

1

2 **Identification of a novel glucuronyltransferase from *Streptomyces***
3 ***chromofuscus* ATCC 49982 for natural product glucuronidation**

4

5

6 Jie Ren • Caleb Don Barton • Kathryn Eternity Sorenson • Jixun Zhan

7

8

9

10 Department of Biological Engineering, Utah State University, 4105 Old Main Hill,
11 Logan, UT 84322-4105, USA

12

13

14 Correspondence: Jixun Zhan

15 jixun.zhan@usu.edu

16

17

18

19

20

21

22

23 **Abstract**

24 Glycosylation is an effective way to increase the polarity of natural products. UDP-
25 Glucuronyltransferases (UGTs) are commonly observed and extensively studied in
26 phase II drug metabolism. However, UGTs in microorganisms are not well studied,
27 which hampered the utilization of this type of enzyme in microbial glucuronidation of
28 natural products. Screening of five actinomycete strains showed that *Streptomyces*
29 *chromofuscus* ATCC 49982 can convert diverse plant polyphenols into more polar
30 products, which were characterized as various glucuronides based on their spectral data.
31 Analysis of the genome of this strain revealed a putative glucuronidation gene cluster
32 that contains a UGT gene (*gcaC*) and two UDP-glucuronic acid biosynthetic genes
33 (*gcaB* and *gcaD*). The *gcaC* gene was cloned and heterologously expressed in
34 *Escherichia coli* BL21(DE3). Incubation of the purified enzyme with resveratrol and
35 UDP-glucuronic acid led to the production of resveratrol-4'-O- β -D-glucuronide and
36 resveratrol-3-O- β -D-glucuronide, allowing GcaC to be characterized as a flexible UGT.
37 The optimal *in vitro* reaction pH and temperature for GcaC are 7.5 and 30 °C,
38 respectively. Its activity can be stimulated by Ca²⁺, Mg²⁺ and Mn²⁺, whereas Zn²⁺, Cu²⁺
39 and Fe²⁺ showed inhibitory effects. Furthermore, GcaC has a broad substrate specificity,
40 which can glucuronidate various substrates besides resveratrol, including quercetin,
41 ferulic acid, vanillic acid, curcumin, vanillin, chrysin, zearalenone, and apigenin. The
42 titers of resveratrol-4'-O- β -D-glucuronide and resveratrol-3-O- β -D-glucuronide in *E.*
43 *coli*-GcaC were 78.381 ± 0.366 mg/L and 14.991 ± 0.248 mg/L from 114.125 mg/L
44 resveratrol within 3 hours. Therefore, this work provides an effective way to produce

45 glucuronides of resveratrol and other health-benefitting natural products.

46

47 **Key points**

48 • A novel versatile microbial UDP-glucuronyltransferase was discovered and
49 characterized from *Streptomyces chromofuscus* ATCC 49982.

50 • The UDP-glucuronyltransferase was expressed in *Escherichia coli* and can
51 converts resveratrol into two glucuronides both *in vitro* and *in vivo*.

52 • The UDP-glucuronyltransferase has a highly flexible substrate specificity and
53 is an effective tool to prepare mono- or diglucuronides of bioactive molecules.

54

55 **Keywords** *Streptomyces chromofuscus* · flexible substrate
56 specificity · monoglucuronide · diglucuronide · microbial glucuronyltransferase

57

58

59

60

61

62

63

64

65

66

67 **Introduction**

68 Plant polyphenols are an important group of compounds with diverse chemical
69 structures (Harborne and Baxter 1999; Tsao 2010). Stilbenoids and flavonoids are
70 representative examples of polyphenols which are rich in commonly consumed fruits
71 and vegetables, and both animal and human clinical studies showed their health-
72 promoting effects and antioxidant characteristics (Rice-Evans 2001; Thilakarathna and
73 Rupasinghe 2013). However, low water solubility and poor bioavailability often limits
74 the beneficial effects of polyphenols. Introduction of polar groups such as sugar
75 moieties into the structure is a widely used approach to improve the water solubility of
76 bioactive molecules. As such, discovery of novel and versatile glycosyltransferases is
77 important for adding new enzymes into the biocatalytic toolbox.

78 Sugar moieties often play important roles in binding of drugs to biological targets.
79 They may also be involved in other biochemical processes such as distribution,
80 metabolism, and excretion properties of drugs, which can affect the efficacy of its oral
81 administration (Thorson et al. 2004; Weymouth-Wilson 1997; Yu et al. 2002).
82 Glycosylated compounds often exhibit increased water-solubility, intestinal absorption,
83 biological half-life, physicochemical stability and bioavailability for medical and
84 cosmetic applications, while may also have lower toxicity compared to their aglycon
85 forms (Bowles et al. 2005; Cai et al. 2013; Gachon et al. 2005; Imai et al. 2012;
86 Kaminaga et al. 2003). Digitoxin, amphotericin, vancomycin, streptomycin, and
87 daunomycin are some examples of the most biologically active natural products and
88 commonly used therapeutics, with one or more sugar moieties (Pandey et al. 2014).

89 Sugar moieties can also contribute to other biological properties of natural products.
90 For instance, the glucuronic acid moieties of glycyrrhizin are essential for its sweet taste
91 (Chung et al. 2020).

92 Glycosyltransferases are the enzymes responsible for transferring sugar moieties
93 from sugar donors to acceptors to yield corresponding glycosides. Microorganisms are
94 a rich source of both natural products and natural product biosynthetic enzymes.
95 Actinomycetes, the most ubiquitous group of gram-positive filamentous bacteria, are
96 well characterized for their metabolic versatility (Nawani et al. 2013; Prakash et al.
97 2013). For example, they can decompose organic matter (such as cellulose) which is
98 important for the carbon cycle and maintaining the soil structure (Kim 2016;
99 Priyadharsini and Dhanasekaran 2015). In addition, actinomycetes can also produce
100 various commercial products, such as pharmaceuticals (antibiotics, antitumor agents,
101 etc) and nutraceuticals (Prakash et al. 2013; Remya and Vijayakumar 2008).
102 Furthermore, many actinomycete genera produce industrially important enzymes
103 applied in biotechnological applications and biomedical fields, such as amylases,
104 cellulases, chitinases, xylanases, and proteases (Mehnaz et al. 2017; Nawani et al. 2013).

105 Glucuronidation is one of the common glycosylation reactions in nature. UDP-
106 Glucuronyltransferases (UGTs) are the enzymes involved in glucuronidation, which are
107 widely observed in metabolism of xenobiotics and endogenous components (bilirubin,
108 bile acids, and certain hormones) during phase II metabolism, a common detoxification
109 pathway in the human body (De Wildt et al. 1999; Wilkinson et al. 2008). There are
110 mainly two phases for drug metabolism, namely functionalization reactions and

111 conjugation reactions. Glucuronidation is one of the phase II conjugation reactions. It
112 was predicted that about 10% of the top 200 prescribed drugs recorded in USA are fully
113 or partially metabolized by UGTs. UGTs transfer the glucuronic acid moiety from
114 uridine 5'-diphosphoglucuronic acid (UDP-glucuronic acid) to various exogenous and
115 endogenous compounds. They often work with cytochrome P450 enzymes (CYPs) to
116 metabolize most hepatically cleared drugs.

117 Many fields such as drug development, sports drug testing, and the detection of
118 agricultural residues often require the identification, quantification, and
119 pharmacological evaluation of the glucuronidated metabolites (Wilkinson et al. 2011).
120 However, chemical approaches like the Koenigs-Knorr reaction used for
121 glucuronidation often suffer from poor yields and side reactions, as well as tedious
122 protection-deprotection of the hydroxyl groups of sugar moieties (Engstrom et al. 2006;
123 Stachulski et al. 2006). Enzymatic preparation of glucuronides represents a “green”
124 alternative because of the selectivity, mild conditions and elimination of the need of
125 toxic chemical reagents. Discovery of efficient and versatile UGTs is critical for the
126 development of feasible and viable production process of glucuronides.

127 In our ongoing effort of discovering novel enzymes for natural product
128 glycosylation, we found *Streptomyces chromofuscus* ATCC 49982 can convert
129 resveratrol and several other natural products to corresponding glucuronides. We
130 analyzed the genome of this strain and discovered a putative UGT gene flanked by two
131 UDP-glucuronic acid biosynthetic genes. The UDP gene was then cloned and
132 heterologously expressed in *Escherichia coli* BL21(DE3). The enzyme was

133 functionally characterized through *in vitro* reactions and its optimal reaction conditions
134 were investigated. This enzyme is highly versatile and can convert a variety of
135 substrates into monoglucuronides or diglucuronides. Therefore, this UGT represents a
136 useful tool for the synthesis of glucuronidated metabolites. We also used the engineered
137 *E. coli* strain to produce the two resveratrol glucuronides and the optimal bioconversion
138 conditions were studied. In conclusion, the versatile UGT cloned and characterized
139 from microorganism in this work lays the foundation for the microbial production of
140 valuable glucuronides.

141 **Materials and methods**

142 **General equipment and experimental materials**

143 Agilent 1200 HPLC instrument with an Agilent Eclipse Plus-C₁₈ column (5 μm, 250
144 mm × 4.6 mm) was used to analyze and purify the products. The samples were eluted
145 with methanol-water (5:95 to 95:5 over 35 minutes, v/v, containing 0.1 % formic acid)
146 at a flow rate of 1 mL/min. Low-resolution ESI-MS spectra were obtained on an Agilent
147 6130 single quadrupole LC-MS in the negative mode to confirm the molecular weights
148 of glucuronides. All purified compounds were dissolved in in deuterated dimethyl
149 sulfoxide (DMSO-*d*₆) to collect the NMR spectra on a Bruker Avance III HD Ascend-
150 500 NMR instrument (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR). The
151 chemical shift (δ) values are given in parts per million (ppm). The coupling constants
152 (J values) are reported in hertz (Hz).

153 Phusion High-Fidelity DNA polymerase, restriction enzymes and T4 DNA ligase
154 were purchased from New England Biolabs. PCR reactions were conducted with an

155 Arktik Thermal Cycler (Thermo Scientific). Genomic DNA extraction was performed
156 using the Quick-DNA™ Fungal/Bacteria DNA Miniprep Kit (Zymo Research, USA).
157 Plasmid extraction was performed using the Thermo Scientific GeneJET Plasmid
158 Miniprep Kit (Thermo Scientific). Primers were ordered from Thermo Scientific and
159 dissolved in Tris-EDTA (TE) buffer to the concentration of 100 ng/mL. Standard
160 compounds like resveratrol, quercetin, curcumin, vanillic acid, ferulic acid, vanillin,
161 chrysin, zearalenone, apigenin, resibufogenin, tetracycline were purchased from
162 Sigma-Aldrich (USA). HisPur™ Ni-NTA resin, Luria-Bertani (LB) medium, yeast and
163 malt extracts were purchased from Fisher Scientific (Rockford, IL, USA). Bradford
164 assay solution was purchased from TCI America (Portland, OR, USA). Solvents and all
165 other chemicals were purchased from Fisher Scientific. Milli-Q water was used
166 throughout this study.

167 **Strains, vectors, media, and culture conditions**

168 *Streptosporangium roseum* No. 79089 (NRRL 2505) was provided by the ARS Culture
169 Collection (NRRL) of the United States Department of Agriculture. *Streptomyces*
170 *reseiiscleroticus* ATCC 53903, *Actinomadura hibisca* P157-2 (ATCC 53557), and *S.*
171 *chromofuscus* ATCC 49982 were obtained from the American Type Culture Collection
172 (ATCC). *Streptomyces* sp. FERM BP-2474 was acquired from Patent and Bio-Resource
173 Center, National Institute of Advanced Industrial Science and Technology, Japan.
174 *E. coli* XL1-Blue and BL21(DE3) were both purchased from Agilent. *E. coli* XL1-
175 Blue was used for routine gene cloning and plasmid propagation. *E. coli* BL21(DE3)
176 was used for protein expression and *in vivo* biotransformation. The pJET1.2 (Thermo

177 Fisher Scientific, USA) and pET28a (+) (Millipore Sigma, USA) vectors were used,
178 respectively, to clone and express UGT. The *E. coli* strains were routinely grown at
179 37 °C on LB agar plates or in liquid LB medium (Fisher Scientific, USA). When
180 necessary, carbenicillin (50 µg/mL) and kanamycin (50 µg/mL) were supplemented into
181 the culture media for selecting correct clones. *S. chromofuscus* ATCC 49982 was grown
182 on YM plate (4 g/L yeast extract, 10 g/L malt extract, 4 g/L glucose, and 20 g/L agar)
183 or in YM broth (4 g/L yeast extract, 10 g/L malt extract, and 4 g/L glucose) at 28 °C.
184 Recombinant UGT was expressed in *E. coli* BL21(DE3) at 28 °C. Isopropyl-1-thio-β-
185 D-galactopyranoside (IPTG) (Gold Biotechnology, USA) was used at 200 µM to induce
186 protein expression in *E. coli* BL21(DE3).

187 **Screening of glucuronidating actinomycete strains**

188 To test the ability of actinomycetes to glucuronidate resveratrol, we screened five strains,
189 namely, *S. roseum* No. 79089, *S. reseiscleroticus* ATCC 53903, *A. hibisca* ATCC 53557,
190 *Streptomyces* sp. FERM BP-2474, and *S. chromofuscus* ATCC 49982. These bacteria
191 were grown in 50 mL of YM medium in a rotary shaker at 250 rpm and 28 °C for 3
192 days.

193 Resveratrol (4 mg) was dissolved in DMSO and added into each culture. The
194 cultures were incubated under the same conditions for an additional 4 days. After that,
195 1 mL of fermentation broth was sampled and centrifuged at 15,000 ×g for 10 min. The
196 supernatant was analyzed by HPLC at 300 nm. In order to check whether *S.*
197 *chromofuscus* ATCC 49982 can glucuronidate other substrates, quercetin, ferulic acid,
198 and vanillic acid were incubated with the culture of this strain in a similar way. The

199 supernatant was analyzed by HPLC at 350 nm (quercetin) or 300 nm (ferulic acid and
200 vanillic acid) using the same HPLC conditions for resveratrol.

