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Abstract. In this work, we investigate various approaches that use learning

from training data to solve inverse problems, following a bi-level learning ap-

proach. We consider a general framework for optimal inversion design, where
training data can be used to learn optimal regularization parameters, data

fidelity terms, and regularizers, thereby resulting in superior variational reg-

ularization methods. In particular, we describe methods to learn optimal p
and q norms for Lp − Lq regularization and methods to learn optimal pa-

rameters for regularization matrices defined by covariance kernels. We exploit
efficient algorithms based on Krylov projection methods for solving the regu-

larized problems, both at training and validation stages, making these methods

well-suited for large-scale problems. Our experiments show that the learned
regularization methods perform well even when there is some inexactness in

the forward operator, resulting in a mixture of model and measurement error.

1. Introduction. Inverse problems arise in many important science and engineer-
ing applications such as biomedical and astronomical imaging, satellite surveillance,
and seismic monitoring [42, 18]. Two of the main challenges to solving large-scale
inverse problems are (i) ill-posedness of the problem, whereby small noise or errors
in the data can and often do lead to large errors in the solution, and (ii) the large size
of the problem, which for some applications is on the order of millions of observa-
tions and billions of unknown parameters. A standard way to solve inverse problems
is to follow a variational approach, where solutions are computed by minimizing a
pre-determined energy functional that depends upon assumptions regarding the s-
tatistical distribution of the observational noise, the forward model, and any prior
knowledge about the properties of the unknown solution. Although a significant
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amount of research has gone into developing efficient optimization methods to solve
variational problems, the formulation of the optimization problem relies on stan-
dard assumptions that may not hold in general and that, moreover, may further
rely on additional unknown (hyper)parameters.

In this work, we describe a general optimal inversion design (OID) framework for
solving inverse problems, where the goal is to use available training data to design
an optimal energy functional for variational inversion. In order to introduce the
OID learning problem, we begin with a discrete linear inverse problem of the form,

b = Axtrue + e, (1)

where A ∈ Rm×n represents a given forward model that is also known as the
parameter-to-observation map, b ∈ Rm stores available observations corrupted by
some unknown additive noise e ∈ Rm, and xtrue contains unknowns that should be
recovered. We assume that the inverse problem is ill-posed, and therefore regular-
ization is needed to compute stable, reasonable approximations of xtrue. The aim
of regularization is to incorporate prior knowledge about the solution. There are
many forms of regularization ranging from spectral filtering methods to variation-
al regularization methods to iterative regularization, and many combinations and
variants of these [42, 33]. In its general form, we consider approaches where the
regularized solution can be computed as

x̂(θ) ∈ arg min
x∈Rn

J (x,A,b;θ) +R(x;θ), (2)

where the overall loss is composed of a data fitting term J , which incorporates
the forward process A and information about the measurement process, such as
the noise distribution in the observations b, and a regularization functional R that
integrates prior knowledge of xtrue. While determined by the underlying statistics,
the selection of J and R is problem dependent and remains a crucial yet heuristic
choice for the inversion process [18]. Here we assume that such design choices
may be represented by some design parameters θ ∈ R`, often also referred to as
hyperparameters [32].

Within this work we focus on a particular form of (2) which is given by

x̂(θ) ∈ arg min
x

‖Ax− b‖pp + λ ‖L(β)x‖qq , (3)

with design parameters θ = [λ; p; q;β], where λ, p, q ∈ R+ and β ∈ R`β . Note, with
utilizing ∈ instead of = in (3) we merely emphasize the potential non-uniqueness
of the minimizer. Here, ‖ · ‖s denotes the Ls-norm for s ≥ 1 and a homogeneous
function without all norm properties for 0 < s < 1. This formulation encompasses
many popular variational regularization methods. For instance:

1. For fixed L(β) = L ∈ Rr×n and θ = [λ, p, q]>, problem (3) is an Lp−Lq type
regularized problem,

min
x
‖Ax− b‖pp + λ ‖Lx‖qq . (4)

2. For fixed p = q = 2 and θ = [λ,β]>, problem (3) may include a design-
dependent operator L : R`β → Rr×n in the regularization term, i.e.,

min
x
‖Ax− b‖22 + λ ‖L(β)x‖22 . (5)

Within a Bayesian approach L(β) may be regarded as an inverse square root
of a positive definite parameteric prior covariance matrix. Consequently, a
minimizer of (5) may then constitute a maximum a posteriori estimate [51, 50].
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Both problems (4) and (5) depend on the particular choice of the design parameters
θ, and the main question is how to optimally select θ?

Assume that we are given the distribution of xtrue and e. Then optimal design
parameters θ may be selected by minimizing the Bayes risk, i.e.,

min
θ∈Ω

1
2E ‖x̂(θ)− xtrue‖22 (6a)

subject to x̂(θ) solving (3), (6b)

where Ω is a set of feasible design choices and E is the expected value. By minimizing
the expected mean squared error (6a), the optimal design parameters are expected
to perform well on average, leading to reconstructions x̂(θ) that minimize the Bayes
risk. While other design criteria are available, we focus on this design criterion,
which is referred to as A-design in the field of optimal experimental design [62, 7].

For problems where the distribution of xtrue is unknown or not obtainable, but
training data are readily available, we consider empirical Bayes risk design problems,
where the training data are used to approximate the expected value in (6a). Assume
that we are given a set of training data consisting of J true models x1

true, . . . ,x
J
true ∈

Rn and simulated observations b1, . . . ,bJ ∈ Rm, e.g., by data simulation through
(1). Then we consider the empirical Bayes risk OID problem,

θ̂ ∈ arg min
θ∈Ω

1
2J

J∑
j=1

∥∥∥x̂j(θ)− xjtrue

∥∥∥2

2
(7a)

subject to x̂j(θ) solving (3) for data b = bj . (7b)

In other words, the design problem is a bi-level optimization problem where the goal
is to find the parameters θ that minimize the sample average of reconstruction er-
rors for some training set [37, 38, 22, 16, 4]. The outer optimization problem (7a) is
referred to as the design problem, while the variational regularization problem (7b)
is referred to as the inner problem.

