
1.  Introduction
The global distribution of partial melt in the asthenosphere is still widely debated. In subduction zones, seismic 
velocity and attenuation models have been used to trace the generation and transport of partial melt in the mantle 
wedge from just above the subducting slab to the arc (e.g., Abers et al., 2014; Syracuse et al., 2008; Tamura, 2003), 
including in Alaska (Eberhart-Phillips et al., 2006; McNamara & Pasyanos. 2002; Soto Casteneda et al., 2021), 
and beneath back-arc spreading centers (e.g., Wei & Wiens, 2018, 2020). However, the distribution of partial 
melt on a more widespread basis in subduction zone mantle wedges, and its extent beneath adjacent lithosphere, 
remains uncertain.

Mantle seismic velocity discontinuities—or vertically localized seismic velocity gradients—have potential to 
help resolve the distribution of melt in the mantle. A negative velocity gradient (decreasing velocity with depth) 
at the lithosphere-asthenosphere boundary (or LAB) has been explained by a variety of models. While temper-
ature clearly plays a role in creating high seismic velocities in the mantle lithosphere (Hirth & Kohlstedt, 2003; 
Stixrude & Lithgow-Bertelloni, 2005) additional factors have been invoked to produce negative velocity gradients 
that are vertically localized, including the presence of volatiles and partial melt in the asthenosphere, elastically 

Abstract  We obtained a 3D image of crust and mantle seismic velocity gradients beneath the state of 
Alaska using common-conversion point (CCP) stacking of S-to-p converted body waves recorded by hundreds 
of stations from the NSF EarthScope Transportable Array and other portable arrays and permanent networks. 
Moho depths delineate the thick crust of the underthrust Yakutat terrane and the crustal root beneath the 
Brooks Range. The North American lithosphere is particularly thin close to the subducting lithosphere in the 
Alaska subduction zone, consistent with thinning of the upper plate by subduction zone flow and melt rising 
from the mantle wedge. The lithosphere remains relatively thin far to the northwest and north, including the 
Seward Peninsula and regions to the south of the Brooks Range where lithospheric extension and foundering 
may have played a role. The lithosphere dramatically thickens beneath the Brooks Range and northern Arctic 
Alaska terrane where it appears to be both cold and highly viscous. The CCP stack also revealed a pronounced 
positive velocity gradient at depths of 130–230 km that represents the base of a layer within the asthenosphere 
whose low velocities are best explained by the presence of partial melt. Although this gradient is present 
close to the subducting lithosphere, where partial melting is enabled by slab-derived fluids, it is strongest 
beneath the Seward Peninsula and northeast of the Wrangell volcanic field, suggesting the presence of partial 
melt in  the  asthenosphere hundreds of kilometers away from the slab, likely due to decompression melting in 
upwelling asthenosphere.

Plain Language Summary  We used recordings of distant earthquakes at hundreds of seismic 
stations to create a 3D image of the crust and mantle beneath the state of Alaska. We measured the thicknesses 
of the crust and the lithosphere, and the depth of a mantle feature that we interpreted as the base of a layer 
containing partial melt. The crust is particularly thick beneath the Brooks Range in the north, and where the 
plate subducting in the south is carrying the crust of the Yakutat terrane beneath the upper plate. The upper 
plate appears to have been thinned by subduction zone flow and partial melt rising from the mantle wedge in 
central Alaska, and it is much thicker in the far north. Above depths of 130–230 km, partial melt exists near the 
subducting plate, where slab-derived fluids allow melting of mantle rocks. However, the effects of partial melt 
are largest beneath the Seward Peninsula and northeast of the Wrangell volcanic field, hundreds of kilometers 
away from the slab, where melting is enabled by rising mantle.
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accommodated grain boundary sliding, near-solidus weakening, and seismic anisotropy (e.g., L. N. Hansen 
et al., 2016; Yamauchi & Takei, 2020; also see reviews in Fischer et al., 2020; Karato & Park, 2018; Rychert 
et al., 2018a, 2018b). In some regions the seismic LAB has been associated with solidi, for example, a relatively 
dry peridotite solidus in the western U.S. (Golos & Fischer, 2022; Plank & Forsyth, 2016), a hydrated peridotite 
solidus in subduction zones (e.g., Wang et al., 2020), or a carbonated peridotite solidus beneath the oceans and 
in subduction zones (e.g., Dasgupta, 2018; Hammouda et al., 2021; Hirschmann, 2010). In Alaska, Rondenay 
et al. (2010) imaged a negative velocity gradient at depths of ∼60 km which they attributed to partial melt pooled 
beneath the base of the North American lithosphere. Mantle discontinuities may also be created at the lower 
boundaries of the layers where asthenospheric temperatures exceed the temperature of a particular solidus (e.g., 
Dasgupta, 2018; Hammouda et al., 2021; Hirschmann, 2010; Wang et al., 2020), creating a positive velocity 
gradient (PVG) with depth, as has been observed beneath a number of regions (Hua, Fischer, Wu, & Blom, 2020; 
Miller et al., 2015; Rychert et al., 2013, 2018a, 2018b; Wu et al., 2021). The presence of a small amount of partial 
melt has also been invoked to explain zones of high electrical conductivity in some regions of the asthenosphere 
(e.g., Chesley et al., 2019; Naif et al., 2013; Selway et al., 2019).

Converted body waves (such as Sp and Ps) and reflected phases are effective at imaging vertically localized veloc-
ity gradients and provide an important complement to body and surface wave tomography which reflect velocities 
or velocity anomalies throughout a given volume. For example, the addition of Sp (e.g., Gama et al., 2021), Ps 
(e.g., Berg et al., 2020; Bodin et al., 2013; Calo et al., 2016; Julia et al., 2000; Martin-Short et al., 2018; Porritt 
et al., 2015; Roy & Romanowicz, 2017; Schmandt et al., 2015; Shen & Ritzwoller, 2016; Shen et al., 2013, 2018; 
Ward & Lin, 2018), or Sp and Ps phases (Eilon et al., 2018) to inversions of surface wave phase velocities enhances 
vertical resolution of both mantle and Moho velocity gradients. Sp phases have an advantage over Ps in that Sp 
mantle arrivals are not over-printed by Moho reverberations, and Moho phases are not over-printed by rever-
berations from shallow crustal layers. Due to their Fresnel zones (e.g., Hansen & Schmandt, 2017; Mancinelli 
& Fischer, 2017) Sp phases are typically not able to accurately capture velocity gradients with dips of more 
than 10°–15° (e.g., Hansen & Schmandt, 2017; Hua, Fischer, Mancinelli, & Bao, 2020; Lekić & Fischer, 2017). 
However, Sp Fresnel zones are especially well-suited to imaging near-horizontal velocity gradients and for stack-
ing approaches that rely on horizontal averaging, such as common conversion point (CCP) stacking (e.g., Hua, 
Fischer, Mancinelli, & Bao, 2020; Hua, Fischer, Wu, & Blom, 2020).