201 **Extraction and purification of compounds**

202 To isolate the biotransformation products of resveratrol for structure elucidation, *S.*
203 *chromofuscus* ATCC 49982 was cultivated in 1-L Erlenmeyer flasks, containing 250
204 mL of YM medium, to biotransform 20 mg of resveratrol. After 4 days, the fermentation
205 broth was centrifuged at 4,000 ×g for 10 min. After water in the supernatant was
206 evaporated, the residue was dissolved in 2 mL of methanol. The sample was subjected
207 to Sephadex LH-20 column chromatography, and eluted with methanol-water (1:1, v/v).
208 The products-containing fraction was further separated by reverse phase HPLC, and
209 eluted with methanol-water (10-50%, 0-17 min; 50-95%, 17-22 min) containing 0.1%
210 formic acid (v/v) to yield **1** (3.6 mg) and **2** (2.8 mg). Products **1** and **2** were also used
211 to prepare a standard curve to quantify the formation of these products in the *in vitro*
212 and *in vivo* reactions.

213 A similar procedure was used to isolate the biotransformation products of
214 quercetin, ferulic acid and vanillic acid for structure elucidation except the HPLC
215 methods for final compound purification. The gradient elution method with methanol-
216 water (20-40%, 0-2 min; 40%, 2-15 min; 40-95%, 15-20 min) was used to yield product
217 **3** (7.4 mg) and **4** (5.8 mg). The gradient elution method with methanol-water (5-60%,
218 0-15 min; 60-95%, 15-16 min; 95%, 16-18 min) was used to yield product **5** (4.8 mg),
219 **6** (3.0 mg) and **7** (1.2 mg). All purified products were subjected to NMR analysis. The
220 purified products were dissolved in DMSO-*d*₆. Their chemical structures were

221 characterized based on the NMR data (Supplementary Material).

222 **Genome analysis and amplification of the putative UGT gene from *S.***
223 ***chromofuscus* ATCC 49982**

224 The genomic DNA was extracted from *S. chromofuscus* ATCC 49982 using the Quick-
225 DNA™ Fungal/Bacterial Microprep Kit (Zymo Research, USA) by following the
226 manufacturer's standard procedure. The 454 next-generation sequencing system and
227 Rapid Annotation using Subsystem Technology (RAST) were used respectively to
228 sequence and annotate the genomic DNA of *S. chromofuscus*. The glucuronidation (*gca*)
229 gene cluster was deposited into GenBank under the accession number MZ666424. The
230 detailed functions of each gene in the gene cluster was predicted based on BLAST
231 analysis of the corresponding amino acid sequences.

232 Plasmids were extracted from *E. coli* via the GeneJET Plasmid Miniprep Kit
233 (Thermo Fisher Scientific). Primers were synthesized by Thermo Scientific (5'-
234 AATTGTTAAACCATATGCGAGTACTGTTCACCA-3' and 5'-AATTGCTAGCA
235 AGCTTCAGACGATCTCTGCAGGTC-3'). The primers (1 μ M), genomic DNA
236 (0.2 μ L), dNTP mix (200 μ M), 5 \times buffer (4 μ L), DMSO (0.4 μ L), Phusion High-
237 Fidelity DNA Polymerase (0.2 μ L at 2 U/ μ L) and nuclease-free water were mixed to
238 20 μ L for amplification of the UGT (*gcaC*) gene (1,209 bp). The PCR program began
239 with an initial denaturation at 95 °C for 5 min, and then 20 cycles of touchdown
240 program (95 °C for 30 s, annealing at 70 °C for 40 s, decreasing 0.5 °C per cycle, and
241 extension at 72 °C for 100 s), followed by 20 cycles of regular program (95 °C for 30
242 s, annealing at 60 °C for 40 s, and extension at 72 °C for 100 s), and finally, 68 °C for

243 15 min of extension.

244 **Construction of cloning and expression plasmids**

245 After purification with a GeneJET Gel Extraction Kit, the target PCR product was
246 ligated into the pJET1.2 cloning vector to yield pJR34 (pJET1.2-*gcaC*). After the pJR34
247 plasmid was confirmed by digestion check and sequencing using the Sanger method,
248 the gene was excised from pJR34 and introduced to the pET28a expression vector
249 between the *Nde*I and *Hind*III restriction sites to yield expression plasmid pJR36
250 (pET28a-*gcaC*). The ligation product was transferred into *E. coli* XL1-Blue competent
251 cells through chemical transformation, and the transformants were selected on LB agar
252 with 50 µg/mL kanamycin. The correct plasmids were confirmed by digestion check
253 with *Nde*I and *Hind*III.

254 **Heterologous expression of GcaC and *in vivo* biotransformation of resveratrol in
255 *E. coli* BL21(DE3)**

256 The expression plasmid pJR36 was transferred into *E. coli* BL21(DE3) through
257 chemical transformation. The correct transformant of *E. coli* BL21(DE3)-pJR36 was
258 picked from LB agar into 5 mL of LB medium supplemented with kanamycin (50
259 µg/mL), incubating at 37 °C with shaking (250 rpm) for about 12 hours. Then 500 µL
260 of the seed culture was inoculated into 50 mL of LB broth with kanamycin (50 µg/mL)
261 with shaking at 250 rpm and 37 °C. When the OD₆₀₀ reached between 0.4 and 0.6,
262 protein expression was induced with 200 µM IPTG, and the culture was maintained at
263 28 °C for an additional 16 hours with shaking at 250 rpm. After protein expression,
264 0.35 mM resveratrol and 0.11 M glucose were added as the substrates. The culture was

265 incubated under the same conditions for an additional 48 hours. After fermentation, 1
266 mL of the culture was sampled and centrifuged at 15,000 $\times g$ for 10 min. 100 μ L of the
267 supernatant was subjected to analysis on HPLC (at 300 nm).

268 **Functional characterization of GcaC through *in vitro* enzymatic reactions**

269 GcaC was purified as described in Supplementary Material. We characterized the
270 function of GcaC by reacting the enzyme with the substrate resveratrol. Enzymatic
271 assays were conducted in a 100- μ L reaction system, which included 20 mM Tris-HCl
272 (pH 8.0), 2.2 mM substrate, 1 mM MgCl₂, 2 mM sugar donor (UDP-glucuronic acid),
273 and 23.7 μ g purified recombinant GcaC protein. The mixtures were thoroughly mixed
274 and incubated at 30 °C for 6 hours, and then 200 μ L of HPLC-grade methanol was
275 added to terminate the reaction. The reaction mixtures were centrifuged at 13,000 $\times g$
276 for 10 min, and supernatants were collected to analyze the products by LC-MS.

277 The substrate specificity of GcaC was investigated using additional sugar-acceptor
278 substrates, including curcumin, quercetin, ferulic acid, vanillic acid, vanillin, chrysin,
279 apigenin, zearalenone, tetracycline and resibufogenin. In terms of sugar-donor
280 substrates, another structurally similar sugar-donor substrate UDP-glucose was also
281 reacted with resveratrol, besides UDP-glucuronic acid. Reaction products were
282 analyzed by LC-MS after centrifugation.

283 **Determination of the optimal *in vitro* reaction conditions**

284 Purified resveratrol glucuronides were used to establish standard curves for quantifying
285 product formation. The effects of reaction temperature, pH and metal ions on the
286 catalytic activity of GcaC were examined. To determine the optimum temperature, the

287 reaction mixtures with resveratrol as the substrate were incubated at different
288 temperatures (20, 25, 30, 35, 40, 45, and 50 °C) for 6 hours. Glucuronidation reactions
289 were conducted as described before except with 1.0 mM resveratrol. In order to find
290 out the optimum pH, GcaC was reacted with resveratrol at 30 °C in 200 mM phosphate
291 buffer with different pH values (pH 4.5, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, and 9.0). The
292 conversion rate of resveratrol was quantified by HPLC. Control reaction was conducted
293 under the same conditions, but without GcaC. Different metal ions such as CaCl₂, CuCl₂,
294 FeSO₄, MgCl₂, MnCl₂, and ZnCl₂ were also tested. Control reaction was performed
295 under the same conditions without adding these metal ions. The experiments were
296 carried out with individually divalent metal ion at the final concentration of 10 mM,
297 and UDP-glucuronic acid and resveratrol were used as sugar donor and sugar acceptor,
298 respectively. All reactions were performed in triplicate and conversion rates were
299 expressed as the mean ± standard deviation.

300 **Whole-cell bioconversion of resveratrol into resveratrol glucuronides by *E. coli***
301 **BL21(DE3)-pJR36**

302 *E. coli* BL21(DE3)-pJR16 was grown and induced as described above. The cells were
303 collected by centrifugation for whole-cell bioconversion after IPTG induction at 28 °C
304 for 16 hours. Phosphate buffer was used to re-suspend the cells, and cell density was
305 determined using a UV-Vis spectrophotometer (Thermo Scientific, Rockford, USA) by
306 recording the OD₆₀₀ value. In order to determine the whole-cell bioconversion
307 conditions, different pH values (pH 4.5, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.5), temperatures
308 (25, 30, 35, 40, and 45 °C), cell densities (OD₆₀₀ 2.5, 5, 7.5, 10, 12.5, and 15), reaction

309 times (1, 2, 3, 4, and 5 h) and substrate concentrations (0.25, 0.5, 1.0, 1.5, 2.0 and 2.5
310 mM) were investigated. Product formation was quantified by HPLC. Finally, the whole-
311 cell biotransformation experiment was performed in a 1-L reaction system under the
312 optimal conditions. The reaction consisted of *E. coli* BL21(DE3)-pJR36 cells (OD₆₀₀
313 10.0) and 0.5 mM resveratrol, and the bioconversion process was performed at 40 °C,
314 pH 6.5, and 250 rpm for 3 hours.

315 **Results**

316 **Screening of different actinomycete strains for the ability to glycosylate**
317 **resveratrol**

318 Actinomycetes are known to produce a variety of bioactive natural products and contain
319 abundant biosynthetic enzymes. We hypothesized that some of these strains may have
320 versatile UGTs that can introduce the glucuronic acid moiety to plant polyphenols such
321 as resveratrol. To this end, resveratrol was incubated with five different strains,
322 including *S. roseum* No. 79089, *S. reseiscleroticus* ATCC 53903, *A. hibisca* P157-2,
323 *Streptomyces* sp. FERM BP-2474, and *S. chromofuscus* ATCC 49982. HPLC analysis
324 revealed that two more polar metabolites, at 15.5 min for product **1** and 17.0 min for
325 product **2** respectively, were synthesized from resveratrol by *S. chromofuscus* ATCC
326 49982 (Fig. 1a). The UV absorption patterns of the products were both similar to that
327 of resveratrol, suggesting that these two polar products are derivatives of the substrate
328 (Fig. 1b). However, no products were detected in the other four strains.

329 **Characterization of the two biotransformed products of resveratrol by *S.***
330 ***chromofuscus* ATCC 49982**

331 ESI-MS spectra of both **1** (Fig. 1d) and **2** (Fig. 1e) showed the same corresponding
332 quasimolecular ions $[M-H]^-$ at m/z 402.8 and $[2M-H]^-$ at m/z 806.7, respectively.
333 Therefore, products **1** and **2** have the same molecular weight of 404, which is 176 mass
334 units larger than the substrate resveratrol, suggesting that a glucuronic acid moiety was
335 added to different hydroxyl groups of resveratrol.

336 In order to elucidate the chemical structures, two purified products **1** and **2** were
337 subjected to NMR analysis (Figures S1-S10). The ^{13}C NMR spectra of **1** (Figure S2)
338 and **2** (Figure S7) both revealed 20 carbon signals. In addition to the 14 signals
339 belonging to resveratrol, six additional carbon signals at δ_{C} 170.5, 100.3, 76.2, 75.9,
340 73.4, and 71.8 for **1** and δ_{C} 170.1, 100.5, 77.2, 75.8, 72.9, and 71.4 for **2** were found in
341 the spectra, further suggesting that a sugar moiety was added to resveratrol at one of its
342 hydroxyl groups. Unlike glucose and other common sugars, this sugar moiety has a
343 carbon signal at around δ_{C} 170, indicating the presence of a carboxyl group. Both the
344 ^1H and ^{13}C signals of this sugar moiety supported the presence of a glucuronic acid
345 moiety. As shown in the ^1H NMR spectra (Figures S1 and S6), the anomeric proton
346 signals at δ_{H} 5.07 (d, $J = 7.5$ Hz), and 4.99 (d, $J = 7.7$ Hz) of **1** and **2**, respectively,
347 indicated the β -configuration of these two compounds for the glucuronic acid moiety.
348 HMBC spectrum of **1** revealed the correlation of H-1" at δ_{H} 5.07 to C-4' at δ_{C} 156.9
349 (Figures 2 and S5), which confirmed that **1** has a glucuronic acid moiety at C-4'.
350 Similarly, H-1" at δ_{H} 4.99 of **2** had HMBC correlation to C-3 at δ_{C} 158.4, indicating that
351 the glucuronic acid moiety was introduced at C-3 (Figures 2 and S10). Therefore,
352 products **1** and **2** were characterized as resveratrol-4'-O- β -D-glucuronide and

353 resveratrol-3-O- β -D-glucuronide, respectively. The NMR data of **1** and **2** are consistent
354 with those reported in literature (Wang et al. 2004).

355 **Characterization of the biotransformed products of quercetin, ferulic acid and**
356 **vanillic acid by *S. chromofuscus* ATCC 49982**

357 To check whether *S. chromofuscus* can also glucuronidate other natural products,
358 quercetin, ferulic acid and vanillic acid were incubated with *S. chromofuscus*
359 respectively. We found that all these three substrates can be glucuronidated into one or
360 two glucuronides (Fig. 3).

361 When quercetin was used as substrate, HPLC analysis (Fig. 3a) showed that two
362 polar products at 16.1 and 18.8 min, respectively, were formed from quercetin. Two
363 products showed the similar UV spectra (Figures S11a and S11b) to the substrate. ESI-
364 MS spectra (Figures S12a and S12b) of both **3** and **4** showed the corresponding quasi-
365 molecular ion $[M-H]^-$ at *m/z* 476.9 and 476.6, respectively. Therefore, products **3** and **4**
366 have the same molecular weight of 478, which is 176 mass units larger than the
367 substrate quercetin, indicating that a glucuronic acid moiety was added to different
368 hydroxyl groups of quercetin.

369 When ferulic acid was used as the substrate, a polar product **5** at 12.8 min was
370 detected by HPLC (Fig. 3b). Two more polar products **6** and **7** appeared at 9.7 and 10.8
371 min when vanillic acid was incubated with *S. chromofuscus* ATCC 49982 (Fig. 3c).

372 These products showed the similar UV spectra (Figures S11c-e) to the corresponding
373 substrates. The ESI-MS spectra (Figures S12c-e) of **5-7** showed a $[M-H]^-$ ion peak at
374 *m/z* 368.9, 342.9, and 342.9, respectively, indicating that their molecular weights are

375 370, 344 and 344 Da, which are consistent with the addition of a glucuronic acid moiety
376 to the substrates ferulic acid and vanillic acid. Therefore, *S. chromofuscus* was found to
377 be able to glucuronidate various phenolic natural products.

