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Abstract

We introduce the first comprehensive approach to determine the uncertainty in volumetric Particle Tracking Velocimetry
(PTV) measurements. Volumetric PTV is a state-of-the-art non-invasive flow measurement technique, which measures the
velocity field by recording successive snapshots of the tracer particle motion using a multi-camera set-up. The measurement
chain involves reconstructing the three-dimensional particle positions by a triangulation process using the calibrated camera
mapping functions. The non-linear combination of the elemental error sources during the iterative self-calibration correction
and particle reconstruction steps increases the complexity of the task. Here, we first estimate the uncertainty in the particle
image location, which we model as a combination of the particle position estimation uncertainty and the reprojection error
uncertainty. The latter is obtained by a gaussian fit to the histogram of disparity estimates within a sub-volume. Next, we
determine the uncertainty in the camera calibration coefficients. As a final step, the previous two uncertainties are combined
using an uncertainty propagation through the volumetric reconstruction process. The uncertainty in the velocity vector is
directly obtained as a function of the reconstructed particle position uncertainty. The framework is tested with synthetic
vortex ring images. The results show good agreement between the predicted and the expected RMS uncertainty values. The
prediction is consistent for seeding densities tested in the range of 0.01-0.1 particles per pixel. Finally, the methodology
is also successfully validated for an experimental test case of laminar pipe flow velocity profile measurement where the
predicted uncertainty in the streamwise component is within 9% of the RMS error value.

P4 Pavlos P. Vlachos
pvlachos @purdue.edu

Department of Mechanical Engineering, Purdue University,
West Lafayette, USA

@ Springer


http://orcid.org/0000-0002-8040-9257
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-020-03021-6&domain=pdf

197 Page20f18

Experiments in Fluids (2020) 61:197

Graphic abstract

€= FXC(xW'leZW'&C)

(d) /v

olume self-calibration

\Tnangulali

FXC(xWIyW'ZW'a )

Q@;/

N

=

disparity grid points

Abbreviations
X, = {x, 02, }

X =[xy}
FXC, FYc

a = {a?}i=ltol9

M0

@ Springer

Evaluated for @

World coordinates or physical

coordinates

Camera image coordinates for camera ¢
X¢ And Y* calibration mapping function

for camera ¢

Camera c mapping function coefficient

error in variable p

Standard uncertainty in variable p

Covariance matrix in variable p

Recorded image

@ [+ Ve el
(X g 3o ST A
& .
o. . e 2 '*:’Y'c;’ YC
° ° o ° : : 2 -: -

Projected particle positions

A

Histogram of
reprojection error

Sub-volume to
point mapping

N Number of cameras

N4 Number of disparity grid points

d = {dx.dy.} Disparity vector estimated from ensem-
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G Coefficient matrix of mapping func-
tion gradients with respect to X,, for all
cameras

Coe Coefficient matrix of mapping function

gradients with respect to @° evaluated at
disparity grid points

Prq Correlation coefficient between vari-
ables p and ¢

X, The world coordinates at j th time frame
where j is an integer

o2 Variance in fit residual error

diagZ A function which denotes the diagonal
elements of matrix j

Subscripts

b Related to the measure of bias error or
uncertainty in any variable

cal A variable or quantity evaluated in the
calibration process

est Denotes the estimated value of any
variable

true Denotes the known or designed value
of any variable

Acronyms

PIV Particle Image Velocimetry

PTV Particle Tracking Velocimetry

IPR Iterative Particle Reconstruction

OTF Optical Transfer Function

STB Shake-The-Box

CRLB Cramer Rao Lower Bound

pPPP Particles per pixel

1 Introduction

Volumetric PTV (Maas et al. 1993; Baek and Lee 1996;
Ohmi and Li 2000; Pereira et al. 2006) is a fluid velocity
measurement technique which resolves the three-dimensional
(3D) flow structures by tracking the motion of tracer par-
ticles introduced in the flow. The tracer particle motion is
recorded with multiple cameras to obtain projected particle
images. Each camera is also linked to the physical space
using a calibration mapping function (Soloff et al. 1997).
The particle images are then mapped back to the physical
space using a triangulation process (Maas et al. 1993; Wie-
neke 2008). Finally, a three-dimensional (3D) tracking of
the reconstructed particles estimates the Lagrangian trajec-
tories of the particles and subsequently resolves the volu-
metric velocity field. PTV easily lends itself to calculation
of particle acceleration from the tracked trajectories. Also,
unlike Tomographic Particle Image Velocimetry (Tomo-PIV)

(Elsinga et al. 2006), which involves spatial averaging over
the interrogation volume, 3D PTV yields a vector for every
tracked particle position leading to a higher vector density.
However, as the number of particles increases, identification
of overlapping particles and its corresponding 3D reconstruc-
tion becomes challenging, which leads to a trade-off between
spatial resolution and reconstruction accuracy. Hence, the
simple triangulation-based 3D PTV method introduced in
1993 (Maas et al. 1993) had limited applications compared
to Tomo-PIV for highly seeded flows. Improvements in terms
of particle identification (Cardwell et al. 2011) and tracking
algorithms (Takehara et al. 2000; Riethmuller 2001; Cowen
et al. 1997; Lei et al. 2012; Fuchs et al. 2016, 2017) have
been proposed to minimize the error in the measurement.

Recent advancements in terms of reconstruction algo-
rithms, such as Iterative Particle Reconstruction (IPR) (Wie-
neke 2013) and shake-the-box (STB) (Schanz et al. 2016)
have significantly improved the accuracy of 3D PTV. IPR
uses an initial triangulation-based reconstructed field to con-
struct a projected image and then minimizes the intensity
residuals in the image plane by the “shaking” operation,
which shifts the 3D particle position by +0.1 voxels in the
world coordinate location. This process achieves a better
positional accuracy and a reduced fraction of “ghost” par-
ticles, which are falsely reconstructed due to ambiguities in
matching during triangulation process. The IPR reconstruc-
tion accuracy is comparable to intensity-based Multiplica-
tive Algebraic Reconstruction Technique (MART) (Elsinga
et al. 2006), for up to a seeding density of 0.05 particles
per pixels (ppp). This concept has been further advanced
in STB, which uses the temporal information, for a time-
resolved measurement, to predict the particle location in the
future frames and correct the predicted position iteratively
using IPR. Such measurements have successfully resolved
flow structures for experiments with high particle concen-
trations (up to 0.125 ppp). With such capabilities, 3D PTV
measurements have gained renewed attention and applicabil-
ity in various experiments.