Overview of main contributions. In this work, we describe efficient learning tech-
niques to solve the overall design problem (7). Although this framework can incor-
porate various variational regularization techniques, we focus on the two scenarios
described above. Learning the regularization parameter λ has been previously con-
sidered in various contexts, but to the best of our knowledge, learning optimal
values of p and q (i.e., θ = [λ, p, q]) for the Lp−Lq regularized problem and learning
optimal parameters for covariance kernel matrices (i.e., θ = [λ,β]) have not been
considered in an OID framework before. We will show that these methods can
handle various uncertainties in the problem, from mitigating errors in the forward
model to resolving unknown parameters in the prior and noise assumptions. Fur-
thermore, to efficiently handle the inner problem, we exploit recent developments
in Krylov projection methods such as [25] and [47] and incorporate these methods
into our bi-level optimization framework.

An outline of the paper is as follows. In Section 2 we provide a brief overview
on previous research on learning methods for solving inverse problems. Section 3
is devoted to computational approaches for learning design parameters in an OID
framework including details on iterative projection methods for solving the inner
problems (7b). In Section 4, we provide numerical results for various image deblur-
ring and tomography applications that demonstrate the effectiveness and benefits
of our approaches. Conclusions are provided in Section 5.



4 J. CHUNG, M. CHUNG, S. GAZZOLA AND M. PASHA

2. Previous works on learning for inverse problems. Supervised learning
techniques have gained significant interest in the inverse problems community as a
way to combine model-driven and data-driven approaches for solving inverse prob-
lems. A comprehensive overview can be found in [6]. Two predominant classes of
supervised learning approaches have emerged for solving inverse problems: empirical
Bayes risk minimization approaches that are related to optimal experimental design
techniques [38] and techniques based on deep learning tools such as neural networks
and variational autoencoders [55]. Supervised training approaches for solving in-
verse problems were first formally introduced in Haber and Tenorio [37], where a
bi-level optimization problem of the form (7) was considered for learning optimal
parameters for the regularization functional. One of the many advantages of these
learning approaches is that the learned (parameterized) regularization functional
is tailored to a specific forward operator and noise level of the data. There have
been various extensions of this idea (e.g., to learn optimal spectral filters [22, 23],
optimal weighted and multi-parameter Tikhonov parameters [39, 45], and optimal
weighted TV parameters [44]). An additional advantage is that empirical Bayes risk
minimization approaches can exploit existing computationally efficient optimization
techniques and incorporate a wide range of state constraints [65]. Furthermore, they
are general in that different design objective functions can be incorporated [38], they
can be used to learn critical information such as optimal sampling patterns (e.g.,
for MRI [66]) and design setup for experiments (e.g., for tomography [65]), and they
have rich theoretical connections to Bayesian experimental design [3, 46]. The main
concerns of this approach include the need to solve an expensive bi-level optimiza-
tion problem [29, 28, 27, 16] and bias towards the training set, since reconstructed
parameters are only good on average.

The other major class of supervised learning techniques to take root in the inverse
problems community consists of methods that exploit deep learning techniques (e.g.,
neural networks and variational autoencoders), see e.g., review papers [6, 59, 58, 55].
Initially, deep learning was used mainly for postprocessing of solutions to improve
solution quality (e.g., image denoising) or for performing tasks such as classifica-
tion. However, deep neural networks are now being considered for solving inverse
problems by learning the mapping from observation-to-reconstruction [41, 72] or by
learning an appropriate auto-encoder network (e.g., a generative adversarial net-
work) to serve as a proxy for the regularizer [57, 40, 54, 61]. However, a major
disadvantage for many of these network learning approaches is that due to the large
number of network parameters, a massive amount of training data is required, which
may not be readily available. Furthermore, it is important to have a well-tuned net-
work and a good choice of parameters (e.g., batch size, epochs, learning rate) for
the stochastic optimization algorithms, prior to training the networks.

Although there have been significant developments in both classes of supervised
learning approaches for inverse problems, there are still open problems. In particu-
lar, as mentioned in Section 1, we are interested in learning the appropriate Lp and
Lq-norms along with the regularization parameter λ in (4). This problem is most
related to the work by De los Reyes and Schönlieb [28], where parameter learning
methods were considered for learning the noise model in variational image denoising
by estimating weights for different noise models. However, rather than consider a
weighted version of pre-determined noise models, our approach seeks an appropriate
Lp-norm to resolve any errors or uncertainties in the data-fit term and combines it
with an optimally-selected Lq-norm for the regularization term. For the problem
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of learning optimal parameters for a regularization operator (5), special cases have
been considered in supervised learning frameworks (e.g., [37] considered different
regularization terms for different regions of the solution and [4] considered a bilevel
optimization learning framework for learning the fractional Laplacian parameter).
However, learning the kernel parameters in an OID framework remains a challenge,
especially when the prior precision matrix (i.e., the inverse of the covariance ma-
trix) or its square root L(β) is not readily available for all design parameters β.
In general, significant computational challenges may arise within large-scale bilevel
optimization problem (7), which we address next.

