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Abstract 
We introduce the first comprehensive approach to determine the uncertainty in volumetric Particle Tracking Velocimetry 
(PTV) measurements. Volumetric PTV is a state-of-the-art non-invasive flow measurement technique, which measures the 
velocity field by recording successive snapshots of the tracer particle motion using a multi-camera set-up. The measurement 
chain involves reconstructing the three-dimensional particle positions by a triangulation process using the calibrated camera 
mapping functions. The non-linear combination of the elemental error sources during the iterative self-calibration correction 
and particle reconstruction steps increases the complexity of the task. Here, we first estimate the uncertainty in the particle 
image location, which we model as a combination of the particle position estimation uncertainty and the reprojection error 
uncertainty. The latter is obtained by a gaussian fit to the histogram of disparity estimates within a sub-volume. Next, we 
determine the uncertainty in the camera calibration coefficients. As a final step, the previous two uncertainties are combined 
using an uncertainty propagation through the volumetric reconstruction process. The uncertainty in the velocity vector is 
directly obtained as a function of the reconstructed particle position uncertainty. The framework is tested with synthetic 
vortex ring images. The results show good agreement between the predicted and the expected RMS uncertainty values. The 
prediction is consistent for seeding densities tested in the range of 0.01–0.1 particles per pixel. Finally, the methodology 
is also successfully validated for an experimental test case of laminar pipe flow velocity profile measurement where the 
predicted uncertainty in the streamwise component is within 9% of the RMS error value.
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Graphic abstract

Abbreviations
�⃗xw = {xwywzw}	� World coordinates or physical 

coordinates
�⃗X
c
= {XcYc}	�  Camera image coordinates for camera c

FXc ,FYc	�  Xc And Yc calibration mapping function 
for camera c

�⃗a
c
=
{
ac
i

}
i=1to19

	� Camera c mapping function coefficient 
error in variable p

�p	� Standard uncertainty in variable p

Σp	� Covariance matrix in variable p

N	� Number of cameras
Ncal	�  Number of disparity grid points
�⃗d
c
= {dXcdYc}	�  Disparity vector estimated from ensem-

ble of reprojection error for each camera 
c

u, v,w	�  Velocity components in x, y, z direc-
tions, respectively

|p|	�  L2-norm or magnitude of a variable p
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C⃗xw
	� Coefficient matrix of mapping func-

tion gradients with respect to �⃗xw for all 
cameras

C
a⃗
c	� Coefficient matrix of mapping function 

gradients with respect to �⃗ac evaluated at 
disparity grid points

�pq	�  Correlation coefficient between vari-
ables p and q

�⃗xwj	� The world coordinates at j th time frame 
where j is an integer

�2
res

	�  Variance in fit residual error

diagA	�  A function which denotes the diagonal 

elements of matrix A
Subscripts
b	�  Related to the measure of bias error or 

uncertainty in any variable
cal	�  A variable or quantity evaluated in the 

calibration process
est	�  Denotes the estimated value of any 

variable
true	�  Denotes the known or designed value 

of any variable

Acronyms
PIV	� Particle Image Velocimetry
PTV	� Particle Tracking Velocimetry
IPR	� Iterative Particle Reconstruction
OTF	� Optical Transfer Function
STB	� Shake-The-Box
CRLB	� Cramer Rao Lower Bound
ppp	� Particles per pixel

1  Introduction

Volumetric PTV (Maas et al. 1993; Baek and Lee 1996; 
Ohmi and Li 2000; Pereira et al. 2006) is a fluid velocity 
measurement technique which resolves the three-dimensional 
(3D) flow structures by tracking the motion of tracer par-
ticles introduced in the flow. The tracer particle motion is 
recorded with multiple cameras to obtain projected particle 
images. Each camera is also linked to the physical space 
using a calibration mapping function (Soloff et al. 1997). 
The particle images are then mapped back to the physical 
space using a triangulation process (Maas et al. 1993; Wie-
neke 2008). Finally, a three-dimensional (3D) tracking of 
the reconstructed particles estimates the Lagrangian trajec-
tories of the particles and subsequently resolves the volu-
metric velocity field. PTV easily lends itself to calculation 
of particle acceleration from the tracked trajectories. Also, 
unlike Tomographic Particle Image Velocimetry (Tomo-PIV) 

(Elsinga et al. 2006), which involves spatial averaging over 
the interrogation volume, 3D PTV yields a vector for every 
tracked particle position leading to a higher vector density. 
However, as the number of particles increases, identification 
of overlapping particles and its corresponding 3D reconstruc-
tion becomes challenging, which leads to a trade-off between 
spatial resolution and reconstruction accuracy. Hence, the 
simple triangulation-based 3D PTV method introduced in 
1993 (Maas et al. 1993) had limited applications compared 
to Tomo-PIV for highly seeded flows. Improvements in terms 
of particle identification (Cardwell et al. 2011) and tracking 
algorithms (Takehara et al. 2000; Riethmuller 2001; Cowen 
et al. 1997; Lei et al. 2012; Fuchs et al. 2016, 2017) have 
been proposed to minimize the error in the measurement.

Recent advancements in terms of reconstruction algo-
rithms, such as Iterative Particle Reconstruction (IPR) (Wie-
neke 2013) and shake-the-box (STB) (Schanz et al. 2016) 
have significantly improved the accuracy of 3D PTV. IPR 
uses an initial triangulation-based reconstructed field to con-
struct a projected image and then minimizes the intensity 
residuals in the image plane by the “shaking” operation, 
which shifts the 3D particle position by ±0.1 voxels in the 
world coordinate location. This process achieves a better 
positional accuracy and a reduced fraction of “ghost” par-
ticles, which are falsely reconstructed due to ambiguities in 
matching during triangulation process. The IPR reconstruc-
tion accuracy is comparable to intensity-based Multiplica-
tive Algebraic Reconstruction Technique (MART) (Elsinga 
et al. 2006), for up to a seeding density of 0.05 particles 
per pixels (ppp). This concept has been further advanced 
in STB, which uses the temporal information, for a time-
resolved measurement, to predict the particle location in the 
future frames and correct the predicted position iteratively 
using IPR. Such measurements have successfully resolved 
flow structures for experiments with high particle concen-
trations (up to 0.125 ppp). With such capabilities, 3D PTV 
measurements have gained renewed attention and applicabil-
ity in various experiments.

To analyze any experimental results with statistical sig-
nificance, uncertainty quantification is crucial, especially, 
where the measured data are used in a design process or 
to validate computational models (Angioletti et al. 2005; 
Ferreira et al. 2007; Ford et al. 2008; van Ooij et al. 2012; 
Brindise et al. 2019). Given the increasing applicability 
and relevance of PTV/IPR/STB volumetric measurements, 
providing uncertainty estimation for an individual 3D PTV 
measurement is now of paramount importance.

