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In animal societies, individuals may take on different roles to fulfil their own needs and the needs of their
group. Ant colonies display high levels of organizational complexity, with ants fulfilling different roles at
different timescales (what is known as task allocation). Factors affecting task allocation can be at the
individual level (e.g. physiology), or at the group level (e.g. the network of interactions). We focus on
group level processes by exploring the relationship between interaction networks, task allocation and
task switching using a previously published data set (Mersch et al., 2013, Science, 340(6136), 1090e1093)
tracking the behaviour of six Camponotus fellah colonies over 41 days. In our new analyses, our goal was
to better explain the noisy process of task switching beyond simple age polyethism. First, we investigated
the architecture of interaction networks using node (individual) level network measures and their
relation to the individual's task e foraging, cleaning or nursing e and whether or not the ant switched
tasks. We then explored how noisy information propagation was among ants, as a function of the colony
composition (how many ants carried out which tasks), through the information-theoretic metric of
‘effective information’. Our results show that interaction history is tied to task allocation: ants that
switched to a task were more likely to have interacted with other ants carrying out that task. The degree
to which interactions related to task allocation, as well as the noise in those interactions, depended on
which groups of ants were interacting. Overall, we found that colony cohesion was stable even as ant
level network measures varied more for ants when they switched functional groups; thus, ant colonies
maintained a high level of information flow as determined by network analysis, and ant functional
groups played different roles in maintaining colony cohesion through varied information flows.
© 2022 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
In animal societies, individuals may carry out different tasks to
fulfil their own needs and the needs of their group (Clutton-Brock,
2009; Jeanson & Weidenmuller, 2014; Sumpter, 2006). Larger and
more complex societies can self-organize to fulfil tasks beyond basic
sustenance and reproduction (Boomsma & Franks, 2006; Sumpter,
2010). Local exchange of information, between individuals of a
group and between individuals and their environment, is key to self-
organization (Boomsma & Franks, 2006; Couzin, 2009; Cavagna
et al., 2010; Sumpter, 2006; Swain & Fagan, 2019). Social insect
colonies display high levels of organizational complexity (Lukas &
Clutton-Brock, 2018Lukas & Clutton-Brock, 2018), where individual
wain).
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tasks may include foraging, nest construction and caring for the
young (Gordon, 2002). The assignment of tasks, also referred to as
task allocation, is the result of patterns of factors that vary across
different scales (Gordon, 2016). These tasks can be fixed throughout
each individual's lifetime due to physiological reasons, for example
when only a fertile subset of the population is responsible for
reproduction, or when a subset is responsible for providing food
(Clutton-Brock et al., 2001; Sumpter, 2010).

Task allocation can also result in individuals changing their main
task over time. Task allocation in ants has been the subject of much
previouswork (Anderson&McShea, 2001; Gordon, 2016). Across ant
species, studies have shown that, depending on the tasks and on the
colony, ants may display varying degrees of task flexibility, from
small colonies of totipotent ants to larger ones with a structured
division of labour (Anderson & McShea, 2001). Factors affecting task
evier Ltd. All rights reserved.
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changes can occur at the individual level or at the group level. In-
dividual level factors include physiology (Anderson & McShea,
2001), age (Tripet & Nonacs, 2004), corpulence (Robinson et al.,
2009) and past experience (Ravary et al., 2007), whereas group
level factors involve colony size (Ravary et al., 2007) and interaction
rates at the colony level (Gordon & Mehdiabadi, 1999). Studying
individual level factors associated with task change is often simpler
than studying group level ones. For example, individual level
changes can be easier to track because their rate of change often
follows a consistent and predictable pattern, as in the case of ageing.
Individual level factors can also be directly quantified, e.g. by
measuring age, corpulence or physiological features, and traditional
statistical approaches can be used to predict task changes.

An ant's propensity to switch to a new task could also be linked
to nature of its interactions and the topology of the group's social
interaction network structure. However, changes in task allocation
affected by group level factors are currently not well understood.
Structural features or macro level social properties of groups can
affect micro level individual actions if the social system is affected
by feedbacks (Flack, 2017; Hobson et al., 2019). However, quanti-
fying relevant macro-to-micro feedbacks can be challenging and
can require large amounts of data. The development of automated
tracking systems has made this level of data collection possible.
While these systems have improved researchers' ability to track
detailed social behaviour (Robinson et al., 2009; Smith & Pinter-
Wollman, 2021), assigning quantitative metrics to group dy-
namics is still a nontrivial task. In the case of interaction patterns,
tracking physical interactions among individuals does not neces-
sarily map onto the amount of meaningful (predictive) information
exchanged with each interaction (Valentini et al., 2020). Although
tracking technologies can tell us how many times individuals in a
social group interact with one another, they cannot explain to what
extent these interactions are tied to task allocation without
considering the structure of these interactions and without
including behavioural observations. Network methods and metrics
allow us to explore the interaction structure.

In this paper, we leverage social network methods to gain new
insight into task allocation changes in an existing data set of ant
interactions (published by Mersch et al., 2013). Mersch et al. studied
task switching in Camponotus fellah by tracking and analysing the
movements and interactions of individually identified ants. Worker
ants were categorized into three functional groups (nurse, cleaner or
forager). Analyses showed that ants had more interactions with
others in their same functional group. Communities defining the
functional groups exhibited distinct behavioural signatures andwere
highly spatially divided. Nurses spent most of their time with the
brood, while foragers spent time at the nest entrance and cleaners
were located between the other two groups and the rubbish pile
(Mersch et al., 2013). Mersch et al. also explored the questions of task
switching cost, i.e. a time and energy investment associated with
learning new tasks (Goldsby et al., 2012), and of age polytheism, i.e.
the correlation between the age of an ant and which task they
perform. The original study identified spatial fidelity as a key regu-
lator of ant social organization and interaction frequency (Mersch
et al., 2013). These authors also found that task switches were pre-
sent but uncommon and that when a shift in functional group
occurred, ants showed a preferred direction of task transition, from
nurses to cleaners to foragers, mostly based on age (Mersch et al.,
2013). Task changes were thus hypothesized to be driven by age
polyethism, but the patterns were fairly noisy.