3. Computational OID for variational inverse problems. In this section, we
describe computational approaches for the OID problem,

θ̂ ∈ arg min
θ∈Ω

P(θ) = 1
2J

J∑
j=1

∥∥∥x̂j(θ)− xjtrue

∥∥∥2

2
(8a)

s.t. x̂j(θ) = arg min
x

∥∥Ax− bj
∥∥p
p

+ λ ‖L(β)x‖qq j = 1, . . . , J, (8b)

where θ = [λ, p, q,β] with λ, p, q > 0.
Bi-level optimization problems such as (8) are notoriously difficult to solve. For

instance, simple non-convexity in the inner problem (such as those encountered
when p, q < 1 in (8b)) may lead to discontinuities in the outer design problem,
[30, 67]. As an example, consider the toy problem minθ x̂(θ) where the inner
problem x̂(θ) = arg minx (x − 1)2(x + 1)2 + θx is non-convex in x. For θ = 0 two
global minima x̂(0) = ±1 exist and for any θ < 0 and θ > 0 we have x̂(θ) > 1
and x̂(θ) < −1, respectively. Hence the outer design function is discontinuous
at θ = 0. Many of the existing theoretical results rely on strict assumptions of
differentiability and convexity, we refer the interested reader to various monographs
on bilevel optimization problems, for instance [30, 8, 31].

Various approaches exist to address bi-level optimization problems. One ap-
proach is to cast the inner problem as a constraint and utilize “off-the-shelf” con-
strained optimization methods, such as augmented Lagrangians or interior-point
methods. Computational challenges arise in this approach, since the inner problem
results in non-standard equality and inequality constraints [16, 27, 4, 45]. Anoth-
er approach commonly used in the PDE constrained optimization literature is to
eliminate the constraints by approximately solving for x̂j , yielding a reduced prob-
lem. Such approaches were used to compute optimal error filters in [22, 38, 39];
however, for regularized solutions that have a nontrivial dependence on θ (e.g., for
general variational regularization methods (2) where the inner problem does not
admit a closed form solution) such methods do not apply. In a third approach, the
potentially discontinuous outer design problem is treated with non-gradient based
global optimization methods such as evolutionary methods [70, 67]. Note that global
optimization methods tend to be significantly more expensive than methods from
convex optimization. Hence, special care must be taken in reducing the overall
computational cost.

We approach the computational bottleneck from two directions. First, since the
inner problem consists of a variational linear inverse problem, we take advantage of
recently developed and highly efficient iterative solvers. Specifically, for the Lp−Lq

type problems, we use a majorization-minimization (MM) approach together with
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generalized Krylov subspaces (GKS), dubbed MM-GKS [12]; for the parametric k-
ernel learning problem, we use a generalized Golub-Kahan (genGK)-based method,
sometimes in its hybrid version, dubbed genHyBR [25]. We refer to the discussions
in Sections 3.1 and 3.2, respectively, for more details. Second, we utilize surrogate
optimization techniques, also referred to as Bayesian optimization, for the outer
problem (8a); see [36, 60]. One major advantage of surrogate optimization methods
is that they construct a surrogate objective function and evaluate the surrogate
instead of the true objective to find global minimizers1, thereby reducing the over-
all number of inner solves (8b) in our design problem. Further, since the inner
problems (8b) are solved using iterative methods, the solutions x̂j(θ) are affected
by stopping criteria and any further hyper-parameters of the iterative method. As
a consequence, the objective function P(θ) in (8a) may be non-convex and may
even have discontinuities. Surrogate optimization methods are versatile probabilis-
tic methods and therefore suitable in our settings. Since surrogate optimization
methods can be seen as sophisticated importance sampling methods, these meth-
ods suffer from the curse of dimensionality. Our problem setup avoids this major
disadvantage of surrogate optimization methods by restricting the number of pa-
rameters for the outer optimization problem.

More precisely, a surrogate optimization method takes samples of the objective
function given as SK = {θk,P(θk)}Kk=1 on a predetermined box Ω ⊂ R` and builds
a surrogate model sK : Ω→ R by extrapolating the objective function (8a) beyond
the sample points SK . For instance, surrogate models may be constructed using
radial basis functions [69] or Gaussian processes [36]. Typically the surrogate model
matches P exactly at points θk, k = 1, . . . ,K, hence interpolating the true objec-
tive function P at θk, k = 1, . . . ,K. From the surrogate model sK , a merit or so
called acquisition function mK : Ω → R is constructed that balances the trade-off
between exploitation and exploration [5]. A commonly used acquisition function
is the expected improvement function, where the surrogate model predicts low ob-
jective function values by means of known sample locations and values, as well as
taking into account uncertainty of unexplored regions.

In this work we utilize standard Matlab libraries for surrogate optimization pro-
vided by the global optimization toolbox [1] for outer problem (8a). Next we
describe two computational OID problems: learning optimal p and q norms and
learning optimal hyperparameters for the prior.

3.1. Learning optimal p and q norms. OID with θ = [λ, p, q].
Consider OID problem (8) where L(β) = L is fixed and θ = [λ, p, q], i.e., learning

the optimal regularization parameter, data fidelity norm, and regularization norm.
There are various reasons why one would want to learn an optimal p. While it is

well-known that p = 2 should be considered when the noise follows an i.i.d. Gaussian
distribution and that 0 < p < 2 should be considered when the available data are
perturbed by non-Gaussian noise, it is unclear what to use when there is a mixture
of noise corrupting the data. For specific statistical models of noise, e.g., mixed
Gaussian and Poisson noise that arise from Charge Coupled Device detectors, a
reformulation to a weighted least-squares problem has been considered, see e.g.,
[9, 17, 52, 12] and references therein. However, the reformulation relies on an
approximation using knowledge about the noise statistics, which is not necessarily
available in practice.

