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ABSTRACT

The oscillatory dynamics of nanoelectromechanical systems (NEMS) is at the heart of many emerging applications in nanotechnology. For
common NEMS, such as beams and strings, the oscillatory dynamics is formulated using a dissipationless wave equation derived from
elasticity. Under a harmonic ansatz, the wave equation gives an undamped free vibration equation; solving this equation with the proper
boundary conditions provides the undamped eigenfunctions with the familiar standing wave patterns. Any harmonically driven solution is
expressible in terms of these undamped eigenfunctions. Here, we show that this formalism becomes inconvenient as dissipation increases. To
this end, we experimentally map out the position- and frequency-dependent oscillatory motion of a NEMS string resonator driven linearly by a
non-symmetric force at one end at different dissipation limits. At low dissipation (high Q factor), we observe sharp resonances with standing
wave patterns that closely match the eigenfunctions of an undamped string. With a slight increase in dissipation, the standing wave patterns
become lost, and waves begin to propagate along the nanostructure. At large dissipation (low Q factor), these propagating waves become
strongly attenuated and display little, if any, resemblance to the undamped string eigenfunctions. A more efficient and intuitive description of
the oscillatory dynamics of a NEMS resonator can be obtained by superposition of waves propagating along the nanostructure.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100318

Nanoelectromechanical systems (NEMS) have enabled a number
of nanotechnologies for monitoring the environment, storing and
processing information,” and applying controllable forces to physical*
and biological nanosystems.”® NEMS-based detection of individual
atoms and molecules,”” single charge quanta,”'’ and vibrations of sin-
gle microorganisms' "' has established the potential of NEMS sensors.
NEMS are also at the forefront of fundamental physical science, open-
ing up studies in quantum mechanics,"” optomechanics,”* Brownian
motion, ”'° fluid mechanics,'” *° and nanoelectronics.”’ **

In a typical implementation,” one actuates linear oscillations of
the NEMS resonator using a force transducer and looks for changes in
the phase, frequency, or dissipation due to interactions. For proper
operation, the user must know how exactly the nanomechanical

structure is moving under the actuation forces. The oscillatory NEMS
dynamics is typically determined using a dissipationless wave equa-
tion, e.g., the beam equation or the string equation, derived from elas-
ticity. After the harmonic ansatz, one obtains the undamped free
vibration equation and solves it subject to boundary conditions.”*”’
This approach provides the undamped eigenfunctions that correspond
to standing wave patterns on the structure. These well-known patterns
emerge from the interference of undamped waves reflecting back and
forth from the boundaries of the structure. The undamped eigenfunc-
tions form a complete set, and the driven harmonic motion of NEMS,
even in the presence of dissipation, can be expressed as an expansion
in terms of these eigenfunctions.”” ”’ The practical aspects of the
expansion, however, become cumbersome with increasing dissipation.
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Since waves get attenuated along the structure and at the boundaries,
one needs a large, if not infinite, number of terms in the eigenfunction
expansion. Here, we illustrate these complications by examining the
position- and frequency-dependent oscillatory dynamics of a NEMS
resonator driven by a non-symmetric harmonic force at different dissi-
pation limits. Instead of an expansion including a large number of
undamped eigenfunctions, we describe the dynamics efficiently by
superposing waves that are attenuated along the beam.

Our experiments are performed on silicon nitride doubly clamped
beams with respective linear dimensions along x, y, and z axes of
Ixbxh=50umx900nm x 100nm, all from the same batch.
There is a 2-um gap between the beam and the substrate. The beams are
under tension as inferred from their resonance frequencies in vacuum’'
and behave as strings. Figure 1(a) shows a scanning electron microscope
(SEM) image of a beam. The two identical u-shaped gold electrodes are
electrothermal actuators for driving the out-of-plane (z-axis) flexural
motion of the beam [Fig. 1(a), inset]. Each actuator is patterned on one
anchor of the resonator with a thickness of 135nm and a width of
120 nm. The actuator spans the undercut region and the beam, with

Current [mA]