In this new analysis we focus specifically on this noisy process of
task switching and its predictability. A question not addressed in
the previous study is whether the history of an ant's interactions
with others could be one of the elements explaining task switching.
In other species, information flow patterns have been shown to
affect task allocation and overall colony behaviour, such as in the
case of midden workers in red harvester ants, Pogonomyrmex bar-
batus (Gordon & Mehdiabadi, 1999; Pinter-Wollman et al., 2018),
tandem running recruitment (Franklin & Franks, 2012) and
consensus-forming in rock ants, Temnothorax albipennis (Sasaki &
Pratt, 2018). To test whether the history of interactions or infor-
mation flow could explain the noise seen in task-switching dy-
namics that was not explained by age polyethism alone, we
evaluated several potential macro-scale predictors of task switch-
ing not addressed in the original paper.

First, we described the architecture of the interaction networks
by focusing on information flow (which in our case refers to the
possible information exchange due to interactions among ants). We
tested whether the role individual ants play in regulating infor-
mation flow in the colony and the functional group that they belong
to are correlated. To do this, we quantified three network measures
tied to the architecture of information flows at the local level for
ant-to-ant interactions: strengthmode, betweenness centrality and
bridge betweenness centrality. We also quantified a network level
measure, ‘effective information’ (EI), for the whole colony. At the
scale of ant-to-ant interactions, strengthmeasures the quantity and
frequency of an ant's interactions, and strength mode finds the
value in the distribution of strengths most commonly observed
across all the ants in the group. Betweenness centrality measures
the number of shortest paths between pairs of ants that pass
through it. Bridge betweenness centrality extends betweenness to
measure the number of shortest paths that pass through a node and
connect separate highly connected groups of nodes or commu-
nities. While strength, betweenness centrality and bridge
betweenness centrality are common node level measures in
network science and have been applied to animal social networks
in the past (Farine &Whitehead, 2015; Krause et al., 2009; Lusseau
& Newman, 2004), effective information is a new information-
theoretic metric reflecting how noisy a mechanism connecting
nodes (ants, in our case) is within a system. It is calculated as the
difference between degeneracy and determinism of the network
(Hoel et al., 2013; Klein & Hoel, 2020). In interaction networks,
effective information reflects the noisiness and predictability of the
interactions among individuals: a higher effective information
means that a system is more deterministic, with information
spreading in a more effective way throughout the network.

Second, we tested whether these four measures of information
flow in the interaction network are related to task switching, to
better understand the noise in task allocation not explained by age
polyethism as determined byMersch et al. (2013).We hypothesized
that an ant's previous interactions with other ants affect switching
behaviour, and we tested whether interacting with a certain func-
tional group increased the probability of an ant switching to that
group. We found that the relationship between the structure of the
interaction network and the different functional groups, as
described by network measures at the node and the global level,
could explain the varying correlations between interaction history
and switching behaviour during task allocation. Our use of network
metrics, including the effective information metric, allowed us to
determine the relationship between interaction history, task allo-
cation and information flow among functional groups in C. fellah
colonies.

METHODS

Data, Network Construction and Ant Categorization

The published Mersch et al. (2013) data set contains summaries
of interactions among a total of 985 individually marked ants in six
C. fellah colonies. The authors collected interaction data for every
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pair of ants at a daily resolution over the 41-day monitoring period,
and the published data set contains data pooled at the number of
interactions per dyad per day per colony. We matched this pub-
lished data set with the colony metadata to inform our analyses
(see Data Availability).

Consistent with Mersch et al. (2013), we used the pairwise daily
number of interactions to construct separate weighted, undirected,
unipartite networks for each colony per day. Each ant in a colony
was represented by an individual node. An edge between two
nodes represents the interactions between those two ants on a
given day. The edge weight is proportional to the number of pair-
wise interactions between them on that particular day.We used the
available published data set to recreate the 246 observed networks
for the six colonies over 41 days used byMersch et al. (2013) as well
as the general pattern of task switching across the length of the
experiments.

Mersch et al. (2013) assessed each ant's functional group every
10 days to categorize them as a nurse, cleaner or forager, repre-
senting their main task in the colony. They assigned functional
groups based onwhich community an ant spent at least 70% of their
time in, using the ‘Infomap’ community detection algorithm paired
with behavioural observations. They split the ants into the func-
tional groups foragers (F), cleaners (C), nurses (N), queen (Q) and
‘NA’ for ants that were counted as missing at a time point (e.g. if
they were dead or had lost their tags).

Mersch et al. (2013) reported that their ants mostly did not
change their task affiliation within the 10-day observation period
between task assessment points. We used the same 10-day snap-
shot window in our analyses, which resulted in three time points at
which a switch in task to a new category could be detected. Based
on Mersch et al.’s (2013) observational data, when an ant switches
functional groups, it switches tasks to that of the newgroup. For our
analyses, we categorized each ant as ‘switched’ or ‘consistent’,
depending on whether they were categorized as part of a different
functional group or remained within the same functional group
after each task assessment point in the original behavioural data.
These labels were assigned for each 10-day observation period,
meaning that an ant could be labelled as ‘consistent’ in one time
period because it did not change tasks from the previous period and
labelled as ‘switched’ in the next if it changed tasks and, thus,
functional groups during that next period. We utilized these labels
and the functional groups set by Mersch et al. (2013) throughout
our work.