In this paper, we employed CCP stacking of Sp converted phases to study lithospheric and asthenospheric proper-
ties near the subduction zone and across the continental lithosphere beneath the state of Alaska. Prior studies have 
imaged mantle discontinuities beneath Alaska using Sp (Bauer et al., 2014; O’Driscoll & Miller, 2015) and Ps 
(Bauer et al., 2014; Chuang et al., 2017; Mann et al., 2022; Rondenay et al., 2008, 2010) phases; explored upper 
and subducting plate crustal structure with Ps data (Allam et al., 2017; Brennan et al., 2011; Ferris et al., 2003; 
Kim et al., 2014; Miller & Moresi, 2018; Miller et al., 2018; Rondenay et al., 2008, 2010; Veenstra et al., 2006; 
Zhang et al., 2019); and incorporated Sp (Gama et al., 2021) or Ps (Berg et al., 2020; Feng, 2021; Martin-Short 
et al., 2018; Ward & Lin, 2018) data in joint inversions with surface waves. However, to our knowledge this 
is the first study to comprehensively map crust and mantle discontinuities in Alaska with Sp phases recorded 
by the U.S. National Science Foundation (NSF) EarthScope Transportable Array (TA). In Alaska, the contrast 
between the active convergent margin in the south and the more stable continental region in the north (e.g., Finzel 
et al., 2015) provides insight on how asthenospheric signatures vary as a function of tectonic setting. We focused 
on three main boundaries: the crust—mantle boundary (or Moho) which is key for understanding the interaction 
of Alaskan tectonic terranes, the LAB, and the base of a low velocity asthenosphere layer which appears as a 
PVG. We argue for the presence of partial melt where the LAB and PVG are strong in some areas of Alaska and 
explore different mechanisms for melt generation and their variation beneath Alaska.

2.  Data and Method
To image shear-wave velocity gradients, we applied CCP stacking to Sp phases from teleseismic earthquakes 
recorded by permanent and temporary broadband stations in Alaska, in particular the stations of the NSF Earth-
Scope TA (Figure 1a). These data create a dense distribution of ray paths beneath Alaska; 20,210 Sp receiver 
functions were used to construct the 3D CCP volume. Each step of the data analysis process is described in the 
following sections.
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2.1.  Data

We selected earthquakes between the years of 1986 and 2021 and with Mw larger than 5.8. Epicentral distances 
of 50°–90° were used for Sp receiver functions and CCP stacking, and these paths are dominated by two 
back-azimuthal groups: 215°–255° (southeast Pacific events) and 255°–285° (north and northwest Pacific events) 
(Figure 1b). P waves used in calculating free-surface velocities were collected from events at 35°–90°.

We employed data from 449 seismic stations in Alaska (Figure 1a). Of these, 153 are EarthScope TA stations, and 
the remaining are other temporary and permanent stations. References for the relevant network codes (AK, AT, 
AV, DW, II, IM, IU, PN, PP, TA, US, XE, XR, XZ, YE, YG, YM, YV, and Z5) appear in the Acknowledgments.

2.2.  Calculating Receiver Functions

To enable robust phase identification, we calculated the arrival time of P and S phases using an array-based 
method (Lekić & Fischer, 2014). We filtered the seismograms using a 2–100 s band-pass filter, and to sepa-
rate waveforms into P and SV components, we used a free-surface transform (Kennett, 1991). We obtained the 
free-surface velocities needed for the free-surface transform using the particle motion modeling approach from 
Hua, Fischer, Wu, and Blom (2020) applied to direct P and S arrivals.

To calculate the Sp receiver functions, we deconvolved the SV component of the direct S arrival from the P 
component using a time-domain deconvolution method (Ligorría & Ammon,  1999). The resulting impulse 
responses were convolved with a Gaussian whose half-width is 0.9 s. To migrate the receiver functions to depth, 
we used the 3D velocity model from Nayak et al. (2020).

Figure 1.  (a) Topographic map of Alaska (ETOPO1, Amante & Eakins, 2009) with the 449 stations used in the Sp common conversion point (CCP) stacks in yellow 
upside-down triangles. Red triangles show volcanoes (avo.alaska.edu) and gray lines are slab contours (Hayes et al., 2018). The red outline marks the extent of the 
Yakutat terrane (Eberhart-Phillips et al., 2006). Labeled stations indicate the location of the single stack stations in Figure 2. SP—Seward Peninsula; BR—Brooks 
Range; WVF—Wrangell Volcanic Field; DVG—Denali Volcanic Gap; YKB—Yukon-Koyukuk basin; NI—Nunivak Island; and PV—Prindle Volcano. (b) Distribution 
of earthquake back azimuths in the CCP stack.
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2.3.  Quality Control

To ensure that very noisy and/or physically implausible receiver functions were not included in the CCP stack, 
we removed individual receiver functions that did not pass quality control tests for overall amplitude levels and 
for the presence of a Moho phase.

