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Abstract
Over the past 20 years, GPS collars have emerged as powerful tools for the study of nonhuman primate (hereafter, "primate") 
movement ecology. As the size and cost of GPS collars have decreased and performance has improved, it is timely to review 
the use and success of GPS collar deployments on primates to date. Here we compile data on deployments and performance 
of GPS collars by brand and examine how these relate to characteristics of the primate species and field contexts in which 
they were deployed. The compiled results of 179 GPS collar deployments across 17 species by 16 research teams show these 
technologies can provide advantages, particularly in adding to the quality, quantity, and temporal span of data collection. 
However, aspects of this technology still require substantial improvement in order to make deployment on many primate 
species pragmatic economically. In particular, current limitations regarding battery lifespan relative to collar weight, the 
efficacy of remote drop-off mechanisms, and the ability to remotely retrieve data need to be addressed before the technology 
is likely to be widely adopted. Moreover, despite the increasing utility of GPS collars in the field, they remain substantially 
more expensive than VHF collars and tracking via handheld GPS units, and cost considerations of GPS collars may limit 
sample sizes and thereby the strength of inferences. Still, the overall high quality and quantity of data obtained, combined 
with the reduced need for on-the-ground tracking by field personnel, may help defray the high equipment cost. We argue 
that primatologists armed with the information in this review have much to gain from the recent, substantial improvements 
in GPS collar technology.
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Introduction

Over the last 20 years, Global Positioning System (GPS) 
telemetry collars have significantly improved the avail-
ability and accuracy of animal location data, consequently 
improving our understanding of animal behavior and ecol-
ogy (Cagnacci et al. 2010; Kays et al. 2015). These devices 
can now often acquire GPS data and establish the location 

of a collar’s position with high precision even in challenging 
field conditions (Moriarty and Epps 2015). In addition, GPS 
collars have become more affordable, lighter, and smaller, 
making them potentially valuable tools for researchers who 
work with small-bodied, semi-terrestrial, arboreal, cryp-
tic, or nocturnal species (Blackie 2010; Recio et al. 2011; 
Forin-Wiart et al. 2015; Stark et al. 2017). For primatolo-
gists, these factors have made it possible to extend the use 
of GPS technology beyond large (6.5–25 + kg), terrestrial 
species living in open savanna such as baboons (Markham 
and Altmann 2008; Markham et al. 2013, 2015) to much 
smaller (2.5–6.5 kg), arboreal, or semi-arboreal species such 
as long-tailed macaques, vervet monkeys, and ring-tailed 
lemurs (Parga 2011; Dore et al. 2015; Klegarth 2017a, b).
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Radio tags have been used to facilitate the tracking of ani-
mal movements since the 1960s (Lord et al. 1962). The use 
of this technology in primatology grew in popularity in the 
1980s and 1990s (e.g., Bearder and Martin 1980; Campbell 
and Sussman 1994; Fedigan et al. 1988), but data from this 
time period are sparse because of the intensive manual labor 
required to find animals and record locations using very high 
frequency (VHF) devices (Kays et al. 2015). While VHF 
devices continue to be deployed by primatologists due to 
their cost effectiveness, small size, and low weight (e.g., 
Gursky 2000), GPS telemetry has become an increasingly 
common technique to locate and follow primates. Scholars 
first used GPS collar technology in the 1970s (e.g., Craig-
head et al. 1972), and primatologists specifically began 
using the technology with larger-bodied primates in the 
2000s (baboons: Henzi et al. 2011; Markham and Altmann 
2008; Segal 2008; chimpanzees: Humle et al. 2010; Japa-
nese macaques: Sprague et al. 2004; Takenoshita et al. 2005; 
and snub-nosed monkeys: Ren et al. 2008). GPS technology 
has provided researchers with advanced research capabili-
ties. With GPS collars, it is now possible to obtain spati-
otemporal data automatically and in a prescheduled man-
ner, facilitating investigations in areas and at times where 
obtaining animal location data was previously challenging 
or impossible. That is, GPS collars can facilitate the system-
atic collection of location data that are less constrained by 
topography and surrounding vegetation, which can limit the 
ability of observers to follow animals and record positions 
directly, providing more reliable data (García-Toro et al. 
2019). Devices are now also able to collect data on vari-
ables such as temperature and elevation, and data analysis 
programs can calculate distance between GPS coordinates, 
which can provide information about speed, periods of activ-
ity vs. inactivity, as well as elucidate nocturnal activity in 
diurnal species (e.g., Isbell et al. 2017). Additionally, with 
GPS collars, animals are free to move without the influence 
of observer presence, which can affect their ranging behavior 
(although the collars themselves may also influence ranging 
behavior; see “Discussion”). GPS technology also allows for 
the collection of high-resolution data at very short individu-
als, tracking animals in areas not possible on foot, the ability 
to track unhabituated animals, the simultaneous collection 
of high-resolution data from multiple individuals, and the 
ability to obtain data on individual animals’ decision-making 
processes (e.g., Kays et al. 2015; Strandburg-Peshkin et al. 
2015).