To analyze any experimental results with statistical sig-
nificance, uncertainty quantification is crucial, especially,
where the measured data are used in a design process or
to validate computational models (Angioletti et al. 2005;
Ferreira et al. 2007; Ford et al. 2008; van Ooij et al. 2012;
Brindise et al. 2019). Given the increasing applicability
and relevance of PTV/IPR/STB volumetric measurements,
providing uncertainty estimation for an individual 3D PTV
measurement is now of paramount importance.

Uncertainty estimation in PIV measurements has received
interest only recently and several methods have been pro-
posed for planar PIV uncertainty quantification. Broadly, such
methods can be categorized into direct and indirect methods.
Indirect methods rely on a calibration function, which maps
an estimated measurement metric (e.g., correlation-plane
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signal-to-noise ratio metrics (Charonko and Vlachos 2013;
Xue et al. 2014, 2015) or estimates of the fundamental sources
of error (Timmins et al. 2012) to the desired uncertainty val-
ues. Such a calibration is developed from a simulated image
database and may not be sensitive to a specific error source
for a given experiment. Direct methods, on the other hand,
rely directly on the measured displacements and use the image
plane “disparity” (Sciacchitano et al. 2013; Wieneke 2015)
information or correlation-plane PDF (probability density
function) of displacement information (Bhattacharya et al.
2018) to estimate the a-posterior uncertainty values. Compara-
tive assessments (Sciacchitano et al. 2015; Boomsma et al.
2016) have shown that the direct methods are more sensitive
to the random error sources. However, indirect methods can be
potentially used to predict any bias uncertainty. A direct uncer-
tainty estimation for stereo-PIV measurement (Bhattacharya
et al. 2017) has also been proposed recently. A detailed review
of such methods can be found in (Sciacchitano 2019). Thus,
although the foundations have been laid for planar and stereo-
PIV uncertainty quantification, applicability of such methods
to 3D measurements remains untested and these methods train
strictly to cross-correlation-based measurements. As a result,
3D reconstruction and tracking process for 3D PTV measure-
ments is not covered under these methods and, currently, a
posterior uncertainty quantification methods for volumetric
measurements (PTV/PIV) do not exist and new uncertainty
model development is needed.

A flowchart for the different steps in a 3D PTV measure-
ment chain is shown in Fig. 1. The first step establishes a
mapping function between the camera ¢ image coordinates
X = {X°Y°} and the world coordinates X,, = {xwywzw} in
the physical space using a multi-camera calibration process.
The calibration coefficients @ are then iteratively corrected
using the mapping function and the recorded particle images
to eliminate any misalignment between the assumed world
coordinate system origin of the calibration plane and the
actual origin location for the measurement volume. This pro-
cess is called volumetric self-calibration (Wieneke 2008)
and is essential in minimizing the reconstruction error (due
to existing offset or disparity between cameras) and improv-
ing the calibration accuracy. Using the modified calibration,
for each particle in a given camera, the corresponding match
in the second camera is searched along the epipolar line and
the particle matches in all cameras are triangulated (Maas
et al. 1993; Wieneke 2008) to a 3D world position. This
reconstruction process can be done in an iterative sense
for an IPR-type algorithm. However, for the particle-pair-
ing process in each camera view, the matching ambiguity

increases for higher particle concentrations, which leads to
erroneous reconstructions and is considered one of the main
sources of error in the process. Finally, the reconstructed
3D particle positions are tracked to find the velocity vec-
tors using “nearest neighbor” (Malik et al. 1993) or other
advanced algorithms (Okamoto et al. 1995; Guezennec et al.
1994; Li et al. 2008; Mikheev and Zubtsov 2008; Fuchs
et al. 2017; Cierpka et al. 2013; Cardwell et al. 2011). The
tracking and reconstruction can be done in conjunction for
STB-type evaluations. From calibration fitting error, parti-
cle position estimation error, the disparity vector estimation
error to the error in finding the 3D positions, and its pairing,
the errors in each step of the process are inter-linked in a
complex non-linear way and affect the overall error propaga-
tion. The iterative corrections and the governing non-linear
functions lead to several interdependent error sources mak-
ing the definition of a data reduction equation intractable
and the development of an uncertainty quantification model
non-trivial.

In the current framework, a model is developed to quantify
the uncertainty in particle image position and the mapping
function coefficient. These uncertainties are in turn combined
with the uncertainty propagation through the reconstruc-
tion process. Finally, the uncertainty in the velocity vector
is expressed directly as a combination of the position uncer-
tainty in the matching pair of particles. The methodology is
described in detail in the next section.

2 Methodology

The pr_%gnary relation between the observed image coordi-
nates X = {X°Y*“} and the expected particle world coordi-
nates X,, = {xwywzw} in physical space is expressed using the
individual camera mapping function F'y. for each camera c,
as given by:

c _ =c\ _ ¢ c c c
X = Fye (%0 Y0 20 @) = + ax,, + a5y, + a5z,

c.2
+ aSXW

+ agx,y, + a;yfv + dagx,z,,
+ Gy, + digT, + A%, + @y,
+ a§3xwyfv +aj 4yfv + afsxizw + al6X, Yy
+alyaa, +aign,g, + alen,,
ey
A similar functional relationship exists for Y¢, given by
Y = Fye (%, ¥, 2@ ). The vector @ = {a¢ } represents a
set of mapping function coefficients for each camera. Typi-
cally, a polynomial mapping function is used following
Soloff et al. (1997) to have higher accuracies in the presence

Fig. 1 A volumetric PTV
measurement chain showing the
main steps in the process

. . Volumetric
Calibration >|self-Calibration |—>

3D position 3D Particle
Reconstruction [—>| Tracking

@ Springer




Experiments in Fluids (2020) 61:197

Page50f18 197

of optical distortion effects. Once a mapping function is
established and iteratively corrected using a self-calibra-
tion process, the reconstruction process involves finding an
inverse of the mapping function for the matching particle
image coordinates in different projections. Hence, an error
propagation through the mapping function is the starting
point of the uncertainty quantification and is described in
the next subsection.

