998), arXiv:astro-ph/9805239.

[2] J. Silk, Astrophys. J. 151, 459 (1968).
[3] P. J. E. Peebles, Astrophys. J. 153, 1 (1968).
[4] Y. B. Zel’dovich, V. G. Kurt, and R. A. Syunyaev, J.

Exp. Theor. Phys. 28, 146 (1969).
[5] W. Hu, D. Scott, N. Sugiyama, and M. White, Phys.

Rev. D 52, 5498 (1995), arXiv:astro-ph/9505043.
[6] D. Pequignot, P. Petitjean, and C. Boisson, Astron. As-

trophys. 251, 680 (1991).
[7] C. L. Bennett et al., Astrophys. J. 583, 1 (2003),

arXiv:astro-ph/0301158.
[8] The Planck Collaboration, arXiv:astro-ph/0604069.

[9] S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J.
Suppl. 128, 407 (2000), arXiv:astro-ph/9912182.

[10] S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J.
523, L1 (1999), arXiv:astro-ph/9909275.

[11] G. Hinshaw et al., ApJS 208, 19 (2013), arXiv:1212.5226.
[12] J. A. Rubiño-Mart́ın, J. Chluba, W. A. Fendt, and B. D.

Wandelt, MNRAS 403, 439 (2010), arXiv:0910.4383.
[13] J. A. Rubiño-Mart́ın, J. Chluba, and R. A. Sunyaev,

MNRAS 371, 1939 (2006), arXiv:astro-ph/0607373.
[14] J. Chluba, J. A. Rubiño-Mart́ın, and R. A. Sunyaev,

MNRAS 374, 1310 (2007), arXiv:astro-ph/0608242.
[15] D. Grin and C. M. Hirata, Phys. Rev. D 81, 083005

(2010), arXiv:0911.1359.

http://dx.doi.org/10.1086/311582
http://dx.doi.org/10.1086/311582
http://arxiv.org/abs/astro-ph/9805239
http://dx.doi.org/10.1086/149449
http://dx.doi.org/10.1086/149628
http://dx.doi.org/10.1103/PhysRevD.52.5498
http://dx.doi.org/10.1103/PhysRevD.52.5498
http://arxiv.org/abs/astro-ph/9505043
http://dx.doi.org/10.1086/345346
http://arxiv.org/abs/astro-ph/0301158
http://arxiv.org/abs/astro-ph/0604069
http://dx.doi.org/10.1086/313388
http://dx.doi.org/10.1086/313388
http://arxiv.org/abs/astro-ph/9912182
http://dx.doi.org/10.1086/312250
http://dx.doi.org/10.1086/312250
http://arxiv.org/abs/astro-ph/9909275
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://dx.doi.org/ 10.1111/j.1365-2966.2009.16136.x
http://arxiv.org/abs/0910.4383
http://dx.doi.org/ 10.1111/j.1365-2966.2006.10839.x
http://arxiv.org/abs/astro-ph/0607373
http://dx.doi.org/ 10.1111/j.1365-2966.2006.11239.x
http://arxiv.org/abs/astro-ph/0608242
http://dx.doi.org/10.1103/PhysRevD.81.083005
http://dx.doi.org/10.1103/PhysRevD.81.083005
http://arxiv.org/abs/0911.1359


13

[16] J. Chluba, G. M. Vasil, and L. J. Dursi, MNRAS 407,
599 (2010), arXiv:1003.4928.

[17] J. Chluba and R. A. Sunyaev, Astron. Astrophys.
(2007), 10.1051/0004-6361:20077333, [Astron. Astro-
phys.475,109(2007)], arXiv:astro-ph/0702531.

[18] E. E. Kholupenko, A. V. Ivanchik, and D. A.
Varshalovich, Phys. Rev. D81, 083004 (2010),
arXiv:0912.5454.

[19] J. Chluba and R. A. Sunyaev, Astron. Astrophys. 446,
39 (2006), arXiv:astro-ph/0508144.

[20] V. K. Dubrovich and S. I. Grachev, Submitted to: As-
tron. Lett. (2005), arXiv:astro-ph/0501672.

[21] J. Chluba and R. A. Sunyaev, Astron. Astrophys. 496,
619 (2009), arXiv:0810.1045.

[22] S. I. Grachev and V. K. Dubrovich, Astron. Lett. 34, 439
(2008), arXiv:0801.3347.

[23] C. M. Hirata and J. Forbes, Phys. Rev. D80, 023001
(2009), arXiv:0903.4925.

[24] J. Chluba and R. A. Sunyaev, Astron. Astrophys. 503,
345 (2009), arXiv:0904.2220.

[25] Y. Ali-Haimoud and C. M. Hirata, Phys. Rev. D82,
063521 (2010), arXiv:1006.1355.

[26] M. S. Burgin, Bull. Lebedev Phys. Inst. 36, 110 (2009).
[27] M. S. Burgin, Bull. Lebedev Phys. Inst. 37, 280 (2010).
[28] Y. Ali-Haimoud and C. M. Hirata, Phys. Rev. D83,

043513 (2011), arXiv:1011.3758.
[29] J. Chluba and R. M. Thomas, Mon. Not. Roy. Astron.

Soc. 412, 748 (2011), arXiv:1010.3631.
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