Because many species of primates are arboreal, GPS 
units deployed on the body of the animal (as opposed to 
being carried by an observer on the ground) can improve 
satellite reception and collect more accurate positional 
fixes. Fix acquisition and location accuracy is dependent 
on many factors such as canopy cover, terrain, time of day, 
weather conditions, and vertical movement patterns of the 

study species. Positional dilution of precision (PDOP) val-
ues assess fix accuracy; values range from 1.0 to 99.9, with 
lower numbers indicating wider satellite spacing and thus 
improved location accuracy. GPS collars also record hori-
zontal dilution of precision (HDOP), which also ranges from 
1.0 to 99.9, with lower numbers indicating lower error due to 
satellite height (Moen et al. 1996; Pebsworth et al. 2012a). 
Researchers often choose to remove fixes with high PDOP 
values to improve fix accuracy; more accurate GPS collars 
can thus lead to significantly more data. Recent advances in 
GPS collar technology also include activity sensors, such as 
accelerometers. Activity sensors are quite common in human 
activity studies (Huang et al. 2018) but have only recently 
been incorporated in wildlife GPS collars (McClintock and 
Michelot 2018; Pebsworth et al. 2012a). With advances in 
activity sensor techniques and the development of methods 
for activity data analysis, our ability to investigate certain 
types of behavior (e.g., ranging, habitat use, activity pat-
terns) remotely will continue to increase and thus lead to 
significantly more usable data, improving our capability to 
test more precise hypotheses.

There are always risks associated with methods that allow 
GPS collars to be attached to primate study subjects. Impor-
tant factors to consider include harm to animals as a result 
of darting or trapping (Ruiter 1992), skin lesions or infec-
tions from collar wear (Müller and Schildger 1994; Ander-
son et al.  2017; Klegarth et al. 2019), collar impacts on 
behavior (e.g., activity patterns, ranging, foraging, infants’ 
nursing) (Coughlin and van Heezik 2015), or the possibility 
of rejection from the troop (this is more likely to occur when 
the animal is removed from the group for a period of time; 
see de Ruiter 1992 and Juarez et al. 2011). Collars also pose 
an energetic cost to the animal, which may not be inconse-
quential. Fortunately, most VHF and GPS telemetry studies 
on primates report normative behavior and healthy animals 
post-collaring (e.g., Gursky 1998; Blakie 2010; Juarez et al. 
2011; Pebsworth et al. 2012a; Matthews et al. 2013; Kenyon 
et al. 2015; Evans et al. 2016; Hansen et al. 2019). However, 
there may be a lack of reporting of negative and deleterious 
effects.

Many investigations of primate behavior now feature the 
use of GPS technology (e.g., Ren et al. 2008; Humle et al. 
2011; Parga 2011; Klegarth et al. 2017a, b; Koch et al. 2016; 
Springer et al. 2016, 2017), yet the focus of these studies is 
rarely on the functionality of the devices themselves (but 
see Sprague et al. 2004; Pebsworth et al. 2012a; Kenyon 
et al. 2015; Isbell et al. 2018). This leaves primatologists 
without reliable guidance related to choosing the appropri-
ate device, overall device performance, and the benefits and 
drawbacks of different devices with regard to data collection, 
collar and data retrieval, collar refurbishment, and animal 
welfare. GPS collar field tests on primates only began in the 
past decade and a half (Sprague et al. 2004) and have only 
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recently expanded as the size and cost of GPS collar units 
have decreased. In addition to the fact that many publications 
only touch on GPS collar performance issues, the results of 
failed field tests largely go unpublished.

In this paper, we review GPS collar deployments and 
unit performance in studies of primates. While GPS col-
lar performance will always be dependent on site- and spe-
cies-specific variables, our compiled dataset will serve as 
a reference point for primatologists interested in utilizing 
GPS collars in their research programs. The dataset includes 
strepsirrhines, both Old and New World monkeys, as well as 
gibbons and chimpanzees (Pan troglodytes). Deployments 
occurred in research colonies as well as on free-ranging ani-
mals across a diverse range of habitats including open savan-
nah, Mediterranean scrub, fragmented forested landscapes, 
rainforests, and heavily urban areas. We outline the range 
of primate taxa on which GPS collars have been deployed, 
provide an overview of GPS collar manufacturers and collar 
capabilities, and summarize crucial performance statistics 
to compare models as best as possible across this diverse 
dataset. While most relevant to researchers considering 
GPS collars for use on primates, GPS manufacturers and 
individuals interested in collaring non-primate taxa living 
in similar ecological conditions will also benefit from this 
comprehensive review.

Methods

Specific details regarding individual collar deployments can 
be found within the publications referenced and authors cited 
in Table 1. In addition to published data, we also reviewed 
conference proceedings from 2000 to 2017 and solicited 
unpublished information on GPS collar deployments by 
reaching out to individual authors via e-mail. We collected 
data for this review within three primary categories: (1) 
primate study subject characteristics, (2) collar, program-
ming, and deployment specifications, and (3) GPS collar 
performance. Subject characteristics included species, age 
class, sex class, and weight (kg) for each GPS-collared indi-
vidual. Collar, programming, and deployment specifications 
included collar manufacturer, collar model, locational fix 
schedule, collar weight (g), drop-off type (if any), deploy-
ment length (we define deployment length as the time the 
device was on the animal, which may or may not coincide 
with battery life), and the total number of attempted fixes. 
GPS collar performance data included the total number of 
acquired fixes, the total number of 3D (high quality) fixes, 
the average time to fix (TTF), the mean number of satellites 
connected per fix, the average horizontal dilution of preci-
sion (HDOP), drop-off functionality, and battery life. From 
these data, we calculated the mean ratio of collar:animal 

weight by species in addition to an overall fix success rate 
(FSR) and a 3D FSR.