378 The NMR spectra of products **3-7** were collected (Figures S13-S37). The ^{13}C NMR
379 spectra (Figures S14 and S19) of compounds **3** and **4** both showed 21 carbon signals.
380 In addition to the signals from quercetin, six additional carbon signals at δ_{C} 170.1, 99.1,
381 75.6, 75.4, 72.8, and 71.2 for **3** and δ_{C} 169.7, 101.0, 76.0, 75.8, 73.8, and 71.3 for **4** were
382 found in the spectra. These signals were similar to those from the glucuronic acid
383 moiety of **1** and **2**, thus suggesting that a glucuronic acid moiety was added to one of
384 the hydroxyl groups in quercetin. As shown in the ^1H NMR spectra (Figures S13 and
385 S18), the anomeric proton signals at δ_{H} 5.29 (d, J = 7.3 Hz), and 5.50 (d, J = 7.5 Hz) of
386 **3** and **4**, respectively, indicated the β -configuration of the sugar moiety in these two
387 compounds. HMBC spectrum of **3** revealed the correlation of H-1" at δ_{H} 5.29 to C-7 at
388 δ_{C} 162.2 (Figures 2 and S17), which confirmed that **3** has a glucuronic acid moiety at
389 C-7. Similarly, H-1" of **4** at δ_{H} 5.50 had HMBC correlation to C-3 at δ_{C} 133.0, indicating
390 that the glucuronic acid moiety was introduced at C-3 (Figures 2 and S22). Therefore,
391 products **3** and **4** were characterized as quercetin-7-O- β -D-glucuronide and quercetin-
392 3-O- β -D-glucuronide, respectively. The NMR data of **3** and **4** are consistent with those
393 reported in literature (Marvalin and Azerad 2011a).

394 The ^{13}C NMR spectrum of compounds **5** revealed 16 carbon signals. Compared to
395 the substrate ferulic acid, there were six additional carbon signals at δ_{C} 170.2, 99.2,
396 76.1, 75.3, 72.9, and 71.4, further suggesting that a glucuronic acid moiety was added

397 to ferulic acid. As shown in the ^1H NMR spectrum (Figure S23), the anomeric proton
398 signal of **5** at δ_{H} 5.13 (d, J = 7.1 Hz) indicated the β -configuration of the glucuronic
399 acid moiety. HMBC spectrum of **5** revealed the correlation of H-1" (δ_{H} 5.13, d, J = 7.1
400 Hz) to C-4 at δ_{C} 147.8 (Figures 2 and S27), which confirmed that the position of
401 glucuronic acid moiety is at C-4 of **5**. Therefore, **5** was characterized as ferulic acid-4-
402 O- β -D-glucuronide. The NMR data were assigned based on the 1D and 2D NMR
403 spectra for the first time.

404 The ^{13}C NMR spectra of both **6** (Figure S29) and **7** (Figure S34) showed 14 carbon
405 signals. In addition to the eight carbon signals from vanillic acid, six additional carbon
406 signals at δ_{C} 170.8, 99.2, 76.4, 74.7, 72.9, and 71.6 were observed for **6** and δ_{C} 170.4,
407 94.6, 75.9, 75.7, 72.3, and 71.6 for **7**, indicating that a glucuronic acid moiety was added
408 to vanillic acid at different positions to yield the two products. As shown in the ^1H NMR
409 spectra (Figures S28 and S33), the anomeric proton signals of **6** and **7** at δ_{H} 5.11 (d, J =
410 6.1 Hz) and 5.54 (d, J = 7.5 Hz), respectively, indicated the β -configuration of the
411 glucuronic acid moiety in these compounds. HMBC spectrum of **6** revealed the
412 correlation of H-1" at δ_{H} 5.11 to C-4 at δ_{C} 150.0 (Figures 2 and S32), which confirmed
413 that **6** has a glucuronic acid moiety at C-4. Similarly, H-1" of **7** at δ_{H} 5.54 had HMBC
414 correlation to C-7 at δ_{C} 164.4, indicating that the glucuronic acid moiety was introduced
415 at C-7 (Figures 2 and S37). Therefore, **6** and **7** were characterized as vanillic acid-4-O-
416 β -D-glucuronide and vanillic acid-7-O- β -D-glucuronide, respectively. The NMR data
417 of compound **6** is consistent with those reported in literature (Almeida et al. 2017) and
418 the NMR data of compound **7** were assigned based on the 1D and 2D NMR spectra for

419 the first time.

420 **Discovery of a putative glucuronidation gene cluster from *S. chromofuscus* ATCC**

421 **49982**

422 To find out which enzyme is responsible for the glucuronidation in *S.*
423 *chromofuscus* ATCC 49982, we analyzed the genome of this strain that was previously
424 sequenced by our group. Annotation of the genome indicated that there are more than
425 30 glycosyltransferases in *S. chromofuscus* ATCC 49982. To narrow down, we looked
426 at the genes adjacent to these glycosyltransferase genes. A gene cluster (Fig. 4a)
427 putatively involved in the glucuronidation was discovered, and the predicted functions
428 of the genes are shown in Table 1. The five genes, named *gcaA-E*, were predicted to be
429 TetR transcriptional regulator, UDP-glucose dehydrogenase, UDP-
430 glucuronosyltransferase, UDP-glucose pyrophosphorylase, and MFS transporter,
431 respectively. While *gcaA* and *gcaE* might be involved in the regulation of the gene
432 cluster and sugar transport, respectively, *gcaB*, *gcaC* and *gcaD* were proposed to be
433 involved in the biosynthesis and transfer of UDP-glucuronic acid (Fig. 4b). More
434 specifically, GcaD (containing 320 amino acids or aa) generates UDP-glucose from
435 glucose-1-phosphate as a UDP-glucose pyrophosphorylase, GcaB (484 aa) functions as
436 a UDP-glucose dehydrogenase to synthesize UDP-glucuronic acid, and finally GcaC
437 (402 aa) transfers the UDP-glucuronic acid moiety to a sugar acceptor such as
438 resveratrol.

439 BLAST analysis of the amino acid sequence of GcaC revealed that it is homologous
440 to a number of glycosyltransferases including a few uncharacterized UDP-

441 glucuronyl/UDP-glucosyltransferase, such as those from *Streptomyces malaysiensis*
442 (GenBank accession number NIY63294.1, 408 aa, 70% identity) and *Streptomyces*
443 *violaceusniger* (GenBank accession number AEM85024.1, 404 aa, 68% identity).

444 Although both genes are not functionally characterized so far, they still provide useful
445 information to predict the function of GcaC.

446 **Heterologous expression and purification of GcaC from *E. coli* BL21(DE3)**

447 To identify the function of GcaC, we amplified this gene from the genomic DNA of *S.*
448 *chromofuscus*, and ligated it to pET28a to yield the corresponding expression plasmid,
449 pJR36 (pET28a-gcaC). The plasmid was then expressed in *E. coli* BL21(DE3) with
450 IPTG induction. Ni-NTA column chromatography was used to purify the N-His₆-tagged
451 GcaC from the cell lysate and the purified enzyme was analyzed by SDS-PAGE. As
452 shown in Fig. 5a, GcaC (~43.4 kDa) was expressed and purified from *E. coli*
453 BL21(DE3)-pJR36 to homogeneity and the isolation yield of this enzyme was 11.87
454 mg/L.

455 ***In vitro* functional characterization of GcaC**

456 To check the function of purified GcaC, resveratrol was incubated with this enzyme in
457 the presence of UDP-glucuronic acid. HPLC analysis showed that compared to the
458 control (trace i, Fig. 5b), two polar products were formed from resveratrol (trace ii, Fig.
459 5b). Two products showed the similar UV spectra to the substrates. ESI-MS spectra
460 (Figs. 5c and 5d) of these products showed the corresponding quasi-molecular ion [M-
461 H]⁺ at *m/z* 402.9, respectively. Therefore, they have the same molecular weight of 404,
462 which is 176 mass units larger than the substrate resveratrol, indicating that a glucuronic

463 acid moiety was added to different positions of resveratrol. Furthermore, the retention
464 times of these two *in vitro* products were the same as those of resveratrol-4'-O- β -D-
465 glucuronide and resveratrol-3-O- β -D-glucuronide produced in the *in vivo*
466 biotransformation by *S. chromofuscus*. Formation of the two resveratrol glucuronides
467 in the *in vitro* reactions allowed the characterization of GcaC as the responsible UGT
468 in *S. chromofuscus*.

469 **Broad substrate specificity of GcaC toward sugar acceptor substrates**

470 To explore the substrate specificity of GcaC, this enzyme was reacted with different
471 sugar donors and sugar acceptors. UDP-Glucose is structurally similar to UDP-
472 glucuronic acid and the BLAST analysis of the sequence of GcaC suggested that this
473 enzyme is homologous to a predicted UDP-glucuronyltransferase or UDP-
474 glucosyltransferase from *S. malaysiensis* (Table 1). Therefore, we reacted resveratrol
475 with UDP-glucose in the presence of GcaC. However, no products were formed from
476 resveratrol (data not shown), indicating that GcaC is a specific UDP-
477 glucuronyltransferase that strictly transfers UDP-glucuronic acid.

478 We next investigated the substrate specificity of GcaC to sugar acceptor substrates
479 by reacting it with various natural products, including quercetin, ferulic acid, vanillic
480 acid, curcumin, vanillin, chrysins, zearalenone and apigenin, with UDP-glucuronic acid
481 in the presence of GcaC. When quercetin was used as the substrate, HPLC analysis (Fig.
482 6a) showed that six polar products were formed. All products showed the similar UV
483 spectra (Figures S38a-f) to the substrate. ESI-MS spectra (Figures S39a-f) of **Q1-Q6**
484 showed the corresponding quasi-molecular ion $[M-H]^-$ at *m/z* 653.0, 653.0, 476.9, 476.9,

485 476.9, and 476.9, respectively. Therefore, products **Q3-Q6** have the same molecular
486 weight of 478, which is 176 mass units larger than the substrate quercetin, indicating
487 that a glucuronic acid moiety was added to different hydroxyl groups of quercetin. Since
488 quercetin has five free phenolic hydroxyl groups, we propose that the glucuronic acid
489 moiety was introduced to four of these hydroxyl groups to generate the four
490 monoglucuronides. Among these monoglucuronides, **Q3** and **Q4** had the same retention
491 times as products **3** and **4**, which were characterized as quercetin-7-O- β -D-glucuronide
492 and quercetin-3-O- β -D-glucuronide, respectively. The molecular weight of both **Q1**
493 and **Q2** were found to be 654, which is 352 mass units larger than the substrate quercetin
494 or 176 units larger than products **Q3-Q6**, suggesting that two glucuronic acid moieties
495 were added to quercetin to form diglucuronides. Therefore, this enzyme not only adds
496 the glucuronic acid moiety to different hydroxyl groups of quercetin, but also accepts
497 the resulting monoglucuronides as the substrates to further generate diglucuronides.

498 When ferulic acid was incubated with GcaC, one polar product **F1** at 12.8 min was
499 detected by HPLC (Fig. 6b). Similarly, one product **VA1** appeared at 9.7 min when
500 vanillic acid was used as a sugar acceptor (Fig. 6c). Both products showed the similar
501 UV spectra (Figures S38g and S38h) to the corresponding substrates. The ESI-MS
502 spectra (Figures S39g and S39h) of **F1** and **VA1** showed a [M-H]⁻ ion peak at *m/z* 368.9
503 and 342.9, respectively, indicating that their molecular weights are 370 Da and 344 Da,
504 which are consistent with the addition of a glucuronic acid moiety to ferulic acid and
505 vanillic acid, respectively. Furthermore, the retention times of **F1** and **VA1** are the same
506 as **5** and **6** from the biotransformation by *S. chromofuscus* 49982, namely ferulic acid-

507 4-O- β -D-glucuronide and vanillic acid-4-O- β -D-glucuronide.

508 Meanwhile, when curcumin was used as the substrate, HPLC analysis showed that
509 compared to the negative control (trace i, Fig. 6d), GcaC generated two polar products
510 **C1** and **C2** (trace ii, Fig. 8d), at 21.8 and 25.3 min respectively. The two products had
511 the UV spectra (Figures S38i and S38j) similar to that of the substrate. The ESI-MS
512 spectra (Figures S39i and S39j) of the two products showed the [M-H]⁻ ion peak at *m/z*
513 719.1 and 542.8, indicating that their molecular weights are 720 Da and 544 Da,
514 respectively. These are consistent with a diglucuronide and a monoglucuronide of
515 curcumin, whose molecular weight is 368 Da. This result further indicated that GcaC
516 can transfer one or two glucuronic acid moieties to curcumin.

517 Similarly, we also used vanillin as the substrate, and one polar product **VN1** at 10.0
518 min was detected by HPLC (Fig. 6e). One product **CS1** was also observed at 22.0 min
519 when chrysin was incubated with GcaC (Fig. 6f). Both products showed the similar UV
520 spectra (Figures S38k and S38l) to their relative substrates. The ESI-MS spectra
521 (Figures S39k and S39l) of **VN1** and **CS1** showed a [M-H]⁻ ion peak at *m/z* 326.9 and
522 428.8, respectively, indicating that their molecular weights are 328 Da and 430 Da,
523 which are consistent with the addition of a glucuronic acid moiety to vanillin and
524 chrysin, respectively. Similarly, when zearalenone and apigenin were used as the
525 substrates, HPLC analysis showed that compared to the negative controls (trace i,
526 Figures 6g and 6h), GcaC generated a product **Z1** (trace ii, Fig. 6g) at 23.0 min from
527 zearalenone and a product **A1** (trace ii, Fig. 6h) at 19.0 min from apigenin. The products
528 showed the UV spectra (Figures S38m and S38n) similar to those of their substrates.

529 The ESI-MS spectrum (Figure S39m) of **Z1** exhibited the [M-H]⁻ ion peak at *m/z* 493.1,
530 which means the molecular weight is 494 Da and it is in accord with the addition of a
531 glucuronic acid moiety to zearalenone with a molecular weight of 318. The ESI-MS
532 spectrum (Figure S39n) of **A1** showed the [M-H]⁻ ion peak at *m/z* 445.1, indicating that
533 molecular weight is 446 Da. This is consistent with a monoglucuronide of apigenin,
534 whose molecular weight is 270 Da. Therefore, GcaC synthesized the corresponding
535 glucuronides from zearalenone and apigenin.

536 Other substrates, including tetracycline and resibufogenin, were also reacted with
537 UDP-glucuronic acid in the presence of GcaC. However, no products were detected by
538 HPLC (data not shown).