1In Bayesian optimization, it is common to consider equivalent maximization problems.
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Moreover, learning p can be relevant when the forward operator A used to solve
the inner problem (8b) is inexact. That is, the adopted forward model is (slightly)
different from the one used to generate the training data; e.g., deblurring problem-
s using erroneous point spread functions or tomographic reconstruction problems
with slightly mismatched projection angles. Estimating and correcting for model
errors represent important yet challenging tasks when solving inverse problems. For
problems where the user has strong knowledge about the parameterization of the
forward model, there are sophisticated ways of accounting for inexactness in the for-
ward operator, see e.g., [24, 63]. In a learning context, recent approaches to learn
implicit and explicit corrections to the operator using neural networks was consid-
ered in [56] and learning non-Gaussian models was considered in [68]. However,
for many scenarios where a good parameterization does not exist or the goal is not
necessarily to determine the model correction itself, we show that it is possible to
mitigate inexactness in the forward model as well as resolve any faults in the noise
assumptions by determining a better norm for the data-fit term. That is, we use
the OID framework to determine a proper choice of the norm in the data-fidelity
function, which is purely informed by the availability of training data, to mitigate
any effects of inexactness in the forward operator or faults in our noise assumptions.

Learning an optimal value for q in the regularization term is important as well,
as this encodes prior knowledge about the solution. The most common choice is
Tikhonov regularization (q = 2), but for promoting sparsity in the solution, q = 1
provides a numerically appealing approximation to the computationally NP-hard
q = 0 case. More recently, regularization techniques that allow a generic choice of
q > 0 have been developed [47, 21]. Nevertheless, for such techniques, the choice of
a suitable q that accommodates the properties of the desired solution is not always
obvious, hence learning q becomes crucial in many applications where its choice can
be informed by training data.

Thus, we consider OID problem (8) with θ = [λ, p, q], where the efficiency of the
approach relies on the ability to quickly and accurately compute Lp−Lq regularized
solutions (i.e., solving (8b) with L(β) = L fixed). This can be challenging, especially
in a large-scale setting. Although various optimization methods such as primal-dual
gradient descent methods [73, 34, 19] could be used, we consider iterative projec-
tion methods, which approximate x̂(θ) by solving (8b) in a reduced-dimensional
(projected) subspace; such methods can be considered as special instances of MM
strategies [49, 53], as summarized below.

Rewriting the s-norm as ‖x‖s =
(∑n

j=1 |xj |s−2 x2
j

)1/s

and by approximating

|x| ≈ (x2 + ε2)1/2 =: φε(x) with ε > 0 for 0 < s ≤ 1 and ε = 0 for s > 1, we obtain
(an approximation of) ‖x‖ss by

‖x‖ss ≈
n∑
j=1

(x2
j + ε2)(s−2)/2 x2

j =

n∑
j=1

φε(xj)
s−2 x2

j . (9)

By defining Ss,ε(x) as a diagonal matrix dependent on x, with

Ss,ε(x) = diag
([
φε(x1)s−2, . . . , φε(xn)s−2

])
, (10)

we get

‖x‖ss ≈
∥∥∥(Ss,ε(x))1/2 x

∥∥∥2

2
, (11)
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where we define the square root elementwise. Hence,∥∥∥(Sp,ε(Ax− b))1/2 (Ax− b)
∥∥∥2

2
+ λ

∥∥∥(Sq,ε(Lx))1/2 Lx
∥∥∥2

2
(12)

is a sufficiently smooth approximation of the objective function in (4). Assuming an
approximation xk to xtrue is available, we consider the quadratic tangent majorant
of (12) at xk (omitting a constant term), i.e.,

M (x,xk) =
∥∥∥(Skp,ε)1/2 (Ax− b)

∥∥∥2

2
+ λ

∥∥∥(Skq,ε)1/2 Lx∥∥∥2

2
, (13)

where we defined

Skp,ε = Sp,ε(Axk − b) and Skq,ε = Sq,ε(Lxk) ; (14)

for details see [47]. Given a point xk, we compute xk+1 as an approximate solution
minimizing (13). This process is iterated to approximate a solution of (4), and it
is referred to as MM.

Classical methods for MM (which, in this particular instance, coincide with IRLS
methods [10]) involve minimizing (13) by, e.g., applying CGLS, and result in time-
consuming inner-outer iterative strategies. Although adaptive tolerances for solving
the inner problem can be used to accelerate these methods without significant im-
pact on the solution, see e.g., [64], some hand tuning may be required. Instead,
we consider recently developed strategies that bypass classical IRLS schemes and
approximate a solution of minimizing (12) by simultaneously computing a new ap-
proximation xk+1 and updating the weights Sk+1

p,ε ,S
k+1
q,ε in (14). These methods

involve projections on generalized Krylov subspaces (GKS) [47, 12], and we refer to
them as MM-GKS.

Specifically, the GKS-based solver considered here computes x̂(θ) starting from
an initial approximate solution x0 belonging to an initial approximation subspace
ran(VGKS

0 ) = ran(Vh) generated by, e.g., performing 1 ≤ h � min{m,n} steps of
Golub–Kahan bidiagonalization applied to A with initial vector b. Then, at the
(k + 1)st iteration, one computes the (skinny) QR factorizations,

Skp,εAV
GKS
k+1 = QpRp, Skq,εLV

GKS
k+1 = QqRq. (15)

where VGKS
k+1 = [VGKS

k ,vnew] and vnew is the normalized residual vector A>(Axk−
b) + λL>Lxk. The (k + 1)st approximate solution reads xk+1 = VGKS

k+1 yk+1 ∈
ran(VGKS

k+1 ), where

yk+1 = arg min
y∈Rk+1

∥∥∥Rpy −Q>p
(
Skp,ε

)1/2
b
∥∥∥2

2
+ λ‖Rqy‖22, (16)

and where the projected problem is obtained by plugging in the factorizations in
(15) into the functional (13). GKS-based solvers can be applied to many instances
of (4), provided that matrix-vector products with L are cheap to compute, and
k � min{m,n}.