Table 1 also includes information on habitat type as 
reported by each contributing author on their study site. 
Researchers were queried on habitat type, the season(s) 
during deployment, as well as the degree of canopy cover. 
This information is meant to contextualize the environmen-
tal conditions surrounding each deployment. Given the vast 
range of species and habitats and the somewhat subjective 
nature of this reporting, habitat data are provided primarily 
as a resource for researchers exploring the use of GPS col-
lars on primates in the future.

Ethical note

All studies were carried out under each author’s respective 
Institutional Animal Care and Use Committee approved pro-
tocols (provided in the Acknowledgements).

Data accessibility

We have an included a supplemental file with all of our data.

Results

Subject characteristics

The dataset comprises information on 179 individual GPS 
collar deployments by 16 research groups on 17 primate 
species between 2004 and 2018 (Fig. 1). Study subjects 
included two species of strepsirrhines, five species of New 
World Monkeys, eight species of Old World Monkeys, one 
species of gibbon, and one great ape (Table 1). Of these, the 
vast majority (93.3%) of devices were deployed on adult 
animals. Only seven species included GPS collar deploy-
ments on subadults (6.7%) owing in part to limitations in the 
collar:animal weight ratios, trade-offs between collar weight 
and battery life, and the need to ensure the animal does not 
outgrow the device in the case of drop-off failure. Dispersal 
patterns and research questions also limit appropriate age 
groups. Mean collar:animal weight ratios fell well within the 
standard recommendation ≤ 5% of total body weight (Sikes 
2016), ranging from a low of 1.08% to a high of 5.0% by 
species.

In terms of sex, there were almost equal numbers of 
studies that collared more females than males (N = 8) and 
more males than females (N = 9). One species (Ateles bel-
zebuth), had an equal number of males and females col-
lared. Across the entire dataset, GPS collars were more 
commonly deployed on males, with an overall male:female 
ratio of 1.0:0.6 (Fig. 2). Research questions, dispersal 
patterns, GPS collar availability, and funding all affected 
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Table 1   Summary of GPS collar deployments on NHPs

Species Brand Model Collar: Animal 
weight (%) ± St 
deva

Study Habitat typeb

Type/season Canopy

Lemur catta Telemetry solu-
tions

Quantum 4000 
Medium

3.08 Parga (2011) Semi-tropical 
mixed forest

Year-round

Open to moderate

Propithecus ver-
reauxi

e-Obs Digital 
Telemetry

Collar 1A 2.38 ± 0.25 Koch et al. (2016), 
Springer et al. 
(2016, 2017)

Dry deciduous 
forest

Year-round

Moderate to heavy

Ateles belzebuth Telemetry solu-
tions

Quantum 4000 
Medium

1.50 ± 0.05 Fiore and Link 
(2013)

Tropical rainforest, 
year-round

Heavy

Ateles geoffroyi e-Obs Digital 
Telemetry

Collar 1C 2 Campbell pers. 
comm.

Lowland
Tropical forest
Dry season

Moderate to heavy

Ateles hybridus Telemetry solu-
tions

Quantum 4000 
Medium

2.10 ± 0.29 Fiore and Link 
(2013)

Tropical rainforest
year-round

Heavy

Lagothrix lagotri-
cha

Telemetry solu-
tions

Quantum 4000 
Medium

1.93 ± 0.23 Fiore and Link 
(2013)

Tropical rainforest
Year-round

Heavy

Chlorocebus 
sabaeus

Tellus Ultra-light 5.0 Dore et al. (2015) Mixed Open to heavy

Macaca fascicu-
laris

Telemetry solu-
tions

Quantum 4000 
Medium

1.81 ± 0.23
1.57 ± 0.25

Klegarth et al. 
(2017a, b), Stark 
(pers. comm.); 
Tan (pers. 
comm.)

Tropical rainforest 
with Riparian 
areas

dry and wet season

Open to heavy

Macaca fascicu-
laris

Tellus Micro 1.57 ± 0.25 Hansen et al. 
(2019)

Tropical semi-arid 
mixed habitats

Dry and wet 
season

Open to moderate

Macaca fuscata Televilt Porsec 120 3.08 Sprague et al. 
(2004)

Mixed rural, 
including broad-
leaf forest

Open to moderate

Macaca mulatta Tellus Ultra-light 3.33 Anderson et al. 
(2017)

Subtropical swamp 
and forest

Dec-Feb

Moderate

Macaca sylvanus Telemetry solu-
tions

Quantum 4000 
Medium

1.50 ± 0.01 Klegarth et al. 
(2017a, b)

Subtropical Medi-
terranean

Dry and wet 
season

Open-light scrub 
coverage with 
extensive cliffs 
and rocky out-
croppings

Nasalis larvatus e-Obs Digital 
Telemetry

Collar 1C-light 1.08 ± 0.24 Stark et al. (2017) Riparian forest, 
plantation

Year-round

Moderate

Nasalis larvatus Lotek WildCell SD 1.81 ± 0.69 Stark et al. (2017) Riparian forest, 
plantation

Year-round

Moderate

Papio cynocepha-
lus

Advanced Telem-
etry Systems

G2110B 1.90 ± 0.44 Markham et al. 
(2013)