Two criteria were based on comparisons of the observed receiver function amplitudes relative to synthetic receiver 
function amplitudes predicted by the Nayak et al. (2020) velocity model for Alaska. However, we stress that the 
permitted ranges of receiver function amplitudes are broad enough that the choice of reference velocity model 
has almost no impact on the selected receiver functions. As long as Moho depths are consistent to within approx-
imately ±10 km, a very wide range of reference models would yield similar results. Following the approach in 
Hua, Fischer, Wu, and Blom (2020), we generated synthetic receiver functions for 1D velocity models based on 
Nayak et al. (2020) at 1° horizontal increments, using the propagator matrix method (Keith & Crampin, 1977) 
and S wave ray parameters that are consistent with the observed receiver functions. From the predicted receiver 
functions for the entire region, for each depth we found the mean synthetic amplitude value, forming the vector 
RFmean, and the half-width (half the range between minimum and maximum amplitudes, RFhw). We discarded 
observed receiver functions (RFo) with abnormally large amplitudes, identified by ||RFo − RFmean|| 22 greater 
than five times the median ||RFo − RFmean|| 22 from all receiver functions. This step removes 51% of the initial 
individual receiver functions. We also counted depth layers greater than 60 km where the receiver function ampli-
tude RFo is either smaller than RFmean − 0.8RFhw or larger than RFmean + 0.8RFhw. To remove sustained large 
amplitudes in the mantle, we removed observed receiver functions whose depth layer count was greater than the 
median from all observed receiver functions.

Given that clear Moho phases are observed across Alaska (e.g., Mann et al., 2022; Miller et al., 2018; Ward & 
Lin, 2018; Zhang et al., 2019), we also required that observed receiver functions have a positive amplitude in the 
potential Moho depth range of 15–60 km depth, and among these we discarded receiver functions with positive 
amplitudes smaller than 20% of the median amplitude from all receiver functions. We also discarded receiver 
functions with negative phases in the 15–60 km depth range that are three times larger than the median amplitude 
from all receiver functions in the 15–60 km depth range.

The 20,210 Sp receiver functions that remained after the quality control criteria were applied represent 30% of 
the individual receiver functions calculated from all collected waveforms. The effects of the quality control crite-
ria are shown in stacks at single stations in Figure S1. Many features of the receiver functions with and without 
these thresholds are similar, although the thresholds typically result in higher amplitude Moho phases (positive 
amplitudes in the 20–55 km depth range), and, in some cases, clearer phases associated with negative velocity 
gradients (negative amplitudes) in the shallow mantle.

Other examples of observed receiver functions stacked at single stations are shown in Figure 2. Clear phases 
corresponding to positive velocity gradients at the Moho are observed at all stations. Stations in central and south-
ern Alaska (H20K, I23K, I17K, J26L, L19K, N18K, N16K, and O15K) show phases consistent with negative 
velocity gradients in the 50–100 km depth range, whereas the two stations in the northern Arctic Alaska terrane 
(TOLK and C23K) have weaker and deeper negative phases in the potential LAB depth range.

2.4.  CCP Stacking

To map individual Sp receiver functions to 3D space, we employed CCP stacking. For the source-receiver pair 
represent by each receiver function, P-wave raypaths were traced backward from the station through the grid of 
CCP points. For each layer of points in depth, the amplitude at the time in a receiver function that corresponds to 
that depth was added to the stack for a given grid point using a horizontal spatial weighting function. In contrast 
to prior studies that employed geographic bins of conversion points or weighting functions that reflect the Fresnel 
zones of vertically incident waves (e.g., Dueker & Sheehan, 1997; Kind et al., 2013; Lekić & Fischer, 2017), 
in this study we incorporated the properties of Sp sensitivity kernels at the true ray parameter of the incident S 
wave (Hansen & Schmandt, 2017; Hua, Fischer, Mancinelli, & Bao, 2020; Mancinelli & Fischer, 2017), using 
the spatial weighting functions developed by Hua, Fischer, Wu, and Blom (2020). The standard deviation of the 
stacked receiver function amplitude was used to quantify uncertainty in the CCP stacks. We applied a theoretical 
expression developed by Hua, Fischer, Wu, and Blom (2020) for precisely estimating the standard deviation of 
any weighted average, eliminating the requirement for bootstrapping.
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3.  Results
In the CCP stack, we found three primary velocity gradients: (a) the Moho in the 15–66 km depth range, (b) a 
negative velocity gradient that can be interpreted as the LAB largely in the 50–170 km depth range, and (c) a 
deeper PVG in the mantle in the 130–230 km depth range (hereafter called the PVGm). These features and the 
CCP stacks in general are shown in: a map of the summed CCP weights for all receiver functions in the stack at a 
depth of 200 km, also with profile locations (Figure 3), profiles with depth (Figures 4–6) and in maps of velocity 
gradient depths and amplitudes (Figures 7–9). In the stacks, positive velocity gradients at the Moho or in the 
mantle are in red, and the stronger phases in blue represent a significant decrease in velocity, such as the LAB.

To ensure that we interpreted the CCP stack only where the observed phases are robust, we defined cutoff 
criteria for interpretation based on sampling and stack standard deviation. We ignored regions of the stack with 
low sampling based on their relative weight values (values of less 0.1 and 0.05 for the PVGm and the LAB, 
respectively) or where the amplitude value did not exceed two times its standard deviation. We also ignored small 
amplitude variations, those below an amplitude cutoff of 0.003. To measure the depths of the Moho and PVGm, 
we applied the phase picking algorithm from Hua et al. (2018), using additional criteria from Hua, Fischer, Wu, 
and Blom (2020), to positive amplitudes within the depth window for each feature (10–70 km for the Moho and 

Figure 2.  Single station stacks of Sp receiver functions (with Moho criteria) for select Transportable Array stations. Stacks were calculated using earthquakes from all 
back azimuths. Station locations are shown in Figure 1. Red phases correspond to velocity increases with depth and blue to velocity decreases with depth. Sp polarities 
have been flipped to match the Ps convention.
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100–250 km for the PVGm). This approach treats the CCP stack amplitudes as a probability distribution, where 
larger amplitudes correspond to higher probabilities, the expected depth from the probability distribution is asso-
ciated with the center depth of the velocity gradient, and one standard deviation of the distribution characterizes 
the uncertainties in depth. LAB depths were chosen in a similar manner, except using negative amplitudes in the 
40–200 km depth range. We retained only those picked phase depths that are continuous within a 0.5° radius. 
Examples of depth picks are shown in Figure 6, with Moho picks in profile 1, and LAB and PVGm picks in 
profile 2. Across most of these profiles, the phases are picked near the apparent center of the band of the most 
positive (Moho and PVGm) or negative (LAB) amplitudes. However, in some cases the probability distribution 
contains multiple peaks in distinct depth ranges (e.g., the four most western LAB picks in profile 2) and the 
resulting expected depth falls between the peaks, as would be expected if all were part of the same velocity gradi-
ent. In other cases, the presence of multiple peaks causes an increase in the standard deviation of the picked depth, 
as shown for the PVGm picks in profile 2 at longitudes of −160 to −161°E. Gaps in the picking typically reflect 
low amplitudes, as in the case of the LAB phase near −160°E.