Before performing new analyses, we first investigated whether
we could replicate Mersch et al.’s (2013) results of age polyethism.
We also testedwhether we could recapitulateMersch et al.‘s results
about task switching by determining the likelihood that an ant
would stay in the same task throughout the experimental time
versus performing two or three tasks.

Quantifying Individual Network Metrics for Each Ant

Our new analyses focused first at the individual scale within
the networks. Node metrics and centralities define various types
of influence that individual nodes exert on network connectivity
and dynamics. For each network, we used R (v.3.6.2) and the
packages ‘igraph’ (Csardi & Nepusz, 2006) and ‘networktools’
Jones (2018) to calculate three node level, local metrics: (1)
strength, (2) betweenness centrality and (3) bridge betweenness.
Since networks were constructed for each daily set of interaction
observations for each colony, these metrics were calculated for
each ant in every colony, every day. Differences in these metrics
were then analysed as a function of functional groups at the col-
ony level, and for just ants that switched or ants that remained
consistent.
First, we calculated each ant's node strength as the sum of the
weights of its edges. Thus, in our context, it is a measure of not only
how many interactions (edges) an ant (node) had with other ants,
but also of how frequently those interactions occurred during a day.
While degree is an index of potential communication activity
(Freeman, 1979), strength improves upon this index by weighting
degrees according to communication frequency, to better inform
total interaction and information flow potential. To measure the
structure of the distribution of this node level metric at the network
level, we calculated the maxima of the density distribution of
strength of all ants (or all within a functional group subset) in a
given colony on a given day to find the strength mode. The mode
was used instead of the mean because the strength distributions
were skewed. The strengthmode provides a summary of how these
strengths are generally distributed across each network.

Second, we calculated each ant's node betweenness. Also
known as betweenness centrality, this measure is another way to
assess the influence of a node for the connectivity of the network.
For a given pair of nodes in aweighted network, there exists at least
one path between them such that the sum of the link weights is
minimized, thus forming a shortest path. The betweenness of a
node is therefore defined as the number of shortest paths that pass
through it. Freeman (1979) identified high betweenness centrality
as a key indicator of whether a node occupies a central location in
the network for information transmission. Individuals with high
betweenness are often responsible for maintenance of communi-
cation, group coordination and network stability (Farine &
Whitehead, 2015; Lusseau & Newman, 2004). An ant with a high
betweenness is centrally located in the network, serving as a key
connection for seemingly disparate ants.

Third, we measured the bridge betweenness for each ant in the
network. Bridge betweenness extends the betweenness centrality
metric to the level of communities and is defined as the number of
times a node lies on the shortest path between two nodes from
different communities. In network science, a community is defined
as a group of nodes that have a higher likelihood of connecting to
each other than to nodes from other communities. Ants with a high
bridge betweenness serve as key connectors for different commu-
nities in the network, where communities mostly overlap with
functional groups. This means that ants with high bridge
betweenness would be more integral to network cohesion and
information flow across groups, and thus they may play an
important role in driving switching dynamics.

To quantify each ant's bridge betweenness, we needed to assign
ants to network communities in both the observed networks but
also in our 123 000 reference networks (see below). Assigning ants
to network communities using the original network community
detection algorithm Infomap (used in Mersch et al., 2013) was
computationally prohibitive when applied to our many reference
networks. Because of the computational demands of the bridge
betweenness analysis, we used a Louvain community detection
algorithm (Csardi & Nepusz, 2006), which saved computational
time and memory (Emmons et al., 2016) compared to the Infomap
algorithm. These new network community assignments were
solely used for computing bridge betweenness and did not change
the functional group assignments of the ants made by Mersch et al.
(2013), whichwe use in all other cases in our analyses. To check that
the Louvain algorithm assigned ants to network communities in
ways consistent with the original community assignments from
Infomap, we compared our community assignments to those found
by Mersch et al. (2013): as we show below, our new assignments
were similar enough to the original assignments that we could use
our new method to assess bridge betweenness and the likelihood
ants would be connected to others within different functional
groups (see Results). All other analyses involving functional group
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assignments of ants use the functional groups assigned in Mersch
et al. (2013).

Quantifying Global Network Measures for Each Colony

We used effective information and its normalized measure,
‘effectiveness’, to measure colony level noisiness in the system,
with respect to its underlyingmechanisms (Klein et al., 2021, 2022).
Since we are considering the mechanism of communication and
information flow among ants, effective information measures the
level of predictability, or degeneracy, in ant-to-ant interactions. To
calculate effectiveness, we first found the sum of weights of all
edges connected to each node in the interaction network, where
edge weights correspond to the number of interactions between a
pair of ants. An ant who had no interactions in a given network
would have a weight of 0. We defined this weight as a vector Wi of
the same length as the total number of nodes and referred to each
element as uij, signifying the normalized value of edge weight
between nodes i and j, such that for any index i,

P

j
uij ¼ 1. Here,

each termuij can be seen as the probability of moving from i to j, if a
randomwalker is on node i. Next, we characterized the uncertainty
associated with each node i, calculated using Shannon's entropy
measureHðWiÞ. As node i has more connections, and as the weights
uijs of those connections to other nodes (j) become more equal,
Shannon's entropy (i.e. the uncertainty about where a random
walker will go) increases. The average of this value across all the
nodes in the network is <HðWiÞ> . When <HðWiÞ> is equal to 0,
the network is deterministic (e.g. in the case of a line network or a
ring lattice, both in directed and undirected cases, where infor-
mation can only flow in one dimension). We then assessed the
certainty of the network by calculating the term Hð <Wi > Þ, which
is Shannon's entropy of the average outweights from all nodes.
When this expression is equal to 0, the network is degenerate, with
all edges leading to the same node. Finally, we calculated effective
information using the following equation:

EI¼Hð < Wi > Þ � <HðWiÞ> (1)

Here, the first term of the equation is determinism and the
second term is degeneracy. Thus, the effective information for a line
graph or a ring lattice, which is maximally deterministic and
minimally degenerate, is the maximum. For the cases of a star
network, which is both maximally deterministic and degenerate,
and that of a complete graph, which is both minimally determin-
istic and degenerate, the value of effective information is zero. As
the value of effective information can depend on the size of the
network (Klein & Hoel, 2020), we calculated effectiveness, the
normalized effective information with respect to network size.
Effective information is normalized by log2N, which is the maximal
possible value of the entropy, whereN is the number of nodes in the
network. For comparison, this is akin to the normalization of
Shannon diversity to Shannon equitability in ecological studies.

Effectiveness ¼ EI
log2 N

(2)

Effectiveness was calculated for each observed network (i.e. for
each day, for every colony), using the R package ‘einet’ (Byrum et al.,
2020; Klein et al., 2022).

If node level properties were affected by which functional group
an ant was in, then system level measures could be affected by the
proportion of ants in each functional group, sowe tested howgroup
composition affected effective information. We used the functional
group assignment from Mersch et al. (2013), then fitted linear
models to the effectiveness for each observed network as a function
of the proportion of each functional group in the network to
determine significant relationships between effectiveness and a
colony's functional group composition.

Building Reference Models to Test Interaction Patterns and Task
Switching

To test how interaction patterns resulted in different network
metrics and/or task-switching patterns than expected, we con-
structed randomized networks that served as null models, or
reference networks, for the daily interaction networks of the six
colonies. Using randomized networks as reference networks is a
common method for testing the effect of interaction structure and
the significance on various network properties and dynamics
(Farine, 2017; Hobson et al., 2021). Constructing a reference model
allowed us to randomize some aspects of the interaction patterns
while preserving other relevant structural features of the networks
(Hobson et al., 2021). We used a degree-based randomization
(through the R package ‘VertexSort’; Abd-Rabbo, 2017) to generate
our reference networks. This approach preserved the total number
of interaction partners per ant on a given day but changed (1) who
they interacted with and (2) how many times they interacted. This
process distributed the total number of original interactions among
the newly constructed edges of the randomized network.

This reference model approach allowed us to test how specific
ant interaction patterns affected the node and network level
properties, while preserving the distribution of connections in
relation to functional groups of the ants (functional group assign-
ment and the degree of individual ants remained unchanged). As an
example, a nurse that had 20 interaction partners (degree ¼ 20)
would still have a degree of 20 in the reference network but would
be interacting with 20 different ants with different frequencies, as
the edge weights were also randomly assigned from the initial
distribution for each reference network. This hypothetical refer-
ence model ant would then have a different total frequency of in-
teractions while maintaining its original number of partners. For
reproducibility, we created 500 seeded reference networks for each
colony's daily interaction network, for a total of 123 000 reference
networks.

To test how observed network measures differed from those
expected with the identity of interaction partners and the number
of interactions randomized, we compared the observed node level
network measures to the distribution of those measures in our
reference networks. We found the strength mode, mean
betweenness and mean bridge betweenness for every observed ant
network (each colony, for each day) and for each of the reference
networks. We also estimated the variance for each metric for every
ant in a given colony on each day for the observed network and all
the reference networks associated with the observed one (please
note that in the case of strength, the variance is the standard
variance in the strength distribution). The metrics were investi-
gated separately for each functional group within the following
subsets: overall (all ants), switching and consistent ants. Variance
measured the individual variation of metrics among ants of one
group in a colony. The distribution of variances, in conjunctionwith
those of the central tendencies, helps us to explore the variation of
these metrics across colonies and through time. Central tendencies
(mode for strength and mean for betweenness and bridge
betweenness) and variance values were Z-transformed, separately
for eachmetric and individual observed networkwith its respective
reference networks, to facilitate comparison across observed net-
works, which can vary in size (number of ants), allowing us to find
each metric's value for a given group, colony and day relative to its
own referencemodels. The Z transformation allowed us to combine
values across colonies and days, and to visualize the means of those
metrics across all samples (groups, days and colonies). We then
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calculated the 95% confidence intervals of the Z-transformed values
for each functional group and ant subset (switching, consistent and
overall ants) to determine differences in the network measures in
relation to ant role and task switching. Since the distribution of
variances indicates the variation of a network metric both across
colonies and through time, the size of the 95% confidence intervals
of the variances provides a proxy metric for stability of the network
metrics, when interpreted in conjunction with the distribution of
the central tendencies of those metrics.

To test whether the frequency of interactions with different
functional groups significantly affected an ant's functional group
membership and whether these interactions could explain how
ants switched tasks, we compared the observed patterns of in-
teractions in relation to switching behaviour to that of the refer-
ence models. If the functional group identity of ants affected how
individuals contributed to information flow within a colony, then
the number of times an ant switched to a new functional group
should affect the flow of information. We tested how observed
patterns differed from reference networks that preserved the
number of interactions per ant but redistributed the interactions
among every ant. We also tested whether the frequency of in-
teractions with different functional groups significantly affected an
ant's final functional group. At each task assessment point, we
quantified the frequency of interactions with each functional
group before switching from its original functional group to the
final one in both the observed data set and in the ensemble of
randomized reference networks. We compared the distribution of
values computed from the observed networks against those given
by the reference network distribution using a suite of chi-square
(independence/homogeneity) comparisons separately for each
possible type of task transition (including nontransitions) and each
observed network, wherever the specific transition/nontransition
occurred. To use the chi-square test, we assumed that each inter-
action is independent as it involves transfer of new information
between two individuals, even if it might be biased by more con-
tact with certain individuals by choice. In addition, individual
recognition is not particularly well established for ants, although
they can recognize broodmates and their colony queen (see
Esponda & Gordon, 2015; Sprenger &Menzel, 2020), lending more
credibility to our assumption.
Day 1–11 Day 12–21