539 **Determination of the optimal *in vitro* reaction conditions of GcaC**

540 The effects of reaction temperature and pH on the GcaC-catalyzed glucuronidation
541 were examined. Purified GcaC was incubated with resveratrol and UDP-glucuronic
542 acid under different conditions. First, the reaction was conducted at different
543 temperatures ranging from 20 °C to 50 °C. The conversion rates of resveratrol were
544 quantified by HPLC and compared. As shown in Fig. 7a, GcaC has the highest
545 glucuronidation activity at 30 °C with the highest conversion rate. When the
546 temperature increased from 20 °C to 30 °C, the conversion rate of resveratrol increased
547 from 29.61% to 70.85%. However, when the reaction temperatures were above 30 °C,
548 the resveratrol conversion rate gradually decreased. Therefore, the optimum reaction
549 temperature for GcaC was determined to be 30 °C.

550 Next, we determined the pH effect on the glucuronidation activity of GcaC. The

551 enzyme was reacted with resveratrol in 200 mM phosphate buffer at 30 °C but at
552 different pH values, including 4.5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5 and 9. With the increase of
553 pH from 4.5 to 7.5, the conversion rate of resveratrol by GcaC steadily increased from
554 7.8% to 59.3%. Nevertheless, when the pH value further increased to 9.0, the
555 conversion rate decreased to 37.2% (Fig. 7b). Hence, the optimum pH for GcaC is 7.5.

556 Apart from temperature and pH effects, we also investigated the effect of various
557 metal ions on the activity of GcaC. At 10 mM, we found that Ca^{2+} , Mg^{2+} , and Mn^{2+} had
558 a stimulative function on the UGT activity of GcaC (Fig. 7c). With these three metal
559 ions applied in the enzymatic reaction, the catalytic activity was 1.33, 1.27, and 1.09-
560 fold higher than that of the control group, respectively. Among these three metal ions,
561 Ca^{2+} has the strongest stimulating effect. By contrast, the activity of GcaC was inhibited
562 when Cu^{2+} , Fe^{2+} , and Zn^{2+} were added into the reaction system. The conversion rate of
563 resveratrol decreased from 52.3% to 39.1%, 48.6%, and 43.8% (Fig. 7c), respectively.
564 In conclusion, the optimal *in vitro* reaction conditions for purified GcaC are at 30 °C,
565 pH 7.5 with 10 mM of Ca^{2+} .

566 **Optimized production of resveratrol-4'-O- β -D-glucuronide and resveratrol-3-O-
567 β -D-glucuronide with the engineered *E. coli* BL21(DE3)**

568 We next tested whether *E. coli* BL21(DE3)-pJR36 can convert resveratrol into the two
569 glucuronides. To this end, resveratrol was incubated with the IPTG-induced broth of
570 this engineered strain, with *E. coli* BL21(DE3)-pET28a as the negative control. As
571 shown in Fig. 8a, compared to the commercial standard (trace i) and negative control
572 (trace ii), incubation of resveratrol with *E. coli* BL21(DE3)-pJR36 yielded the

573 glucuronidation products **1** and **2**.

574 *In vivo* biotransformation of resveratrol by *E. coli* BL21(DE3)-pJR36 indicated that
575 GcaC can generate resveratrol-4'-O- β -D-glucuronide as the major product from
576 resveratrol in *E. coli*, which provides an alternative approach to biosynthesize this
577 resveratrol glucuronide. Therefore, it is critical to discover the optimal conditions for
578 this whole-cell bioconversion process. The effect of different cell concentrations on the
579 formation of resveratrol glucuronides at 40 °C overnight was first investigated, ranging
580 from OD₆₀₀ 2.5 to 15.0. In the presence of 1.5 mM resveratrol and 0.11 M glucose, we
581 discovered that the conversion rate of resveratrol steadily increased with increasing cell
582 concentrations within the range of OD₆₀₀ 2.5-10.0 (Fig. 8b). The conversion rate of
583 resveratrol in the biotransformation system reached 53.8% when the OD₆₀₀ value was
584 10.0, which was 27.3% higher than the titer at OD₆₀₀ 2.5. However, further increase in
585 cell concentration resulted in a drop of the conversion rate, indicating that oversaturated
586 cells did not yield more products.

587 The conversion of resveratrol to its glucuronides was also determined by HPLC at
588 different pH values (pH 4.5-8.5). When the reaction pH was 6.5, the conversion rate
589 reached its highest level, namely 38.1% (Fig. 8c), which is 23.2% higher than that at
590 pH 4.5. We next investigated the impact of temperature on the whole-cell conversion
591 efficiency of resveratrol to its glucuronides. Specifically, *E. coli* BL21(DE3)-pJR36
592 cells (OD₆₀₀ 10.0) were incubated with resveratrol at different temperatures ranging
593 from 25 to 45 °C in 200 mM phosphate buffer (pH 6.5). It was clearly proved that the
594 higher temperature could effectively improve the conversion of resveratrol into

595 resveratrol-4'-O- β -D-glucuronide and resveratrol-3-O- β -D-glucuronide. The highest
596 conversion rate reached 48.6% at 40 °C (Fig. 8d).

597 To determine how the bioconversion time affects the conversion rate of resveratrol
598 in the engineered *E. coli* strain, we conducted a time course analysis for the conversion
599 of 1.0 mM resveratrol to its glucuronides. The experiments were performed with GcaC-
600 expressing *E. coli* BL21(DE3) strain (OD₆₀₀ 10.0) at 40 °C in 200 mM phosphate buffer
601 (pH 6.5). The reaction was sampled at 1, 2, 3, 4 and 5 hours. Within the first 3 hours,
602 the conversion rate of resveratrol increased from 18.0% to 34.8% (Fig. 8e). After that,
603 the increase in the conversion rate slowed down gradually. Thus, we chose 3 hours as
604 the preferred reaction time.

605 Substrate concentration can also affect the bioconversion rate. Therefore, we next
606 tested different resveratrol concentrations ranging from 0.25 to 2.5 mM, for further
607 optimizing the production of resveratrol-4'-O- β -D-glucuronide and resveratrol-3-O- β -
608 D-glucuronide. The reactions were conducted at pH 6.5, OD₆₀₀ 10, and 40 °C for 3
609 hours. The conversion rates of resveratrol to its glucuronides were similar when the
610 substrate concentration were 0.25 mM and 0.5 mM, namely 82.6 % to 83.2%. However,
611 the conversion rate fell to 41.7% when the concentration of resveratrol was further
612 increased to 1.0 mM (Fig. 8f). As a result, 0.5 mM was deemed to be the optimal
613 substrate concentration according to the productivity of resveratrol glucuronides under
614 the selected reaction conditions.

615 Finally, we scaled up the reaction to 1 L considering all the effects mentioned above.
616 The titers of resveratrol-4'-O- β -D-glucuronide and resveratrol-3-O- β -D-glucuronide

617 were 0.194 ± 0.001 mM (equivalent to 78.381 ± 0.366 mg/L) and 0.037 ± 0.001 mM
618 (equivalent to 14.991 ± 0.248 mg/L) from a total of 0.5 mM (equivalent to 114.125
619 mg/L) of resveratrol in 3 hours at 40°C in 200 mM phosphate buffer (pH 6.5) with
620 shaking at 250 rpm.

621 **Discussion**

622 Polyphenols, such as resveratrol, quercetin and curcumin from certain foods and dietary
623 supplements, have promising biological activities. (Sauer and Plauth 2017). However,
624 their health benefits in the human body are often limited due to poor water solubility.
625 Glycosylation is an effective approach to improve the water solubility and
626 bioavailability (Ren et al. 2022). Actinomycetes are well-known for their ability to
627 biosynthesize novel and pharmaceutically relevant secondary metabolites with various
628 bioactivities (Fidan et al. 2019). Among them, *Streptomyces* is widely used to produce
629 industrially important bioactive molecules, such as streptomycin, avermectin and
630 oxytetracycline. *S. chromofuscus* ATCC 49982 is a typical example which produces the
631 anti-cholesterol polyketide natural product herboxidiene (Yu et al. 2013). In this study,
632 five actinomycete strains were screened for the ability to biotransform resveratrol, and
633 only *S. chromofuscus* ATCC 49982 was found to generate two glycosides, which were
634 structurally characterized as resveratrol-3-O- β -D-glucuronide and resveratrol-4'-O- β -
635 D-glucuronide, respectively. Resveratrol is a plant-derived stilbenoid with a variety of
636 bioactivities, including antimicrobial, antiviral, anti-inflammatory, antioxidant,
637 antiaging, anticancer, antiplatelet, phytoestrogenic, neuro-protective, and cardio-
638 protective activities (Thuan et al. 2018; Yu et al. 2002). Its ubiquitous presence in diets

639 such as grapes, wine, olive oil, white tea, peanuts and cranberries has attracted
640 considerable research interest (Pervaiz 2003; Wang et al. 2002). Nevertheless, its low
641 bioavailability results in limited absorption after oral administration and impedes the
642 formulation of functional foods. Furthermore, its sensitivity to air and light also hinders
643 the nutraceutical and medicinal applications and exploitation of resveratrol (Franciosi
644 et al. 2014; Jeon et al. 2016; Uesugi et al. 2017).

645 Resveratrololoside (resveratrol-4'-O- β -glucoside) and polydatin (resveratrol-3-O- β -
646 glucoside) are two common water-soluble derivatives of resveratrol, and they exhibit
647 anticancer and antioxidant activities. Moreover, they can prevent coronary heart
648 diseases (Shimoda et al. 2013). In the meantime, resveratrololoside and polydatin are
649 more resistant to enzymatic oxidation than resveratrol (King et al. 2006). In other words,
650 glycosylation of resveratrol can extend its half-life in the cell and maintains the
651 beneficial antioxidant capacity and biological properties (Regev-Shoshani et al. 2003).
652 As one of the most abundant forms of resveratrol in nature, polydatin is the major
653 bioactive compound of *Polygonum cuspidatum* root which is used to treat cardiac
654 ailments, including atherosclerosis and inflammation in Japanese and Chinese folk
655 medicine (Romero-Pérez et al. 1999). While the two resveratrol glucuronides obtained
656 in this work are structurally slightly different than the glucosides, it will be interesting
657 to find out how these molecules perform *in vivo*. In fact, resveratrol-3-O- β -D-
658 glucuronide and resveratrol-4'-O- β -D-glucuronide were previously reported to be the
659 metabolites of resveratrol in the human body. While resveratrol has cytotoxicity to
660 human peripheral blood mononuclear cells at 30 μ M, these glucuronides did not show

661 any cytotoxicity at 300 μ M. The ubiquitous human β -glucuronidase can convert the
662 metabolites back to resveratrol locally or systematically *in vivo* (Wang et al. 2004).
663 Therefore, the two resveratrol glucuronides may represent useful pro-drugs of
664 resveratrol for clinical applications.

665 *S. chromofuscus* ATCC 49982 was also found to be able to glucuronidate other
666 phenolic compounds, indicating that the dedicated UGT in this strain is flexible and can
667 transfer the glucuronic acid moiety to different positions of phenolic compounds.

668 Interestingly, vanillic acid-4-O- β -D-glucuronide and vanillic acid-7-O- β -D-
669 glucuronide were synthesized when vanillic acid is used as the substrate. The
670 production of vanillic acid-7-O- β -D-glucuronide is somewhat surprising as the sugar
671 moiety was introduced to the carboxyl group, which is quite chemically different than
672 the phenolic hydroxyl group, further indicating that the UGT in *S. chromofuscus* ATCC
673 49982 is a highly versatile enzyme. Encouraged by the high flexibility of this enzyme,
674 we sought to find and identify the dedicated the UGT in *S. chromofuscus* ATCC 49982.

675 We were able to spot the most possible glycosyltransferase gene responsible for the
676 observed glucuronidation in this strain because that it is flanked by two UDP-
677 glucuronic acid biosynthetic genes (*gcaD* and *gcaB*). This gene was cloned and
678 expressed in *E. coli* BL21(DE3). The purified GcaC was functionally characterized as
679 a versatile UGT, providing a reference enzyme for future investigatin of more microbial
680 UGTs.

681 UGTs play important roles in plant growth and development. They can also be a
682 useful tool for structural modification of bioactive molecules in metabolic engineering

683 applications, because it can greatly change the bioactivity, solubility, or stability of
684 metabolites (De Bruyn et al. 2015; Kren and Martíková 2001). For example, the
685 sweetness and solubility were greatly improved from glycyrrhetic acid to its final
686 product glycyrrhizin through two steps of glucuronidation, which is used as an anti-
687 hepatitis agent and a sweetener worldwide (Xu et al. 2016). In fact, the two glucuronic
688 acid moieties of glycyrrhizin also reduce the side-effects (Yonekura and Hanada 2011).
689 Researchers found that glucuronidated anthocyanins showed improved color stability
690 in response to light compared to its glucosylated form, indicating that UGTs may be
691 used to stabilize natural colorants for industrial use, such as commercial food colorant
692 products (Osmani et al. 2009). Glucuronidation can also improve the bioactivity of
693 natural products. For instance, glucuronidated flavonoids exhibited relatively stronger
694 inhibitory activity of amyloid β (A β) and human islet amyloid polypeptide (hIAPP)
695 aggregation than their aglycons (Hmidene et al. 2017). More importantly, the
696 conjugation location of glucuronidation can alter the biological effects. Morphine-6-
697 glucuronide is a much more potent agonist than morphine itself, while morphine-3-
698 glucuronide is an extremely potent antagonist (Paul et al. 1989; Smith et al. 1990). This
699 finding indicates that glucuronides may have very distinctive effects themselves.