3.1.  Crust-Mantle Boundary

Profiles through the CCP stack show the crust is thickest beneath the Brooks Range in northern Alaska (Figure 4, 
profiles A and B) and where Yakutat crust is underthrust beneath North American crust in the south (Figure 4, 
profiles B and F; Figure 5, profiles C, G, and H). In the latter case, the underthrust Yakutat terrane is connected to 
the seismicity of the subducting lithosphere (e.g., Figure 4, profile C and Figure 5, profiles G and H). Where the 
Yakutat crust is underthrust beneath the North American crust, the picking algorithm typically selected the larger 
amplitude of the two Mohos (e.g., profile 1 in Figure 6) in the 10–70 km depth range, unless the peaks were very 
similar in amplitude and then the pick lies between them. In some cases, a relatively clear Moho phase continues 
below depths of 70 km (e.g., Figure 5, profiles G and H; Figure 6, profile 1) but at these depths the subducting 
lithosphere is no longer in contact with the upper plate, and we do not use these deeper portions of the subducting 
Moho in the Moho picks shown in Figure 7. Moho picks were retained only where the depth of the pick lies more 
than 5 km beneath the first non-zero amplitude in the stack at that latitude and longitude. Some of the profiles 
with the underthrust Yakutat crust also show negative energy at the interface between the North American and 

Figure 3.  Maps of locations of cross-sections through the common conversion point stack shown on backgrounds of (a) summed weighting functions. Darker red on 
the weighting map shows areas of higher weighting, approximately corresponding to a greater density of Sp paths. (b) Topographic map of Alaska with volcanoes in 
red. Both panels show profiles in Figures 4–6.
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Figure 4.  Profiles through the common conversion point stack. Red amplitudes correspond to increasing velocity with depth and blue to decreasing velocity with depth. 
Profile locations are shown in Figure 3. Gray shading at the top shows topography (Amante & Eakins, 2009). Small black dots are earthquakes (ANSS Comprehensive 
Earthquake Catalog USGS) and red triangles are volcanoes within 50 km from the profile. White circles at the top mark distance along the profile as shown in Figure 3.
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Yakutat Mohos (e.g., Figure 4, profile F and Figure 5, profiles G and H). This interface has also been observed in 
other studies (e.g., Fuis et al., 2008; Mann et al., 2022) with higher resolution than is possible in this CCP stack, 
where the data have been filtered with a 2–100 s bandpass.

Moho depths picked from the CCP stack range from 15 to 66 km (Figure 7). Their patterns north of the Denali 
fault are broadly consistent with previous studies (e.g., Haney et al., 2020; Miller et al., 2018; Ward & Lin, 2018; 
Zhang et al., 2019) where they overlap, although the maximum Moho depths from the CCP stack exceed those 
in Miller et al. (2018) and Zhang et al. (2019). However, south of the Denali fault, where positive velocity gradi-
ents associated with both Yakutat and North American Mohos exist, greater variations between studies occur, 
likely due to different choices in identifying a Moho arrival (e.g., Allam et al., 2017; Mann et al., 2022; Miller 
et al., 2018; Zhang et al., 2019). Overall, Moho depth estimates from the CCP stack extend farther and/or more 

Figure 5.  Profiles through the common conversion point (CCP) stack. Red amplitudes correspond to increasing velocity with depth and blue to decreasing velocity 
with depth. Profile locations are shown in Figure 3. Gray shading at the top shows topography (Amante & Eakins, 2009). Small black dots are earthquakes (ANSS 
Comprehensive Earthquake Catalog USGS) and red triangles are volcanoes within 50 km from the profile. The slab contours in profile C are from Daly et al. (2021). 
White circles at the top mark distance along the profile as shown in Figure 3. In profile H, note that the (blue) lithosphere-asthenosphere boundary phase from the 
base of the subducting plate continues all the way to the dipping seismicity, which does not make physical sense. This feature reflects the tendency of CCP stacking to 
horizontally smooth discontinuity signals (e.g., Hua, Fischer, Mancinelli, & Bao, 2020).
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continuously across Alaska than in many prior studies. As seen in the profiles, the thickest crust in the maps 
lies beneath the Brooks Range (in the north of Figure 7) and where the Yakutat crust is most deeply underthrust 
(in the south). Variations in crustal thickness are associated with some major faults, for example, a northward 

decrease in crustal thickness across the eastern Denali fault (also resolved 
by Allam et al. (2017), Miller et al. (2018), Haney et al. (2020), and Mann 
et al. (2022)).

3.2.  Lithosphere-Asthenosphere Boundary

At depths of 50–170 km, a negative phase in the CCP stack signifies a veloc-
ity decrease in the upper mantle. Based on our prior joint inversions of Sp 
and surface-wave phase velocities (Gama et al., 2021) and other tomography 
studies (e.g., Berg et al., 2020; Feng & Ritzwoller, 2019; Jiang et al., 2018; 
Martin-Short et al., 2018; Ward & Lin, 2018; Yang & Gao, 2020), we inter-
pret this feature as the LAB.