Figure 1. Dynamics of task allocation across the experimental time for all ants in all six c
number of ants staying in the same group or transitioning to a new functional group betwee
originally determined in Mersch et al., 2013 via Infomap).
The results from each type of transition across all observed
networks were then combined using Stouffer's method (see Heard
& Rubin-Delanchy, 2018) and significant differences at the alpha
level of 0.05 were noted after accounting for multiple comparisons
(across transitions) through the BenjaminieHochberg (BH)
correction. We combined all the cases where specific transitions
were present, across all colonies and days. Importantly, we were
comparing the total number of interactions in these tests pooled
across all ants for a given subset, and not the number of ants that
switched or remained consistent in their tasks. In all cases, the
frequency of interactions with each type of functional group
exceeded theminimumnumber required for using chi-square tests,
even though in certain cases the number of ants that were inter-
acting was less than five, their frequency of interactions exceeded
that number by a several orders of magnitude. This process allowed
us to assess whether interactions in the previous observation
period predicted the functional group in the next observation
period.

RESULTS

Replication of Original Results and Visualization of Task Switching

Figure 1 shows a new visualization that summarizes the tasks of
ants in all six colonies and how those tasks changed over time (for
details, see Appendix, Table A1). To ground our analyses, we first
replicated the main results from the original Mersch et al. (2013)
paper. We were able to replicate the original results of age poly-
ethism and recapitulated the age distribution of an ant that would
switch tasks once, twice or three times (results fromMersch et al.‘s
novel visualization in Appendix, Fig. A1a). In our analysis, we
detected no significant differences between ant age and task-
switching frequency. However, our results also suggested a
possible correlation between ant age and task-switching frequency
(one task versus two tasks: P ¼ 0.23; two tasks versus three tasks:
P ¼ 0.27; one task versus three tasks: P ¼ 0.08), which would
require more data points to be confirmed. We were also able to
replicate Mersch et al.‘s task-switching results by determining the
likelihood that an ant would stay in the same task throughout the
experimental time versus perform two or three tasks (Appendix,
Day 22–31 Day 32–41

Missing

Foragers

Cleaners

Nurses

olonies. The alluvial diagram shows the number of ants per functional group and the
n time periods as proportional to box and flow sizes, respectively (functional groups as
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Fig. A1b). We found that ants were more likely to stay within a
single task, confirming the existence of a switching cost.

We also compared our interaction community assignments used
in calculating bridge betweenness (via the Louvain community
detection algorithm) with those obtained through the Infomap al-
gorithm originally used by Mersch et al. (2013) for the task of
functional group allocation. Community membership assignments,
compared at an individual node level for a given network, resulted
in an average 90.13 ± 7.25% similarity between the two methods
across all the networks in the data set. While the functional group
assignments used in our analyses were taken directly from Mersch
et al.‘s analysis (whichwere validated by behavioural observations),
this similarity of community assignment is important as wewanted
to certify that the structure of communities detected by both al-
gorithms was not divergent. The bridge betweenness metric used
the communities from the Louvain algorithm as it provided a
substantial reduction in computational time and was indicative of
an ant's potential to connect to ants from different functional
groups because of the high similarity with the community assign-
ments used to determine functional groups (i.e. by Infomap and
Mersch et al., 2013).

Individual Network Centrality Measures and Task Switching

We compared network measures and their variances across
each of the functional groups for three categories: all ants (overall),
switching ants and ants that remained consistent in their tasks
during the assessment periods (summarized in Fig. 2; all values
listed in the Appendix, Table A2 and additional visualization in
Fig. A2), relative to their respective reference networks. Variance
was assessed due to apparent substantial fluctuations in the met-
rics for ants that switched within the 10-day period leading to a
task assessment point (Appendix, Fig. A3). These fluctuations are
represented by the 95% confidence intervals of the variances, which
indicate how stable the relative network measures were across
colonies and over time (i.e. a larger confidence interval represents
more fluctuations and less stability).

When we compared the distribution of the strength metric us-
ing the mode across each of the tasks, we found that foragers had
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Figure 2. (a) Z-transformed values of the central tendencies (mode for strength, mean for b
bridge betweenness determined for all ants across the six colonies. For each functional grou
during assessment periods (switching) and for ants that performed the same tasks from on
network (each colony, for each day) and for each of the reference networks before being Z
(points depict average value and bars represent 95% confidence intervals among the meas
across days and colonies): nurses (red squares), cleaners (green triangles) and foragers (blue
the same normalized metrics from reference network simulations. See Fig. A2 for a more c
the highest strength mode of any group across all three categories,
showing that they had the most frequent interactions over a day
regardless of whether they remained foragers or switched task at
some point. Values of variance (relative to their respective refer-
ence networks) of the overall strength did not significantly differ
across functional groups or from the reference networks (see the
95% confidence intervals in Fig. 2b), and the mode of strength
remained fairly consistent across functional groups (see the 95%
confidence intervals in Fig. 2a). Whenwe looked at strength just for
switching ants, we found that themode differed significantly across
functional groups and was significantly greater than for the refer-
ence networks. Out of these, foragers that switched had the highest
strength mode. Strength mode variance of switching ants did not
vary significantly among functional groups. However, variance of
the strength mode of switching foragers was higher and more
variable (i.e. larger confidence interval) than the reference net-
works, indicating less stability of this metric among these in-
dividuals and over time. When we looked at strength just for ants
that were consistent, we found that the mode and variance fol-
lowed the same pattern seen for ants that switched, i.e. consistent
foragers had higher strengths and the values for all groups were of
the same magnitude as those for the ants that switched.