ARTICLE scitation.org/journal/apl

£, =800 nm and &, =600 nm; its electrical resistance is
3.54 = 0.1Q.”" We apply a sinusoidal current at frequency f to only one
actuator, e.g, the actuator on the left in Fig. 1(a). Joule heating generates
temperature oscillations in the actuator at 2f. Owing to the mismatch
between the thermal expansion coefficients of the gold and silicon nitride
layers, a bending moment develops and drives out-of-plane flexural oscil-
lations of the beam at 2f. Figure 1(b) shows results from our finite element
models of the electrothermal actuator in vacuum. The black curve in Fig.
1(b) is the input current waveform at f = 2.5895 MHz, with instanta-
neous temperature fields [Fig. 1(b), top] over the suspended base region
of a 50-um resonator. The red curve in Fig. 1(b) displays the simulated
amplitude of the resonator at its center at 2f = 5.179 MHz. For 1 mA
rms input current at f = 2.5895 MHz, the temperature oscillates with
rms values of AT, = 0.1K and AT,, = 0.05K in vacuum and water
(not shown), respectively. The power dissipated on the actuator remains
constant over our frequency range."”' For fixed power, the attenuation
of AT, as a function of frequency is negligible;”' the attenuation of AT,,
is expected be even less due to the added thermal conductance of water.
Hence, the actuation force is assumed to be independent of frequency.
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FIG. 1. (a) SEM image of a tension-dominated silicon nitride doubly clamped beam with linear dimensions (along X, y, and z) of  x b x h ~ 50 um x 900 nm x 100 nm. The
two identical u-shaped gold thin-film nanoresistors of thickness of 135 nm and width of 120 nm on the anchors of the NEMS act as electrothermal actuators. The dimensions along
xare &4 = 800 and &, ~ 600 nm. (b) Numerical simulations of electrothermal actuation near (but not exactly at) the fundamental resonance frequency in vacuum. Sinusoidal cur-
rent input to the nanoresistor at f=2.5895MHz (black curve) results in nanomechanical oscillations of the beam at f=5.179 MHz. The response of the beam at its center is
shown. The small phase between the current and displacement is due to the thermal inertia and the mechanical response of the resonator. The color maps are the temperature
profiles of the region in the inset of (a) at five instants. Typical powers dissipated on the nanoresistor are 1, 50, and 100 xW in vacuum, air, and water, respectively. (c) Heterodyne
optical interferometer. AOM: acousto-optic modulator; 4/2: half wave plate; 4/4: quarter wave plate; PBS: polarizing beam splitter; BS: beam splitter; PD: photodetector; PID: pro-
portional-integral-derivative controller; VCO: voltage controlled oscillator. The signal on PD; is used for feedback; PD; is connected to a lock-in amplifier via a mixer for driven mea-
surements. The lock-in amplifier is used in the 2f mode. (d) Phase (top) and amplitude for a beam as functions of frequency and position at its first harmonic resonance in vacuum.
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The harmonically driven linear dynamics of the NEMS resonator,
ie., the rms amplitude W,,,,; and phase ¢ of its oscillations as functions
of position, is measured in a heterodyne optical interferometer.

shows the schematic diagram of the optical setup.””~ An
XYZ stage is used to position the laser spot along the x axis in

shows a representative dataset: W,,,,; and ¢ as a function of
x and drive frequency for the first harmonic mode resonance of the
NEMS in vacuum. The measured ¢ can be understood as the phase of
the NEMS oscillation with respect to the sinusoidal drive force and
includes all the parasitic phases coming from the measurement circuit.
We perform the measurements in vacuum, air, and water, correspond-
ing, respectively, to the low (Q = 10*), intermediate (20 < Q =< 70), and
high dissipation (Q ~ 1) regimes. In vacuum and air, we measure the
resonator amplitude and phase around the resonance frequencies (

, Figs. S1 and S2); in water, we sweep the frequency

over our entire frequency range.