700 To explore the potential of GcaC as a useful biocatalytic tool, we investigated the
701 substrate specificity of this enzyme. Although *in vitro* reaction results revealed that
702 GcaC is a specific UDP-glucuronyltransferase, it showed high flexibility toward the
703 sugar acceptor substrates. A variety of substrates, such as quercetin, ferulic acid, vanillic
704 acid, curcumin, vanillin, chrysins, zearalenone and apigenin, can be accepted by GcaC

705 as sugar acceptors to yield various glucuronides. Compared to BpUGAT from plant red
706 daisy (*Bellis perennis*) that is specific for anthocyanin glucuronidation (Sawada et al.
707 2005), GcaC showed relaxed substrate specificity to sugar acceptors. Interestingly, it
708 was found that different products may be produced from the same substrates in the *in*
709 *vivo* biotransformation by *S. chromofuscus* ATCC 49982 and *in vitro* reactions with
710 purified GcaC, likely due to the availability of UDP-glucuronic acid and other factors
711 in the cells. For example, quercetin-7-O- β -D-glucuronide and quercetin-3-O- β -D-
712 glucuronide were obtained as the major products when quercetin was incubated with *S.*
713 *chromofuscus* ATCC 49982. However, a total of six glucuronides were detected *in vitro*
714 when quercetin was reacted with UDP-glucuronic acid in the presence of purified GcaC.
715 Interestingly, among the six products, four monoglucuronides and two diglucuronides
716 of quercetin were obtained based on LC-MS analysis. Similarly, *in vitro* reaction of
717 GcaC with curcumin also yielded a monoglucuronide and a diglucuronide. These
718 results indicated that GcaC is a highly versatile enzyme for the synthesis of
719 glucuronides. Compared to the tedious chemical methods to synthesize glucuronides
720 (Sharipova et al. 2017), discovery of GcaC provides an effective tool to prepare various
721 glucuronides from different phenolic compounds in an environmental-friendly and
722 efficient way.

723 The optimal *in vitro* enzymatic reactions and *in vivo* bioconversion conditions of
724 GcaC were investigated in this work. The optimum reaction temperature and pH for
725 this enzyme were found to be 7.5 and 30 °C in phosphate buffer, which are both slightly
726 lower than BpUGAT from *B. perennis* (8.0 and 35 °C). However, these two UGTs have

727 different response to metal ions. For example, Ca^{2+} had an inhibitory effect on BpUGAT,
728 but stimulated the activity of GcaC. Similarly, Mg^{2+} and Mn^{2+} , with negligible effects
729 on the catalytic activity of BpUGAT (Sawada et al. 2005), enhanced the activity of
730 GcaC. By contrast, the inhibitory effects of Cu^{2+} , Zn^{2+} and Fe^{2+} on GcaC is similar to
731 the previous discovered UBGAT from *Scutellaria baicalensis* (Nagashima et al. 2000).

732 Generally, UGTs fulfill key metabolic functions in various organisms, and
733 microbial UGTs are not well studied compared to those in mammalian systems. In the
734 human body, the activity of UGTs can modify the lipid phase fluidity of the microsomal
735 membrane, which is critical for its physiological function (Zakim and Vessey 1974).
736 Mammalian UGTs play an important role in the elimination of xenobiotics and
737 lipophilic compounds from the body, and the native acceptor substrates could be
738 bilirubin, hormones, bile acids, retinoids, and thyroid hormones (Clarke et al. 1991;
739 Radominska-Pandya et al. 1999). GcaC is a microbial UGT. Based on the BLAST
740 analysis and enzymatic studies, we propose that the native function of GcaC is a UDP-
741 glucuronyltransferase and might have the following potential functions: (1) GcaC
742 contributes to the cell surface polysaccharide biosynthesis. Specifically, it may transfer
743 sugars from intracellular nucleotide sugars to the lipid carrier acceptor in cytoplasmic
744 membrane and then synthesize the long-chain polysaccharides such as
745 exopolysaccharides, which are produced by many bacteria and excreted into the
746 environment during growth (Li et al. 2010); (2) GcaC uses native peptidyl nucleosides
747 as acceptor substrates, such as cytosine, to biosynthesize endogenous peptide-
748 nucleoside antibiotics for defending themselves from other bacteria or fungi (Gould and

749 Guo 1994); (3) GcaC may catalyze the glucuronidation of lipophilic endogenous
750 metabolites and xenobiotics, like some fungal UGTs, and may play a role in the
751 degradation of carcinogenic pollutants in their surrounding environment. Additional
752 work is required to identify the exact function of GcaC in *S. chromofuscus* ATCC 49982
753 (Bezalel et al. 1997; Wackett and Gibson 1982).

754 Even though some glucuronyltransferases have been found in the microorganisms,
755 many of them require association with another enzyme to display the function (Tracy
756 et al. 2007; Sugiura et al. 2010). Moreover, their functions are almost limited to the
757 synthesis of saccharides (DeAngelis and White 2002; Wang et al. 2018; Wang et al.
758 2020). By contrast, GcaC represents a novel UGT from microorganism with broad
759 substrate specificity and can glucuronylate various plant polyphenols. BLAST analysis
760 showed that this microbial UGT showed little or no homology to UGTs from other
761 sources. For example, GcaC has less than 25% identity to BpUGAT from *B. perennis*
762 (Gene bank accession number AB190262) (Sawada et al. 2005), GuUGAT from
763 *Glycyrrhiza uralensis* (Gene bank accession number KT759000) (Xu et al. 2016), and
764 UBGAT from *Scutellaria baicalensis* (Gene bank accession number BAC98300)
765 (Nagashima et al. 2000). Discovery and characterization of GcaC yielded a reference
766 enzyme for future identification of additional UGTs from microorganisms. More
767 importantly, this highly flexible enzyme may (1) glucuronidate a variety of substrates,
768 (2) introduce the glucuronic acid moiety to different positions of a substrate, and (3)
769 introduce one or two glucuronic acid moieties to a substrate to yield monoglucosides
770 and diglucosides. Therefore, *S. chromofuscus* ATCC 49982, GcaC and *E. coli*

771 BL21(DE3)-GcaC can be used to prepare desired glucuronides from particular
772 substrates. For example, vanillic acid-COOH-glucuronide was only previously detected
773 in human urine after tea intake, and it was only identified by using MS analysis without
774 available NMR data (Ridder et al. 2012; van der Hooft et al. 2012). This work for the
775 first time biosynthesized vanillic acid-7-O- β -D-glucuronide for complete structure
776 elucidation. This work also demonstrated that this novel UGT can be efficiently
777 expressed in *E. coli* BL21(DE3) and the engineered strain can be used as a whole-cell
778 biocatalyst to prepare resveratrol glucuronoides. The titers of resveratrol-4'-O- β -D-
779 glucuronide and resveratrol-3-O- β -D-glucuronide were 78.381 ± 0.366 mg/L and
780 14.991 ± 0.248 mg/L from 114.125 mg/L resveratrol in a 1-L reaction system within 3
781 hours. Overall, this work provides a highly versatile UGT that can serve as a useful
782 biocatalyst to prepare valuable glucuronides of bioactive molecules.

783 **Author contributions** JR and JZ conceived and designed research. JR, CB, and KS
784 conducted experiments. JR and JZ analyzed data. JR, CB, KS and JZ wrote the
785 manuscript. All authors read and approved the manuscript.

786 **Funding information** This work was supported by the National Science
787 Foundation Award CBET-2044558. The Bruker Avance III HD Ascend-500 NMR
788 instrument used in this research was funded by the National Science Foundation Award
789 CHE-1429195.

790 **Compliance with ethical standards**

791 **Conflict of interest** The authors declare that they have no conflict of interest.

792 **Ethical approval** This article does not contain any studies with human participants

793 or animals performed by any of the authors.

794 **Data availability statement** All data generated or analyzed during this study are
795 included in this published article (and its supplementary information files).

796 **References**

797 Almeida AF, Santos CuN, Ventura MR (2017) Synthesis of new sulfated and
798 glucuronated metabolites of dietary phenolic compounds identified in human
799 biological samples. *J Agric Food Chem* 65(31):6460–6466.

800 <https://doi.org/10.1021/acs.jafc.6b05629>

801 Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in
802 phenanthrene degradation by the white rot fungus *Pleurotus ostreatus*. *Appl
803 Environ Microbiol* 63(7):2495–2501. <https://doi.org/10.1128/aem.63.7.2495-2501.1997>

804 Bowles D, Isayenkova J, Lim E-K, Poppenberger B (2005) Glycosyltransferases:
805 managers of small molecules. *Curr Opin Plant Biol* 8(3):254–263.
806 <https://doi.org/10.1016/j.pbi.2005.03.007>

807 Briggs B, Baker P, Belvo M, Black T, Getman B, Kemp C, Muth W, Perun T, Strobel
808 Jr R, Paschal J (1999) Microbial process for preparation of glucuronides of
809 raloxifene. *J Ind Microbiol Biot* 23(3):194–197.
810 <https://doi.org/10.1038/sj.jim.2900716>

811 Cai Z, Huang J, Luo H, Lei X, Yang Z, Mai Y, Liu Z (2013) Role of glucose transporters
812 in the intestinal absorption of gastrodin, a highly water-soluble drug with good
813 oral bioavailability. *J Drug Target* 21(6):574–580.

815 <https://doi.org/10.3109/1061186X.2013.778263>

816 Cassinelli G, Ballabio M, Grein A, Merli S, Rivola G, Arcamone F, Barbieri B, Bordoni
817 T (1987) A new class of biosynthetic anthracyclines: anthracyclinone
818 glucuronides. J Antibiot 40(7):1071–1074.
819 <https://doi.org/10.7164/antibiotics.40.1071>

820 Chung SY, Seki H, Fujisawa Y, Shimoda Y, Hiraga S, Nomura Y, Saito K, Ishimoto M,
821 Muranaka T (2020) A cellulose synthase-derived enzyme catalyses 3-O-
822 glucuronosylation in saponin biosynthesis. Nat Commun 11(1):1–11.
823 <https://doi.org/10.1038/s41467-020-19399-0>

824 Clarke DJ, George SG, Burchell B (1991) Glucuronidation in fish. Aquat Toxicol 20(1-
825 2):35–56. [https://doi.org/10.1016/0166-445X\(91\)90040-G](https://doi.org/10.1016/0166-445X(91)90040-G)

826 De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M (2015) Biotechnological
827 advances in UDP-sugar based glycosylation of small molecules. Biotechnol
828 Adv 33(2):288–302. <https://doi.org/10.1016/j.biotechadv.2015.02.005>

829 De Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Glucuronidation in
830 humans. Clin Pharmacokinet 36(6):439–452.
831 <https://doi.org/10.2165/00003088-199936060-00005>

832 DeAngelis PL, White CL (2002) Identification and molecular cloning of a heparosan
833 synthase from *Pasteurella multocida* type D. J Biol Chem 277(9):7209–7213.
834 <https://doi.org/10.1074/jbc.M112130200>

835 Engstrom KM, Daanen JF, Wagaw S, Stewart AO (2006) Gram scale synthesis of the
836 glucuronide metabolite of ABT-724. J Org Chem 71(22):8378-8383.

837 <https://doi.org/10.1021/jo0611972>

838 Fidan O, Yan R, Zhu D, Zhan J (2019) Improved production of antifungal angucycline
839 Sch47554 by manipulating three regulatory genes in *Streptomyces* sp. SCC-
840 2136. Appl Biochem Biotechnol 66(4):517–526.
841 <https://doi.org/10.1002/bab.1748>

842 Franciosi A, Mastromarino P, Restignoli R, Boffi A, d'Erme M, Mosca L (2014)
843 Improved stability of trans-resveratrol in aqueous solutions by
844 carboxymethylated (1,3/1,6)- β -D-glucan. J Agric Food Chem 62(7):1520–1525.
845 <https://doi.org/10.1021/jf404155e>

846 Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism
847 glycosyltransferases: the emerging functional analysis. Trends Plant Sci
848 10(11):542–549. <https://doi.org/10.1016/j.tplants.2005.09.007>

849 Gould S, Guo J (1994) Cytosylglucuronic acid synthase (cytosine: UDP-
850 glucuronosyltransferase) from *Streptomyces griseochromogenes*, the first
851 prokaryotic UDP-glucuronosyltransferase. J Bacteriol 176(5):1282–1286.
852 <https://doi.org/10.1128/jb.176.5.1282-1286.1994>

853 Harborne JB, Baxter H (1999) The handbook of natural flavonoids. Volume 1 and
854 Volume 2. John Wiley and Sons.

855 Hmidene AB, Hanaki M, Murakami K, Irie K, Isoda H, Shigemori H (2017) Inhibitory
856 activities of antioxidant flavonoids from *Tamarix gallica* on amyloid
857 aggregation related to Alzheimer's and type 2 diabetes diseases. Biol Pharm Bull
858 40(2):238–241. <https://doi.org/10.1248/bpb.b16-00801>

859 Imai H, Kitagawa M, Ishihara K, Masuoka N, Shimoda K, Nakajima N, Hamada H
860 (2012) Glycosylation of *trans*-resveratrol by plant-cultured cells. *Biosci*
861 *Biotech Bioch* 76(8):1552–1554. <https://doi.org/10.1271/bbb.120126>

862 Jeon YO, Lee J-S, Lee HG (2016) Improving solubility, stability, and cellular uptake of
863 resveratrol by nanoencapsulation with chitosan and γ -poly (glutamic acid).
864 *Colloids Surf B* 147:224–233. <https://doi.org/10.1016/j.colsurfb.2016.07.062>

865 Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, Mizukami
866 H (2003) Production of unnatural glucosides of curcumin with drastically
867 enhanced water solubility by cell suspension cultures of *Catharanthus roseus*.
868 *FEBS Lett* 555(2):311–316. [https://doi.org/10.1016/S0014-5793\(03\)01265-1](https://doi.org/10.1016/S0014-5793(03)01265-1)

869 Kim S-K (2016) Marine Enzymes Biotechnology: Production and Industrial
870 Applications, Part II-Marine Organisms Producing Enzymes, Volume 79, 1st
871 edition. Academic Press.