3.2. Learning design-dependent operators. OID with θ = [λ;β]. Learn-
ing approaches can also be used to estimate hyperparameters for regularization
functionals that belong to a parametric family of regularizers (e.g., those defined
from a kernel function). We consider OID problem (8) where p = q = 2 and
L(β) and its inverse are not readily available, but matrix vector multiplications
with Q(β) = (L(β)>L(β))−1 can be done efficiently. For example, with Gaussian
random fields, the entries of the prior covariance matrix are computed directly as
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Qij(β) = κ(rij ;β) where κ( · ;β) is a covariance kernel function that depends on
some parameters in β and rij = ‖zi − zj‖2, with zi corresponding to spatial points
in the domain. Although the matrix Q(β) may be dense and the inverse or sym-
metric factorization is not available, matrix-vector multiplications with Q(β) can
often be done efficiently.

We consider two families of covariance matrices that are built from parameter-
ized kernels: the squared exponential covariance matrix and the Matérn covariance
matrix [71]. Given a hyperparameter β that plays the role of the characteristic
length-scale, the squared exponential kernel is defined as

κ(r;β) = exp

(
− r2

2β2

)
. (17)

Given two hyperparameters β1 and β2 that define the smoothness and length scale
respectively, the Matérn kernel is defined as

κ(r;β1, β2) =
1

2β1−1Γ(β1)

(√
2β1r

β2

)β1

Kβ1

(√
2β1r

β2

)
, (18)

where Γ( · ) is the Gamma function and Kβ1
( · ) is the modified Bessel function of

the second kind of order β1. Note that, oftentimes in the literature, the Matérn
parameters are denoted as ν = β1 and ` = β2, where simplifications of the kernel
function can be made for half integers ν = p+ 1/2, p ∈ N+. We do not impose this
constraint here.

In most inverse problems settings, the kernel parameters must be selected prior
to solving the inverse problem and oftentimes appropriate choices come from ex-
pert knowledge. There exist various approaches in Bayesian statistics for estimating
hyperparameters for covariance functions (e.g., cross-validation and maximum like-
lihood) [71]. The process, which is referred to as model selection, seeks to estimate
the hyperparameters directly from the data, but these methods can be computation-
ally infeasible, especially for large-scale problems. For inverse problems in imaging,
semivariogram methods were considered in [11] for estimating Matérn parameters,
but this approach only works for problems where the observation grid and the solu-
tion grid are the same (e.g., in deblurring and denoising). We remark that learning
approaches that use training data to estimate parameters defining the regularizer
have been considered in [37, 4, 22]; however, contrary to existing methods that
work with the precision matrix directly, here we consider regularizers that arise in
Bayesian approaches and that correspond to prior covariance matrices defined using
parametric kernel functions.

We exploit genGK approaches for efficient inner solves (8b) requiring only matrix-
vector products with the prior covariance matrix. More specifically, we are interest-
ed in solving (1) where e ∼ N (0, I) and x ∼ N (0, λ−1Q(β)) where Q(β) is defined
above. By Bayes’ formula,

π(x|b) ∝ π(b|x)π(x) ∝ exp
(
−‖Ax− b‖22 − λx>Q(β)−1x

)
.

The maximum a posteriori approximation of x can be found by minimizing the
negative log-likelihood of π(x|b), i.e.,

x̂(θ) = arg min
x

‖Ax− b‖22 + λ‖x‖2Q(β)−1 (19)

with θ = [λ;β] which, since Q(β) = (L(β)>L(β))−1, is equivalent to (5). In this
setting, an iterative projection method based on the genGK bidiagonalization can
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be used to approximate (19). After performing a change of variables (to avoid
computations with Q(β)−1), the k-th iteration of the genGK method is given by

x̂k(θ) = Q(β)VgenGK
k ŷk(θ),

where ŷk(θ) = arg min
y∈Rk

∥∥∥BgenGK
k y − ‖b‖e1

∥∥∥2

2
+ λ‖y‖22 .

The matrices above satisfy the partial genGK matrix factorization, i.e.,

AQ(β)VgenGK
k = UgenGK

k+1 BgenGK
k ,

with VgenGK
k ∈ Rn×k, and BgenGK

k ∈ R(k+1)×k,

together with another similar factorization involving A>. We refer to [25] for the
original derivation.

We conclude this section by mentioning that an upside of all the solvers for (8b)
described so far is that λ can be adaptively set during the iterations, i.e., they
can be reformulated as so-called “hybrid methods”. When solving (8) where λ is a
design parameter that is fixed for each instance of the inner problem (3), we will
not take advantage of this feature of hybrid methods. However, we may still be able
to exploit this feature of hybrid methods, for OID where θ = β, and λ is selected
automatically. Numerical comparisons will be presented in Section 4.2.

4. Numerical experiments. In this section, we provide OID examples to show
that learned regularization methods perform well for various inverse problems. In
Section 4.1, we consider an example from image deblurring, where we learn optimal
norms for both the data fit and the regularization term, in addition to an optimal
regularization parameter, in order to handle different noise types and to mitigate
impacts from an imprecise forward operator. Then, in Section 4.2, we consider
an example from tomographic reconstruction, where optimal parameters are found
for parametric prior covariance matrices. For all of the experiments, we assess the
quality of a reconstructed solution using the Relative Reconstruction Error (RRE)

norm defined by RRE(x) = ‖x−xtrue‖2
‖xtrue‖2 , for some reconstruction x.

4.1. OID with θθθ = [λ, p, q]>. The goal of this section is to investigate the per-
formance of OID for learning optimal parameters λ, p, q, with L = I, for image
deblurring. For the training and validation datasets, we consider satellite images
obtained from the NASA website [2], where each image contains 256 × 256 pixels.
We use 10 images of satellites with 8 random affine transformations, giving a total
of 80 training images, and 5 images of satellites with 6 random affine transforma-
tions, giving 30 validation images. Samples of the training and validation images
are provided in Figure 1.