We first discuss the oscillatory dynamics of the NEMS at very
low dissipation (Q ~ 20 x 10%), as shown in . From measure-
ments shown in , Fig. S1, we obtain the spatial
dependence of the rms resonance amplitude W,,,; and the relative
phase ¢, at each resonance frequency f, = 3= [ 1o Wons
are the peak values in the amplitude vs frequency curve for each

resonance (Fig. S1), and ¢,,; is the phase with respect to the phase of
the first data point around x=0, ie,
() = p(x) — ¢ (x = 2.5 um), at f,,. The time-dependent motion
of the beam at frequency f, can be reconstructed from W,,,s and ¢,
as w(x, 1) = V2Wys(x) sin[@,t 4+, (x)] by advancing the dimen-
sionless time w,t over a cycle. shows normalized
w(x, t) for the first three modes. The includes
video files of these modes.

Since Q is very high, we ignore the dissipation and solve the
undamped string equation with fixed-fixed boundary conditions to
obtain w(x, t) = sin(k,x)sin(w,t) with n being the mode number.
Here, k, = niis the wave number, and f, = % =nsy is the corre-
sponding eigen-frequency. The speed of flexural waves in the beam is

c= \/% = 510%=10m/s, based on experimental values™ of tension

T=68*4uN and mass per unit length u= p,bh =26.6+0.3
x10 " kg/m with the density being p, = 2960 + 30 kg/m>. The
shadings in are based on this solution for n=1, 2,
and 3. We note that w(x, £) can also be written as a sum of two undamped
propagating waves as w(x, ) = R{1ellkm—ont) _Leilkitout)} yith
R denoting the real part of the complex expression. We emphasize
that the boundary conditions are not trivial: there are undercuts and
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FIG. 2. Oscillatory dynamics of a 50-:m-long resonator at the low dissipation limit, i.., in vacuum. (a)—(c) Normalized rms amplitudes W,,s and relative phases ¢,,; (insets) of
the beam oscillations, as a function of x for its first three modes. Data points are from measurements, and the background shadings are | sin ("T" x) |. The phase values change
by exactly 180° at the nodes. (d)—(f) Normalized time-dependent amplitude w(x, f) for the first three modes, as a function of x during an oscillation cycle. Relevant parameters

of the modes are listed in
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TABLE . Parameters for the first three modes of the NEMS resonator in vacuum and air: w, /27 and Qj, respectively, refer to the mode frequency and quality factor; k, is the
mode wave number. Air values are indicated by a; R and / correspond to real and imaginary components, respectively.

Vacuum Air
Wy (MH ) wgf) (MH )
A~ z zZ a a _ a _
Mode 2 Q, k, (m™!) 2 QY K4 (m™1) K (m1)
1 5.179 23.6 x 10° 6.28 x 10* 5.163 32+5 6.58 x 10* 2.21 x 10°
2 10.367 22.8 x 10° 12.57 x 10* 10.315 54+ 5 13.18 x 10* 3.76 x 103
3 15.578 20.3 x 10° 18.85 x 10* 15.504 73 %5 19.76 x 10* 4.04 x 10°

notice that the amplitudes in

become asymmetric with

the gold nanoresistors around x=0 and x =1 The rigidity of the
beam also becomes appreciable near the clamps. Regardless, the low
dissipation makes these complications negligible.

Now, we turn to the oscillatory dynamics of the same resona-
tor in the intermediate dissipation limit by repeating the experi-
ment in air. Since the quality factors, QY, in air are still relatively
high ( ), the modes are well separated in frequency (

, Fig. S2). At a first glance, W,,,,; and ¢,,; data in
look similar to those in . The resonance fre-
quencies also do not deviate much from their vacuum values

respect to the beam center and decay noticeably away from the
actuator. To highlight these features, we show in the background of
the undamped eigenfunctions [sin (“Fx)|. The step
jumps in ¢, in and become smooth in
and , indicating that the waves are propagating along the x.
The corresponding w(x, t) constructed from the data is shown in
. Supporting Information includes video files, where
the zero crossings of w(x, t) move slightly along the x.
We model the dynamics in air using the string equation with uni-