2.1 Error propagation through the mapping
function

An error propagation for Eq. (1) can be written as:

OFy.
= e

p.Cln X,
ox,, ™

19
0Fy. 0Fy. OF y.
+ e, + e, + — e, 2

ayw Y 0z, ; aal{' a; @)

w
Equation (2) is obtained as a Taylor series expansion of
Eq. (1), neglecting the higher order terms. Thus, the error in
image coordinate ey. can be related to the error in world
coordinate positions e, , e, and the error in calibration
function coefficients e through the mapping function gra-
OFye OFye OFye 0Fyc
drents< 6;; > 6;; i 01): i z)a);
tion can be written for the error in Y¢(ey.) image coordinate
for each camera mapping function. It is important to note
that the quantities of interest are e, ,and e, as we seek
to estimate the unknown variance in the reconstructed world
coordinate positions. Rearranging the unknown terms in the
left-hand side, expressing the sums as vector inner products
and multiplying each side by its transpose yields the vari-
ance propagation equation as follows:

OFy. OFy. OF . T
{ex.ey,ez,}
ox, dy, 0z, Wt
OFy. OFy. OFy. N\’
X { €5, 65,62, }
ox,, 0y, 0z,
B oFy. { }T
-\ oa; | e J 191

o0Fy. T
we- {2l )
aa; 1x19 i ) 19x1 3)

The error in particle image position estimation (ey.) is a
function of particle image fitting error and can be assumed
to be independent of the error in calibration function coef-
ficients (eaf-). However, the calibration error can influence

). A similar propagation equa-

the error in projected particle image location or the projec-
tion error and, thus, any covariance between ey. and € is
implicitly accounted in the projection error formulation, as
discussed in Sect. 2.2. With these considerations, a simpli-
fied version of Eq. (3) can be written as:

{ OFy. OFy. OFy. }i { OFy. 0Fy. 0Fy. }T

ox,, 0y, 0z, J ™| ox, dy, Oz,
OFy. \=° [0Fx "
a; a; 4)
Here,{ aai"” % O:T’“ } is a row vector containing mapping

function gradients for each camera ¢ with respect to
x,= {x,y,2,} and X; represents the unknown covariance

= T
matrix in world coordinates (3 = { e, ey e, } { e, e, e }).

The uncertainty in particle image position X¢ is denoted by oy..

—c T

OFye \5  J OFye . .

The term{ a’f }Zav{ P X } evaluates to a single numerical
a. a;

value, which accounts for the contribution from the uncertainty
in the calibration coefficients @° = {a¢}, _, for the mapping
iJ1x19

. OFye
function Fy. of camera c. The vector{ > - } represents the
1x19

a:
i

mapping function gradients with respect to the calibration coef-

ficients @ and the covariance in mapping function coefficients
— T

for each camera is denoted by X = { } {e }

19x1 1x19°

Now, Eq. (4) is written only for camera ¢ mapping function Fy..

To solve for i;cw, Eq. (4) is stacked up for all N cameras and for
both Fy. and Fy. mapping functions, which leads to 2 N num-
ber of rows in the final matrix form of the equation. For exam-
ple, for a four-camera set-up, the combined equation for all
cameras will have 8 rows and is expressed as:

I
4

50 -S43, )

al
@I

w

— Each term in Eq. (5) has the dimension 2NX 2N and the
Z; term is solved for each reconstructed particle individu-

ally. In Eq. (5), E; “is a 2NX 3 coefficient matrix contain-
ing mapping function gradients for the 2 N mapping func-
tions. The combined variance matrix in particle image

position X is denoted by f;r and contains o2, and 62, as
diagonal entries for each camera. The correlation between
ex. and ey. is assumed to be negligible. Also, the correla-
tion of ey., ey. between different camera components is
neglected as the oy., oy. estimates are obtained indepen-
dently for each camera. Hence, the off-diagonal terms of
E}w are set to zero. Finally, the evaluated scalar values of

Fe \= [ oFe \ T . .
P , for each mapping function in Eq. (4)

oal 9dS
are put as the diagonal terms in the iz matrix, which rep-
resents the net calibration uncertainty contribution across
all N cameras. Thus, Eq. (5) contains the unknown covari-

ance matrix in world coordinates 2 as a function of Z—»c
and E»t The following sections focus on estimating the E—»c

and er terms.
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The overview of the uncertainty estimation and propa-
gation process is depicted in Fig. 2.

2.2 Estimating uncertainty in particle image
location

For a-posteriori uncertainty quantification, we start from the
reconstructed 3D particle positions obtained either from a
triangulation or IPR reconstruction method. For a given 3D
particle position, we want to find the corresponding

€= Fxc(xw:}’w'ZWraC)

\

olume self-calibration

FXr(xw'yw'ZW'a )

%/

/ N

KTnangulamj%

disparity grid points

projected particle image locations and its uncertainty for
each camera. As shown in Fig. 2a, the projected particle
image positions are compared with the recorded image to
find the error in particle image location. This can be
expressed as a sum of the estimated projection error

—cC —C
(X —X,,,) and the 2D particle fit position estimation error

—C

—C —C .
(Xest -X e ), for all X and for each camera c, as shown in

the following equation:

Recorded image

a P nend
(@) .oo ° \ ,
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. o . ° X

Projected particle positions

(b)

Histogam of
reprojection error

Sub-volume to
point mapping

Evaluated for @

(e)

‘

Fig.2 A schematic showing different steps (a—e) for estimating elemental uncertainties in particle image location X and calibration coefficients

a; and its propagation to the uncertainty in the world coordinate x,,
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—C —C

—c — —
ex=X =X, =X X, +X -X ()

true est est true

Thus, the variance in particle image location, Z}r,
becomes a sum of the variance in the estimated projection

error, denoted by %v, and the variance of the error in par-

ticle image position estimation (ixr ), as given by:

est

Ty =T+ Ty @

As mentioned in Sect. 2.1 Eq. (5), each of these variance
matrices is diagonal matrices with dimension 2 N2 N. The

24 matrix has the diagonal entries 6 .and 6 . corresponding
to $'¢ and Y¢ image coordinates for each of the N cameras.