The lithosphere is relatively thin in a broad swath of central Alaska 
(50–80  km) and the Seward Peninsula (∼70  km), as seen in the map in 
Figure 8; the middle of the profiles in Figure 4, profiles A, B, and E; the 
western end of Figure 4, profile F; the northern side of Figure 5, profile C, 
and the western sides of Figure 5, profiles G and H. In contrast, the litho-
sphere is thicker in northernmost Alaska (120–170 km) beneath the northern 
Arctic-Alaska terrane (northern end of Figure 4, profiles A and B; middle 
of Figure  4, profile D). and also beneath the subducting plate in the east 
(∼130  km) (eastern end of Figure  5, profile H). These broad patterns in 
relative lithospheric thickness are consistent with prior studies (e.g., Berg 
et al., 2020; Feng & Ritzwoller, 2019; Gama et al., 2021; Jiang et al., 2018; 
Martin-Short et  al.,  2018; O’Driscoll & Miller,  2015; Ward & Lin,  2018; 
Wang & Tape, 2014; Yang & Gao, 2020). In some regions of northern Alaska 
where the phase interpreted as the LAB is relatively deep, additional Sp 
energy consistent with negative velocity gradients lies at shallower mantle 
depths (e.g., the middle of profile D in Figure 5). These arrivals could signify 

Figure 6.  (upper) Examples of Moho depth picks (white dots with one standard deviation uncertainties) on profile 1; vertical axis from 0 to 100 km depth. (lower) 
Examples of lithosphere-asthenosphere boundary depth picks (blue dots) and positive velocity gradient depth picks (white dots) with one standard deviation 
uncertainties on profile 2; vertical axis from 0 to 250 km depth. The locations of the profiles are shown in dark red in Figure 3a.

Figure 7.  Map of Moho depths measured from the common conversion point 
stack. Volcanoes are indicated by red triangles and black lines are major faults 
(Elliott & Freymueller, 2020).
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the presence of velocity layering within the mantle lithosphere, as has been observed in some cratonic mantles 
(e.g., Abt et al., 2010; S. M. Hansen et al., 2015; Krueger et al., 2021; Miller & Eaton, 2010).

In terms of amplitudes, Sp phases from the negative velocity gradient at the base of the upper plate are strongest 
in west-central Alaska, where LAB depths are shallower, as seen in Figure 8. Joint inversions of Sp data at single 
stations with Rayleigh phase velocities show comparable LAB depths and low asthenospheric velocities (Gama 
et al., 2021). Given that partial melt in the asthenosphere has been invoked to explain particularly strong LAB 
velocity gradients (e.g., Hopper et al., 2014; Rondenay et al., 2010; Rychert et al., 2013, 2018a, 2018b), we tested 
whether the LAB phase has a systematically larger amplitude near back-arc volcanoes (i.e., excluding volcanoes 
that lie above subducting plate seismicity). It does not. The mean amplitude of the LAB phase within a 50 km 
radius of all back-arc volcanoes and the mean amplitude of all points are not significantly different. Assuming 
that LAB amplitude is related to the presence of partial melt below the base of the plate, this result suggests either 
that partial melt does not collect in greater percentages beneath volcanic centers than elsewhere, or that the effects 
of partial melt beneath volcanic centers cancel out; in the latter case, more partial melt could collect below the 
LAB beneath some volcanic centers (creating a higher amplitude negative velocity gradient) but beneath other 
volcanic centers partial melt could intrude the lower lithosphere (reducing the negative velocity gradient at the 
LAB).

3.3.  Mantle Positive Velocity Gradient

Below the lithosphere, we see a Sp phase corresponding to a positive mantle velocity gradient (the PVGm) 
(maps of depth and amplitude in Figure 9). This velocity gradient and the LAB above it are strongest and most 
coherent in western Alaska, including magmatically active regions such as the Seward Peninsula (e.g., left/west 
of Figure 4, profile E). However, higher amplitudes are also found in eastern Alaska at its central latitudes (e.g., 
right of Figure 4, profile E and Figure 5, profile C). Similar to the LAB calculation, magmatically active regions 
(within 20 km of volcanoes outside the main arc volcanic chain) do not show average phase amplitudes that are 
significantly different from the mean value of all PVGm picks. This result suggests that the process that produces 
the PVGm, possibly the onset of partial melting, is not spatially localized beneath volcanic centers. Based on 

Figure 8.  Maps of negative mantle velocity gradient (a) amplitudes and (b) depths measured from the common conversion point stack that we interpret as the 
lithosphere-asthenosphere boundary. Volcanoes are indicated by red triangles and black lines are major faults (Elliott & Freymueller, 2020). SP—Seward Peninsula; 
NI—Nunivak Island; WVF—Wrangell Volcanic Field; DVG—Denali Volcanic Gap; and PV—Prindle Volcano.
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comparisons with shear wave velocity structure obtained by inverting surface wave data at periods that resolve 
structure in the PVGm depth range (e.g., Gama et al., 2021; Martin-Short et al., 2018), we interpreted this positive 
mantle phase as the lower boundary of a low-velocity asthenospheric layer.

4.  Implications for Subduction, Mantle Flow, and Melting Beneath Alaska
The overall picture provided by the Moho and mantle discontinuities that appear in the Sp CCP stack (Figure 10) 
includes: the subduction of the Pacific lithosphere with a well-defined LAB; the thickest crust associated with 
the underthrust Yakutat terrane (seen more clearly in Figures 4 and 5); the thinnest lithosphere just north of 
subduction zone seismicity; the thickest lithosphere beneath northern Alaska, including thickened crust beneath 
the Brooks range; deeper PVGs marking the base of a low-velocity layer which lies within the asthenosphere.

Figure 9.  Maps of the deeper positive mantle velocity gradient (a) amplitudes and (b) depths measured from the common conversion point stack. Volcanoes are 
indicated by red triangles and black lines are major faults (Elliott & Freymueller, 2020). SP—Seward Peninsula; NI—Nunivak Island; WVF—Wrangell Volcanic Field; 
DVG—Denali Volcanic Gap; and PV—Prindle Volcano.