At the colony level, the betweenness metric was stable (i.e.
confidence intervals were small for the both mean and the vari-
ance relative to the reference networks) and cleaners played the
most important role in connecting individual ants for flow of in-
formation, as they had significantly higher betweenness than
nurses and foragers (Fig. 2). When we assessed betweenness just
for ants that switched, we found that mean betweenness cen-
trality measures were significantly greater than those for the
reference networks, except for foragers. Betweenness of switching
ants was more variable than for consistent ants. Consistent ants
had the same relative patterns and magnitude of mean
betweenness centrality as ants that switched: consistent cleaners
and nurses had higher mean betweenness than consistent for-
agers. However, the variance of betweenness was no longer
significantly different from the reference networks; thus, consis-
tent ants maintained a less variable betweenness distribution
among networks and through time (i.e. the mean and variance
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remained within small confidence intervals and the variance was
not significantly different from reference networks) than switch-
ing ants (i.e. even when the means were similar, the variance was
much higher than reference networks).

Since the communities we detected mapped primarily onto the
previously determined functional groups (see above), a high
bridge betweenness indicated a high potential for connecting
functional groups in a colony. When we compared bridge
betweenness across each functional group at the colony level, we
found that the overall mean bridge betweenness values and their
variance did not vary among the functional groups or from the
reference networks, indicating that connections among network
group communities stayed stable among networks and through
time at the colony level. Mean bridge betweenness was higher for
the switching ants than for the consistent ants for all functional
groups, although only significantly higher for foragers. All ants
that switched had significantly higher mean bridge betweenness
than the overall colony values per functional group, suggesting
that ants that switched played an important role in connecting
communities for information flow in the colony. The mean bridge
betweenness of consistent ants did not vary significantly among
the functional groups or from the reference network distribution.
Although the variance of cleaners and foragers, both for ants that
switched and for those that were consistent, was significantly
higher and more variable than the reference networks, the overall
colony variance values remained stable with small confidence
intervals; these results may indicate that these interaction
structures could be important for colony cohesion at the com-
munity level.

Global Information Flow and Task Switching

Wemeasured effectiveness, the normalized effective information
(difference between how deterministic and degenerate a network
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Figure 3. Effectiveness (normalized effective information) of the interaction networks const
of (a) nurses, (b) cleaners and (c) foragers in the networks. Data are stacked because the a
is), as a function of the proportion of nurses, cleaners or foragers in
each colony for each day (resulting in 246 effectiveness measures;
Fig. 3). We found that the colony networks with high proportions of
nurses and cleaners had higher effectiveness, but that the de-
pendencies based on the linear model were weak and nonsignificant
(R2adj ¼ 0.12, P¼ 0.063; Fig. 3a for nurses; and R2adj ¼ 0.11, P¼ 0.052;
Fig. 3b for cleaners). Effectiveness significantly decreased with
increasing proportions of foragers in a colony (R2adj ¼ 0.22,
P¼ 0.037; Fig. 3c). This negative relationship between the propor-
tion of foragers and colony level effectiveness suggests that in-
teractions involving foragers were noisier than those involving only
nurses or cleaners.

Task Interaction Matrix and Task Switching

We tested whether previous interaction patterns affected
switching behaviour using a task interaction matrix. We found that
ants that remained consistent in their tasks usually interacted most
with other ants occupying their same task (Table 1). For example,
consistent nurses were significantly more likely to have only inter-
acted with other nurses (90% of nurse interactions, P¼ 0.0326).
Although cleaners and foragers who stayed within their functional
group also more commonly interacted with other cleaners or for-
agers, this difference in interaction frequency was not significantly
higher than expected by chance. For simplicity and comparison
throughout networks, we present the average of proportion of in-
teractions in each case in Table 1.

However, most ants that switched to a new task interacted with
ants occupying a different task prior to switching (Table 1). For
example, nurses who switched to cleaning had interacted more
frequently with cleaners (71% of nurse interactions) and this was
significantly more likely to occur based on interaction history than
by random chance (P ¼ 0.0489). The result that an ant would
transition to a group that it previously interactedwith themost was
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ructed for each colony and every day of the experiment as a function of the proportion
vailable granularity for task allocation was at a 10-day interval.



Table 1
The task interaction matrix, showing the proportion of an ant's interactions with a specified functional group before switching from its original to final group

Original task Final task Proportion interactions with other ants by role Corrected P (original task to final task)

Nurse Cleaner Forager

Consistent ants Nurse Nurse 0.9 0.09 0.01 0.0326*
Cleaner Cleaner 0.23 0.4 0.37 0.2105
Forager Forager 0.2 0.4 0.4 0.6744

Switching ants Nurse Cleaner 0.22 0.71 0.07 0.0489*
Cleaner Forager 0.04 0.41 0.55 0.0310*
Forager Nurse 0.05 0.65 0.3 0.0446*
Nurse Forager 0.27 0.35 0.38 0.3671
Cleaner Nurse 0.71 0.24 0.05 0.0229*
Forager Cleaner 0.02 0.64 0.34 0.0019*

P values were calculated using a chi-square test contrasting the observed interaction proportions with the reference model results for each type of task transition; values
significantly different from those obtained from their reference networks (after multiple comparison corrections) are indicated with asterisks. Bold type indicates the task and
proportion of interactions with ants of that task that were dominant in each category (and which were higher than expected by random chance).
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significant for the following other transitions: cleaner to nurse,
cleaner to forager, and forager to cleaner. Interestingly, foragers
who switched to nursing were significantly more likely to have
interacted more with ants of a different functional group, the
cleaners (65% of forager interactions who then switched to
nursing). Note, however, that this forager to nurse transition only
occurred in a few cases in the experimental data, so these results
should be interpreted with caution (due to the low number of
observed ants), even though the interaction frequency data were
sufficient for statistical comparison (see Supplementary material
for sample size information).