To estimate % the reconstruction domain is divided into

sub-volumes and the estimated projection error for a group
of particles belonging to the same sub-volume is stacked up
into a histogram. This is similar to the concept of disparity

(3( = {dy.dy.}) for each camera c as defined by Wieneke
(2008). The sub-volume size can be varied or particles from
other frames can be included to have a larger statistical sam-
ple. Simulations using synthetic images showed that a his-
togram consisting of 50 or more particles in the sub-volume
yields a statistically consistent estimate, irrespective of the
number of sub volumes considered. Such a histogram of
disparity (d ) estimates is shown in Fig. 2b, where the stand-
ard deviation in the estimated X projection error is denoted
by o, . For a perfectly converged self-calibration, the mean
disparity (d ) should be zero. Typically, the disparity histo-
gram approaches a Gaussian distribution and, for the robust-
ness of variance estimation, a Gaussian fit is applied on this
histogram. The estimated standard deviation from the fitted
curve is used to evaluate the variance of the disparity distri-
bution. However, for a lower seeding density, the disparity
distribution is observed to deviate from a Gaussian distribu-
tion. Consequently, if the area under the fitted Gaussian
curve is different by more than 5% compared to the histo-
gram area evaluated using trapezoidal integration rule, the
standard deviation of the distribution is used as the standard
uncertainty. In this framework, this estimated variance is

modeled as the desired E; of Eq. (7). For the particles

belonging to the same sub-volume, the same value of %z is
used.

The Z~z term in Eq. (7) consists of the 62, and 0'2 terms

”, est evr

as diagonal entries for each camera. To estimate these vari-
ance terms, each particle image within +0.5 pixels of the
projected 3D particle location is fitted with a Gaussian shape
and, thus, the uncertainty in the fitted position parameter for
the least-square fit process is considered. Thus, the 2. term

est

is given by:

—T— 1
2 . 77 2
Oxe = diag (J J) G 8

Equation (8) denotes an expression for the X?  position
estimation variance which is shown to be a function of the

variance in the fit residual error (ofm) and the Jacobian (7) of
the residual at the solution poinL. A similar expression can be

written for O'YL term. Here, the J matrix consists of the gradi-

ent of the Ob_]eCtIVC function for the minimization process with

respect to the estimated parameters (X¢_ or Y ) for the Gauss-
—_T—

1
ian least-square fit. The matrix <3 j) has the dimension

Noaram X Nparam> Where Ny, denotes the number of param-
eters estimated in the least-squares solver. Hence, in Eq. (8),
the i diagonal is considered to estimate the variance in the i"
parameter. This estimation is consistent with the Cramer—Rao

lower bound (CRLB) determination for 2D particle ima_ge
centroid, as highlighted by (Rajendran 2019). Hence, once %c
and E}» are estimated, the E} is known (Fig. 2c¢).

est

2.3 Estimating the uncertainty in mapping function
coefficients

As seen from the flowchart in Fig. 2, once the variance in
particle image position (f}c) is estimated through the pro-
gression of steps shown on the right side, the next workflow
is focused on estimating the variance in the calibration coef-

ficients (izc). The overall calibration uncertainty iz is a
—c —c

combination of EZ for each camera c. The ia estimation
process (Fig. 2d) can be performed in conjunction with the
volumetric self-calibration process. In the absence of self-
calibration, the uncertainty in the coefficients {« } is dictated
by the uncertainty in calibration image dot fitting. However,
the presence of disparity between estimated and projected
points leads to a shift in the projected calibration grid points

X = (X, Y, } in the image domain, and this correction
leads to a new set of coefficients {a: } in the self—calibration

process. Hence, the uncertainty in X¢ , positions,
cal cal

namely Z—n should directly affect the 2< If we consider

(ul
the world coordinate positions xwwl = {x,_Yw,, %, } Where

the disparity vectors are evaluated during the volume self-
calibration process, then EEWM grid points will have no uncer-
tainty in their location as those points are defined fixed loca-
tions in space. Consequently, the unknowns (e, , e, , e, ) of
Eq. (3) for the }Wm[ grid points can be simplified to zero and
the other terms can be further simplified as shown:
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cal

Q

In Eq. (9), the EE represents the matrix of gradients of
the mapping function with respect to the coefficients q;,

OFyc OFyc .
[ p X ]or[ 5 = ], having 19 columns and number of rows cor-
a. a.

responding to number of calibration or disparity grid points
= T
(Negp)- The Xoe = {ea; } {e ¢ } is the unknown covar-
i) 19x1 i) 1x19
iance matrix for the coefficients @ belonging to either map-
ping function Fy. or Fy. of camera c. Thus, Eq. (9) is solved

= .
for X with each set of @° over all the disparity grid points
N, T

cal*

N, XN,

cal

The variance in the particle image position E}» isa

cal
diagonal matrix with 6%, oro?, terms as diago-

cal cal

nal entries, which can be evaluated for the disparity grid
points in a similar way as mentioned in Egs. (7) and (8) of

Sect. 2.2. Here, the f,}» can be evaluated for the initially

cal
triangulated particle positions and is used in Eq. (9) to solve

—C

for iz; as a least-squares problem for all N_,;.

2.4 Uncertainty propagation in reconstructed
positions

The uncertainty in the reconstructed world coordinate posi-
tion is finally obtained by solving for the world coordinate

location covariance matrix i} from Eq. (5), as shown in
Fig. 2e. This equation is evaluated for each world coordinate
position combining mapping functions in X and Y for all 2

=¢

N cameras. The estimated covariance e term in Sect. 2.3

—c T
. O0F yc¢ = OF ¢

is used to evaluate the scalar values { o }2‘3‘{ o } or
e \ 5 f oFype \T " §

{ 5 L }Zac{ P L } , which are used as diagonal entries to
a a.

compute ia’ as mentioned in Eq. (4) of Sect. 2.1. The E}»
has already been calculated using Eq. (7). Hence, we solve

for i; by inverting the E}» ~matrix as given by the following
equation:

= = \=!

% =B<Z§c+23c>B (10)

— —T — \ ~l—1
Here, B is given by B = <C} G > C, . It can be noted

that for standard Gaussian particle images, the covariance
between X¢ and Y particle image position estimation can be
assumed to be negligible. However, in the presence of opti-
cal distortion, such a covariance can be estimated from the

@ Springer

2D least-square fit of an elliptical Gaussian function on the
mean particle image shape. Thus, the term f}» + f;) is

essentially a 2 Nx 2 N diagonal matrix for 2 N mapping
function equations. From the covariance matrix i} , the

standard uncertainty in reconstructed positions (¢, ,0c, ,0, )
w Jw W

is obtained by taking the square root of the diagonal terms

diag(i;_).