Figure 10.  Interpretation of crust and mantle structure shown on a N-S profile (Figure 4, profile B) beneath Alaska. Black line highlights the negative velocity gradient 
interpreted as the lithosphere-asthenosphere boundary. Red lines highlight deeper positive velocity gradients, the strongest of which is the PVGm positive mantle 
velocity gradient.
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4.1.  Variations in Lithosphere Thickness

The thinnest lithosphere, observed in central Alaska, likely represents modification of the upper plate by 
subduction-derived processes, such as melting in the wedge associated with mantle wedge flow. This inter-
pretation is consistent with the position of this zone just to the north of the deepest seismicity associated with 
the downgoing plate (Figure 4, profile F; Figure 5, profiles G and H) and low asthenospheric velocities (Gama 
et al., 2021). The LAB phase is typically absent, as expected, where the subducting lithosphere intersects the LAB 
depth range (Figure 8). Profile H (Figure 5) is an exception, likely reflecting the tendency of CCP stacking to hori-
zontally smooth velocity discontinuities. An interesting nuance is that the LAB phase is also weak directly above 
the deepest seismicity (e.g., Figure 4, profile F; Figure 5, profile H; Figure 8). Some of this amplitude reduction 
may be due to interference between conversions from the top of the subducting lithosphere with the upper plate 
LAB. However, if the LAB amplitude reduction does reflect real structure, it suggests disruption of a pronounced 
negative velocity gradient at the base of the upper plate by rising melt and slab-derived fluids which lower upper 
plate velocities. However, such LAB disruption is less apparent within the Denali Volcanic Gap (Figure 5, profile 
G), perhaps due to cooler temperatures in the mantle wedge (Martin-Short et al., 2018; Rondenay et al., 2010), 
anomalously shallow release of volatiles (Chuang et al., 2017) or both (Yang & Gao, 2020) that result in lower 
amounts of partial melt production in the mantle wedge.

However, the thin upper plate lithosphere extends far northwest of the subducting plate to the Seward Peninsula, 
where low asthenospheric shear velocities (Gama et al., 2021) and surface magmatism also occur, requiring addi-
tional explanation (Figure 8b; Figure 4, profile E). The thin lithosphere is likely in part due to tectonic history. 
The Seward Peninsula and its immediate surroundings experienced significant extension at 130–70 Ma (Amato 
et al., 2003; Dumitru et al., 1995; Hannula et al., 1995). Nonetheless, the fact that the lithosphere remains thin 
today and the ongoing history of magmatism require more recent processes.

Relatively recent extension and mantle upwelling are one possible explanation for the thin lithosphere beneath 
the Seward Peninsula, In contrast to Quaternary magmas in the arc of the Alaskan subduction zone and the 
Wrangell Volcanic Field, which bear geochemical signatures of subduction (e.g., Andronikov & Mukasa, 2010; 
Nye et al., 2018; Preece & Hart, 2004; Richter et al., 1990; Trop et al., 2021), the young magmas of the Seward 
Peninsula and other sites in Alaska bordering the Bering Sea and extending to Nunivak Island (Figure 1) are 
consistent with a mantle source that overlaps ocean island basalts (Moll-Stalcup, 1994). However, these Bering 
Sea group magmas do not manifest a spatial age progression indicative of one or more hotspots; rather, they have 
been attributed to decompression in upwelling flow related to lithospheric extension (Mukasa et al., 2007). Esti-
mates of active deformation are consistent with extension, given that the Seward Peninsula is pulling away to the 
southwest from northern Alaska; this extension is part of a regional pattern of surface velocities that includes the 
westward extrusion of southwestern Alaska (Elliott & Freymueller, 2020). Geodynamical modeling (e.g., Finzel 
et al., 2015; Jadamec & Billen, 2012; Jadamec et al., 2013, 2018) as well as mantle azimuthal anisotropy (e.g., 
McPherson et al., 2020; Venereau et al., 2019) indicate strongly three-dimensional mantle flow associated with 
this surface deformation. Ongoing extension, potential upwelling within three-dimensional asthenospheric flow 
and the partial melt it generates provide potential mechanisms for maintaining the thin lithosphere beneath the 
Seward Peninsula.

The relatively thin lithosphere found in interior Alaska, extending north to the southern edge of the Brooks 
Range and the northern Arctic-Alaska terrane (Figure 4, profile A; Figure 8b), also requires an explanation. 
Lithospheric extension has likely played a role. Interior Alaska south of the Brooks Range experienced signifi-
cant extension and magmatism not only during the mid-Cretaceous (130–90 Ma) (Miller & Hudson, 1991), but 
also during the Eocene (Andronikov & Mukasa, 2010; Dusel-Bacon & Murphy, 2001), and the later rifting may 
be related to decompression melting as seen in the Fort Hamlin Hills basalts that erupted south of the Brooks 
Range at ∼31 Ma (Andronikov & Mukasa,  2010). However, while minor extension appears to be present in 
this region in the present-day (Elliott & Freymueller, 2020) its rates are small, and this region does not contain 
the active magmatism seen in the Seward Peninsula. Alternatively, lithospheric foundering processes, such as 
delamination or viscous downwelling at the edge of the thick lithosphere beneath the northern Arctic Alaska 
terrane (e.g., King & Ritsema, 2000; Van Wijk et al., 2008), may have contributed to thinning the upper plate 
lithosphere. Consequences of foundering include decompression melting from the asthenosphere that rises in 
response to downwelling and zones of crustal extension (e.g., Göğüş & Pysklywec, 2008), possibly explaining 
these phenomena south of the Brooks Range during and just after the Eocene (Andronikov & Mukasa, 2010; 
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Dusel-Bacon & Murphy, 2001). Lithospheric thinning due to foundering is also a possibility beneath the Seward 
Peninsula. If lithospheric foundering did occur in interior Alaska, or beneath the Seward Peninsula, continued 
vigorous three-dimensional mantle flow (e.g., Finzel et al., 2015; Jadamec et al., 2013) has likely helped maintain 
a relatively thin lithosphere at these latitudes since the initial lithospheric thinning occurred.