Uncertainty estimation in PIV measurements has received 
interest only recently and several methods have been pro-
posed for planar PIV uncertainty quantification. Broadly, such 
methods can be categorized into direct and indirect methods. 
Indirect methods rely on a calibration function, which maps 
an estimated measurement metric (e.g., correlation-plane 
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signal-to-noise ratio metrics (Charonko and Vlachos 2013; 
Xue et al. 2014, 2015) or estimates of the fundamental sources 
of error (Timmins et al. 2012) to the desired uncertainty val-
ues. Such a calibration is developed from a simulated image 
database and may not be sensitive to a specific error source 
for a given experiment. Direct methods, on the other hand, 
rely directly on the measured displacements and use the image 
plane “disparity” (Sciacchitano et al. 2013; Wieneke 2015) 
information or correlation-plane PDF (probability density 
function) of displacement information (Bhattacharya et al. 
2018) to estimate the a-posterior uncertainty values. Compara-
tive assessments (Sciacchitano et al. 2015; Boomsma et al. 
2016) have shown that the direct methods are more sensitive 
to the random error sources. However, indirect methods can be 
potentially used to predict any bias uncertainty. A direct uncer-
tainty estimation for stereo-PIV measurement (Bhattacharya 
et al. 2017) has also been proposed recently. A detailed review 
of such methods can be found in (Sciacchitano 2019). Thus, 
although the foundations have been laid for planar and stereo-
PIV uncertainty quantification, applicability of such methods 
to 3D measurements remains untested and these methods train 
strictly to cross-correlation-based measurements. As a result, 
3D reconstruction and tracking process for 3D PTV measure-
ments is not covered under these methods and, currently, a 
posterior uncertainty quantification methods for volumetric 
measurements (PTV/PIV) do not exist and new uncertainty 
model development is needed.

A flowchart for the different steps in a 3D PTV measure-
ment chain is shown in Fig. 1. The first step establishes a 
mapping function between the camera c image coordinates 
�⃗X
c
= {XcYc} and the world coordinates �⃗xw =

{
xwywzw

}
 in 

the physical space using a multi-camera calibration process. 
The calibration coefficients �⃗ac are then iteratively corrected 
using the mapping function and the recorded particle images 
to eliminate any misalignment between the assumed world 
coordinate system origin of the calibration plane and the 
actual origin location for the measurement volume. This pro-
cess is called volumetric self-calibration (Wieneke 2008) 
and is essential in minimizing the reconstruction error (due 
to existing offset or disparity between cameras) and improv-
ing the calibration accuracy. Using the modified calibration, 
for each particle in a given camera, the corresponding match 
in the second camera is searched along the epipolar line and 
the particle matches in all cameras are triangulated (Maas 
et al. 1993; Wieneke 2008) to a 3D world position. This 
reconstruction process can be done in an iterative sense 
for an IPR-type algorithm. However, for the particle-pair-
ing process in each camera view, the matching ambiguity 

increases for higher particle concentrations, which leads to 
erroneous reconstructions and is considered one of the main 
sources of error in the process. Finally, the reconstructed 
3D particle positions are tracked to find the velocity vec-
tors using “nearest neighbor” (Malik et al. 1993) or other 
advanced algorithms (Okamoto et al. 1995; Guezennec et al. 
1994; Li et al. 2008; Mikheev and Zubtsov 2008; Fuchs 
et al. 2017; Cierpka et al. 2013; Cardwell et al. 2011). The 
tracking and reconstruction can be done in conjunction for 
STB-type evaluations. From calibration fitting error, parti-
cle position estimation error, the disparity vector estimation 
error to the error in finding the 3D positions, and its pairing, 
the errors in each step of the process are inter-linked in a 
complex non-linear way and affect the overall error propaga-
tion. The iterative corrections and the governing non-linear 
functions lead to several interdependent error sources mak-
ing the definition of a data reduction equation intractable 
and the development of an uncertainty quantification model 
non-trivial. 

In the current framework, a model is developed to quantify 
the uncertainty in particle image position and the mapping 
function coefficient. These uncertainties are in turn combined 
with the uncertainty propagation through the reconstruc-
tion process. Finally, the uncertainty in the velocity vector 
is expressed directly as a combination of the position uncer-
tainty in the matching pair of particles. The methodology is 
described in detail in the next section.

2 � Methodology

The primary relation between the observed image coordi-
nates �⃗X

c
= {XcYc} and the expected particle world coordi-

nates �⃗xw =
{
xwywzw

}
 in physical space is expressed using the 

individual camera mapping function FXc for each camera c , 
as given by:

A similar functional relationship exists for Yc , given by 
Yc = FYc

(
xw, yw, zw, �⃗a

c) . The vector �⃗ac =
{
ac
i

}
 represents a 

set of mapping function coefficients for each camera. Typi-
cally, a polynomial mapping function is used following 
Soloff et al. (1997) to have higher accuracies in the presence 

(1)

Xc = FXc

(
xw, yw, zw, a⃗

c
)
=ac

1
+ ac

2
xw + ac

3
yw + ac

4
zw

+ ac
5
x2
w
+ ac

6
xwyw + ac

7
y2
w
+ ac

8
xwzw

+ ac
9
ywzw + ac

10
z2
w
+ ac

11
x3
w
+ ac

12
x2
w
yw

+ ac
13
xwy

2

w
+ ac

14
y3
w
+ ac

15
x2
w
zw + ac

16
xwywzw

+ ac
17
y2
w
zw + ac

18
xwz

2

w
+ ac

19
ywz

2

w

Fig. 1   A volumetric PTV 
measurement chain showing the 
main steps in the process
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of optical distortion effects. Once a mapping function is 
established and iteratively corrected using a self-calibra-
tion process, the reconstruction process involves finding an 
inverse of the mapping function for the matching particle 
image coordinates in different projections. Hence, an error 
propagation through the mapping function is the starting 
point of the uncertainty quantification and is described in 
the next subsection.

2.1 � Error propagation through the mapping 
function

An error propagation for Eq. (1) can be written as:

Equation (2) is obtained as a Taylor series expansion of 
Eq. (1), neglecting the higher order terms. Thus, the error in 
image coordinate eXc can be related to the error in world 
coordinate positions exw , eyw , ezw and the error in calibration 
function coefficients eac

i
 through the mapping function gra-

dients 
(

�FXc

�xw
,
�FXc

�yw
,
�FXc

�zw
,
�FXc

�ac
i

)
 . A similar propagation equa-

tion can be written for the error in Yc(eYc) image coordinate 
for each camera mapping function. It is important to note 
that the quantities of interest are exw , eyw , and ezw as we seek 
to estimate the unknown variance in the reconstructed world 
coordinate positions. Rearranging the unknown terms in the 
left-hand side, expressing the sums as vector inner products 
and multiplying each side by its transpose yields the vari-
ance propagation equation as follows:

The error in particle image position estimation ( eXc ) is a 
function of particle image fitting error and can be assumed 
to be independent of the error in calibration function coef-
ficients ( eac

i
 ). However, the calibration error can influence 

the error in projected particle image location or the projec-
tion error and, thus, any covariance between eXc and eac

i
 is 

implicitly accounted in the projection error formulation, as 
discussed in Sect. 2.2. With these considerations, a simpli-
fied version of Eq. (3) can be written as:

(2)eXc =
�FXc

�xw
exw +

�FXc

�yw
eyw +

�FXc

�zw
ezw +

19∑

i=1

�FXc

�ac
i

eac
i

(3)

{
�FXc

�xw

�FXc

�yw

�FXc

�zw

}{
exweywezw

}T

×

({
�FXc

�xw

�FXc

�yw

�FXc

�zw

}{
exweywezw

}T
)T

=

(
eXc −

{
�FXc

�ac
i

}

1×19

{
eac

i

}T

19×1

)

×

(
eXc −

{
�FXc

�ac
i

}

1×19

{
eac

i

}T

19×1

)T

Here,
{

�FXc

�xw

�FXc

�yw

�FXc

�zw

}
 is a row vector containing mapping 

function gradients for each camera c with respect to 
�⃗xw= {xwywzw} and Σ⃗xw

 represents the unknown covariance 

matrix in world coordinates ( Σ⃗xw
=
{
exweywezw

}T{
exweywezw

}
) . 