We also evaluate the bias uncertainty terms o, , oy, 0,
W wh W

based on the mean disparity value for each sub-volume. Ide-
ally, for a converged self-calibration, the mean disparity is
negligible. However, due to measurement noise, any residual
mean disparity (d¢) can lead to a bias in the reconstructed
position measurement. We estimate d° from the disparity his-

togram and use that to estimate E}» the bias uncertainty in

— b

particle image position and iz the bias uncertainty is a°
b —_ —_
using the propagation Eqgs. (7) and (9). For Z}(-’ only EZ is
b b

considered in Eq. (7). The final bias uncertainty estimates for
reconstructed x,,,, y,,, z,, positions are obtained using the prop-

agation Eq. (10) by substituting the values of f? and EZ;.
b
2.5 Uncertainty in estimated velocity field

Once the reconstructed 3D particle positions are obtained,
the tracked velocity estimate is a function of the particle-
pairing process. For particle displacements higher than the
mean inter-particle distance, the particle matching becomes
challenging, especially the nearest-neighbor search fails in
most cases. This leads to erroneous measurements and sig-
nificant percentage of outliers. However, here, we only con-
sider the tracked velocity for particles that are successfully
paired, defined by particle tracks with error magnitude less
than 1 voxels. In such cases, the uncertainty in each tracked
3D velocity measurement is evaluated as a direct combi-
nation of the estimated 3D position uncertainties of each
paired particle. Thus, if a particle in frame 1 (axwl N szl)
is paired with a particle in frame 2, then the uncertainty in
the tracked displacement o, is given by:

62=62
u X,

2 2
[0} [0} - o, O,
W + Xy + Xy p Xw1Xw2 " X1 T Xy (1 1)

In Eq. (11), o, is the bias uncertainty term as evaluated
wh

in Sect. 2.4. The bias uncertainty depends on the mean dis-
parity and the mapping function coefficients, and is not
expected to change from frame to frame. Hence, it is
accounted for only once in the tracking uncertainty estima-
tion. For the synthetic test case, we observed that the true
position error in the estimated 3D particle position for a
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paired particle in frame 1 and frame 2 has a strong correla-
tion. Thus, the covariance term p, . o, o, inEq.(11)is
significant, and at first, the correlation coefficient Py, x,, (for
x component) is evaluated. For synthetic test case, with true
error fieldse, ande, ,thep, . hasbeen observed to vary
from about 0. 5 t0 0.8; however in general Py, x,, CAN assume
any value between 0 and 1, depending on the ﬂow field and
calibration. Since the 3D particle position error has a signifi-
cant contribution from the particle reprojection error or dis-

parity error (X -X ) the 3D position error correlation
est

between successive frames is expected to have a similar
magnitude compared to the disparity error correlation,
which is verified for synthetic test cases with known error.
In the present case, this p, , is estimated in an average
sense using the correlation of the reprojection errors between
successive time frames. Here, we first calculate the disparity
error for each reconstructed particle and for each camera.
The disparity values (d ) for all particles for a specific cam-
era in frame 1 are then correlated with the disparity values
of the matching particles (obtained with 3D tracking) for the
same camera in frame 2. Finally, the mean value of the cor-
relation coefficients obtained for each pair of frames and for
each camera is used as an estimate for p, . . To capture any
variation in p, . ~over the 3D domain and also over the
time-series, this term can be computed only for each pair of
frames and also for a statistically significant number of
reconstructed particles within a sub-volume to avoid any
global averaging effects. However, if the spatio-temporal
variations of p, . is insignificant, then a global mean esti-
mate of the coefficient may be used to calculate the covari-
ance term. The uncertainty in v and w components (c,, 0,,)
can be obtained in a similar way following Eq. (11). It is to
be noted that the uncertainty due to false matching in the
presence of ghost particles may need further analysis. How-
ever, for a valid measurement, we expect Eq. (11) to account
for the uncertainty in the tracked velocity measurement.
The current framework estimates the uncertainty in a
3D PTV measurement for dual-frame tracking. However,
for time-resolved measurements the 3D trajectory is usu-
ally fit with a second-order polynomial or B-spline or a
Wiener filter over several particle positions in successive
frames to increase the trajectory accuracy, as discussed in
recent articles by (Cierpka et al. 2013), (Schanz et al.
2016) and (Van Gent et al. 2017). For such analysis, the
current methodology can be extended to include multi-
frame trajectory fitting uncertainty by combining the esti-
mated uncertainty in the reconstructed position with the
uncertainty in the fitting coefficients. For example, with
polynomial fitting, if x,,;, = py + pyx,, + pzva is the second-
order fit equation, then the uncertainty in the fitted x,, posi-

- /=T—I1= It
tion can be expressed asa .= =diag Jﬁl <J 2y Jﬁt> I

(Gavin 2011). Here, [jﬁ,] = aa; is the Jacobian, represent-
ij

J
ing the gradient of the ith temporal position x,,; of a single
particle track with respect to the coefficient p;. The

5] =(on.e
ij

reconstructed x,, positions in successive frames. The cur-
rent framework gives an estimate of p, o ‘and o, , o,

i
terms Wthh can be used to directly compute the uncer-

tainty 0' in the fitted trajectory. Uncertainty in advanced

Xrfit

2
. O, ) is the covariance matrix of the
Xy wj

models for fitting a particle trajectory and its performance
with varying noise and particle concentration can be
explored in a future analysis.

3 Results

The proposed framework to estimate the uncertainty in
the reconstructed particle positions is tested using syn-
thetic vortex ring images. The particle field was generated
and advected using incompressible axisymmetric vortex
ring equations mentioned in Wu et al. (2006). The cam-
era calibration and particle images (256 X256 pixels) were
generated using in-house code. The camera angles were
selected as 35° and the four cameras were positioned in a
plus (+) configuration. The volume of interest was set to
42 mm X 42 mm X 24 mm and the seeding density was
varied from 0.01 ppp to 0.1 ppp. The processing was also
done using in-house calibration and IPR code for 100 image
pairs. A polynomial model was used for the camera calibra-
tion and the initial estimate of the calibration was modified
by three iterations of volumetric self-calibration to elimi-
nate any mean disparity. An allowable triangulation error of
one pixel was used for the initial triangulation with particle
identification using dynamic particle segmentation method
(Cardwell et al. 2011) to better resolve overlapping particle
images. The particle image positions were estimated using
least-square Gaussian fit. The optical transfer function (OTF)
(Schanz et al. 2013) was calculated and used in IPR itera-
tions. The number of inner loop and outer loop iterations
for each frame was set to 4 with particle “shaking” of +0.1
voxels. The 3D particle tracking was done using “nearest
neighbor” algorithm. The uncertainty for each measurement
was computed using the set of equations described in Sect. 2.