Semi-arid savan-
nah and Wood-
lands

Apr-Aug
Wet and dry 

seasons

Open to moderate

Papio ursinus Advanced Telem-
etry Systems

G2110B 2.28 Pebsworth et al. 
(2012a, b)

Afro-montane 
forest, fynbos, 
mixed forest, 
agriculture

Year-round

Open to moderate
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the choice of sex groups. Older studies (> 5 years) skew 
towards males strongly for smaller-bodied species such as 
vervets and long-tailed macaques and for some GPS collar 
brands owing to size limitations and sexual dimorphism 
where males are larger than females (Fooden 2006; Turner 
et  al. 1997). An exception to GPS collar deployments 
favoring males in smaller-bodied primates occurred with 
ring-tailed lemurs, where the ratio favored females (Parga 
2011; Parga unpublished data) and little sexual dimor-
phism exists within the species (Kappeler 1991). Newer 
studies (< 5 year) have had greater GPS collar availability, 
as brands and models are expanding, and scholars have 
had greater opportunities to choose a device based on 

their specific research questions (e.g., a newer long-tailed 
macaque study; Hansen et al. 2019).

Collar, programming, and deployment

The two collar brands most frequently deployed on primates 
were e-Obs Digital Telemetry (N = 42) and Telemetry Solu-
tions (N = 54). Telemetry Solutions were used by four inde-
pendent research groups and e-Obs Digital Telemetry by 
three. Three independent research groups deployed Tellus 
collars (N = 13). Advanced Telemetry Systems (N = 22), and 
Lotek (N = 26), collars were each deployed by two independ-
ent research groups. One research group deployed Telonics 

a Depending on age class of animal, see summary of age classes in text
b Canopy cover is characterized as none, open, moderate, and heavy

Table 1   (continued)

Species Brand Model Collar: Animal 
weight (%) ± St 
deva

Study Habitat typeb

Type/season Canopy

Rhinopithecus 
roxellana

Lotek 7000SLU 2.62 ± 0.44 Qi et al. (2014) Semi-humid 
temperate cold 
mixed forest

Year-round

Moderate

Nomascus gabriel-
lae

Lotek WildCell 3.54 Kenyon et al. 
(2015)

Lowland mixed 
forest

Wet season

Heavy

Pan troglodytes Telonics TWG-4500; 
TWG4580

– Humle et al. (2011) Mixed forest, 
mixed savannah

Year-round

Open to moderate

Fig. 1   Number of GPS collar 
deployments by species and age 
group
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devices (N = 21). Several research groups only deployed a 
single unit (Televilt, Tellus Ultralight, e-Obs Digital Telem-
etry, Advanced Telemetry Systems, and Lotek). This is not 
an exhaustive review, and so there are collar manufacturers 
not included in the review.

All devices were placed on the necks of the animals 
(i.e., Figs. 3 and 4), with the exception of Dore et al. (2015) 
(Chlorocebus sabaeus) and the Singapore’s National Parks 
Board (pers. comm.) (Macaca fascicularis) where the 
devices were placed around the animals’ waist like a belt 
(see Fig. 5). This placement is suitable in situations where 
collars are too bulky to be worn comfortably around the 
neck; however, this style of deployment biases towards the 

use of male primates as subjects because of pregnancy con-
cerns and thus may not be appropriate for certain research 
questions.

In addition to collar placement, GPS collars varied by 
weight, presence/absence of drop-off mechanisms, fix rate, 
amount of time deployed, and overall collar and drop-off unit 
performance. Collar weight ranged from 77 to 1100 g, and 
drop-off units ranged in weight from 2 to 150 g (Fig. 6). The 
majority of collars were programmed to take locational fixes 
at regular intervals either over a 24-h period or split between 
daytime and nighttime scheduling. The most commonly 

Fig. 2   Number of GPS collar 
deployments by species and sex, 
mean sex ratio (M:F) 1.5:0.6
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Fig. 3   Savannah baboon (Papio cynocephalus) with Advanced 
Telemetry Systems G2110B GPS collar attached around the neck 
(credit: Catherine Markham) Fig. 4   Ring-tailed lemur (Lemur catta) with Telemetry Solutions 

Quantum 4000 Medium GPS collar attached around the neck (credit: 
Joyce Parga)
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programmed fix intervals were every 10–15 min (N = 40), 
30 min (N = 51), 45 min (N = 12), 60 min (N = 37), and 
120–180 min (N = 63). Some collars had two different fix 
schedules, alternating between a day and a night schedule. 
We counted these collars in both of their fix schedule inter-
vals. A total of 25 deployments split their collar program-
ming between daytime and nighttime fix acquisition sched-
ules, 102 deployments took points over a continuous interval 
(e.g., every x min until battery death), and another 52 collars 
collected points only during the daytime period when pri-
mates were expected to be most active. Some exceptions to 
more standard fix acquisition programming included a collar 
programmed to record locations at 5-h intervals (Kenyon 
et al. 2015), and collars programmed to take locational fixes 
and standard intervals several days a month and single daily 
points in between the high-fix days (Fiore and Link 2013).