The uncertainty in particle image position Xc is denoted by �Xc . 

The term 
{

𝜕FXc

𝜕ac
i

}
Σ
c

a⃗
c

{
𝜕FXc

𝜕ac
i

}T

 evaluates to a single numerical 

value, which accounts for the contribution from the uncertainty 
in the calibration coefficients �⃗ac =

{
ac
i

}
1x19

 , for the mapping 

function FXc of camera c . The vector 
{

�FXc

�ac
i

}

1×19
 represents the 

mapping function gradients with respect to the calibration coef-
ficients �⃗ac and the covariance in mapping function coefficients 

for each camera is denoted by Σ
c

a⃗
c =

{
eac

i

}T

19×1

{
eac

i

}

1×19
 . 

Now, Eq. (4) is written only for camera c mapping function FXc . 

To solve for Σ⃗xw
 , Eq. (4) is stacked up for all N cameras and for 

both FXc and FYc mapping functions, which leads to 2 N num-
ber of rows in the final matrix form of the equation. For exam-
ple, for a four-camera set-up, the combined equation for all 
cameras will have 8 rows and is expressed as:

Each term in Eq. (5) has the dimension 2 N× 2 N and the 
Σ⃗xw

 term is solved for each reconstructed particle individu-
ally. In Eq. (5), C⃗xw

 is a 2 N× 3 coefficient matrix contain-
ing mapping function gradients for the 2 N  mapping func-
tions. The combined variance matrix in particle image 
position �⃗X

c
 is denoted by Σ�⃗Xc and contains �2

Xc and �2

Yc as 
diagonal entries for each camera. The correlation between 
eXc and eYc is assumed to be negligible. Also, the correla-
tion of eXc , eYc between different camera components is 
neglected as the �Xc , �Yc estimates are obtained indepen-
dently for each camera. Hence, the off-diagonal terms of 
Σ�⃗X

c are set to zero. Finally, the evaluated scalar values of 
{

𝜕FXc

𝜕ac
i

}
Σ
c

a⃗
c

{
𝜕FXc

𝜕ac
i

}T

 for each mapping function in Eq. (4) 

are put as the diagonal terms in the Σ
a⃗
c matrix, which rep-

resents the net calibration uncertainty contribution across 
all N cameras. Thus, Eq. (5) contains the unknown covari-
ance matrix in world coordinates Σ⃗xw

 as a function of Σ�⃗Xc 

and Σ
a⃗
c . The following sections focus on estimating the Σ�⃗Xc 

and Σ
a⃗
c terms.

(4)

{
𝜕FXc

𝜕xw

𝜕FXc

𝜕yw

𝜕FXc

𝜕zw

}
Σ⃗xw

{
𝜕FXc

𝜕xw

𝜕FXc

𝜕yw

𝜕FXc

𝜕zw

}T

= 𝜎2

Xc +

{
𝜕FXc

𝜕ac
i

}
Σ
c

a⃗
c

{
𝜕FXc

𝜕ac
i

}T

(5)C⃗xw
Σ⃗xw

C
T

x⃗w
= Σ�⃗X

c + Σ
a⃗
c
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The overview of the uncertainty estimation and propa-
gation process is depicted in Fig. 2.

2.2 � Estimating uncertainty in particle image 
location

For a-posteriori uncertainty quantification, we start from the 
reconstructed 3D particle positions obtained either from a 
triangulation or IPR reconstruction method. For a given 3D 
particle position, we want to find the corresponding 

projected particle image locations and its uncertainty for 
each camera. As shown in Fig. 2a, the projected particle 
image positions are compared with the recorded image to 
find the error in particle image location. This can be 
expressed as a sum of the estimated projection error 

( �⃗X
c
− �⃗X

c

est
) and the 2D particle fit position estimation error 

(
�⃗X
c

est
− �⃗X

c

true

)
 , for all �⃗X

c
 and for each camera c , as shown in 

the following equation:

Fig. 2   A schematic showing different steps (a–e) for estimating elemental uncertainties in particle image location X and calibration coefficients 
ai and its propagation to the uncertainty in the world coordinate xw
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Thus, the variance in particle image location, Σ�⃗Xc , 
becomes a sum of the variance in the estimated projection 
error, denoted by Σ

d⃗
c , and the variance of the error in par-

ticle image position estimation ( Σ�⃗Xc

est

) , as given by:

As mentioned in Sect. 2.1 Eq. (5), each of these variance 
matrices is diagonal matrices with dimension 2 N × 2 N. The 
Σ�⃗X

c matrix has the diagonal entries �2

Xc and �2

Yc corresponding 
to Xc and Yc image coordinates for each of the N cameras. 
To estimate Σ

d⃗
c , the reconstruction domain is divided into 

sub-volumes and the estimated projection error for a group 
of particles belonging to the same sub-volume is stacked up 
into a histogram. This is similar to the concept of disparity 
( �⃗d

c
= {dXcdYc}) for each camera c as defined by Wieneke 

(2008). The sub-volume size can be varied or particles from 
other frames can be included to have a larger statistical sam-
ple. Simulations using synthetic images showed that a his-
togram consisting of 50 or more particles in the sub-volume 
yields a statistically consistent estimate, irrespective of the 
number of sub-volumes considered. Such a histogram of 
disparity ( �⃗d

c
) estimates is shown in Fig. 2b, where the stand-

ard deviation in the estimated Xc projection error is denoted 
by �dXc . For a perfectly converged self-calibration, the mean 
disparity ( �⃗d

c
 ) should be zero. Typically, the disparity histo-

gram approaches a Gaussian distribution and, for the robust-
ness of variance estimation, a Gaussian fit is applied on this 
histogram. The estimated standard deviation from the fitted 
curve is used to evaluate the variance of the disparity distri-
bution. However, for a lower seeding density, the disparity 
distribution is observed to deviate from a Gaussian distribu-
tion. Consequently, if the area under the fitted Gaussian 
curve is different by more than 5% compared to the histo-
gram area evaluated using trapezoidal integration rule, the 
standard deviation of the distribution is used as the standard 
uncertainty. In this framework, this estimated variance is 
modeled as the desired Σ

d⃗
c of Eq.  (7). For the particles 

belonging to the same sub-volume, the same value of Σ
d⃗
c is 

used.
The Σ�⃗Xc

est

 term in Eq. (7) consists of the �2

Xc
est

 and �2

Yc
est

 terms 
as diagonal entries for each camera. To estimate these vari-
ance terms, each particle image within ±0.5 pixels of the 
projected 3D particle location is fitted with a Gaussian shape 
and, thus, the uncertainty in the fitted position parameter for 
the least-square fit process is considered. Thus, the �2