3.1 Comparing error and uncertainty histogram
for reconstructed particle positions

First, the uncertainty in reconstructed particle positions is

analyzed. The reconstructed particle positions are compared
with the true particle positions in space, and if a particle is

@ Springer
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Fig.3 Histogram of error (e) and uncertainty (o) distributions for
reconstructed particle positions (x,,, y,,. z,,) for the synthetic vortex
ring case with 0.05 ppp particle concentration for a triangulation and

found within 1 voxel radius of the true particle, then it is
considered as a valid reconstruction. The error in recon-
structed x,, position is denoted by e, and defined as:

€x, = Xwest T Xwrrue

12)

Similarly, e, ande, are defined. Figure 3 shows the his-
togram of error and uncertainty distributions x,,, y,,, and
z,, coordinates. Figure 3a, b shows the distributions for the
reconstructed particle positions obtained using triangulation
and IPR methods, respectively, for a particle concentration
of 0.05 ppp. The x-axis is divided into 60 equally spaced
bins and the y-axis denotes the number of measurements
falling within each bin as a fraction of total number of
points. The root-mean-squared (RMS) error is defined as:

RMS error = (13)

The error distribution for the triangulated particle posi-
tions is wider with RMS error of about 0.17, 0.18, and 0.27
pixels in x,,,y,,, and z,, positions compared to RMS error of
0.15, 0.15, and 0.22 pixels for the IPR case. For the triangu-
lation case, the error distribution is sharp near the zero value
and has a longer tail, which can be related to more accurate
predictions for isolated particle images and a faster drop in
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b IPR reconstructions. The vertical lines indicate the RMS value for
each distribution

accuracy for overlapping particle images. For IPR, however,
the error distribution looks more Gaussian, which can be
attributed to the iterative correction process. The predicted
uncertainty distributions have significantly less spread and
have a tight distribution around the RMS error. For a suc-
cessful prediction, it is expected that the RMS value of the
error distribution should match the RMS value of the esti-
mated uncertainty distribution (Sciacchitano et al. 2015),
assuming that the bias error is negligible. In the synthetic
case, the bias error varies in the range of 0.001-0.015 pixels,
which is an order of magnitude less than the corresponding
RMS error range of 0.09-0.4 pixels. The RMS value for
each distribution is indicated by the dashed vertical line. For
Fig. 3a, the RMS uncertainty values underpredict the RMS
error by 0.03 pixels in x,, and y,, and by 0.06 pixels in z,,. For
IPR case in Fig. 3b, the predicted uncertainties are within
0.02 pixels of the RMS error values. The contribution from

two main components f;v and EEC to the overall uncertainty
i} _is computed using Eq. (10). The calibration uncertainty

term (Ezc) is distributed in the lower uncertainty bins and
contributes on average to 10% of the combined uncertainty
estimate, whereas the particle image position uncertainty
has 90% contribution. Overall, the predicted uncertainties
are in close agreement with the expected value, indicating a
successful prediction for position reconstruction uncertainty.
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3.2 Reconstructed position uncertainty for varying
particle concentration

The increase in particle concentration leads to a higher
percentage of overlapping particle images which increases
the error in particle identification and, subsequently, in 3D
particle reconstruction. To test the sensitivity of the uncer-
tainty predictions in such scenarios, the seeding density is
varied from 0.01 ppp to 0.1 ppp, and the RMS error and
uncertainty values are compared in each case, as shown
in Fig. 4a, b. The results show a high sensitivity of the
predicted uncertainty to the trend of the RMS error for
both triangulation and IPR methods. The reconstructed
position RMS error predicted by IPR is lesser than the
triangulation error for lower seeding densities, whereas,
for 0.1 ppp, the IPR error is higher, which may be related
to the specifics of the in-house IPR implementation. How-
ever, the objective is to predict the correct RMS error level
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Fig.4 The RMS of reconstructed position error magnitude (lel) is
compared against the RMS of uncertainty magnitude (lol) in subplots
(a and b). The percentage of measurements within the uncertainty
bounds (estimated coverage) is compared against percentage of meas-
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given the different reconstructed positions using different
methodologies. For triangulation, the RMS uncertainty
follows the RMS error trend consistently, but underpre-
dicts the magnitude by about 0.04 pixels (23%) at 0.01 ppp
and by 0.07 pixels (20%) at 0.1 ppp. For the IPR case, the
predicted uncertainty matches the expected uncertainty
value closely at 0.01 ppp and 0.05 ppp with a deviation of
about 0.01 pixels (10%), but underpredicts the uncertainty
by 0.08 pixels (30%) at 0.1 ppp. Overall, the increasing
trend agreement, between the predicted and the expected
uncertainty validates the current framework for prediction
of uncertainty for a wide range of particle concentrations
and using both reconstruction methods.

For a more specific comparison across seeding densities,
the values of RMS errors and uncertainties in x,,,y,,, and
z,, positions for both methods are presented in Fig. 5. The
maximum underprediction of about 0.06 pixels occurs at 0.1
ppp case for both methods. The best agreement is obtained
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urements falling within RMS error bounds (ideal coverage) in sub-
plots (c and d). The comparison is presented as a function of seeding
density in the range of 0.01-0.1 ppp and for triangulation and IPR-
based reconstructions
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Fig.5 Comparison of RMS error and RMS uncertainty values for the triangulation- and IPR-based reconstructed particle positions for a range of
seeding densities. The difference between the RMS values is mentioned at the top of each grouped bar

for the IPR case for up to 0.05 ppp and for the triangulation
case upto 0.025 ppp. It is to be noted that the IPR reconstruc-
tion error is higher than exepected, which may be related to a
lower convergence rate and, in turn, depends on the specifics
of the implementation; however, given a reconstructed field,
the current method reasonably predicts the standard uncer-
tainty in 3D particle-based reconstruction.