Regarding length of collar deployments, some lasted less 
than a single day, with a total of eight GPS collars deployed 
for a week or less (Parga 2011; Klegarth et al. 2017a, b). 
The variables that contributed to short collar deployments 
include collar malfunction, fix schedule, and environmen-
tal conditions (factors that are not mutually exclusive; see 
“Discussion”). Some short deployments were intentionally 
short; thus, these data are a simple measure of how long 
the devices were on the animals (i.e., a mix of successes 
and failures). The longest deployment of a functional GPS 
collar was 89 weeks (with a fix schedule of every 2 h; Qi 
et al. 2014). Average deployment length across all stud-
ies (excluding collars that failed to drop-off and remained 
on animals beyond their battery life) was 26 weeks with a 
median deployment length of 20 weeks. The deployment 
length of 23 collars was undetermined either due to the loss 
of the unit due to early removal (N = 5), disappearance of the 
animal (N = 7), or loss of unit functionality that prevented 
the collar from dropping off (N = 11). In the case of units 
that failed to drop-off and where recapture was either not 
possible or deemed a greater risk to animal safety than leav-
ing the collar on, animals have been collared for up to 6 
years with no overt signs of distress or injury (Klegarth et al. 
2017a, b, 2019).

Participants in this study retrieved collar data in a vari-
ety of ways, with some research groups using more than 
one technique. Data were retrieved by direct USB down-
load (after physically recovering the device; eight research 
groups), remote UHF download (requiring the collar be 
within a certain distance of an antennae; eight research 
groups), GSM transmission (i.e., text messages sent via the 
local phone network; four research groups), and Iridium 
(satellite) transmission (one research group). Utilizing tech-
nology that does not require recovering the physical device 
(i.e., the latter three options) is ideal, as it ensures that the 

Fig. 5   Green monkey (Chlorocebus sabaeus) with Tellus Ultralight 
GPS collar attached around the waist (credit: Kerry Dore)

Fig. 6   GPS collar weights by 
brand including drop-off units 
where applicable, and drop-off 
weights by brand
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user obtains the data if the collar unintentionally falls off 
and is not able to be found, the drop-off fails, or the animal 
is unable to be re-trapped. With regard to animal welfare, 
the use of biodegradable weak links (see “Discussion”) can 
ensure that the device is not left on the animal indefinitely.

GPS collar performance

Of the two primary data-quality metrics measured, (1) 
HDOP and (2) 3D FSR, only four collar brands provided 
data on both metrics; Lotek, Telemetry Solutions, Advanced 
Telemetry Systems (one out of 22 units), and Tellus. Nei-
ther the Televilt, nor e-Obs Digital Telemetry, nor Telonics 
units calculated or provided HDOP with GPS data from the 
collars. Among the collar brands that did provide HDOP 
values, the Tellus and Advanced Telemetry Systems collars 
provided fix locations with mean HDOPs of 1.1 or 1.8 for 
Tellus, depending on the collar model, and 1.5 for Advanced 
Telemetry Solutions. Telemetry Solutions provided fixes 
with a mean HDOP of 2.0. Lotek collar HDOPs had a mean 
value of 4.1 between both models, though the WildCell SD 
model performed better than the 7000SLU units. In terms 
of the 3D FSR relative to the total number of acquired fixes, 
collars made by e-Obs had a mean 3D FSR of 100%. Tellus 
3D FSRs were 97.1% and Telemetry Solutions collars were 
89.5%. Lotek and Advanced Telemetry Systems 3D FSRs 
were 86.3 and 85.9%, respectively.

The other major performance metrics measured were (1) 
TTF (which impacts collar battery life, as the collar shuts 
down between fixes in most collars to save battery life) and 
(2) overall battery life of units relative to the expected bat-
tery life at deployment based on programming. e-Obs Digital 
Telemetry’s devices obtained fixes in 22 s on average fol-
lowed by Tellus Micro (47 s), which was followed closely 
by Advanced Telemetry Systems (50 s), Tellus Ultra Light 
and Lotek (54 s), and with Telemetry Solutions (77 s). These 
data were not available for Telonics devices. Of the four 
most commonly deployed brands (e-Obs Digital Telemetry, 
Telemetry Solutions, Advanced Telemetry Systems, and Tel-
onics), Telonics and Advanced Telemetry Systems experi-
enced the longest battery life. Early battery death was some-
what common for Lotek (12.5%), e-Obs Digital Telemetry 
(29.5%), and Tellus (30.0% for Ultra Light and 33.33% for 
Micro) devices, which reduced the amount of data acquired 
from those deployments. Fix schedule, TTF, and battery 
size, severely affected battery life and should be taken into 
consideration in the study design. While we are dealing with 
a relatively small sample size, Telemetry Solutions and Tel-
lus Micro were the only brands with malfunctions reported 
that interfered with the ability to perform at least some data 
collection (11.3 and 33.3% of deployments, respectively). It 
should also be noted that the data reported here does not take 

into account environmental conditions, which significantly 
affect collar performance (see “Discussion”).

Drop‑off unit performance

Of the 179 GPS collar deployments we evaluated, 91 units 
were equipped with remote, electronic drop-off units, some 
of which were purchased from separate manufacturers. Four 
e-Obs Digital Telemetry collars were equipped with drop-
off from separate manufacturers; their drop-off functionality 
was not assessed in this review. Of the 91 units, 16 were 
lost before the scheduled drop-off time (e.g., the animals 
were killed or disappeared, the battery died, or the collar was 
somehow removed from the animal) and thus their drop-off 
functionality could not be assessed. In our dataset, Advanced 
Telemetry Systems, Televilt (N = 1), and Tellus Ultralight 
units had drop-off performance success over 90% (Table 2). 
With Lotek WildCell SD, Telemetry Solutions, and Tellus 
Micro, approximately half worked. Lotek 7000SLU drop-
off functions all failed to perform. Advanced Telemetry 
Systems and Telemetry Solutions deployments all included 
10 + attempted drop-offs and 100 day + mean ‘live’ deploy-
ments for collars equipped with electronic drop-off units. 
One unit (Lotek WildCell) was equipped with physical weak 
spots on the GPS collars to function as the sole drop-off 
mechanism. Several studies reported that the drop-off func-
tion did work, though not as expected, with up to several 
months delay in dropping off.