Xc
est

 term 
is given by:

(6)e�⃗X
c = �⃗X

c
− �⃗X

c

true
= �⃗X

c
− �⃗X

c

est
+ �⃗X

c

est
− �⃗X

c

true

(7)Σ�⃗X
c = Σ

d⃗
c + Σ�⃗X

c

est

Equation (8) denotes an expression for the Xc
est

 position 
estimation variance which is shown to be a function of the 
variance in the fit residual error (�2

res
) and the Jacobian (J) of 

the residual at the solution point. A similar expression can be 
written for �2

Yc
est

 term. Here, the J matrix consists of the gradi-
ent of the objective function for the minimization process with 
respect to the estimated parameters ( Xc

est
 or Yc

est
 ) for the Gauss-

ian least-square fit. The matrix 
(
J
T

J

)−1

 has the dimension 

Nparam × Nparam , where Nparam denotes the number of param-
eters estimated in the least-squares solver. Hence, in Eq. (8), 
the ith diagonal is considered to estimate the variance in the ith 
parameter. This estimation is consistent with the Cramer–Rao 
lower bound (CRLB) determination for 2D particle image 
centroid, as highlighted by (Rajendran 2019). Hence, once Σ

d⃗
c 

and Σ�⃗Xc

est

 are estimated, the Σ�⃗Xc is known (Fig. 2c).

2.3 � Estimating the uncertainty in mapping function 
coefficients

As seen from the flowchart in Fig. 2, once the variance in 
particle image position ( Σ�⃗Xc ) is estimated through the pro-
gression of steps shown on the right side, the next workflow 
is focused on estimating the variance in the calibration coef-
ficients ( Σ

a⃗
c ). The overall calibration uncertainty Σ

a⃗
c is a 

combination of Σ
c

a⃗
c for each camera c . The Σ

c

a⃗
c estimation 

process (Fig. 2d) can be performed in conjunction with the 
volumetric self-calibration process. In the absence of self-
calibration, the uncertainty in the coefficients {ac

i
} is dictated 

by the uncertainty in calibration image dot fitting. However, 
the presence of disparity between estimated and projected 
points leads to a shift in the projected calibration grid points 
�⃗X
c

cal
= {Xc

cal
Yc
cal
} in the image domain, and this correction 

leads to a new set of coefficients {ac
i
} in the self-calibration 

process. Hence, the uncertainty in Xc
cal
, Yc

cal
 positions, 

namely Σ�⃗Xc

cal

 , should directly affect the Σ
c

a⃗
c . If we consider 

the world coordinate positions �⃗xwcal
= {xwcal

ywcal
zwcal

} where 
the disparity vectors are evaluated during the volume self-
calibration process, then �⃗xwcal

 grid points will have no uncer-
tainty in their location as those points are defined fixed loca-
tions in space. Consequently, the unknowns (exw , eyw , ezw) of 
Eq. (3) for the �⃗xwcal

 grid points can be simplified to zero and 
the other terms can be further simplified as shown:

(8)�2

Xc
est
= diag

((
J
T

J

)−1
)
�2

res
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In Eq. (9), the C
a⃗
c represents the matrix of gradients of 

the mapping function with respect to the coefficients ai , [
�FXc

�ac
i

]
 or 

[
�FYc

�ac
i

]
 , having 19 columns and number of rows cor-

responding to number of calibration or disparity grid points 

(Ncal) . The Σ
c

a⃗
c =

{
eac

i

}T

19×1

{
eac

i

}

1×19
 is the unknown covar-

iance matrix for the coefficients �⃗ac belonging to either map-
ping function FXc or FYc of camera c . Thus, Eq. (9) is solved 

for Σ
c

a⃗
c with each set of �⃗ac over all the disparity grid points 

Ncal . The variance in the particle image position Σ�⃗Xc

cal

 is a 
Ncal × Ncal diagonal matrix with �2

Xc
cal

 or �2

Yc
cal

 terms as diago-
nal entries, which can be evaluated for the disparity grid 
points in a similar way as mentioned in Eqs. (7) and (8) of 

Sect. 2.2. Here, the Σ�⃗Xc

cal

 can be evaluated for the initially 
triangulated particle positions and is used in Eq. (9) to solve 

for Σ
c

a⃗
c as a least-squares problem for all Ncal.

2.4 � Uncertainty propagation in reconstructed 
positions

The uncertainty in the reconstructed world coordinate posi-
tion is finally obtained by solving for the world coordinate 

location covariance matrix Σ⃗xw
 from Eq. (5), as shown in 

Fig. 2e. This equation is evaluated for each world coordinate 
position combining mapping functions in Xc and Yc for all 2 

N cameras. The estimated covariance Σ
c

a⃗
c term in Sect. 2.3 

is used to evaluate the scalar values 
{

𝜕FXc

𝜕ac
i

}
Σ
c

a⃗
c

{
𝜕FXc

𝜕ac
i

}T

 or 
{

𝜕FYc

𝜕ac
i

}
Σ
c

a⃗
c

{
𝜕FYc

𝜕ac
i

}T

 , which are used as diagonal entries to 

compute Σ
a⃗
c , as mentioned in Eq. (4) of Sect. 2.1. The Σ�⃗Xc 

has already been calculated using Eq. (7). Hence, we solve 

for Σ⃗xw
 by inverting the C⃗xw

 matrix as given by the following 
equation:

Here, B is given by B =

(
C
T

x⃗w
C⃗xw

)−1

C
T

x⃗w
 . It can be noted 

that for standard Gaussian particle images, the covariance 
between Xc and Yc particle image position estimation can be 
assumed to be negligible. However, in the presence of opti-
cal distortion, such a covariance can be estimated from the 

(9)ΣXc
cal
= C

a⃗
cΣ

c

a⃗
cC

T

a⃗
c

(10)Σ⃗xw
= B

(
Σ�⃗X

c + Σ
a⃗
c

)
B
−1

2D least-square fit of an elliptical Gaussian function on the 

mean particle image shape. Thus, the term 
(
Σ�⃗X

c + Σ
a⃗
c

)
 is 

essentially a 2 N× 2 N  diagonal matrix for 2 N  mapping 
function equations. From the covariance matrix Σ⃗xw

 , the 
standard uncertainty in reconstructed positions (�xw , �yw , �zw) 
is obtained by taking the square root of the diagonal terms √

diag

(
Σ⃗xw

)
.