To compare the global prediction of uncertainty level for
all particles, the estimated coverage is plotted in Fig. 4c, d.
The coverage (Coleman and Steele 2009) is defined as the
percentage of measurement errors falling within the uncer-
tainty bound (+0). For an ideal Gaussian error distribution,
the standard uncertainty coverage is 68.3%. However, since
the error distributions deviate from the Gaussian shape, the
estimated coverage is compared with an ideal coverage, which
denotes percentage of measurement errors falling within the
RMS error bound. In Fig. 4c, the coverage for all cases lies
within 60% and 68%, except for 0.01 ppp case for which the
coverage is about 74%. For triangulation, the ideal coverage
lies in the range of 67-78%. The predicted coverage deviates
from the ideal coverage by about 9% to 13%, with a minimum
error of 5% for 0.01 ppp case. For IPR, the estimated coverage
varies from 60 to 87%, with maximum overprediction for the
0.025 ppp case (16% for z,,, 9% for x,, and y,,) and underpre-
diction (7-15%) for the 0.075 and 0.1 ppp cases, as shown in
Fig. 4d. The ideal coverage is in the 69-75% range and best
matches the estimated coverage for 0.05 ppp. Any bias in the
error distribution can affect the accuracy in coverage predic-
tion. Thus, in the present analysis, the estimated uncertainty
coverage metric is mostly in the range of 60—-87% and agrees
within 16% of the ideal coverage values.

@ Springer

3.3 Uncertainty prediction for tracked velocity
vectors

As a final step, the uncertainty prediction in the tracked
velocity field is assessed. The reconstructed 3D particle
positions are tracked for 100 pairs of frames using nearest-
neighbor tracking. The true particle positions in 1 voxel
vicinity of the reconstructed particle positions is found for
the first frame and the corresponding true displacement is
subtracted from the estimated displacement to compute the
error (e) in u, v, and w velocity components. A measure-
ment is considered valid if the computed error magnitude is
within 1 voxel. The uncertainty (o,, 6, 6,,) in the velocity
components are computed using Eq. (11).

The RMS uncertainty values mentioned in Fig. 6 are in
close agreement with the RMS error values with a maximum
deviation of 0.04 pixels across all cases. The RMS error
increases with the particle concentration due to higher prob-
ability of erroneous matches resulting from ghost particle
reconstruction. The predicted uncertainty increases propor-
tionally with RMS error, for both reconstruction methods,
as observed in Fig. 6.

The histogram of velocity error and uncertainty distribu-
tion is compared in Fig. 7a for the triangulation case and
Fig. 7b for the IPR case, for 0.05 ppp seeding density. The
error distribution is sharper for the triangulation case. It is
noticed that the w component has higher error compared to
u and v components. For all cases, the uncertainty distribu-
tions have a very narrow spread and predicts the RMS error
magnitude perfectly. Further analysis is required to validate
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Fig.7 Error and uncertainty histogram comparison for tracked velocity vectors in the synthetic vortex ring case with seeding density of 0.05 ppp
for a triangulation- and b IPR-based reconstructions. The fraction of total number of measurement points is shown for each histogram bin

the displacement uncertainty model proposed by Eq. (11)
for higher seeding densities with STB processing; however,

these results show reasonable agreements between predicted

and expected uncertainty values for the estimated velocity

components.

3.4 Experimental validation: uncertainty prediction
for laminar pipe flow

The current framework is also validated for a canonical lami-

nar pipe flow experiment for a Reynolds number of 630. The

@ Springer
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Fig.8 Schematic of laminar pipe flow set-up showing the flow loop and camera arrangement

schematic of the experimental set-up is shown in Fig. 8. The
flow loop consisted of a gear pump driving a steady flow rate
of 0.17 L/min through a circular fluorinated ethylene pro-
pylene (FEP) tube of 0.25 inches inner diameter and 0.0625
inches thickness. Following Brindise et al. (2018), the work-
ing fluid inside the pipe was chosen as distilled water—urea
(90:10) solution to closely match the refractive index of the
FEP tube (1.344) and also maintain properties similar to
water. The solution had a density of 1015 kg/m?, dynamic
viscosity of 0.915 x 107 kg/m/s, and a refractive index of
1.3439. The tube was fully immersed in an acrylic tank
filled with water—glycerol solution, which was also refrac-
tive index matched. The volumetric PTV measurement was
performed using four Phantom Miro M340 cameras with
three cameras at the same horizontal plane and one camera
angled in the vertical plane, as shown in the side view of
Fig. 8. The flow rate in the upstream and downstream of
the pipe was measured using an ultrasonic flowmeter and
the average flow rate was used to determine the theoreti-
cal velocity profile for Poiseuille’s flow. The measurement
volume was 9 X 6.5 x 6.5 mm? and was illuminated by a
continuum Terra-PIV laser with appropriate optical set-up.
The time-resolved measurements were taken at 6 kHz, and
the image size was 640 X 624 pixels with an average mag-
nification of 17.8 microns/pixel. Fluorescent particles with
24 microns diameter were used and the evaluated particle
Stokes number St was 0.0005.

The reconstructed particle positions across all images
are summed up in the cross-sectional view of the tube and
a least-square circular fit is performed to fit a circle with
size closest to the diameter of the tube. The fitted bound-
ary is used to divide the cross-sectional area of the tube

@ Springer

in 20X 20 bins and all measurements in streamwise direc-
tion as well as across 500 frames are averaged per bin to
obtain the mean velocity profile shown in Fig. 9a. The mean
velocity profile along the middle y, -plane is compared with
the theoretical solution in Fig. 9b. The expected theoretical
velocity profile u,,,, for the measured flow rate is shown by
the blue solid line. The velocity profiles are normalized by
the maximum theoretical velocity (u,) of 1.67 voxels/frame.
The flow meter has a 1.1% uncertainty and its correspond-
ing standard uncertainty (+o0) is shown by the blue shaded
region. The mean velocity profile obtained from particle
tracks (for the triangulation case) is shown by the black solid
line and the standard deviation of the velocity measurements
in each bin is shown by the shaded gray region. The peak
measured velocity reaches 94% of the theoretical maximum
velocity. The standard deviation of the measured velocity
is observed to increase in the depth direction moving away
from the camera. The higher velocity standard deviation at
z,,/D = —0.5 can be attributed to a higher calibration error
due to initial misalignment between the pipe center and the
calibration plane. The updated pipe boundary location (in-
depth direction) after volume self-calibration was aligned
very close to the negative limit of the calibration plate trav-
erse range and thus increasing the calibration uncertainty at
that location. Overall, the mean velocity profile agreed with
the expected parabolic profile of a laminar pipe flow.