For the forward model, we consider a blurring process defined by an isotropic
Gaussian blur centered at location (χ1, χ2), where the point spread function P has
entries

[P ]i,j = c(σ1, σ2) exp

(
− (i− χ1)2

2σ2
1

− (j − χ2)2

2σ2
2

)
, (20)

where c(σ1, σ2) is a scaling factor. In the following we use the notation A =
A(σ1, σ2) to highlight the dependence of the matrix A on the blurring parameters,
and we consider reflective boundary conditions. We mention that other boundary
conditions can be used, provided matrix-vector multiplications can be performed
efficiently.
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training images

validation images

Figure 1. Four prototype true images used for generating the
training set (top row) and validation set (bottom row) in the OID
experiment with θ = [λ, p, q]>.

The observed image is obtained as in (1), with A(2.5, 2.5) and e being impulse
noise, with noise level selected uniformly at random between 10% and 50%. More
specifically impulse noise is obtained when the entries of the vector b are constructed
as follows

bi =

{
(Axtrue)i with probability 1− η,
ui with probability η,

where 0 ≤ η < 1 denotes the (relative) noise level and ui is a number chosen
randomly in the range of values of Axtrue. Although the images were generated
using A(2.5, 2.5), we consider reconstruction methods that use a different model
matrix A(2.3, 3.1), i.e., we introduce errors in the Gaussian blur parameters to
model the realistic situation where the forward operator contains uncertainty and
does not match data from the actual model. We emphasize that our approach can
incorporate general model errors (not just parameterized blurs), e.g., where the true
forward model is a matrix perturbation of the forward model matrix.

Using the OID approaches described in Section 3.1 with MM-GKS solvers for
the inner problem, we compute the following optimal parameters.

• First, for fixed p and q we learn λ only. For example, we denote ‘OIDλ,2,2’
as OID with θ = λ and p = q = 2, we denote ‘OIDλ,1,2’ as OID with θ = λ,
p = 1, and q = 2, and we denote ‘OIDλ,2,1’ as OID with θ = λ, p = 2, and
q = 1. The value of the regularization parameters so obtained are 0.4168,
0.0796, and 2.1376, respectively.

• Then we learn the regularization parameter, fit-to-data norm, and regulariza-
tion norm triplet. We refer to this approach as ‘OIDλ,p,q’ and we obtained

the values of θ̂ = [ λ̂, p̂, q̂ ]> = [0.0916, 1.0154, 1.9194]>.

All OID approaches use surrogate optimization with a maximum of 200 iterations
and with lower and upper bounds of 10−8 ≤ λ ≤ 10 for OIDλ,2,2 and OIDλ,1,2,
and lower and upper bounds of 10−3 ≤ λ ≤ 10−1, 0.1 ≤ p, q ≤ 2.15. For the inner
problem, we prescribed 50 iterations of MM-GKS and 100 iterations of CGLS (for
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OID6;2;1

OIDvpal
6;2;1

6
j
opt

Figure 2. For the image deblurring problem with model error and
impulse noise, we provide scatter plots of RRE norms for OIDλ,p,q,
OIDλ,2,2, OIDλ,1,2, and OIDλ,2,1 (where the inner problem is solv-

ing using MM-GKS). Results for OIDvpal
λ,2,1 correspond to using a

variable projection augmented Lagrangian method to solve the in-
ner problem. Each column of dots corresponds to one sample from
the validation set, where the indices have been sorted based on
the RRE norms for OIDλ,p,q. As a further comparison, λjopt cor-
responds to RRE norms for (21), where the optimal regularization
parameter is selected for each image using the learned p̂ and q̂.

p = q = 2) at both training and validation stages. For all of the results in this
section, we use the sample mean to center the data, prior to learning.

Using OID computed parameters, we obtain reconstructions for each of the val-
idation images. In Figure 2 we provide the RRE norms for OIDλ,p,q (marked by
yellow stars) for each validation image, where the index for the validation set has
been sorted based on the RRE norms for OIDλ,p,q. RRE norms for OIDλ,2,2 (blue
dots), OIDλ,1,2 (red dots), and OIDλ,2,1 (green dots) are also provided for each
validation image. Since most of the blue and green dots lie above the yellow stars,
we conclude that OIDλ,p,q consistently performs better than OIDλ,2,2 and OIDλ,2,1,
as expected. We also observe that RREs for OIDλ,1,2 are similar to the RREs for
OIDλ,p,q, since a good p-norm for the data misfit for impulse noise is expected to
be close to the 1-norm.

To verify the use of MM-GKS for solving L1-regularized problems, we also com-
pare to a method that directly handles an L1-norm regularizer through a splitting
approach. More specifically, we utilize a variable projection augmented Lagrangian
(vpal) method [26] that exploits variable projection methods for solving the inner
lasso problem directly utilizing shrinkage on the L1-norm regularization. These

results are denoted as OIDvpal
λ,2,1 and correspond to the gray dots in Figure 2. The

value of the computed OID regularization parameter was 0.5964.
To investigate the impact of the regularization parameter λ, we also provide

results for the OIDλ,p̂,q̂ method, i.e., OID where the previously computed values for

p and q are fixed. Namely, the optimal regularization parameter λjopt is computed
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for each validation image as

λjopt = arg min
λ

1
2

∥∥∥x̂j(λ)− xjtrue

∥∥∥2

2
,

where x̂j(λ) = arg min
x

∥∥Ax− bj
∥∥p̂
p̂

+ λ ‖x‖q̂q̂ ,
(21)

with the OIDλ,p,q computed values p̂ = 1.0154, q̂ = 1.9194. RRE values for each
validation image are provided as purple dots in Figure 2. As expected, the images
reconstructed using the optimal regularization parameter for each validation image
have smaller RRE values than the images reconstructed using OIDλ,p,q parameters.
However, we stress that this approach is not feasible in practice and that the OID
results are not far off. Reconstructed images along with RRE values for one valida-
tion image are provided in Figure 3. We observe that the OIDλ,p,q reconstruction
does not contain artifacts that are present in the OIDλ,2,2 reconstruction, and the
reconstruction with the optimal regularization parameter is only slightly better and
nearly indistinguishable from the OIDλ,p,q reconstruction.