Discussion

GPS collar performance has significantly improved since 
the technology was first used to facilitate our understand-
ing of primate behavior and ecology a decade and a half 
ago (Sprague et al. 2004). Here we have presented the first 
review of this technology across a diverse array of primate 
species (17 primate species, and seven GPS collar manu-
facturers). While our results are significant and impor-
tant, it is essential that researchers recognize that site- and 
species-specific variables will interact in complex ways to 
affect collar performance at their field sites. The interactions 
between collar manufacturer, environmental conditions, sat-
ellite availability, species behavior and habitat preferences, 
and fix schedule in particular will interact differently for 
every user. For example, a collar may perform exception-
ally well for TTF and have a long battery life in open field 
conditions, but in high canopy cover areas, the same collar 
performance should not be expected. We therefore see this 
paper as a helpful starting point, but not an exhaustive sta-
tistical review, of GPS collar performance.

While our review highlights many positive aspects of 
GPS collar technology for primatology, we also want to 
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caution against using GPS collars as a substitute for stand-
ard primatological data-collection techniques. Often, the 
high cost of GPS collars has a negative impact on sample 
sizes, which may reduce the strength of inference at popula-
tion levels (Hebblewhite and Haydon 2010). There are clear 
limitations in the types of data that can be collected with 
GPS collars; they should therefore be combined with direct 
field observations of movement and habitat use patterns to 
enable adequate interpretation of data. For example, using 
one or a few devices to assess the movements of an entire 
troop will miss nuanced sex- or age-specific movements or 
behaviors only detectable through direct observations of 
group dynamics. In many cases, questionnaires, interviews, 
or ethnographic data collected from people sharing space 
with primates can also provide extremely important infor-
mation that would be lost by relying too much on tracking 
technology. For example, in St. Kitts, while GIS and GPS 
data have been highly informative with regard to green mon-
keys’ current behaviors and range, only through conversa-
tions with local people were primatologists able to learn the 
extent to which the closure of the sugar industry in 2005 
affected these behaviors and movements (Dore et al. 2019).

This dataset, and primate GPS collar deployments 
broadly, are still biased towards heavier collar units (five of 
seven brands had mean collar weights of 175 + g), which can 
have longer battery life depending on the fix schedule and 
TTF among other variables. Telonics collars were the largest 

deployed at 1100 g. The larger size of units available in the 
early 2000s limited early primate GPS collar work to larger 
species like baboons, and these units still provide the longest 
battery life. This factor continues to make the cost–benefit 
calculus (e.g., risk to the animals’ well-being relative to the 
amount and quality of data collected) for using the technol-
ogy more accessible and acceptable for use on larger species.

However, as technology advances, a wider range of col-
lars are becoming commercially available that may be suit-
able for collaring smaller primates. The Tellus Micro (77 g) 
and Telemetry Solutions Quantum 4000 (80 g) units are the 
smallest GPS collar units to have been deployed on primates 
to date (i.e., on vervet monkeys, long-tailed macaques, and 
ring-tailed lemurs). It is important to note that for some 
collar brands, electronic drop-off units added between 2 g 
(Tellus Micro) and 150 g (Telemetry Solutions) in weight 
overall, which can present additional limitations for deploy-
ment on smaller primates. Researchers are currently devel-
oping a new protocol for great apes, GPS ankle bracelets, 
getting inspiration from human criminal justice systems 
(pers. comm., Shauhin Edward Alavi). These may prove to 
be useful for small-bodied primates as well. Some newly 
available GPS collars are available at a mere 120–140 g, 
including Iridium remote data download capability.

GPS collars weighing only 77 g including drop-off, 
as the Tellus Micro in this study, are too small to carry 
Iridium remote data download, yet a Global System for 

Table 2   Mean deployment length, and battery performance for GPS collars used in NHP studiesa

a Not all data were available for all collars. FSR is the overall fix success rate based on the total number of programmed
b Five collars malfunctioned
c Two collars malfunctioned
d Several studies were not able to recover collars and thus the battery life performance of these units is unknown and accounts for the discrepancy 
in the reported percent battery life performance not summing to 100% for all collars listed. Sample sizes are indicated for full collar deployments 
only and exclude those collars that were removed early by either the NHP or the research team
e Several collars were removed by either the NHP or the researchers rather than activating the drop-off unit; sample sizes are reported only for 
collars with drop-off units that researchers attempted to use
f e-Obs Digital Telemetry does not manufacture drop-off units

Brand Model N Collar deploy-
ment length 
(days)

FSR Battery life performance (%) d Drop-off per-
formance (%)e

 > Expected Maintained < Expected Worked Failed

Advanced Telemetry 
Systems

G2110B 22 324 ± 35 86 ± 11.8 95.5 – 4.5 100 –

e-Obs Digital Telemetry Collar 1A, 1C, 1D 42 172.5 ± 41.5 93.2 ± 7.5 41.4 29.1.0 29.5 NAf