The measured streamwise component of velocity (u) is
compared with the theoretical expected velocity (u,,,.) and
the distribution of velocity tracking error e, and the esti-
mated corresponding uncertainty o, is shown in Fig. 9¢c, d
for the triangulation and IPR reconstruction cases, respec-
tively. In both cases, the error distributions have a bias of
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Fig.9 The mean streamwise velocity profile for a 3D PTV measure-
ment of a laminar pipe flow is shown in (a). The velocity profile is
compared with the theoretical solution in (b). The error and estimated

about 0.03 pixels/frame. The predicted uncertainty values
are distributed closely about the RMS error value. The RMS
error and RMS uncertainty values match precisely at 0.14
pixels/frame for Fig. 9c. For Fig. 9d, the RMS error and
uncertainty values are 0.22 pixels/frame and 0.20 pixels/
frame, respectively. The v component RMS uncertainty of
0.19 pixels/frame exactly matches the RMS error for the IPR
case, but overpredicts the RMS error by 0.05 pixels/frame
for the triangulation case. The w component of velocity,
which corresponds to the depth direction, results in a higher
RMS error of 0.44 pixels/frame and 0.57 pixels/frame for
the triangulation and IPR reconstructions, respectively. The
predicted uncertainties are 0.56 pixels/frame and 0.86 pixels/
frame for triangulation and IPR cases, respectively, indi-
cating overprediction of standard uncertainty in the depth

direction. The contribution of the calibration uncertainty
(Ezv) and particle image position uncertainty (%v) to the
overall uncertainty (2 ) is also analyzed for the experimen-
tal case. The iac term contributes on average to 25% of the
total urécertainty, whereas the Z} term has 75% contribution.
Thus, Z;c has a more significant contribution; however, the
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uncertainty histogram are shown for triangulation-based reconstruc-
tion in (¢) and for IPR-based reconstruction in (d)

calibration uncertainty contribution is higher for the experi-
mental case compared to the synthetic case. Overall, for the
experimental demonstration case, the predicted uncertainty
using the current framework matches the expected uncer-
tainty level with high accuracy for the u and v components,
and reasonably matches the appropriate uncertainty level for
the w velocity component.

4 Conclusion

We proposed a comprehensive framework to predict the
uncertainty in the reconstructed 3D particle positions in a
volumetric PTV measurement and, subsequently, propagate
the uncertainty in the tracked velocity estimates. The vari-
ance estimated from the histogram of the projection error
provides the uncertainty bound on the particle image posi-
tion and contributes to the uncertainty in the mapping func-
tion coefficients. The uncertainty on the reconstructed 3D
position is obtained as a combination of the particle image
position uncertainty and the mapping function coefficient
uncertainty. The bias uncertainty on the reconstructed
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particle positions due to the residual mean disparity is
also considered. For the tracked velocity uncertainty, the
uncertainty in the reconstructed particle positions is directly
combined for each matching particle pair. The covariance
between particle position error for paired particles in frame
1 and frame 2 is estimated using the correlation coefficient
of the disparity error values for corresponding particles.
Analysis with the synthetic vortex ring images showed good
agreement between the RMS of the predicted uncertainties
in x,,,¥,,%, positions and the RMS error. The estimated
uncertainty in the displacement field was within 0.04 voxels/
frame of the RMS error for both the vortex ring case and the
experimental pipe flow case (# and v components). However,
the w component uncertainty showed an overprediction of
about 0.1-0.3 voxels/frame for the pipe flow case. Overall,
the predicted uncertainties across all test cases are sharply
distributed close to the RMS error values and showed strong
sensitivity to the variation in RMS error, across a range of
seeding densities.

The current analysis investigated the uncertainty predic-
tion as a function of particle concentration, which is a pri-
mary error source in 3d PTV measurement. However, parti-
cle image size, shape, and image noise also affect the RMS
error in such a measurement. A triangulation-based recon-
struction uses the particle image information only for the 2D
position estimation and the IPR method uses an OTF to
estimate an average particle shape, which is not directly
incorporated in the proposed uncertainty modeling. Hence,
given the reconstruction methods, the particle image size
and shape would primarily affect the accuracy in the particle

image position estimation (f}w ). The RMS error in particle

est

image location estimation as a function of particle image
size has been previously discussed in the literature (Cowen
et al. 1997; Marxen et al. 2000; Brady et al. 2009). We
expect a similar behavior for the position estimation error
and its variance estimated from the least-square fit. Also, in
the current uncertainty model, since the uncertainty in the

disparity error (EZC) has a more significant contribution in

the i}» term, which in turn dominates the % uncertainty,
we expect the current framework to be minimally affected
by any variation in the particle image position fitting uncer-
tainty E}» . In terms of image noise, higher noise leads to

t

inaccuracy in triangulation and increases the fraction of
ghost particles. An increase in triangulation error contributes
to higher reprojection error uncertainty %r, which in turn
should proportionally increase the uncertainty in the recon-
structed position. The uncertainty prediction for the experi-
mental case incorporates the effects of image noise and suc-
cessful prediction for the pipe flow case demonstrates the
capability of the current methodology to inherently consider
any uncertainty due to image noise.

@ Springer

The proposed methodology is applicable, in general, for
any given set of 3D reconstructed particle positions, even
when they are obtained using advanced tracking methods
like STB. The uncertainty model can also be easily extended
from a dual-frame tracking to estimate the uncertainty in
polynomial fitting of time-resolved particle trajectories.
However, the details of such approach for STB involving
Wiener filter to fit and predict particle trajectories (Schanz
et al. 2016) should be quantified in a future analysis. The
current methodology assumes negligible variance in laser
pulse separation and thus ignores any temporal uncertainty
in the particle tracking. The method also assumes that any
covariance between particle image position ()?L) and calibra-
tion coefficients (@°) is implicitly accounted by the uncer-

tainty in the projection error (%r). The errors ey, and ey. are

assumed to be independent for each camera, which is also a
common assumption in the uncertainty quantification meth-
ods developed for PIV (Sciacchitano 2019). Future research
can further address the limitations related to such assump-
tions and quantify the covariance terms. The proposed model
does not explicitly distinguish the uncertainty levels for true
and false reconstructions, but is assumed to implicitly
account for erroneous reconstructions through an increased

E;j»c, as discussed earlier. However, a rigorous estimation of

false reconstructions and correct velocity estimation for pair-
wise 3D tracking, at high particle concentrations, is an out-
standing challenge in the field of 3D PTV reconstruction
method development. Thus, the current uncertainty model
is focused on valid measurement tracks. In conclusion, the
proposed framework demonstrates accurate uncertainty pre-
dictions for both the vortex ring and the pipe flow test cases.
These results establish the current methodology as the first
successful predictor for uncertainty in a 3D PTV
measurement.
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