In contrast, the thick lithosphere indicated by the deep LAB phases beneath the Brooks Range and the northern 
Arctic-Alaska terrane is cold, as shown by its high absolute velocities (e.g., Gama et al., 2021), which are similar 
to the global average for Archean cratons (French et al., 2013) where xenoliths document cool geotherms (e.g., 
Lee et al., 2011). Cool geotherms are corroborated by the low heat flow beneath all but the northern tip of the 
northern Arctic-Alaska terrane (Batir et al., 2016). In addition, this region of thick lithosphere is characterized 
by low surface deformation rates based on geodetic and fault slip data (e.g., Elliott & Freymueller, 2020; Finzel 
et al., 2015) and has been characterized as having high mantle viscosity (Finzel et al., 2015). Seismicity rates are 
low beneath most of the northern Arctic Alaska terrane (e.g., Ruppert & West, 2019), consistent with minimal 
deformation. A 2018 earthquake swarm north of the Brooks Range is an exception (Ruppert & West, 2019), but 
these events are located in a zone where the picked LAB phase partly lies at shallower depths, perhaps indicating 
an anomaly within the otherwise thicker lithosphere. Beneath much of the thick lithosphere in the north, the LAB 
phase is too weak to meet the criteria for depth measurements as described in Section 3 (e.g., Hua, Fischer, Wu, 
& Blom, 2020). This is likely because the LAB velocity gradient is more gradual, for example, occurring over 
depths of 50 km or more (Gama et al., 2021), which makes it harder to identify the LAB with converted waves 
(e.g., Ford et al., 2010; Rychert et al., 2007). The deep LAB observed beneath the subducting plate in the east 
(∼120 km) (also seen in O’Driscoll and Miller (2015) and Gama et al. (2021)) can be modeled as an oceanic plate 
that has cooled typically (Hasterok, 2013) for its age, plus the additional thickness of the crust of the Yakutat 
terrane (e.g., Christeson et al., 2013; Fuis et al., 2008; Gama et al., 2021; Müller et al., 2008).

4.2.  Patterns of Positive Velocity Gradients

Mantle PVGs in a similar depth range to those we observe beneath Alaska have been imaged in other regions, 
primarily zones characterized by high mantle temperatures and magmatic activity, including Hawaii (Rychert 
et al., 2013), the Canary hotspot (Miller et al., 2015), the young Juan de Fuca plate (Rychert et al., 2018a, 2018b), 
the northwestern U.S. (Hopper et al., 2014), Anatolia (Hua, Fischer, Wu, & Blom, 2020), and the eastern Iranian 
plateau (Wu et al., 2021), and high high-temperature mantle globally (Hua et al., 2021), leading to their interpre-
tation as the lower boundaries of low-velocity layers of asthenosphere that contains partial melt. In Alaska, two 
aspects of the PVGm distribution support its interpretation as the base of a melt-bearing mantle layer. First, the 
PVGm drops in amplitude and fades away beneath the thicker lithosphere in northern Alaska, which appears to be 
a lower temperature region based on its high seismic velocities (e.g., Gama et al., 2021; Martin-Short et al., 2018) 
and low heat flow (Batir et al., 2016). Second, the spatial correlation of higher amplitude Sp energy from the 
PVGm with higher LAB amplitudes (e.g., the Bering Sea margin from Nunivak Island to the Seward Peninsula 
and east-central Alaska; Figures 8a and 9a) are consistent with the idea the clear PVGm arrivals are due to the 
presence of partial melt, since melt could sharpen velocity gradients at both the top and bottom of a melt-bearing 
layer. The observation that LAB and PVGm amplitudes do not, on average, increase locally beneath volcanoes 
(Sections 3.2 and 3.3) suggests that partial melt is widely distributed within the apparent low-velocity layer, with 
the caveat that there could be competing effects of melt on LAB amplitudes (enhancement by pooling of partial 
melt below the upper plate and reduction by melt infiltration into the base of the plate (Section 3.2)).

Above and adjacent to subducting lithosphere in the Alaskan subduction zone and the Wrangell Volcanic Field, 
Quaternary magma compositions (e.g., Andronikov & Mukasa, 2010; Nye et al., 2018; Preece & Hart, 2004; 
Richter et al., 1990; Trop et al., 2021) are consistent with the presence of partial melt as a result of subduction zone 
processes. These processes include slab dehydration, melting in the mantle wedge, and mantle wedge flow (e.g., 
Grove et al., 2009; Wang et al., 2020). For example, the model of Wang et al. (2020) indicates a partial melt bear-
ing zone within the mantle wedge whose lower boundary (the wet solidus) would be comparable in depth to the 
Alaskan mantle PVGm, and whose upper boundary (also the wet solidus) corresponds to observed LAB depths. 
Alternatively, the PVGm could represent a melting front related to carbon-assisted melting (Chen et al., 2016; 
Dasgupta & Hirschmann, 2010; Duke et al., 2014; Hammouda & Laporte, 2000; Hammouda et al., 2021; Sifré 
et al., 2014). In particular, Hammouda et al. (2021) invoke a redox boundary at depths comparable to the Alaskan 
PVGm that would allow partial melt to be stable between this boundary and the LAB.
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Above the northwest-dipping seismicity in the Alaskan subduction zone, the PVGm has a higher amplitude close 
to the subducting plate in the southwest and is low amplitude, sporadic, or absent in the northeast, including in 
the Denali Volcanic Gap (Figure 9a). This variation may relate to the decrease in slab dip to the northeast. For 
example, Grove et al. (2009) point out that as slab dip decreases, the lateral extent of the melting region widens, 
potentially reducing partial melt fractions and decreasing the amplitude of the PVGm associated with the base of 
the melting layer. In addition, as previously mentioned, the Denali Volcanic Gap mantle wedge may be colder or 
be the site of anomalously shallow release of volatiles (Chuang et al., 2017; Martin-Short et al., 2018; Rondenay 
et al., 2010; Yang & Gao, 2020).

In the vicinity of the Wrangell Volcanic Field, seismicity (Daly et al., 2021), imaging of the downgoing plate 
through migration of Ps phases (Mann et al., 2022), and attenuation measurements all argue for northeast-directed 
subduction. These results, in combination with signatures of subduction in Quaternary magmas (e.g., Andronikov 
& Mukasa, 2010; Nye et al., 2018; Preece & Hart, 2004; Richter et al., 1990; Trop et al., 2021), indicate that the 
PVGm in this region can also be explained as the base of a subduction-related melting zone.