DISCUSSION

We explored task allocation in ant colonies to determinewhether
we could explain howants switched tasks based on information flow
among functional groups and the interaction history of the in-
dividuals. Mersch et al. (2013) determined that task switching was a
noisy process with a lot of individual variation, but that at least some
of the task switching could be explained by age polyethism based on
the spatial division of workers mediating the structure of the inter-
action network. In our analyses, we focused specifically on this noisy
process of task switching. Our approach allowed us to determine that
previous interaction history can help explain some of the noise
behind task switching in C. fellah colonies and provides novel insight
into task-switching behaviour in these ants.

Our results suggest that ants in different functional groups had
varying levels of importance for information flow between in-
dividuals and groups in a colony, based on their individual roles in
network connectivity as determined by the node level metrics. Ants
that switched tasks often occupied positions in the interaction
network that had high potential for supporting information flow
between groups. Network analyses, combined with the task inter-
action matrix, allowed us to describe how the architecture of in-
teractions was related with the distribution of and switching
among tasks in an ant colony.

At the scale of ant-to-ant interactions, we found that ants clas-
sified into the three main tasks (forager, cleaner, nurse) differed in
how they interacted with each other, which affected their roles in
information flow for the colony. Foragers had the highest interac-
tion strength mode e they interacted more frequently than
cleaners and nurses. Cleaners, however, had higher betweenness
and thus were key connections between ants interacting in the
colony.

Ants that switched tasks functioned as key connectors for in-
formation flow in the colony, supporting colony cohesion. In
general, mean betweenness was higher for ants that switched
than for ants that remained consistent in their task, although
confidence intervals overlapped. Bridge betweenness (which
indicated how ants connected different communities within the
colony) was significantly higher for ants that switched. This sug-
gests that ants who switched tasks throughout the course of the
experiment, and particularly foragers, played an important role in
connecting functional groups through information flow. Their
high bridge betweenness means that they occupied a key network
position for receiving and transmitting information before they
switched tasks. If learning is required when ants switch tasks, this
increased access to information may have allowed them to learn
new behaviours more quickly, helping them transition to a new
task. In general, cleaners were less likely to interact within their
functional group (which is consistent with Mersch et al.’s (2013)
results). The low group cohesion of cleaners may strengthen
colony-wide cohesion.

The variability of the centrality metrics may be related to
cleaners' and foragers’ ability to transition tasks. Cleaners and for-
agers who switched functional groups had significantly higher
variances of betweenness and bridge betweenness within net-
works. Across networks and over time, these variances also had a
larger range, showing that these individual measures of social
network connectivity changed more and were overall less consis-
tent among individuals. However, when all ants in a colony were
grouped for calculating the node level network metrics, pooled
variances were not higher than those for the reference networks
and they had small confidence intervals. So, while these metrics
varied significantly among functional groups and when ants
switched tasks, overall information flow in a colony remained fairly
stable and colony cohesion was maintained.

At the group level, the operationalization of effective informa-
tion as a measure of the noisiness of network mechanisms is
relatively new and underexplored. Our results for the six C. fellah
colonies show a correlation between variations in effectiveness and
the functional group composition of each colony. We found that a
higher proportion of foragers led to noisier potential communica-
tion among ants. Paired with the results on interaction strength,
this means that foragers interacted more frequently than ants
performing other tasks and that they hadmore diverse interactions
with ants at different positions in the interaction network. Results
on centrality measures and effectiveness can be linked with task
allocation through our task interaction matrix. The matrix shows
how previous interactions with ants in a given task are associated
with a higher probability of the ant switching to that task. These
results are consistent with previous work in another species:
Gordon and Mehdiabadi (1999) found that, in red harvester ants,
ants switching from other tasks to midden work were more likely
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to have interacted with midden workers, and that switching was
more likely to occur when those interactions were more frequent.
In the present study, we found that interactions with foragers were
correlated with switches to foraging: both cleaners and nurses who
switched to foraging had a higher probability of interacting with
foragers. Switches from foraging to other tasks, however, showed
different dynamics. Both foragers who switched to nursing and
foragers who switched to cleaning had a higher probability of
interacting with cleaners. These results should be interpreted with
some caution because ants switching from foraging to nursing was
only observed three times (the interaction frequency data, how-
ever, were sufficient for the chi-square comparison). Consistent
with betweenness results, these switching results show that
cleaners were central in driving switching patterns by occupying
key positions for information flow in the networks. These patterns
suggest that, while previous interaction patterns were correlated
with switching behaviour, the degree of correlation varied
depending on the role played by the interacting ants and on the
overall information flow of the system. However, without more
detailed data, we cannot determine whether a change in task or a
change in interactions happened first, but these insights provide
valuable information about system dynamics and suggestions for
future experiments.