( ). Upon more careful comparison with , however, we form viscous damping,
4:
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FIG. 3. Oscillatory dynamics of the 50-um resonator at intermediate dissipation. (a)-(c) Normalized rms amplitude W,,,,s and relative phase ¢,,; (insets) of the beam, as a func-
tion of x for its first three modes. Data points are from measurements, and the background shadings are | sin (”T”x)|. (d)—(f) Normalized w(x, f) for the first three resonances,
as a function of x during the oscillation cycle. Relevant parameters of the modes are listed in
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Pw ow Pw w(x t) — %{Aei(kx—wt) + Be—i(kx+wt)} (2)
LTIl , 1 ’ '
Wom Yo~ Tae S0 W
Here, y is the damping per unit length and f(x,t) = R{F(x)e’"} is
the applied force per unit length with F(x) being the complex force
amplitude. Considering only the domain &; + &, < x <[ in which
F(x) ~ 0, we write the general solution to Eq. (1) as

The complex wave vector k is found as
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FIG. 4. Oscillatory dynamics of the 50-um resonator at high dissipation. (a) W;,s and phase (inset) of the resonator as a function of drive frequency at different x positions on
the resonator. (b) Color map of W, (c) W,,s as a function of frequency at x = 10 um, with peaks corresponding to the first three resonances. (d)—(f) Normalized W,,,s as a
function of x at the peak frequencies in (c) [vertical arrows in (b)]: 1.17, 3.45, and 6.01 MHz. The insets show ¢,,;. (9)—(i) Normalized w(x, f) constructed from the data in
(d)—(f). A wave propagates from x = 0 to x ~ [ in all cases. The wave decays at different length scales.
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where kp = R{k}, k; = S{k}, and R and S, respectively, denote the
real and imaginary components. Equation (2) can, thus, be rewritten as

W(x, t) = %{Ae—kzxei(kxx—wt) + Bek1xe—i(ka+wt)} (4)

with A and B being the complex amplitudes of the right- and left-
propagating waves, respectively. We can fit the data in Figs. 3(a)-3(c)
using Eq. (4), as shown in Fig. S3. The best fits provide the complex k
values listed in Table I. Using y ~ %, we expand Eq. (3) to find

. 1.(a)

K ~ oL+ 1%) The values for kg;z) are very close to %5 k' is

roughly a factor of two to three larger than ﬁ We note that the fits
in Fig. S3 are approximations only and can be improved by modeling
the boundary conditions more realistically.

Finally, we show our results on the oscillatory dynamics of the
resonator at the high dissipation limit (Q ~ 1) in Fig. 4. This experi-
ment is performed with the NEMS immersed in water. Figure 4(a)
shows the rms oscillation amplitude and the phase (inset) of the
NEMS as a function of frequency and position, obtained by scanning
the drive frequency in the 0.6 — 9 MHz range at each x. The colormap
in Fig. 4(b) is the top view of the amplitude from Fig. 4(a), showing
how the amplitude decays with frequency and position. We observe that
the amplitude shows peaks at some frequencies reminiscent of resonan-
ces. For instance, W, as a function of frequency at x = 10 um shown
in Fig. 4(c) has three peaks. Taking the values of W,,,,; and phase at fre-
quencies marked by the vertical arrows in Fig. 4(b), i.e., at 1.17, 3.45,
and 6.01 MHz, we obtain the position dependent data for W,,,,; and ¢,
shown in Figs. 4(d)-4(f) at the peak frequencies in Fig. 4(c). For more
insight into the motion of the beam, we construct w(x, t) as above for
full cycles of oscillation, as shown in Figs. 4(g)-4(i) and supplementary
material, videos. Immediately evident is the fact that w(x, f) are traveling
waves that are generated at the actuator at x ~ 0 and move toward
x=1 The waves decay significantly over the length of the beam.
Consequently, we can neglect the wave propagating to the left in Eq. (2)
and have a simpler mathematical description,

w(x, t) = R{Ae—0)
= Ale ™ cos(kpx — wt + @), (5)

where the phase ¢ is adjusted such that A’ is real. To estimate k and
k; as a function of frequency, we advance the waveform in time (or
adjust ¢) until we obtain a peak near the x = 0 anchor. This results in
datasets such as those shown in Fig. 5(a). In these semilogarithmic
graphs, |w(x, t)| is plotted at four frequencies with the x" axis starting
at the peak position. The distance between successive peaks is half the
wavelength and provides an estimate for k of a given dataset. The
decaying exponential envelope of each dataset, shown by the line in
each plot, provides an estimate for k. In Fig. 5(b), the extracted kg and
k; are plotted as functions of frequency (lower x-axis) and the viscous
boundary layer thickness (upper x-axis) generated by the oscillations,