In the zones of highest PVGm amplitudes, which lie farther from the subducting lithosphere, Quaternary magmas 
do not manifest signatures typical of subduction zone arcs; instead, they are consistent with basaltic decompres-
sion melting (Andronikov & Mukasa, 2010; Mukasa et  al.,  2007; Nye et  al.,  2018). As previously described 
(Section 4.1), between Nunivak Island and the Seward Peninsula, where one of the high amplitude PVGm (and 
LAB velocity gradient) zones lies (Figure 9a), Quaternary magmas are consistent with an ocean island basalt 
source and decompression melting in upwelling mantle flow (Moll-Stalcup, 1994; Mukasa et  al.,  2007), and 
the upwelling flow could be created by lithospheric extension related to the extrusion of southwestern Alaska 
(Elliott & Freymueller, 2020). In the second region of high PVGm amplitude, which lies in eastern Alaska north 
of ∼63°N, Prindle volcano is the only Quaternary volcanic center (Figure 9a), and while its composition differs 
from the Alaskan arc and is more consistent with decompression melting, it still bears some signatures of subduc-
tion (Andronikov & Mukasa, 2010; Nye et al., 2018). The decompression here could be created by an upwelling 
component to asthenospheric flow that is circulating counter-clockwise around the edge of the subducting lith-
osphere (e.g., Jadamec & Billen, 2012; Jadamec et al., 2013, 2018), possibly in combination with flow through 
a slab tear (e.g., Fuis et al., 2008; Gou et al., 2019; Jiang et al., 2018). A melting front at ∼150 km depth that 
produces an observable PVGm can be created with only modest water content (<200 wt ppm) and mantle poten-
tial temperatures that overlap the range for ambient mantle as represented by mid-ocean ridges (Bao et al., 2022; 
Hua et al., 2021). In addition, if carbon-assisted melting is considered, the redox front proposed by Hammouda 
et al. (2021) could explain the depths of the PVGm observed in these regions (Figure 9b).

Elsewhere, weak and sporadic PVGm phases are observed beneath the subducting lithosphere and beneath a 
small portion of the thick lithosphere in northern Alaska, sometimes at depths greater than 200 km (Figure 9). If 
mantle melting plays a role in producing these velocity gradients, the base of a layer containing carbon-assisted 
partial melt is a candidate explanation (e.g., Hammouda et al., 2021), if oxidized mantle extends to the depth of 
the PVGm.

5.  Conclusions
Common conversion point stacking of Sp phases recorded in Alaska by NSF EarthScope TA stations and other 
networks has provided new insight on crust and mantle discontinuities associated with the North American and 
subducting plates.

Nearly continuous measurements of Moho depth delineate the margin of the thick crust of the underthrust Yaku-
tat terrane, a marked decrease in crustal thickness to the north across the Denali fault, and the thickened crustal 
root beneath the Brooks Range in the north.

New constraints on the negative velocity gradient at the LAB outline a zone of particularly thin lithosphere in the 
back-arc direction just beyond the position of the deepest seismicity in the Alaskan subduction zone, consistent 
with thinning of the upper plate by subduction zone flow and melt rising from the mantle wedge. Directly above 
the deepest seismicity, LAB amplitude drops, likely due to greater infiltration of melt and heat into the upper plate 
that decreases the velocity contrast between lithosphere and asthenosphere.
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Thin lithosphere continues far northwest and north of the subduction zone, including the Seward Peninsula and 
reaching the southern edge of the Brooks Range, where it meets thicker, colder, and higher viscosity litho-
sphere beneath the northern Arctic Alaska terrane. While past extensional tectonics—and possibly lithospheric 
foundering—could have contributed to thinning the lithosphere beneath the Seward Peninsula and interior Alaska, 
ongoing ablation of the upper plate by asthenospheric flow likely helps to keep the lithosphere thin.

A particularly novel structure imaged in this study is a PVG that represents the base of a low velocity layer of 
asthenospheric mantle whose upper boundary corresponds to the LAB. Closer to the subducting lithosphere, this 
gradient could represent the onset of partial melting enabled by slab-derived fluids, with or without an assist 
from carbon in the mantle. However, this PVG is strongest further away from the subduction zone, beneath the 
Seward Peninsula and to the northeast of the Wrangell Volcanic Field, suggesting the presence of partial melt in 
the asthenosphere hundreds of kilometers away from the slab. Magmas in these locations indicate decompression 
melting, consistent with components of upwelling asthenosphere.

Data Availability Statement
Waveform data employed in this study were obtained from the Incorporated Research Institutions for Seismology 
(IRIS) Data Management System. This work employed data from the NSF EarthScope Transportable Array (TA, 
https://doi.org/10.7914/SN/TA), the Alaska Regional Seismic Network (AK, https://doi.org/10.7914/SN/AK), 
the IRIS/USGS and IRIS/IDA stations of the Global Seismographic Network (IU, https://doi.org/10.7914/SN/IU 
and II, https://doi.org/10.7914/SN/II), the USGS Advanced National Seismic System (US https://doi.org/10.7914/
SN/US), the National Tsunami Warning Center Alaska Seismic Network (AT, https://doi.org/10.7914/SN/AT), 
the Alaska Volcano Observatory (AV, https://doi.org/10.7914/SN/AV), the Digital World-Wide Standardized 
Seismograph Network (DW, https://doi.org/10.7914/SN/DW), and International Miscellaneous Stations (IM). 
Waveforms were also included from the Broadband Experiment Across the Alaska Range (BEAAR) (XE, https://
doi.org/10.7914/SN/XE_1999), the ARCTIC array (XR, https://doi.org/10.7914/SN/XR_2004), the St. Elias 
Erosion/Tectonics Project (STEEP) (XZ, https://doi.org/10.7914/SN/XZ_2005), the Denali Fault Aftershocks 
RAMP (YM, https://doi.org/10.7914/SN/YM_2002), Multidisciplinary Observations of Subduction (MOOS) 
(YV, https://doi.org/10.7914/SN/YV_2006), A Four-dimensional View of Deformation in the Eastern Alaska 
Range (Z5, https://doi.org/10.7914/SN/Z5_2018), and the PN, PP, YE, and YG network codes. Files containing 
Moho, LAB, and PVGm depths and uncertainties are available on the Brown University Digital Data Repository 
(https://doi.org/10.26300/zgwd-x886).
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