Next, we investigate the impact of model error on the noise and hence the data-
fit term, for which it is well-known that the choice of p is directly related to the
statistics of the observation error. For one satellite image xtrue, we consider the
observed image that is generated using A(2.5, 2.5) and we consider observation
errors coming from two sources: 1% additive Gaussian noise and model error by
using A(5.6, 5.6) for reconstructions instead of A(2.5, 2.5). Images of the additive
Gaussian noise, the model error, i.e., A(5.6, 5.6)xtrue − A(2.5, 2.5)xtrue, and the
sum of the two sources of errors are provided in the top row of Figure 4 from left
to right. These represent pixel-wise quantities. In the lower frame, we provide a
density plot of the combined error, along with the density functions corresponding
to p = 2 and p = 1.3835 (the best p-norm density fit for this image).

We observe that the combined model and measurement error, which resembles a
heavy-tailed distribution, results in a noise distribution that is no longer Gaussian
(i.e., ignoring the model error and using p = 2 may not be appropriate). Indeed,
even with additive Gaussian noise, there exists a value for p that better resembles
the noise statistics when model error is present. Thus, without additional prior
knowledge, changing the norm for the data-fit term (in effect learning the statis-
tics of the combined additive and model error from training data) is a reasonable
approach to handle model error.

4.2. OID for learning kernel parameter(s) and regularization parameter.
We consider a seismic imaging problem (namely, PRseismic from [43]) that can be
modeled as (1), with xtrue containing a smooth image; see Figure 5. A represents
2D seismic travel-time tomography, using ns = 256 sources located on the right
boundary and nr = 512 receivers (seismographs) scattered along the left and top
boundaries. The rays are transmitted from each source to each receiver. The noisy
observations are provided in Figure 5; here n = 65,536 = 2562.

We generated a set of 30 training images, some samples are provided in Figure 6.
These were obtained by randomizing the parameters used to define the “smooth”
image in IRTools [35]. Then for each training image, we simulated noisy observations
using realizations of a Gaussian random vector with 0 mean and noise level η =
‖e‖2

‖Axtrue‖2 uniformly chosen between 10−2 and 10−1.
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xtrue b (RRE = 0.5298)

OIDλ,p,q (RRE = 0.1019) OIDλ,1,2 (RRE = 0.1027) λjopt (RRE = 0.0989)

OIDλ,2,2 (RRE = 0.2533) OIDλ,2,1 (RRE = 0.2380) OIDvpal
λ,2,1 (RRE = 0.2301)

Figure 3. For one sample of the validation data set, we provide
in the top row the true image and the observed image. In the
second row, we provide the OIDλ,p,q reconstruction, the OIDλ,1,2

reconstruction, and the reconstruction computed using the optimal
regularization parameter for this image, which is provided for com-
parison purposes only. In the bottom row are reconstructions for

OIDλ,2,2 and OIDλ,2,1, and OIDvpal
λ,2,1. RRE values are provided in

the titles.

Using the training data, we consider two kernel functions, the squared expo-
nential kernel function (17) and the Matérn kernel function (18). For each kernel
function, we provide OID results for the following two scenarios:

• ‘OID’ corresponds to solving (8) with θ = [λ,β], where the genGK-based
iterative projection method described in Section 3.2 is used to solve the inner
problem (8b). Here we note that, since λ is being learned in the OID problem,
the only stopping criteria used for the inner problem are based on tolerances
on the residual norm.

• OID with θ = β, where genHyBR is used for selecting λ according to WGCV
(weighted generalized cross validation) and the full suite of stopping criteria
are used within genHyBR. We refer to this approach as ‘OID-wgcv’.

Both OID approaches use surrogate optimization with a maximum of 20 iterations
and with lower and upper bounds of 10−1 ≤ λ ≤ 100, 0.5 ≤ β1 ≤ 15, and 5 · 10−2 ≤
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Figure 4. Investigating the impact of model error on the overall
noise statistics. From left to right in the top row, we provide pixel-
wise values of the additive Gaussian noise (of level 1%), the model
error, and the sum of these two errors. The density plot for the
combined error is provided, along with the density function for
p = 2 (corresponding to Gaussian noise) and the best density fit to
the true errors A(5.6, 5.6)xtrue − b, i.e., p = 1.3835.

β2 ≤ 0.7 for the Matérn kernel and 10−1 ≤ λ ≤ 100, and 0.01 ≤ β ≤ 0.5 for the
squared exponential kernel. Computed OID parameters are given in Table 1.

Then similar to how we generated the training images, we generated 100 val-
idation images and their corresponding observations. Using the OID parameters
in Table 1, we obtained reconstructions for the validation set. The overall mean
squared reconstruction error for the validation images is provided in the last colum-
n of Table 1. Individually computed RRE norms for OID and OID-wgcv for each
validation image are provided as yellow and red dots in Figure 8 respectively, where
the indices have been sorted based on the RRE norms for OID. Notice that most of
the red dots lie above the yellow dots, and thus OID tends to perform better than
OID-wgcv for this example.

For comparison, we use the approach described in [20] that estimates hyper-
parameters directly from the the sample covariance matrix constructed from the
training data, followed by genHyBR with WGCV for selecting λ. Following [20],

let Q̂ be the sample covariance matrix constructed from the training dataset, then
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Figure 5. Seismic image reconstruction example. The true image
(left) contains 256 × 256 pixels and represents a smooth medium.
The noisy sinogram image (right) represents projection data from
a setup with 256 sources and 512 receivers.