Lotek WildCell SD 7 431 ± 36 82.8 ± 16.8 58.4 16.6 25 50 50
Lotek 7000SLU 19 275 ± 145 91.0 ± 19.6 10.5 84.2 5.2 – 100
Telemetry solutionsb Quantum 4000 54 140 ± 122 87.8 ± 8.7 41.7 58.3 – 66.7 33.3
Televilt Porsec 120 1 9 20.0 – 100.0 – 100 –
Tellus Ultralight 7 67 ± 16 96.1 ± 2 – 91.7 8.3 100 –
Tellusc Micro 6 81 ± 21c 65.9 ± 4.24 – – 100 50 50
Telonics TGW-4580; 4583; 4500 21 143 ± 77 13.2 ± 2.1 100 – – – NA
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Mobile Communications (GSM) signal is possible. Iridium 
remote data communication relays GPS locational fix data 
to researchers without the need to directly track and down-
load data via an ultra-high frequency (UHF) signal and/
or recover store-on-board GPS units, similar to GSM-cell 
signal systems and ARGOS. In many remote areas, GSM 
download is not a possibility because of the lack of cell 
service or network type (i.e., some devices may work on 
2G but not 4G); using smaller GPS collars without Iridium 
in these areas leaves remote download impossible. Infor-
mation cell-service availability according to area is avail-
able online. Here, UHF download combined with VHF 
signal is the only way to track animals and download data.

GPS collars manufactured by e-Obs Digital Telem-
etry and Telemetry Solutions were the most commonly 
deployed units on primates. Both collar brands provided 
large amounts of high-quality data. In our dataset, Telem-
etry Solutions and Tellus Micro collars were the only 
units where malfunctions (apart from early battery death) 
impacted data acquisition or drop-off functionality. Two 
Tellus Micro collars were tested prior to deployment with-
out any problems, yet after deployment they immediately 
switched off, and only the UHF connection remained. For 
some Telemetry Systems device users, remote download 
stopped working before GPS, in some instances months 
before the end of battery life. These differences in perfor-
mance may be related to several factors including chance, 
study species’ tolerance of collar units, length of collar 
deployment, and the habitats in which collar units were 
deployed. Though mean collar:animal weight ratios were 
similar (1.95% Telemetry Solutions vs. 1.9% e-Obs Digi-
tal Telemetry), it is possible that the larger ratio on the 
somewhat smaller species and the overall bulk (rather than 
weight) of the units led to those study subjects manipulat-
ing collars more frequently, which could lead to loosened 
internal connections between the electronic components. 
Another factor that may have resulted in this performance 
disparity is the overall mean deployment lengths to which 
each collar brand was subjected. Given that most of 
the Telemetry Solutions collars were deployed in high-
humidity tropical rainforests for 3–6 months, it is possible 
that the drop-off unit mechanisms (which require a pin 
to fire and separate the collar) may have been negatively 
impacted by long-term exposure to high humidity.

Reducing TTF and thereby enhancing FSR and collar 
performance can be done through high-frequency fix sched-
uling. This is highly efficient because GPS units remain 
connected to satellites (known as a ‘hot’ start) and these 
high-frequency schedules predispose fix acquisition to be 
more rapid and require less battery power (Moriarty and 
Epps 2015; McGregor et al. 2016). TTF across brands was 
comparable with the exception of the older Televilt Porsec 
120, which did not calculate this metric, and Telemetry 

Solutions collars, which had a considerably longer mean 
TTF of 77 s (under variable habitat conditions; Table 1).

In terms of battery life performance more broadly, 
Advanced Telemetry Systems and Telonics collars per-
formed best in this study, with almost all units maintaining 
or exceeding their anticipated battery life expectations rela-
tive to their programmed fix schedules (Table 2). Collars 
manufactured by e-Obs Digital Telemetry, Lotek, and Tel-
lus Micro experienced lower-than-expected battery life for 
either GPS units and/or the VHF or UHF signals on collars. 
Early loss of VHF or UHF signals impacts both the research-
ers’ ability to relocate animals for data download and col-
lar retrieval as well as prohibiting the ability of researchers 
to trigger electronic drop-off units. To enhance battery life, 
some researchers in this review programmed GPS collars to 
only collect data during daytime for diurnal species. How-
ever, this produces several problems for data analysis, with 
some methods requiring continuous data collection at the 
set intervals, such as hidden Markov models for assessing 
circadian rhythm (Huang et al. 2018). Not collecting posi-
tions at night may reduce the chances of defining sleeping 
sites (but see Pebsworth et al. 2012a, b). Fix schedule should 
mirror the research question.

As many GPS collars now have the ability to connect to 
satellites and GSM networks and transmit locational data 
in real time, study animals may not need to be re-trapped 
in order for GPS units to be removed via remotely triggered 
electronic drop-off (through satellite or GSM networks). 
Upon signal transmission, either pre-programmed or trig-
gered in real time by the researcher (typically via UHF 
receiver transmission), collar drop-off should engage and 
release for subsequent retrieval of the GPS unit within the 
timeframe of the extra battery unit signaling GPS position 
for retrieval. Unfortunately, electronic drop-offs remain 
among the most problematic performance aspect of GPS 
collars (Table 2). We suggest the greatest room for improve-
ment in GPS telemetry technology exists here, and we 
urge manufacturers to enhance drop-off performance, and 
researchers to always use biodegradable weak links in addi-
tion to remotely triggered drop-off mechanisms. Telonics 
offers stand-alone, remote, timed drop-off units for sale 
but at a large expense ($500 USD). Telemetry Solutions 
(N = 54), and Advanced Telemetry Systems (N = 22) had the 
largest sample sizes and reported a high drop-off success rate 
(> 66%). However, the Advanced Telemetry Systems drop-
off unit is 65 g, making it prohibitively heavy to add to most 
GPS collars for deployment on primates. Tellus Ultralight 
collars had a 100% success rate on drop-offs, but a very low 
number of drop-off attempts (N = 3).