We also evaluate the bias uncertainty terms �xwb , �ywb , �zwb 
based on the mean disparity value for each sub-volume. Ide-
ally, for a converged self-calibration, the mean disparity is 
negligible. However, due to measurement noise, any residual 
mean disparity ( 

−

dc ) can lead to a bias in the reconstructed 
position measurement. We estimate 

−

dc from the disparity his-
togram and use that to estimate Σ�⃗Xc

b

 , the bias uncertainty in 

particle image position and Σ
a⃗
c

b

 , the bias uncertainty is �⃗ac 

using the propagation Eqs. (7) and (9). For Σ�⃗Xc

b

 , only Σ
d⃗
c

b

 is 
considered in Eq. (7). The final bias uncertainty estimates for 
reconstructed xw, yw, zw positions are obtained using the prop-
agation Eq. (10) by substituting the values of Σ�⃗Xc

b

 and Σ
a⃗
c

b

.

2.5 � Uncertainty in estimated velocity field

Once the reconstructed 3D particle positions are obtained, 
the tracked velocity estimate is a function of the particle-
pairing process. For particle displacements higher than the 
mean inter-particle distance, the particle matching becomes 
challenging, especially the nearest-neighbor search fails in 
most cases. This leads to erroneous measurements and sig-
nificant percentage of outliers. However, here, we only con-
sider the tracked velocity for particles that are successfully 
paired, defined by particle tracks with error magnitude less 
than 1 voxels. In such cases, the uncertainty in each tracked 
3D velocity measurement is evaluated as a direct combi-
nation of the estimated 3D position uncertainties of each 
paired particle. Thus, if a particle in frame 1 (�xw1 , �yw1 , �zw1) 
is paired with a particle in frame 2, then the uncertainty in 
the tracked displacement �u is given by:

In Eq. (11), �xwb is the bias uncertainty term as evaluated 
in Sect. 2.4. The bias uncertainty depends on the mean dis-
parity and the mapping function coefficients, and is not 
expected to change from frame to frame. Hence, it is 
accounted for only once in the tracking uncertainty estima-
tion. For the synthetic test case, we observed that the true 
position error in the estimated 3D particle position for a 

(11)�2

u
= �2

xwb
+ �2

xw1
+ �2

xw2
− �xw1xw2�xw1�xw2
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paired particle in frame 1 and frame 2 has a strong correla-
tion. Thus, the covariance term �xw1xw2�xw1�xw2 in Eq. (11) is 
significant, and at first, the correlation coefficient �xw1xw2 (for 
x component) is evaluated. For synthetic test case, with true 
error fields exw1 and exw2 , the �xw1xw2 has been observed to vary 
from about 0.5 to 0.8; however, in general, �xw1xw2 can assume 
any value between 0 and 1, depending on the flow field and 
calibration. Since the 3D particle position error has a signifi-
cant contribution from the particle reprojection error or dis-

parity error 
(
�⃗X
c
− �⃗X

c

est

)
 , the 3D position error correlation 

between successive frames is expected to have a similar 
magnitude compared to the disparity error correlation, 
which is verified for synthetic test cases with known error. 
In the present case, this �xw1xw2 is estimated in an average 
sense using the correlation of the reprojection errors between 
successive time frames. Here, we first calculate the disparity 
error for each reconstructed particle and for each camera. 
The disparity values ( �⃗d

c
) for all particles for a specific cam-

era in frame 1 are then correlated with the disparity values 
of the matching particles (obtained with 3D tracking) for the 
same camera in frame 2. Finally, the mean value of the cor-
relation coefficients obtained for each pair of frames and for 
each camera is used as an estimate for �xw1xw2 . To capture any 
variation in �xw1xw2 over the 3D domain and also over the 
time-series, this term can be computed only for each pair of 
frames and also for a statistically significant number of 
reconstructed particles within a sub-volume to avoid any 
global averaging effects. However, if the spatio-temporal 
variations of �xw1xw2 is insignificant, then a global mean esti-
mate of the coefficient may be used to calculate the covari-
ance term. The uncertainty in v and w components (�v, �w) 
can be obtained in a similar way following Eq. (11). It is to 
be noted that the uncertainty due to false matching in the 
presence of ghost particles may need further analysis. How-
ever, for a valid measurement, we expect Eq. (11) to account 
for the uncertainty in the tracked velocity measurement.

The current framework estimates the uncertainty in a 
3D PTV measurement for dual-frame tracking. However, 
for time-resolved measurements the 3D trajectory is usu-
ally fit with a second-order polynomial or B-spline or a 
Wiener filter over several particle positions in successive 
frames to increase the trajectory accuracy, as discussed in 
recent articles by (Cierpka et al. 2013), (Schanz et al. 
2016) and (Van Gent et al. 2017). For such analysis, the 
current methodology can be extended to include multi-
frame trajectory fitting uncertainty by combining the esti-
mated uncertainty in the reconstructed position with the 
uncertainty in the fitting coefficients. For example, with 
polynomial fitting, if xwfit = p0 + p1xw + p2x

2
w
 is the second-

order fit equation, then the uncertainty in the fitted xw posi-

tion can be expressed as �2
xwfit

= diag

(
Jfit

(
J
T

fit
Σ
−1

xw
Jfit

)−1

J
T

fit

)
 

(Gavin 2011). Here, 
[
Jfit

]

ij

=
�xwi

�pj
 is the Jacobian, represent-

ing the gradient of the i th temporal position xwi of a single 
particle track with respect to the coefficient pj . The [
Σxw

]

ij

=
(
�xwixwj�xwi�xwj

)2

 is the covariance matrix of the 

reconstructed xw positions in successive frames. The cur-
rent framework gives an estimate of �xwixwj and �xwi , �xwj 
terms which can be used to directly compute the uncer-
tainty �2

xwfit

 in the fitted trajectory. Uncertainty in advanced 
models for fitting a particle trajectory and its performance 
with varying noise and particle concentration can be 
explored in a future analysis.

3 � Results

The proposed framework to estimate the uncertainty in 
the reconstructed particle positions is tested using syn-
thetic vortex ring images. The particle field was generated 
and advected using incompressible axisymmetric vortex 
ring equations mentioned in Wu et al. (2006). The cam-
era calibration and particle images (256 × 256 pixels) were 
generated using in-house code. The camera angles were 
selected as 35° and the four cameras were positioned in a 
plus ( +) configuration. The volume of interest was set to 
42 mm × 42 mm × 24 mm and the seeding density was 
varied from 0.01 ppp to 0.1 ppp. The processing was also 
done using in-house calibration and IPR code for 100 image 
pairs. A polynomial model was used for the camera calibra-
tion and the initial estimate of the calibration was modified 
by three iterations of volumetric self-calibration to elimi-
nate any mean disparity. An allowable triangulation error of 
one pixel was used for the initial triangulation with particle 
identification using dynamic particle segmentation method 
(Cardwell et al. 2011) to better resolve overlapping particle 
images. The particle image positions were estimated using 
least-square Gaussian fit. The optical transfer function (OTF) 
(Schanz et al. 2013) was calculated and used in IPR itera-
tions. The number of inner loop and outer loop iterations 
for each frame was set to 4 with particle “shaking” of ±0.1 
voxels. The 3D particle tracking was done using “nearest 
neighbor” algorithm. The uncertainty for each measurement 
was computed using the set of equations described in Sect. 2.