872 King RE, Bomser JA, Min DB (2006) Bioactivity of resveratrol. *Compr Rev Food Sci*
873 *F* 5(3):65–70. <https://doi.org/10.1111/j.1541-4337.2006.00001.x>

874 Kren V, Martíková L (2001) Glycosides in medicine: “The role of glycosidic residue
875 in biological activity”. *Curr Med Chem* 8(11):1303–1328.
876 <https://doi.org/10.2174/0929867013372193>

877 Li X, Wang L, Bai L, Yao C, Zhang Y, Zhang R, Li Y (2010) Cloning and
878 characterization of a glucosyltransferase and a rhamnosyltransferase from
879 *Streptomyces* sp. 139. *J Appl Microbiol* 108(5):1544–1551.
880 <https://doi.org/10.1111/j.1365-2672.2009.04550.x>

881 Li Y, Baldauf S, Lim E-K, Bowles DJ (2001) Phylogenetic analysis of the UDP-
882 glycosyltransferase multigene family of *Arabidopsis thaliana*. *J Biol Chem*
883 276(6):4338–4343. <https://doi.org/10.1074/jbc.M007447200>

884 Marvalin C, Azerad R (2011a) Microbial glucuronidation of polyphenols. *J Mol Catal*
885 B Enzym 73(1-4):43–52. <https://doi.org/10.1016/j.molcatb.2011.07.015>

886 Marvalin C, Azerad R (2011b) Microbial production of phase I and phase II metabolites
887 of propranolol. *Xenobiotica* 41(3):175–186.
888 <https://doi.org/10.3109/00498254.2010.535219>

889 Mehnaz D, Abdulla K, Aiyysha D, Zaheer A, Mukhtar S (2017) Actinomycetes: a source
890 of industrially important enzymes. *J Proteom Bioinform* 10:12
891 <https://doi.org/10.4172/JPB.1000456>

892 Nagashima S, Hirotani M, Yoshikawa T (2000) Purification and characterization of
893 UDP-glucuronate: baicalein 7-O-glucuronosyltransferase from *Scutellaria*
894 *baicalensis* Georgi. cell suspension cultures. *Phytochemistry* 53(5):533–538.
895 [https://doi.org/10.1016/S0031-9422\(99\)00593-2](https://doi.org/10.1016/S0031-9422(99)00593-2)

896 Nawani N, Aigle B, Mandal A, Bodas M, Ghorbel S, Prakash D (2013) Actinomycetes:
897 Role in biotechnology and medicine. *BioMed Res Int* 2013: 687190.
898 <https://doi.org/10.1155/2013/687190>

899 Osmani SA, Halkjær Hansen E, Malien-Aubert C, Olsen C-E, Bak S, Lindberg Møller
900 B (2009) Effect of glucuronosylation on anthocyanin color stability. *J Agric*
901 *Food Chem* 57(8):3149–3155. <https://doi.org/10.1021/jf8034435>

902 Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong Y-S, Park YI, Kim JS, Sohng JK

903 (2014) Enzymatic biosynthesis of novel resveratrol glucoside and glycoside
904 derivatives. *Appl Environ Microbiol* 80(23):7235–7243.
905 <https://doi.org/10.1128/AEM.02076-14>

906 Paul D, Standifer KM, Inturrisi CE, Pasternak G (1989) Pharmacological
907 characterization of morphine-6 β -glucuronide, a very potent morphine
908 metabolite. *J Pharmacol Exp Ther* 251(2):477-483.

909 Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. *FASEB J*
910 17(14):1975–1985. <https://doi.org/10.1096/fj.03-0168rev>

911 Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, Khetmalas M, Kapadnis B
912 (2013) Actinomycetes: a repertory of green catalysts with a potential revenue
913 resource. *Biomed Res Int* 2013:264020. <https://doi.org/10.1155/2013/264020>

914 Priyadharsini P, Dhanasekaran D (2015) Diversity of soil allelopathic Actinobacteria in
915 Tiruchirappalli district, Tamilnadu, India. *J Saudi Soc Agric Sci* 14(1):54–60.
916 <https://doi.org/10.1016/j.jssas.2013.07.001>

917 Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, Mackenzie PI (1999)
918 Structural and functional studies of UDP-glucuronosyltransferases. *Drug Metab
919 Rev* 31(4):817–899. <https://doi.org/10.1081/DMR-100101944>

920 Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z (2003) Glycosylation of resveratrol
921 protects it from enzymic oxidation. *Biochem J* 374(1):157–163.
922 <https://doi.org/10.1042/bj20030141>

923 Remya M, Vijayakumar R (2008) Isolation and characterization of marine antagonistic
924 actinomycetes from west coast of India. *Med Biol* 15(1):13–19.

925 Ren J, Tang W, Barton CD, Price OM, Mortensen MW, Phillips A, Wald B, Hulme SE,
926 Stanley LP, Hevel J (2022) A highly versatile fungal glucosyltransferase for
927 specific production of quercetin-7-O- β -d-glucoside and quercetin-3-O- β -d-
928 glucoside in different hosts. *Appl Microbiol Biotech* 106(1):227–245.
929 <https://doi.org/10.1007/s00253-021-11716-x>

930 Rice-Evans C (2001) Flavonoid antioxidants. *Curr Med Chem* 8(7):797–807.
931 <https://doi.org/10.2174/0929867013373011>

932 Ridder L, van der Hooft JJ, Verhoeven S, de Vos RC, van Schaik R, Vervoort J (2012)
933 Substructure-based annotation of high-resolution multistage MS_n spectral trees.
934 *Rapid Commun Mass Sp* 26(20):2461–2471. <https://doi.org/10.1002/rcm.6364>

935 Romero-Pérez AI, Ibern-Gómez M, Lamuela-Raventós RM, de la Torre-Boronat MC
936 (1999) Piceid, the major resveratrol derivative in grape juices. *J Agric Food
937 Chem* 47(4):1533–1536. <https://doi.org/10.1021/jf981024g>

938 Sauer S, Plauth A (2017) Health-beneficial nutraceuticals-myth or reality? *Appl
939 Microbiol Biotechnol* 101(3):951–961. [https://doi.org/10.1007/s00253-016-8068-5](https://doi.org/10.1007/s00253-016-
940 8068-5)

941 Sawada Sy, Suzuki H, Ichimaida F, Yamaguchi M-a, Iwashita T, Fukui Y, Hemmi H,
942 Nishino T, Nakayama T (2005) UDP-glucuronic acid: anthocyanin
943 glucuronosyltransferase from red daisy (*Bellis perennis*) flowers: enzymology
944 and phylogenetics of a novel glucuronosyltransferase involved in flower
945 pigment biosynthesis. *J Biol Chem* 280(2):899–906.
946 <https://doi.org/10.1074/jbc.M410537200>

947 Sharipova R, Andreeva O, Strobykina IY, Voloshina A, Strobykina A, Kataev V (2017)

948 Synthesis and antimicrobial activity of glucuronosyl derivatives of

949 steviolbioside from *Stevia rebaudiana*. *Chem Nat Compd* 53(6):1107–1111.

950 <https://doi.org/10.1007/s10600-017-2211-0>

951 Shimoda K, Hamada M, Hamada H, Takemoto M, Hamada H (2013) Synthesis of

952 resveratrol glycosides by cultured plant cells. *Nat Prod Commun* 8(7):907–909.

953 <https://doi.org/10.1177/1934578X1300800713>

954 Smith MT, Watt JA, Cramond T (1990) Morphine-3-glucuronide-a potent antagonist of

955 morphine analgesia. *Life Sci* 47(6):579–585. [https://doi.org/10.1016/0024-3205\(90\)90619-3](https://doi.org/10.1016/0024-3205(90)90619-3)

957 Stachulski A, Jenkins G (1998) The synthesis of O-glucuronides. *Nat Prod Rep*

958 15(2):173–186.

959 Stachulski AV, Harding JR, Lindon JC, Maggs JL, Park BK, Wilson ID (2006) Acyl

960 glucuronides: biological activity, chemical reactivity, and chemical synthesis. *J*

961 *Med Chem* 49(24):6931–6945. <https://doi.org/10.1021/jm060599z>

962 Sugiura N, Baba Y, Kawaguchi Y, Iwatani T, Suzuki K, Kusakabe T, Yamagishi K,

963 Kimata K, Kakuta Y, Watanabe H (2010) Glucuronyltransferase activity of KfiC

964 from *Escherichia coli* strain K5 requires association of KfiA: KfiC and KfiA

965 are essential enzymes for production of K5 polysaccharide, N-acetylheparosan.

966 *J Biol Chem* 285(3):1597–1606. <https://doi.org/10.1074/jbc.M109.023002>

967 Thilakarathna SH, Rupasinghe H (2013) Flavonoid bioavailability and attempts for

968 bioavailability enhancement. *Nutrients* 5(9):3367–3387.

969 <https://doi.org/10.3390/nu5093367>

970 Thorson JS, Barton WA, Hoffmeister D, Albermann C, Nikolov DB (2004) Structure-
971 based enzyme engineering and its impact on *in vitro* glycorandomization.
972 *ChemBioChem* 5(1):16–25. <https://doi.org/10.1002/cbic.200300620>

973 Thuan NH, Trung NT, Cuong NX, Van Cuong D, Van Quyen D, Malla S (2018)
974 *Escherichia coli* modular coculture system for resveratrol glucosides production.
975 *World J Microb Biot* 34(6):1–13. <https://doi.org/10.1007/s11274-018-2458-z>

976 Tracy BS, Avci FY, Linhardt RJ, DeAngelis PL (2007) Acceptor specificity of the
977 *Pasteurella hyaluronan* and chondroitin synthases and production of chimeric
978 glycosaminoglycans. *J Biol Chem* 282(1):337–344.
979 <https://doi.org/10.1074/jbc.M607569200>

980 Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. *Nutrients*
981 2(12):1231–1246. <https://doi.org/10.3390/nu2121231>

982 Uesugi D, Hamada H, Shimoda K, Kubota N, Ozaki S-i, Nagatani N (2017) Synthesis,
983 oxygen radical absorbance capacity, and tyrosinase inhibitory activity of
984 glycosides of resveratrol, pterostilbene, and pinostilbene. *Biosci Biotechnol
985 Biochem* 81(2):226–230. <https://doi.org/10.1080/09168451.2016.1240606>

986 Van der Hooft JJ, de Vos RC, Mihaleva V, Bino RJ, Ridder L, de Roo N, Jacobs DM,
987 van Duynhoven JP, Vervoort J (2012) Structural elucidation and quantification
988 of phenolic conjugates present in human urine after tea intake. *Anal Chem*
989 84(16):7263–7271. <https://doi.org/10.1021/ac3017339>

990 Wackett L, Gibson D (1982) Metabolism of xenobiotic compounds by enzymes in cell

991 extracts of the fungus *Cunninghamella elegans*. Biochem J 205(1):117–122.

992 <https://doi.org/10.1042/bj2050117>

993 Wang L-X, Heredia A, Song H, Zhang Z, Yu B, Davis C, Redfield R (2004) Resveratrol

994 glucuronides as the metabolites of resveratrol in humans: characterization,

995 synthesis, and anti-HIV activity. J Pharm Sci 93(10):2448–2457.

996 <https://doi.org/10.1002/jps.20156>

997 Wang T-T, Deng J-Q, Chen L-Z, Sun L, Wang F-S, Ling P-X, Sheng J-Z (2020) The

998 second member of the bacterial UDP-N-acetyl-D-glucosamine: heparosan

999 alpha-1, 4-N-acetyl-D-glucosaminyltransferase superfamily: GaKfiA from

1000 *Gallibacterium anatis*. Int J Biol Macromol 147:170–176.

1001 <https://doi.org/10.1016/j.ijbiomac.2020.01.016>

1002 Wang T-T, Zhu C-Y, Zheng S, Meng C-C, Wang T-T, Meng D-H, Li Y-J, Zhu H-M,

1003 Wang F-S, Sheng J-Z (2018) Identification and characterization of a chondroitin

1004 synthase from *Avibacterium paragallinarum*. Appl Microbiol Biotech

1005 102(11):4785–4797. <https://doi.org/10.1007/s00253-018-8926-4>

1006 Wang Y, Catana F, Yang Y, Roderick R, Van Breemen R (2002) Analysis of resveratrol

1007 in grape products, cranberry juice and wine using liquid chromatography-mass

1008 spectrometry. J Agric Food Chem 50:431–435.

1009 <https://doi.org/10.1021/jf010812u>

1010 Weymouth-Wilson AC (1997) The role of carbohydrates in biologically active natural

1011 products. Nat Prod Rep 14(2):99–110. <https://doi.org/10.1039/NP9971400099>

1012 Wilkinson SM, Liew CW, Mackay JP, Salleh HM, Withers SG, McLeod MD (2008)

1013 *Escherichia coli* glucuronyl synthase: an engineered enzyme for the synthesis of
1014 β -glucuronides. Org Lett 10(8):1585–1588. <https://doi.org/10.1021/ol8002767>

1015 Wilkinson SM, Watson MA, Willis AC, McLeod MD (2011) Experimental and kinetic
1016 studies of the *Escherichia coli* glucuronyl synthase: An engineered enzyme for
1017 the synthesis of glucuronide conjugates. J Org Chem 76(7):1992–2000.
1018 <https://doi.org/10.1021/jo101914s>

1019 Xu G, Cai W, Gao W, Liu C (2016) A novel glucuronosyltransferase has an
1020 unprecedented ability to catalyse continuous two-step glucuronosylation of
1021 glycyrrhetic acid to yield glycyrrhizin. New Phytol 212(1):123–135.
1022 <https://doi.org/10.1111/nph.14039>

1023 Yonekura K, Hanada K (2011) An evolutionary view of functional diversity in family
1024 1 glycosyltransferases. Plant J 66(1):182–193. <https://doi.org/10.1111/j.1365-313X.2011.04493.x>

1026 Yu C, Shin YG, Chow A, Li Y, Kosmeder JW, Lee YS, Hirschelman WH, Pezzuto JM,
1027 Mehta RG, van Breemen RB (2002) Human, rat, and mouse metabolism of
1028 resveratrol. Pharm Res 19(12):1907–1914.
1029 <https://doi.org/10.1023/A:1021414129280>

1030 Yu D, Xu F, Zhang S, Shao L, Wang S, Zhan J (2013b) Characterization of a
1031 methyltransferase involved in herboxidiene biosynthesis. Bioorg Med Chem
1032 Lett 23(20):5667–5670. <https://doi.org/10.1016/j.bmcl.2013.08.023>

1033 Zakim D, Vessey DA (1974) Membrane dependence of uridine diphosphate
1034 glucuronyltransferase: Effect of the membrane on kinetic properties. Biochem

1035 Soc Trans 2(6):1165–1167. <https://doi.org/10.1042/bst0021165>

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058 **Table 1** The glucuronidation (*gca*) gene cluster in *S. chromofuscus* ATCC 49982.

1059

Gene	Size (aa)	Predicted function	Homolog/source/NCBI accession no.	Identity/ Similarity
<i>gcaA</i>	230	TetR family transcriptional regulator	TetR family transcriptional regulator/ <i>Streptomyces</i> sp. CRXT-G-22] /WP_187751940.1	71%/81%
<i>gcaB</i>	484	UDP-Glucose dehydrogenase	UDP-glucose/GDP-mannose dehydrogenase family protein/ <i>Streptomyces</i> sp. SolWspMP-5a-2 /WP_093832645.1	82%/86%
<i>gcaC</i>	402	UDP-Glucuronyltransferase	UDP-glucuronyl/UDP-glucosyltransferase/ <i>Streptomyces malaysiensis</i> /NIY63294.1	70%/80%
<i>gcaD</i>	320	UDP-Glucose pyrophosphorylase	GalU/ <i>Streptococcus pneumoniae</i> /AJ004869.1	45%/62%
<i>gcaE</i>	540	MFS transporter	MFS transporter/ <i>Streptomyces hygroscopicus</i> /WP_060945424.1	83%/90%

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071 Figure legends

1072 **Fig. 1** Screening of five actinomycete strains for the ability to biotransform resveratrol.