In future research, it would be interesting to further explore
task switching in systems with a higher granularity of data
collection across both behaviours and interactions. One limitation
of the current analysis is that we assigned tasks to each ant based
on its interaction patterns, not on the types of actions or tasks it
completed in the colony. Even though interaction community
membership was paired with behavioural observations by Mersch
et al. (2013), it may not have been at the level of detail needed to
assess fine-grain interaction patterns and task performance. It
would be interesting to use the combination of network methods
and behavioural observations to further explore existing results on
the relationship between repetition (Langridge et al., 2004) and the
existence of experienced individuals (Langridge et al., 2008) on
task performance. Assessing not just who an ant interacts with, but
what actions that ant is actually completing, would provide useful
additional insight into the timing of behavioural and social change.
This kind of datawould allow researchers to determinewhether an
ant alters its behaviours first (for example, decreasing cleaning
behaviours and increasing nursing behaviours), which then results
in a change in the social interaction patterns, or whether an ant
first begins to change its social interaction patterns (for example,
interacting less with other cleaners and more with nurses) and
then alters its behaviour from cleaning actions to nursing actions.
Future targeted data collection, involving both social and behav-
ioural observations, paired with statistically robust network
methods, could be used to further explore the relationships be-
tween patterns of interactions, individual level behaviour and
group level behaviour.
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Overview of colony composition

Group

N C F Q NA Total

Colony 1
t1 25 32 52 1 0 110
t4 11 8 34 1 56 110
Colony 2
t1 70 35 22 1 0 128
t4 26 25 5 1 71 128
Colony 3
t1 38 93 25 1 0 157
t4 37 17 39 1 63 157
Colony 4
t1 38 35 25 1 0 99
t4 19 7 6 1 66 99
Colony 5
t1 68 41 39 1 0 149
t4 19 17 28 1 84 149
Colony 6
t1 80 35 46 1 0 162
t4 37 19 32 1 73 162

N ¼ nurses; C ¼ cleaners; F ¼ foragers: Q ¼ queen; NA¼ ants that were counted as
missing at a time point.
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Table A2
Network metrics (central tendencies and variance) for each functional group1

Property Type Nurses Cleaners Foragers

Strength Switching mode 2.17 � 2.35 � 2.52 2.76 � 2.92 � 3.05 3.01 � 3.17 � 3.33
Switching variance 1.46 � 1.65 � 1.88 1.8 � 1.96 � 2.1 1.97 � 2.14 � 2.32
Consistent mode 2.21 � 2.35 � 2.48 2.59 � 2.74 � 2.91 3.08 � 3.25 � 3.43
Consistent variance 1.63 � 1.76 � 1.92 1.66 � 1.85 � 2.16 1.65 � 1.92 � 2.04
Overall mode 2.12 � 2.25 � 2.38 2.21 � 2.35 � 2.5 2.84 � 2.96 � 3.06
Overall variance 1.49 � 1.66 � 1.85 1.54 � 1.68 � 1.8 1.56 � 1.75 � 1.92

Betweenness Switching mean 2.17 � 2.29 � 2.43 2.14 � 2.33 � 2.53 1.63 � 1.83 � 2.05
Switching variance 1.98 � 2.14 � 2.32 2.84 � 3.01 � 3.14 2.43 � 2.67 � 2.88
Consistent mean 2.19 � 2.33 � 2.46 2.37 � 2.5 � 2.7 1.76 � 1.97 � 2.12
Consistent variance 1.64 � 1.81 � 2.03 1.81 � 1.87 � 2.02 1.62 � 1.88 � 2.19
Overall mean 2.15 � 2.25 � 2.37 2.58 � 2.73 � 2.84 1.95 � 2.01 � 2.08
Overall variance 1.45 � 1.51 � 1.57 1.85 � 1.94 � 2.06 1.25 � 1.36 � 1.44

Bridge betweenness Switching mean 2.09 � 2.22 � 2.35 2.27 � 2.63 � 3.15 2.69 � 2.97 � 3.25
Switching variance 1.76 � 1.99 � 2.21 2.19 � 2.41 � 2.64 2.28 � 2.59 � 2.92
Consistent mean 1.8 � 2.03 � 2.25 1.95 � 2.27 � 2.59 1.96 � 2.18 � 2.41
Consistent variance 1.89 � 2.11 � 2.34 2.68 � 2.91 � 3.13 2.38 � 2.75 � 3.09
Overall mean 1.82 � 1.93 � 2.04 1.79 � 1.98 � 2.14 1.94 � 1.99 � 2.05
Overall variance 1.26 � 1.32 � 1.38 1.36 � 1.55 � 1.73 1.41 � 1.51 � 1.59

1 Z-transformed values of various functional groups for all the six colonies and all days. Mean values are in bold and shown within the range of their 95% confidence
intervals.
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Figure A1. Replication of results from Mersch et al. (2013) for (a) age polyethism and (b) switching cost. In (a), we tested the hypothesis that ants become more flexible with age by
plotting the number of switches against the age of the ant. In (b), we show the likelihood that an ant will stay in the same task throughout the experimental time versus performing
two or three tasks (with the possibility of switching between tasks). Note that the box plots show 25% and 75% quartiles (boxes), medians (lines in the boxes), outermost values
within the range of 1.5 times the respective quartiles (whiskers) and outliers (circles).
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Figure A2. Z-transformed central tendencies (mode for strength and mean for betweenness and bridge betweenness) and variances for the strength, betweenness and bridge
betweenness determined for all the ants in the experiment (overall colony values), for ants that switched during the experiment and for consistent ants (no switching) during the
experiment from all six colonies. Line colours correspond to ant functional group type: nurses (red), cleaners (blue) and foragers (green). Shaded areas are the 95% confidence
intervals based on seeded random networks. The null distribution created from the null network simulations is shown in black with a marked confidence interval (dashed lines).
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Figure A3. Daily values of average node betweenness (shaded area represents the standard deviation) grouped for nurses (red), cleaners (green) and foragers (blue) in Colony 2,
split by ants that switched, ants that stayed consistent and all ants. Each plot is a 10-day period leading up to a task assessment point. Average betweenness during the 10-day
periods varied more for ants that switched, prompting inclusion of variance in the main analyses. Similar results were observed for the other colonies and metrics (strength
and bridge betweenness) and additional figures are available on the GitHub repository for the paper.
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