3.1 � Comparing error and uncertainty histogram 
for reconstructed particle positions

First, the uncertainty in reconstructed particle positions is 
analyzed. The reconstructed particle positions are compared 
with the true particle positions in space, and if a particle is 
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found within 1 voxel radius of the true particle, then it is 
considered as a valid reconstruction. The error in recon-
structed xw position is denoted by exw and defined as:

Similarly, eyw and ezw are defined. Figure 3 shows the his-
togram of error and uncertainty distributions xw, yw , and 
zw coordinates. Figure 3a, b shows the distributions for the 
reconstructed particle positions obtained using triangulation 
and IPR methods, respectively, for a particle concentration 
of 0.05 ppp. The x-axis is divided into 60 equally spaced 
bins and the y-axis denotes the number of measurements 
falling within each bin as a fraction of total number of 
points. The root-mean-squared (RMS) error is defined as:

The error distribution for the triangulated particle posi-
tions is wider with RMS error of about 0.17, 0.18, and 0.27 
pixels in xw, yw , and zw positions compared to RMS error of 
0.15, 0.15, and 0.22 pixels for the IPR case. For the triangu-
lation case, the error distribution is sharp near the zero value 
and has a longer tail, which can be related to more accurate 
predictions for isolated particle images and a faster drop in 

(12)exw = xwest − xwtrue

(13)RMS error =

√√√√ 1

N

N∑

i=1

e2
i

accuracy for overlapping particle images. For IPR, however, 
the error distribution looks more Gaussian, which can be 
attributed to the iterative correction process. The predicted 
uncertainty distributions have significantly less spread and 
have a tight distribution around the RMS error. For a suc-
cessful prediction, it is expected that the RMS value of the 
error distribution should match the RMS value of the esti-
mated uncertainty distribution (Sciacchitano et al. 2015), 
assuming that the bias error is negligible. In the synthetic 
case, the bias error varies in the range of 0.001–0.015 pixels, 
which is an order of magnitude less than the corresponding 
RMS error range of 0.09–0.4 pixels. The RMS value for 
each distribution is indicated by the dashed vertical line. For 
Fig. 3a, the RMS uncertainty values underpredict the RMS 
error by 0.03 pixels in xw and yw and by 0.06 pixels in zw . For 
IPR case in Fig. 3b, the predicted uncertainties are within 
0.02 pixels of the RMS error values. The contribution from 
two main components Σ�⃗Xc and Σ

a⃗
c to the overall uncertainty 

Σ⃗xw
 is computed using Eq. (10). The calibration uncertainty 

term ( Σ
a⃗
c) is distributed in the lower uncertainty bins and 

contributes on average to 10% of the combined uncertainty 
estimate, whereas the particle image position uncertainty 
has 90% contribution. Overall, the predicted uncertainties 
are in close agreement with the expected value, indicating a 
successful prediction for position reconstruction uncertainty.

Fig. 3   Histogram of error (e) and uncertainty (σ) distributions for 
reconstructed particle positions (xw, yw, zw) for the synthetic vortex 
ring case with 0.05 ppp particle concentration for a triangulation and 

b IPR reconstructions. The vertical lines indicate the RMS value for 
each distribution
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3.2 � Reconstructed position uncertainty for varying 
particle concentration

The increase in particle concentration leads to a higher 
percentage of overlapping particle images which increases 
the error in particle identification and, subsequently, in 3D 
particle reconstruction. To test the sensitivity of the uncer-
tainty predictions in such scenarios, the seeding density is 
varied from 0.01 ppp to 0.1 ppp, and the RMS error and 
uncertainty values are compared in each case, as shown 
in Fig. 4a, b. The results show a high sensitivity of the 
predicted uncertainty to the trend of the RMS error for 
both triangulation and IPR methods. The reconstructed 
position RMS error predicted by IPR is lesser than the 
triangulation error for lower seeding densities, whereas, 
for 0.1 ppp, the IPR error is higher, which may be related 
to the specifics of the in-house IPR implementation. How-
ever, the objective is to predict the correct RMS error level 

given the different reconstructed positions using different 
methodologies. For triangulation, the RMS uncertainty 
follows the RMS error trend consistently, but underpre-
dicts the magnitude by about 0.04 pixels (23%) at 0.01 ppp 
and by 0.07 pixels (20%) at 0.1 ppp. For the IPR case, the 
predicted uncertainty matches the expected uncertainty 
value closely at 0.01 ppp and 0.05 ppp with a deviation of 
about 0.01 pixels (10%), but underpredicts the uncertainty 
by 0.08 pixels (30%) at 0.1 ppp. Overall, the increasing 
trend agreement, between the predicted and the expected 
uncertainty validates the current framework for prediction 
of uncertainty for a wide range of particle concentrations 
and using both reconstruction methods.

For a more specific comparison across seeding densities, 
the values of RMS errors and uncertainties in xw, yw , and 
zw positions for both methods are presented in Fig. 5. The 
maximum underprediction of about 0.06 pixels occurs at 0.1 
ppp case for both methods. The best agreement is obtained 

Fig. 4   The RMS of reconstructed position error magnitude (|e|) is 
compared against the RMS of uncertainty magnitude (|σ|) in subplots 
(a and b). The percentage of measurements within the uncertainty 
bounds (estimated coverage) is compared against percentage of meas-

urements falling within RMS error bounds (ideal coverage) in sub-
plots (c and d). The comparison is presented as a function of seeding 
density in the range of 0.01–0.1 ppp and for triangulation and IPR-
based reconstructions
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for the IPR case for up to 0.05 ppp and for the triangulation 
case upto 0.025 ppp. It is to be noted that the IPR reconstruc-
tion error is higher than exepected, which may be related to a 
lower convergence rate and, in turn, depends on the specifics 
of the implementation; however, given a reconstructed field, 
the current method reasonably predicts the standard uncer-
tainty in 3D particle-based reconstruction.

To compare the global prediction of uncertainty level for 
all particles, the estimated coverage is plotted in Fig. 4c, d. 
The coverage (Coleman and Steele 2009) is defined as the 
percentage of measurement errors falling within the uncer-
tainty bound (±�) . For an ideal Gaussian error distribution, 
the standard uncertainty coverage is 68.3%. However, since 
the error distributions deviate from the Gaussian shape, the 
estimated coverage is compared with an ideal coverage, which 
denotes percentage of measurement errors falling within the 
RMS error bound. In Fig. 4c, the coverage for all cases lies 
within 60% and 68%, except for 0.01 ppp case for which the 
coverage is about 74%. For triangulation, the ideal coverage 
lies in the range of 67–78%. The predicted coverage deviates 
from the ideal coverage by about 9% to 13%, with a minimum 
error of 5% for 0.01 ppp case. For IPR, the estimated coverage 
varies from 60 to 87%, with maximum overprediction for the 
0.025 ppp case (16% for zw , 9% for xw and yw ) and underpre-
diction (7–15%) for the 0.075 and 0.1 ppp cases, as shown in 
Fig. 4d. The ideal coverage is in the 69–75% range and best 
matches the estimated coverage for 0.05 ppp. Any bias in the 
error distribution can affect the accuracy in coverage predic-
tion. Thus, in the present analysis, the estimated uncertainty 
coverage metric is mostly in the range of 60–87% and agrees 
within 16% of the ideal coverage values.