1073 **a** HPLC analysis (300 nm) of biotransformation of resveratrol by five actinomycete

1074 strains. (i) resveratrol + YM medium; (ii) resveratrol + *S. roseum* No. 79089; (iii)

1075 resveratrol + *S. reseiscleroticus* ATCC 53903; (iv) resveratrol + *A. hibisca* P157-2; (v)

1076 resveratrol + *Streptomyces* sp. FERM BP-2474; (vi) resveratrol + *S.*

1077 *chromofuscus* ATCC 49982. **b** UV spectra comparison of the substrate and product **1**.

1078 **c** UV spectra comparison of the substrate and product **2**. **d** ESI-MS (-) spectrum of

1079 product **1**. **e** ESI-MS (-) spectrum of product **2**.

1080 **Fig. 2** Key HMBC correlations of **1-7**.

1081 **Fig. 3** HPLC analysis of glucuronidation of different substrates by *S. chromofuscus*

1082 ATCC 49982. **a** Glucuronidation of quercetin (350 nm); **b** Glucuronidation of ferulic

1083 acid (300 nm); **c** Glucuronidation of vanillic acid (300 nm). (i) substrate + YM medium;

1084 (ii) substrate + *S. chromofuscus* ATCC 49982.

1085 **Fig. 4** A putative glucuronidation (*gca*) gene cluster discovered in *S. chromofuscus*

1086 ATCC 49982. **a** Organization of the *gca* gene cluster. **b** Proposed pathways for UDP-

1087 glucuronic acid biosynthesis and glucuronidation of resveratrol.

1088 **Fig. 5** Heterologous expression and *in vitro* functional characterization of GcaC. **a** SDS-

1089 PAGE analysis of the purified recombinant GcaC from *E. coli* BL21(DE3). Lane 1:

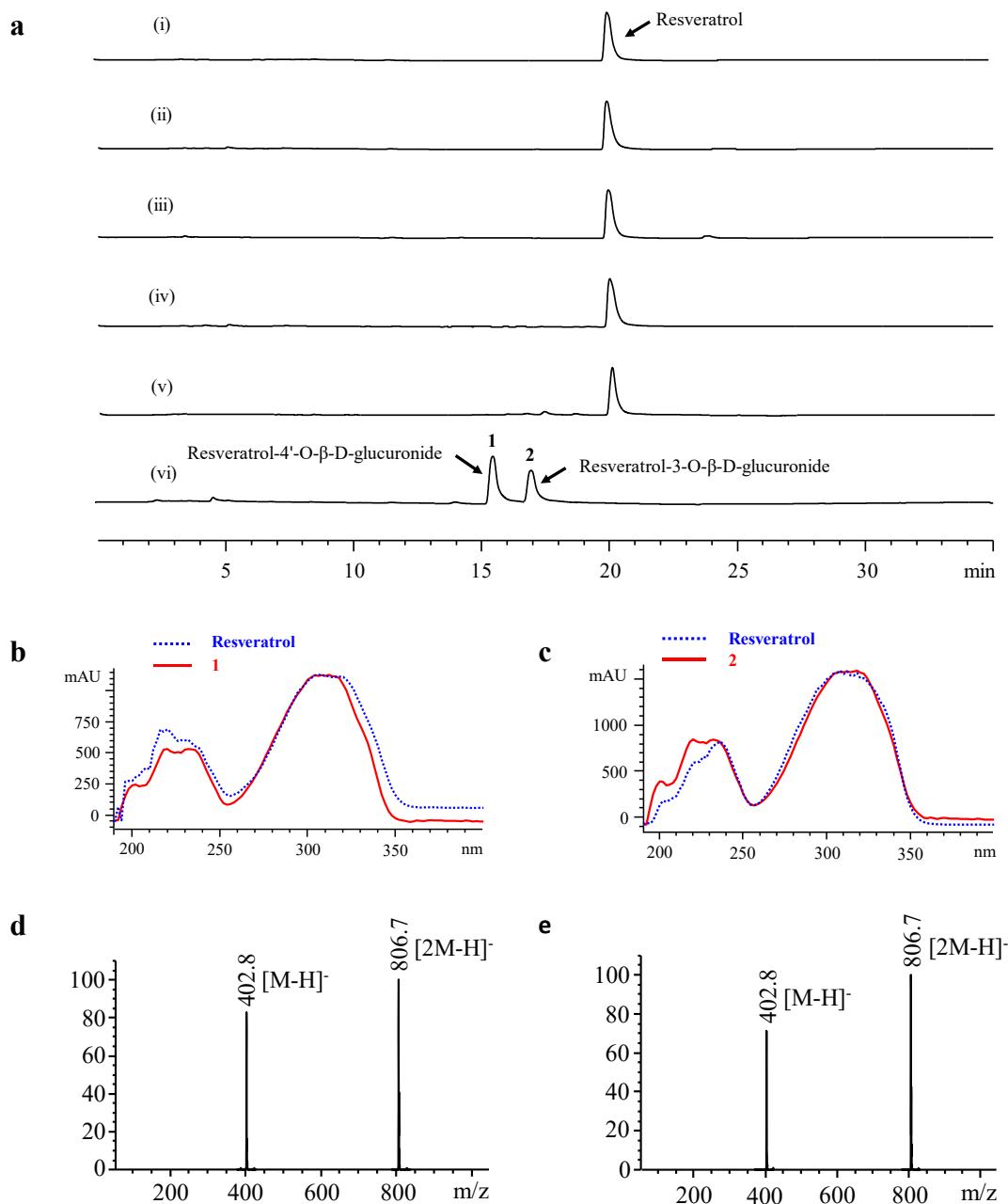
1090 Purified GcaC; Lane 2: Protein ladder. **b** HPLC analysis (300 nm) of the *in vitro*

1091 reaction of GcaC with resveratrol. (i) resveratrol + reaction buffer without GcaC; (ii)

1092 resveratrol + GcaC. **c** ESI-MS (-) spectrum of *in vitro* product **1**. **d** ESI-MS (-) spectrum

1093 of *in vitro* product **2**.

1094 **Fig. 6** HPLC analysis of *in vitro* glucuronidation of different sugar acceptor substrates
1095 by GcaC. **a** Glucuronidation of quercetin (350 nm); **b** Glucuronidation of ferulic acid
1096 (300 nm); **c** Glucuronidation of vanillic acid (300 nm). **d** Glucuronidation of curcumin
1097 (420 nm); **e** Glucuronidation of vanillin (300 nm); **f** Glucuronidation of chrysin (350
1098 nm); **g** Glucuronidation of zearalenone (250 nm); **h** Glucuronidation of apigenin (350
1099 nm). (i) substrate incubated with the reaction buffer without GcaC; (ii) substrate
1100 incubated with the reaction buffer with GcaC.


1101 **Fig. 7** Determination of the optimum *in vitro* reaction conditions for GcaC. **a** Effect of
1102 reaction temperature on the GcaC glucuronidation activity. **b** Effect of reaction pH on
1103 the GcaC glucuronidation activity. **c** Effect of metal ions on the GcaC glucuronidation
1104 activity. Data are presented as the mean \pm SD from three independent experiments.

1105 **Fig. 8** Optimization of *in vivo* production of resveratrol glucuronides by *E. coli*
1106 BL21(DE3)/pJR36. **a** HPLC analysis (300 nm) of resveratrol glucuronidation by GcaC
1107 in *E. coli* BL21(DE3). (i) Commercial standard of resveratrol; (ii) resveratrol + *E. coli*
1108 BL21(DE3)/pET28a; (iii) resveratrol + *E. coli* BL21(DE3)/pJR36. **b** Effect of cell
1109 density on resveratrol glucuronidation **c** Effect of reaction pH on resveratrol
1110 glucuronidation by *E. coli* BL21(DE3)/pJR36. **d** Effect of temperature on resveratrol
1111 glucuronidation by *E. coli* BL21(DE3)/pJR36. **e** Effect of reaction time on resveratrol
1112 glucuronidation by *E. coli* BL21(DE3)/pJR36. **f** Effect of substrate concentration on
1113 resveratrol glucuronidation by *E. coli* BL21(DE3)/pJR36. Data are presented as the
1114 mean \pm SD from three independent experiments.