Figure 6. Seismic example - random samples from the training set

Matérn parameters were estimated by solving

(ν̂, ˆ̀) = arg min
ν>0,`>0

∥∥∥Q(ν, `)− Q̂
∥∥∥2

F
, (22)

where ‖ · ‖F denotes the Frobenius norm. Once the parameters are computed, they

can be used to define Q = Q(ν̂, ˆ̀), which can be used directly in generalized hybrid
methods. For computational feasibility, a stochastic approximation is used for the
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objective function in (22), i.e.,∥∥∥Q(ν, `)− Q̂
∥∥∥2

F
= E

∥∥∥(Q(ν, `)− Q̂)ξ
∥∥∥2

2
, (23)

where ξ is a random variable such that Eξ = 0 and E(ξξ>) = I. Using a Hutchinson
trace estimator, we let ξ(i) ∈ Rn for i = 1, 2, . . . ,M be realizations of a Rademacher
distribution (i.e., ξ consists of ±1 with equal probability), and we consider the
approximate optimization problem,

(ν̌, ˇ̀) = arg min
ν>0,`>0

1

M

M∑
i=1

‖(Q(ν, `)− Q̂)ξ(i)‖22 . (24)

Similar to the approach described in [20], we used an interior-point method
(fmincon.m in MATLAB) to minimize (24) with M = 100, and refer to this ap-
proach as sample covariance (SC). We extend this approach to be used for estimating
the squared exponential kernel parameter β and provide the computed hyperparam-
eters in the row labeled ‘SC’ in Table 1. We remark that this approach uses only
the training data and not the model, noise or observations for learning the kernel
parameter. On the contrary, OID incorporates this information. Also, for com-
parison, we provide results for standard Tikhonov regularization (Q = I) with the
optimal λ selected for each sample. The goal of this comparison is to show that
including the prior is critical for this example. Scatter plots of RRE values for both
approaches are provided in Figure 7. Density graphs of the reconstruction errors
are provided in Figure 8, and one reconstructed image is provided in Figure 9.

Matérn λ β P, validation
OID 18.8313 5.0312, 0.3344 6.0833
OID wgcv 12.2812, 0.3344 29.9412
SC wgcv 123.1735, 0.2011 49.3447

sq. exp. λ β P, validation
OID 50.0500 0.2550 3.4468
OID wgcv 0.3163 24.7547
SC wgcv 0.2010 47.6977

Table 1. Computed values of the hyperparameters for OID, along
with the mean reconstruction errors for the validation set. OID
with λ computed using WGCV corresponds to using OID-wgcv for
estimating β only. ‘SC’ corresponds to estimating β directly from
the sample covariance matrix as described in [20] and then using
genHyBR with WGCV.

Finally, we investigate the properties of the design objective function (8a) for
OID with the squared exponential kernel. In Figure 10, we provide a contour plot
of the design objective function, where the white point corresponds to the OID
computed values. Notice that there is wide region of values for λ and β that result
in small and similar design objective values, with a smaller range of good choices
for β.

5. Conclusions and extensions. In this work, we have presented a unified frame-
work for optimal inversion design for large-scale inverse problems. We have de-
scribed learning approaches for computing hyperparameters from training data that
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Figure 7. For the seismic example, we provide scatter plots of
RRE norms for OID, OID-wgcv, SC-wgcv, and HyBR opt. Each
column of dots corresponds to one sample from the validation set,
where the indices have been sorted based on the RRE norms for
OID.

exploit Krylov subspace methods for efficiently solving regularized inner problems
within bi-level schema. In particular, we considered OID for learning the norm
exponent in the data-fit and regularization term, as well as for learning the regu-
larization parameter. Furthermore, we considered OID for learning parameters for
kernel functions used to define prior covariance matrices. Numerical experiments
showed that OID methods can compute hyperparameters that deliver quality re-
constructions, even in especially relevant scenarios where there is a mixture of noise
and model error in the data (e.g., due to the presence of inaccuracies in the forward
operator).

We remark that there are other cases where data-driven, optimal inverse frame-
works can be used. The focus of our applications is image processing, and more par-
ticularly, image deblurring and computerized tomography; nevertheless, the learning
approaches that we propose here can be applied to broad applications outside the
field of image processing. Moreover, general regularization matrices can be used
when considering OID with θ = [p, q, λ]>, including: discretizations of the deriva-
tive operators when solutions with edge preserving properties are desired, wavelet
and framelet transformations like in [12, 13, 14, 15, 48] when the solution is sparse
in a transformed domain, or fractional Laplacian regularizers where smoothness is
determined by a fractional exponent [4]. Furthermore, a wide variety of design cri-
teria can be easily incorporated in this framework, although it is not necessarily the
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Figure 8. For the validation set of the seismic example, we pro-
vide histograms of the RRE norms for OID, OID-wgcv, and SC-
wgcv.

λopt Q = I OID Matérn OID sq. exp.

-0.5

0

0.5

1

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(RRE = 0.2554) (RRE = 0.0214) (RRE = 0.0190)

Figure 9. For the validation image in Figure 5, we provide recon-
structions obtained with HyBR opt and OID reconstructions for
the Matérn and squared exponential kernels.

case that changing the design objective results in significant changes to the design
parameters. For both numerical examples, we experimented with various design
functions, including minimizing the average norm of the errors, ‖x̂j(θ) − xjtrue‖2s,
(i.e., changing the norm with s = 2 in (8a) to s = 1 or s = ∞), and we observed
minor changes to the computed design parameters. Other design objectives such as
those leading to min-max optimization problems could also be considered. Other
extensions include stochastic approximation methods for problems where the train-
ing set is very large and hence empirical Bayes risk minimization problems become
computationally intractable. Furthermore, although adaptive schemes have previ-
ously been used to accelerate bilevel optimization schemes, additional investigations
are needed in the context of surrogate optimization where surrogate models build
on all previous function evaluations. These are topics of future investigations.
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kernel for the seismic example. The filled contour corresponds to
OID, and the white point denotes the OID computed values.
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