3.3 � Uncertainty prediction for tracked velocity 
vectors

As a final step, the uncertainty prediction in the tracked 
velocity field is assessed. The reconstructed 3D particle 
positions are tracked for 100 pairs of frames using nearest-
neighbor tracking. The true particle positions in 1 voxel 
vicinity of the reconstructed particle positions is found for 
the first frame and the corresponding true displacement is 
subtracted from the estimated displacement to compute the 
error (e) in u , v , and w velocity components. A measure-
ment is considered valid if the computed error magnitude is 
within 1 voxel. The uncertainty (�u, �v, �w) in the velocity 
components are computed using Eq. (11).

The RMS uncertainty values mentioned in Fig. 6 are in 
close agreement with the RMS error values with a maximum 
deviation of 0.04 pixels across all cases. The RMS error 
increases with the particle concentration due to higher prob-
ability of erroneous matches resulting from ghost particle 
reconstruction. The predicted uncertainty increases propor-
tionally with RMS error, for both reconstruction methods, 
as observed in Fig. 6.

The histogram of velocity error and uncertainty distribu-
tion is compared in Fig. 7a for the triangulation case and 
Fig. 7b for the IPR case, for 0.05 ppp seeding density. The 
error distribution is sharper for the triangulation case. It is 
noticed that the w component has higher error compared to 
u and v components. For all cases, the uncertainty distribu-
tions have a very narrow spread and predicts the RMS error 
magnitude perfectly. Further analysis is required to validate 

(a) (b) (c) (d) (e) (f)

Fig. 5   Comparison of RMS error and RMS uncertainty values for the triangulation- and IPR-based reconstructed particle positions for a range of 
seeding densities. The difference between the RMS values is mentioned at the top of each grouped bar
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the displacement uncertainty model proposed by Eq. (11) 
for higher seeding densities with STB processing; however, 
these results show reasonable agreements between predicted 
and expected uncertainty values for the estimated velocity 
components.

3.4 � Experimental validation: uncertainty prediction 
for laminar pipe flow

The current framework is also validated for a canonical lami-
nar pipe flow experiment for a Reynolds number of 630. The 

(a) (b) (c) (d) (e) (f)

Fig. 6   Comparison of RMS error and RMS uncertainty values for the 
particle tracking displacement estimates using triangulation and IPR-
based reconstructed particle positions for a range of seeding densities. 

The difference between the RMS values is mentioned at the top of 
each grouped bar

Fig. 7   Error and uncertainty histogram comparison for tracked velocity vectors in the synthetic vortex ring case with seeding density of 0.05 ppp 
for a triangulation- and b IPR-based reconstructions. The fraction of total number of measurement points is shown for each histogram bin
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schematic of the experimental set-up is shown in Fig. 8. The 
flow loop consisted of a gear pump driving a steady flow rate 
of 0.17 L/min through a circular fluorinated ethylene pro-
pylene (FEP) tube of 0.25 inches inner diameter and 0.0625 
inches thickness. Following Brindise et al. (2018), the work-
ing fluid inside the pipe was chosen as distilled water–urea 
(90:10) solution to closely match the refractive index of the 
FEP tube (1.344) and also maintain properties similar to 
water. The solution had a density of 1015 kg/m3, dynamic 
viscosity of 0.915 × 10–3 kg/m/s, and a refractive index of 
1.3439. The tube was fully immersed in an acrylic tank 
filled with water–glycerol solution, which was also refrac-
tive index matched. The volumetric PTV measurement was 
performed using four Phantom Miro M340 cameras with 
three cameras at the same horizontal plane and one camera 
angled in the vertical plane, as shown in the side view of 
Fig. 8. The flow rate in the upstream and downstream of 
the pipe was measured using an ultrasonic flowmeter and 
the average flow rate was used to determine the theoreti-
cal velocity profile for Poiseuille’s flow. The measurement 
volume was 9 × 6.5 × 6.5 mm3 and was illuminated by a 
continuum Terra-PIV laser with appropriate optical set-up. 
The time-resolved measurements were taken at 6 kHz, and 
the image size was 640 × 624 pixels with an average mag-
nification of 17.8 microns/pixel. Fluorescent particles with 
24 microns diameter were used and the evaluated particle 
Stokes number St was 0.0005.

The reconstructed particle positions across all images 
are summed up in the cross-sectional view of the tube and 
a least-square circular fit is performed to fit a circle with 
size closest to the diameter of the tube. The fitted bound-
ary is used to divide the cross-sectional area of the tube 

in 20 × 20 bins and all measurements in streamwise direc-
tion as well as across 500 frames are averaged per bin to 
obtain the mean velocity profile shown in Fig. 9a. The mean 
velocity profile along the middle yw-plane is compared with 
the theoretical solution in Fig. 9b. The expected theoretical 
velocity profile utrue for the measured flow rate is shown by 
the blue solid line. The velocity profiles are normalized by 
the maximum theoretical velocity ( u0 ) of 1.67 voxels/frame. 
The flow meter has a 1.1% uncertainty and its correspond-
ing standard uncertainty (±�) is shown by the blue shaded 
region. The mean velocity profile obtained from particle 
tracks (for the triangulation case) is shown by the black solid 
line and the standard deviation of the velocity measurements 
in each bin is shown by the shaded gray region. The peak 
measured velocity reaches 94% of the theoretical maximum 
velocity. The standard deviation of the measured velocity 
is observed to increase in the depth direction moving away 
from the camera. The higher velocity standard deviation at 
zw∕D = −0.5 can be attributed to a higher calibration error 
due to initial misalignment between the pipe center and the 
calibration plane. The updated pipe boundary location (in-
depth direction) after volume self-calibration was aligned 
very close to the negative limit of the calibration plate trav-
erse range and thus increasing the calibration uncertainty at 
that location. Overall, the mean velocity profile agreed with 
the expected parabolic profile of a laminar pipe flow.