1115

1116

1117

1118

1119 **Fig. 1**

1120

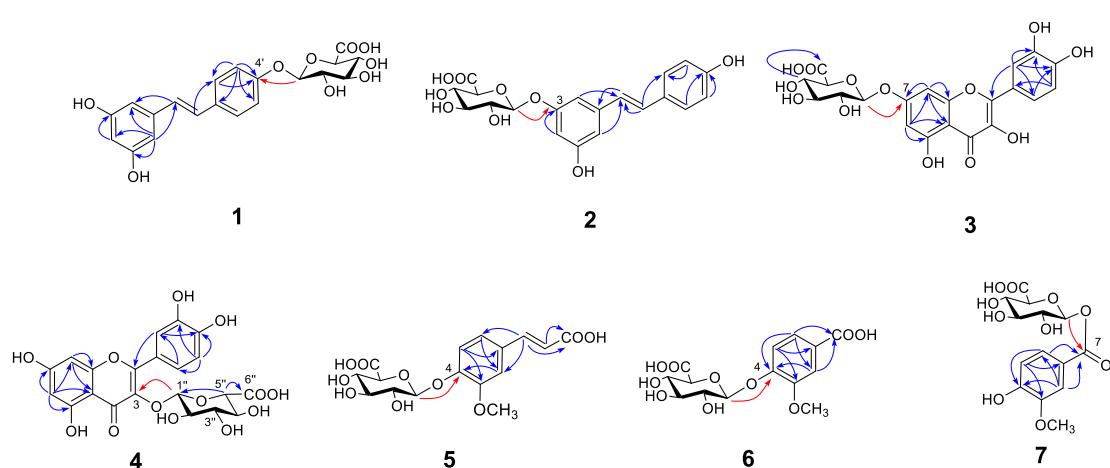
1121

1122

1123

1124

1125


1126

1127

1128

1129

1130

1131

1132

Fig. 2

1133

1134

1135

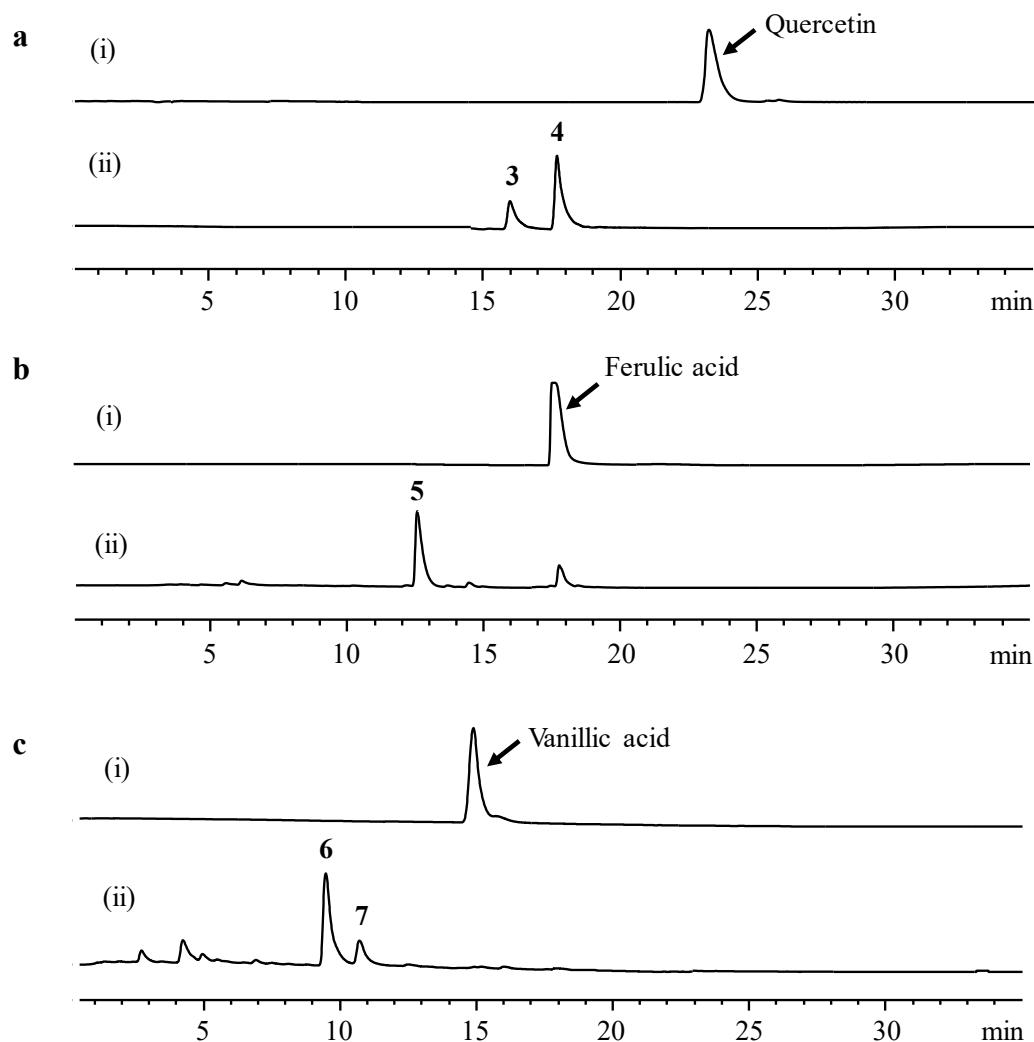
1136

1137

1138

1139

1140


1141

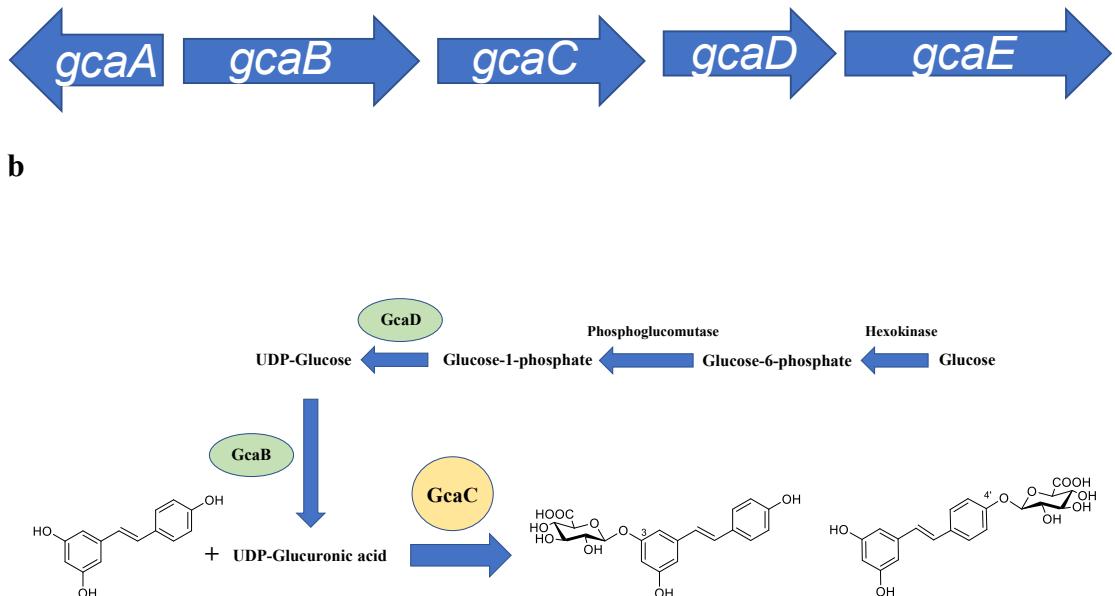
1142

1143

1144

1145

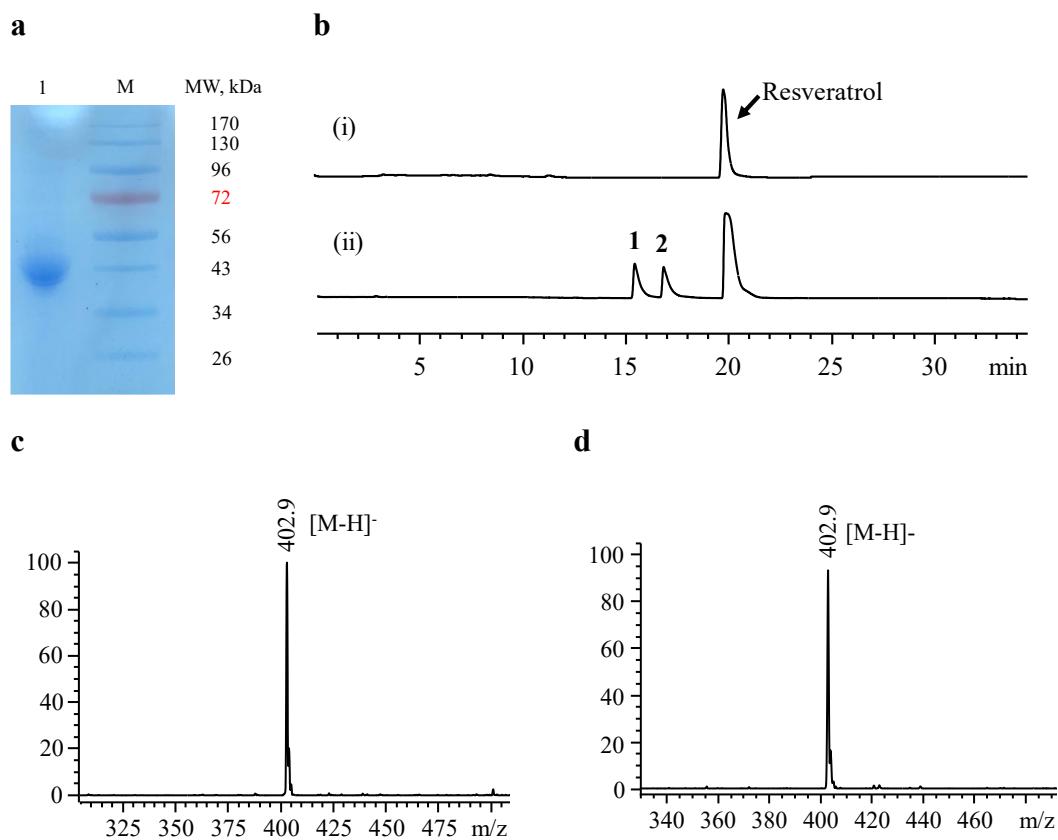
1146


1147 **Fig. 3**

1148

1149

1150


1151

1170

1171

1172

1173

1174 **Fig. 5**

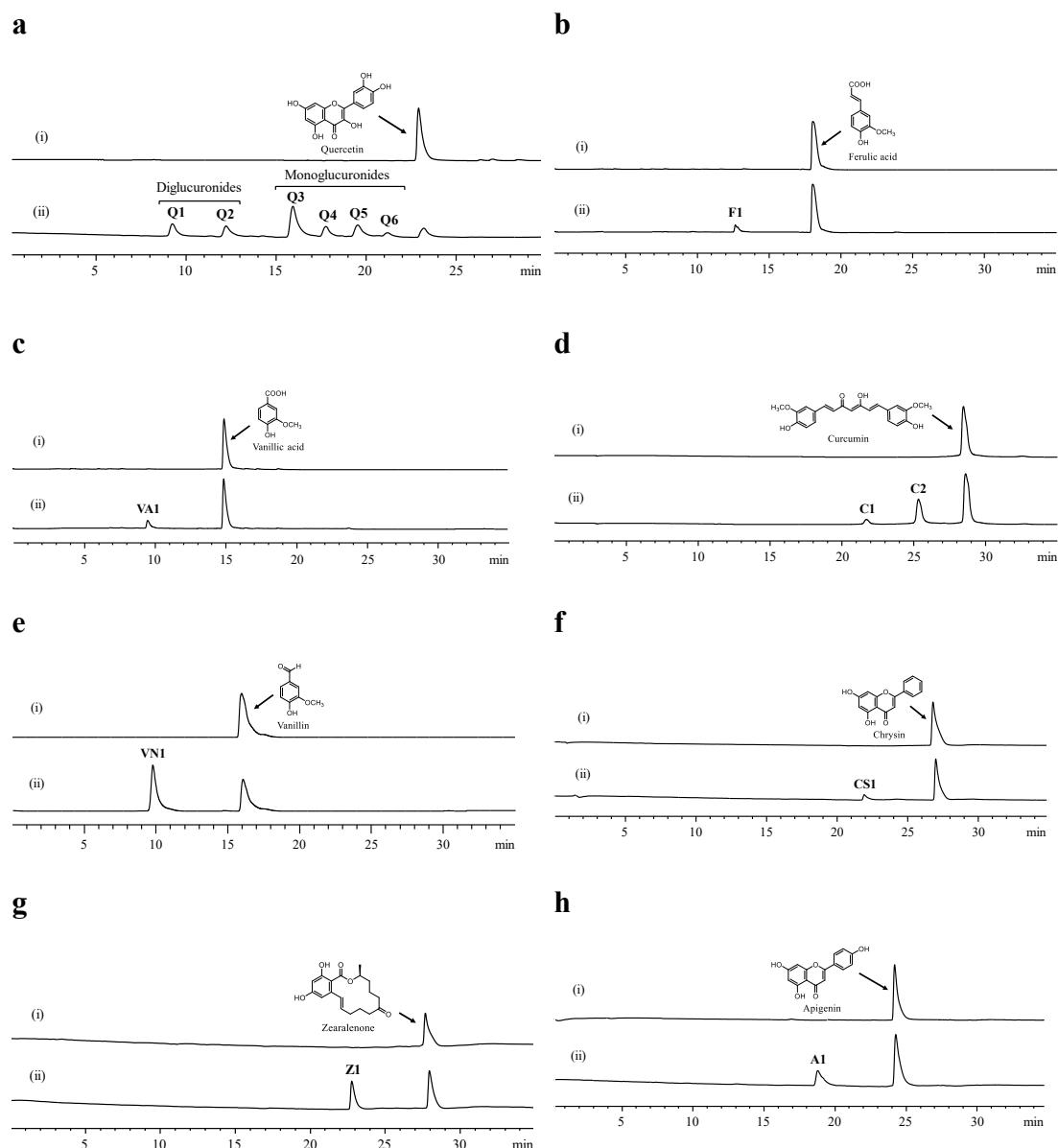
1175

1176

1177

1178

1179


1180

1181

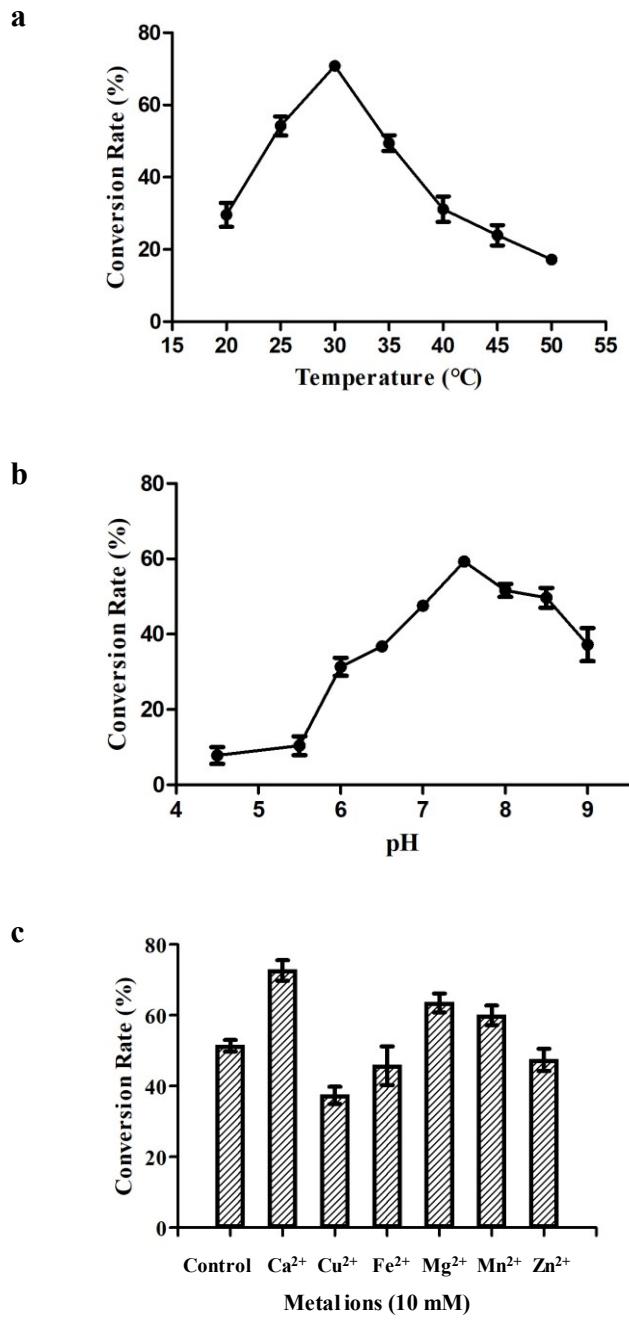
1182

1183

1184

1185 **Fig. 6**

1186


1187

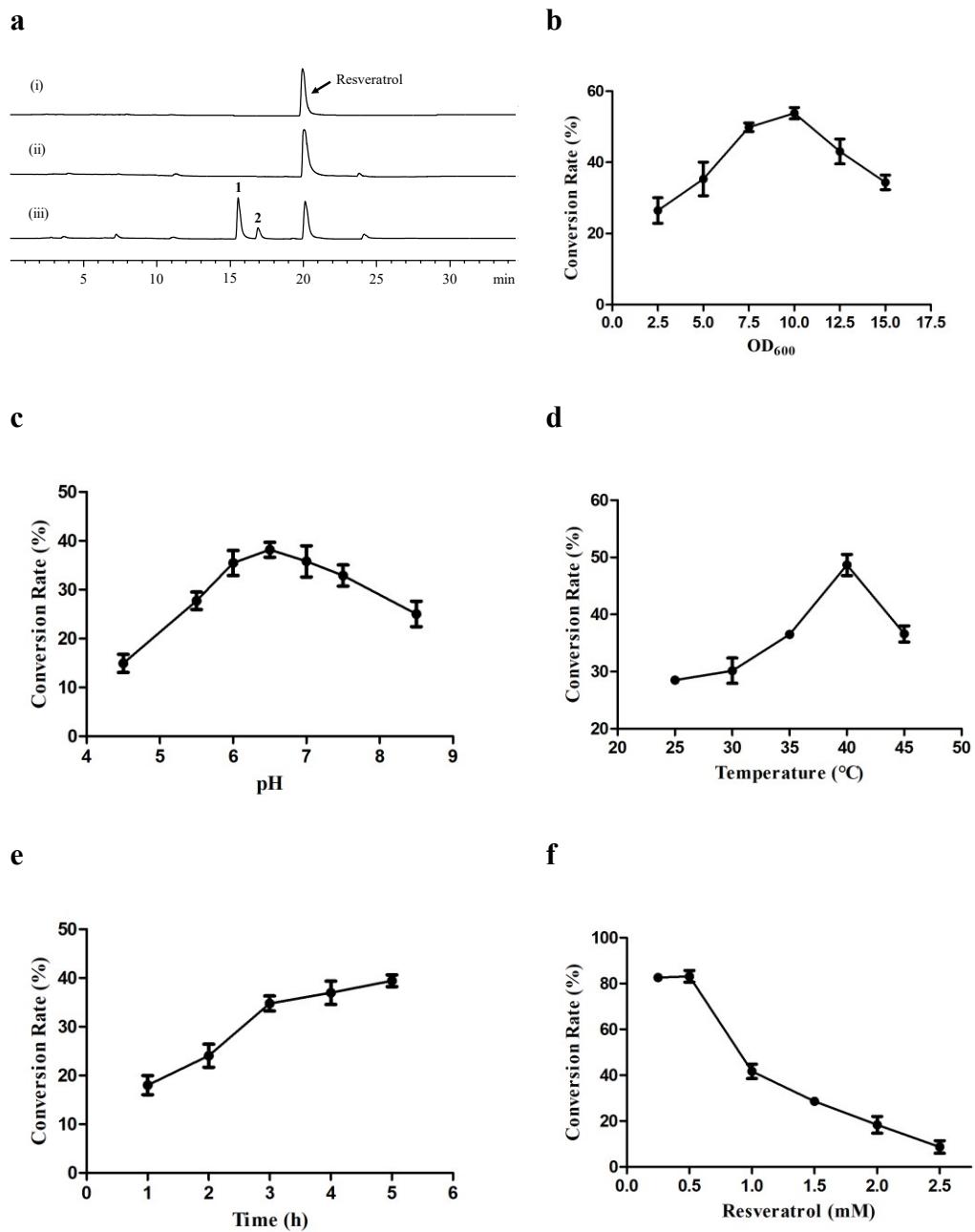
1188

1189

1190

1191

1192 **Fig. 7**


1193

1194

1195

1196

1197

1198 **Fig. 8**

1199

1200

1201