0= /;f%, where pr and 7y are the density and dynamic viscosity of

the water, respectively. The ky data start from 3 MHz since it is imprac-
tical to measure the wavelength in the absence of two or more peaks.
We now show how the frequency-dependent spatial profile of
driven NEMS oscillations can be related to the physical properties of
the fluid by using Stokes’ theory of the oscillating cylinder in a viscous
fluid.”****" We Fourier transform the undamped string equation
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FIG. 5. (a) Semilogarithmic plots showing normalized |w(x,t)| vs x’ at different
drive frequencies, where x' = 0 marks the peak position of the waveform. Fitting
the envelope with a decaying exponential (lines) provides kj; the distance between
successive peaks provides kg. (b) k; (left y) and kg (right y) as a function of fre-
quency. The upper x axis shows J. The shading indicates the regions 6 = gap
(dark) and 6 < gap (light). The dashed curves show theoretical predictions. Error
bars are the uncertainties in the linear fits in ().

[y=0and f(x,t) = 0 in Eq. (1)] in both space and time with the fluid
providing the only force (per unit length), F(k, @), on the beam,

(—’u+ k)W (k,w) = Fs(k, o). (6)
The fluid force is*
Fr(k,0) ~ g P BTy () W (k, )
~ o Ty (0) W (k, ), )

where I'y(0) = ', (@) + il () is the hydrodynamic function of a
blade (found from the cylinder solution™), & = p,bh is the mass per
unit length of the string, and psand 5y are, respectively, subsumed into

Ty = %% and I' (). Substituting Ff (k, o) into Eq. (6), we obtain
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ke + ik; = % V(14 ToTy (@) + T (o) ®)

indicating that one can determine pfand 1 from measured kg and k;.
This approach could be complementary to that based on fitting the
frequency response of the NEMS at a single point. In fact, this theory
can be extended to obtain properties of viscoelastic fluids as well.”*”

The dashed line in Fig. 5(b) shows kg and k; predicted from Eq.
(8) using experimental values of ¢ and T, and calculated I', (). These
predictions match well with our experimental data for frequencies
= 2.5 MHz. The measured k; deviates from theory at low frequency
because of the added squeeze damping.”’

As more emphasis is put on precision measurements in flu-
ids,”**” the spatial decay of the amplitude of driven NEMS resonators
could have significant implications. For NEMS-based mass sensing
and mass spectrometry, deconvoluting the mass and position of the
adsorbed analyte molecule on the NEMS from frequency shifts
requires a detailed knowledge of the oscillatory amplitude of the reso-
nator in multiple modes.”*’ Of particular importance is the behavior
of the nodes in the intermediate dissipation regime: since there is a
traveling wave along the structure with a small amplitude, there are
no true nodes. Similarly, in dynamic AFM experiments in air and
liquids,” the position of the drive force along the microcantilever
should affect the tip amplitude and tip-sample interactions. Another
relevant area is fundamental studies in fluid dynamics using NEMS
and microcantilever resonators.' >’ The accuracy of an eigenfunction
expansion containing a few eigenmodes should be assessed carefully
in liquids."™”” In summary, our results here will be of relevance to
research and technology involving NEMS, AFM, and even macro-
scopic mechanical resonators.

See the supplementary material for three figures and nine videos.
The supplementary figures show the resonator amplitude and phase
around the resonances in vacuum and air and wave fits to air data.
The supplementary videos show the time-dependent motion of the
beam at different dissipation limits.
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