The measured streamwise component of velocity ( u ) is 
compared with the theoretical expected velocity ( utrue ) and 
the distribution of velocity tracking error eu and the esti-
mated corresponding uncertainty �u is shown in Fig. 9c, d 
for the triangulation and IPR reconstruction cases, respec-
tively. In both cases, the error distributions have a bias of 

Tank

Top View Side ViewReservoir

Pump

0.25"pipe

Inline 
flow meter

Clamp on
flow meter refractive index matched fluid

Illuminated volume

Tank

Fig. 8   Schematic of laminar pipe flow set-up showing the flow loop and camera arrangement
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about 0.03 pixels/frame. The predicted uncertainty values 
are distributed closely about the RMS error value. The RMS 
error and RMS uncertainty values match precisely at 0.14 
pixels/frame for Fig. 9c. For Fig. 9d, the RMS error and 
uncertainty values are 0.22 pixels/frame and 0.20 pixels/
frame, respectively. The v component RMS uncertainty of 
0.19 pixels/frame exactly matches the RMS error for the IPR 
case, but overpredicts the RMS error by 0.05 pixels/frame 
for the triangulation case. The w component of velocity, 
which corresponds to the depth direction, results in a higher 
RMS error of 0.44 pixels/frame and 0.57 pixels/frame for 
the triangulation and IPR reconstructions, respectively. The 
predicted uncertainties are 0.56 pixels/frame and 0.86 pixels/
frame for triangulation and IPR cases, respectively, indi-
cating overprediction of standard uncertainty in the depth 
direction. The contribution of the calibration uncertainty 
( Σ

a⃗
c ) and particle image position uncertainty ( Σ�⃗Xc ) to the 

overall uncertainty ( Σ⃗xw
 ) is also analyzed for the experimen-

tal case. The Σ
a⃗
c term contributes on average to 25% of the 

total uncertainty, whereas the Σ�⃗Xc term has 75% contribution. 
Thus, Σ�⃗Xc has a more significant contribution; however, the 

calibration uncertainty contribution is higher for the experi-
mental case compared to the synthetic case. Overall, for the 
experimental demonstration case, the predicted uncertainty 
using the current framework matches the expected uncer-
tainty level with high accuracy for the u and v components, 
and reasonably matches the appropriate uncertainty level for 
the w velocity component.

4 � Conclusion

We proposed a comprehensive framework to predict the 
uncertainty in the reconstructed 3D particle positions in a 
volumetric PTV measurement and, subsequently, propagate 
the uncertainty in the tracked velocity estimates. The vari-
ance estimated from the histogram of the projection error 
provides the uncertainty bound on the particle image posi-
tion and contributes to the uncertainty in the mapping func-
tion coefficients. The uncertainty on the reconstructed 3D 
position is obtained as a combination of the particle image 
position uncertainty and the mapping function coefficient 
uncertainty. The bias uncertainty on the reconstructed 

Fig. 9   The mean streamwise velocity profile for a 3D PTV measure-
ment of a laminar pipe flow is shown in (a). The velocity profile is 
compared with the theoretical solution in (b). The error and estimated 

uncertainty histogram are shown for triangulation-based reconstruc-
tion in (c) and for IPR-based reconstruction in (d)
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particle positions due to the residual mean disparity is 
also considered. For the tracked velocity uncertainty, the 
uncertainty in the reconstructed particle positions is directly 
combined for each matching particle pair. The covariance 
between particle position error for paired particles in frame 
1 and frame 2 is estimated using the correlation coefficient 
of the disparity error values for corresponding particles. 
Analysis with the synthetic vortex ring images showed good 
agreement between the RMS of the predicted uncertainties 
in xw, yw, zw positions and the RMS error. The estimated 
uncertainty in the displacement field was within 0.04 voxels/
frame of the RMS error for both the vortex ring case and the 
experimental pipe flow case ( u and v components). However, 
the w component uncertainty showed an overprediction of 
about 0.1–0.3 voxels/frame for the pipe flow case. Overall, 
the predicted uncertainties across all test cases are sharply 
distributed close to the RMS error values and showed strong 
sensitivity to the variation in RMS error, across a range of 
seeding densities.

The current analysis investigated the uncertainty predic-
tion as a function of particle concentration, which is a pri-
mary error source in 3d PTV measurement. However, parti-
cle image size, shape, and image noise also affect the RMS 
error in such a measurement. A triangulation-based recon-
struction uses the particle image information only for the 2D 
position estimation and the IPR method uses an OTF to 
estimate an average particle shape, which is not directly 
incorporated in the proposed uncertainty modeling. Hence, 
given the reconstruction methods, the particle image size 
and shape would primarily affect the accuracy in the particle 
image position estimation ( Σ�⃗Xc

est

 ). The RMS error in particle 
image location estimation as a function of particle image 
size has been previously discussed in the literature (Cowen 
et al. 1997; Marxen et al. 2000; Brady et al. 2009). We 
expect a similar behavior for the position estimation error 
and its variance estimated from the least-square fit. Also, in 
the current uncertainty model, since the uncertainty in the 
disparity error ( Σ

d⃗
c ) has a more significant contribution in 

the Σ�⃗Xc term, which in turn dominates the Σ⃗xw
 uncertainty, 

we expect the current framework to be minimally affected 
by any variation in the particle image position fitting uncer-
tainty Σ�⃗Xc

est

 . In terms of image noise, higher noise leads to 
inaccuracy in triangulation and increases the fraction of 
ghost particles. An increase in triangulation error contributes 
to higher reprojection error uncertainty Σ

d⃗
c , which in turn 

should proportionally increase the uncertainty in the recon-
structed position. The uncertainty prediction for the experi-
mental case incorporates the effects of image noise and suc-
cessful prediction for the pipe flow case demonstrates the 
capability of the current methodology to inherently consider 
any uncertainty due to image noise.

The proposed methodology is applicable, in general, for 
any given set of 3D reconstructed particle positions, even 
when they are obtained using advanced tracking methods 
like STB. The uncertainty model can also be easily extended 
from a dual-frame tracking to estimate the uncertainty in 
polynomial fitting of time-resolved particle trajectories. 
However, the details of such approach for STB involving 
Wiener filter to fit and predict particle trajectories (Schanz 
et al. 2016) should be quantified in a future analysis. The 
current methodology assumes negligible variance in laser 
pulse separation and thus ignores any temporal uncertainty 
in the particle tracking. The method also assumes that any 
covariance between particle image position ( �⃗X

c
 ) and calibra-

tion coefficients ( �⃗ac ) is implicitly accounted by the uncer-
tainty in the projection error ( Σ

d⃗
c ). The errors eXc and eYc are 

assumed to be independent for each camera, which is also a 
common assumption in the uncertainty quantification meth-
ods developed for PIV (Sciacchitano 2019). Future research 
can further address the limitations related to such assump-
tions and quantify the covariance terms. The proposed model 
does not explicitly distinguish the uncertainty levels for true 
and false reconstructions, but is assumed to implicitly 
account for erroneous reconstructions through an increased 
Σ
d⃗
c , as discussed earlier. However, a rigorous estimation of 

false reconstructions and correct velocity estimation for pair-
wise 3D tracking, at high particle concentrations, is an out-
standing challenge in the field of 3D PTV reconstruction 
method development. Thus, the current uncertainty model 
is focused on valid measurement tracks. In conclusion, the 
proposed framework demonstrates accurate uncertainty pre-
dictions for both the vortex ring and the pipe flow test cases. 
These results establish the current methodology as the first 
successful predictor for uncertainty in a 3D PTV 
measurement.
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