Some special considerations have emerged as a result of 
our own work and in the process of conducting this review 
that must be taken into account with regard to deploying 
any type of collar (but particularly the somewhat heavier 
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GPS collars) on primates. First, as the greatest room for 
improvement across GPS collars lies in drop-off functional-
ity, we argue that it is essential that all GPS collars be fitted 
with biodegradable weak links prior to placing them on the 
animals. Some individuals in this review have used cotton 
spacers with success; a recent paper shows that degradable 
washers can also be used as a time-release mechanism for 
telemetry collars (Thalmann 2017). Some individuals in 
this review field-tested drop-offs first with success and then 
they failed in the field; weak links will assure that collars 
will eventually come off the animals regardless of drop-off 
failure or success. This fail-safe mechanism will also aid in 
high-risk situations (such as working with highly endangered 
species or species that require free-darting to capture) where 
the risk of recapture may be too high.

Second, investigators should ideally collect ranging data 
on the individuals under consideration for telemetry prior 
to collar deployment. This may require the use of handheld 
GPS units. These data can ensure that data obtained on range 
size or other metrics are not a byproduct of the animal wear-
ing a telemetry device, and enable the researcher to become 
acquainted with the environment and the behavior of the 
animals (Hebblewhite and Haydon 2010).

Based on the particular individual, species, or environ-
ment under investigation, risks of trapping, trap habitua-
tion, and free-darting (tranquilizing an animal not already 
sequestered in a trap) may be of particular importance as 
well. In addition, primatologists must negotiate the risks and 
impacts of sedation against how long the collar can be func-
tionally deployed and how much data can be derived from 
that deployment. In some scenarios, habituating animals 
to traps may be unethical, as it leaves the animals vulner-
able to human predation. Questions also remain with regard 
to the frequency of injury and subject loss, and scholars 
must be sure to report these incidents so that the risks are 
fully understood. For example, while not part of our data-
set, Isbell et al. (2018) found greater mortality (via leopard 
predation) in collared female vervet monkeys compared to 
uncollared females, which may have been a result of wear-
ing the devices. We recommend visiting and updating the 
IPS safe capture protocols with any injuries or deaths that 
may be a result of wearing GPS collars (IPS 2019). In situ-
ations where animals are lost or injuries occur, the potential 
for public backlash is very real (and has been a significant 
problem for at least one of us). Due to the relatively novel 
use of this technology, systematic studies on these variables 
have not yet been published. We encourage the explicit con-
sideration and investigation of these factors in future primate 
telemetry work (Hopkins and Milton 2016; Klegarth et al. 
2019; Isbell et al. 2018). In at least one instance, collared 
monkeys became more recognizable within the local com-
munity and were targeted by individuals disgruntled with 
having to share the environment with monkeys. Yet some 

of us have experienced public support for and interest in 
collared individuals; in one study, tourists and local rangers 
spent much time paying attention to collared individuals and 
asking questions. This was used to inform them of the ecol-
ogy of the collared primates (Hansen et al. 2019).

While these collars open up new methodological and 
analytical possibilities for assessing primate ranging pat-
terns and habitat use, they also present a diverse array of 
technical, structural, and ethical concerns with doing so, 
and these concerns and issues should be at the forefront of 
the design and implementation of projects using them. In 
evaluating the effectiveness of the collars themselves, it is 
important to keep in mind the basic categories of harm that 
the deployment of externally borne telemetry units can intro-
duce in primates: potential harms associated with capture, 
collar attachment, and with the recovery and release options. 
We want to stress that the physical and social impact of the 
device on the animal once it is attached and returned to the 
social group should be monitored as comprehensively as 
possible (Klegarth et al. 2019; Pebsworth et al. 2012a).

Conclusions

Primatologists utilizing satellite telemetry have demon-
strated that GPS collars can acquire large amounts of accu-
rate location data across a diversity of habitats, including 
challenging locales such as those with heavy canopy cover 
(Table 1, Klegarth et al. 2017a, b). Our compiled dataset 
shows that GPS collars have now been successfully deployed 
on at least 179 individual primates at sites spread across 
five continents. While the habitats represented in this dataset 
varied, collars from multiple brands were shown to perform 
well in even the most challenging habitats including areas 
with obstructive cliff faces (Klegarth et al. 2017a, b; Pebs-
worth et al. 2012a) and heavy rainforest canopies (Klegarth 
et al. 2017a, b; Fiore and Link 2013; Stark et al. 2017). In 
addition to drawing attention to the value of GPS telemetry 
for primatology, our review highlights a number of problem-
atic aspects of this technology as well as important consider-
ations that are not often addressed in scientific publications. 
Ultimately, we argue that primatologists armed with this 
information have much to gain from the recent, substantial 
improvements in tracking technology.
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