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Abstract. Deep neural networks (DNNs) have shown their success as high-dimensional function
approximators in many applications; however, training DNNs can be challenging in general. DNN
training is commonly phrased as a stochastic optimization problem whose challenges include non-
convexity, nonsmoothness, insufficient regularization, and complicated data distributions. Hence,
the performance of DNNs on a given task depends crucially on tuning hyperparameters, especially
learning rates and regularization parameters. In the absence of theoretical guidelines or prior ex-
perience on similar tasks, this requires solving a series of repeated training problems which can
be time-consuming and demanding on computational resources. This can limit the applicability of
DNNs to problems with nonstandard, complex, and scarce datasets, e.g., those arising in many sci-
entific applications. To remedy the challenges of DNN training, we propose slimTrain, a stochastic
optimization method for training DNNs with reduced sensitivity to the choice of hyperparameters
and fast initial convergence. The central idea of slimTrain is to exploit the separability inherent in
many DNN architectures; that is, we separate the DNN into a nonlinear feature extractor followed by
a linear model. This separability allows us to leverage recent advances made for solving large-scale,
linear, ill-posed inverse problems. Crucially, for the linear weights, slimTrain does not require a
learning rate and automatically adapts the regularization parameter. In our numerical experiments
using function approximation tasks arising in surrogate modeling and dimensionality reduction, slim-
Train outperforms existing DNN training methods with the recommended hyperparameter settings
and reduces the sensitivity of DNN training to the remaining hyperparameters. Since our method
operates on mini-batches, its computational overhead per iteration is modest and savings can be
realized by reducing the number of iterations (due to quicker initial convergence) or the number of
training problems that need to be solved to identify effective hyperparameters.

Key words. deep learning, iterative methods, stochastic approximation, learning rates, variable
projection, inverse problems
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1. Introduction. Deep neural networks (DNNs) provide a powerful framework
for approximating complex mappings, possessing universal approximation proper-
ties [15], and flexible architectures composed of simple functions parameterized by
weights. Numerous studies have shown that excellent performance can be obtained
using state-of-the-art DNNs in numerous applications including image processing,
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speech recognition, surrogate modeling, and dimensionality reduction [23, 45, 49].
However, getting such results in practice may be a computationally expensive and
cumbersome task. The process of training DNNs, or finding the optimal weights, is
rife with challenges, e.g., the optimization problem is nonconvex, expressive networks
require a very large number of weights, and, perhaps most critically, appropriate regu-
larization is needed to ensure the trained network generalizes well to unseen data. Due
to these challenges, it can be difficult to train a network efficiently and to sufficient
accuracy. Training becomes even more difficult for large, high-dimensional datasets
and complex mappings and in the absence of experience on similar learning tasks.
The latter is a particular challenge in scientific applications that often involve unique
training data sets, which limits the use of standard architectures and established
hyperparameters.

While the literature on effective solvers for training DNNs is vast (see, e.g., the
recent survey [7]), the most popular approaches are stochastic approximation (SA)
methods. SA methods are computationally appealing since only a small, randomly
chosen sample (i.e., mini-batch) from the training data is needed at each iteration to
update the DNN parameters. Also, SA methods tend to exhibit good generalization
properties. The most extensively studied and utilized SA method is the stochastic
gradient descent (SGD) method [43] and its many popular variants such as AdaGrad
[18] and ADAM [29]. Despite the popularity of SGD variants, major disadvantages
include slow convergence and, most notoriously, the need to select a suitable learn-
ing rate (step size). Stochastic Newton and stochastic quasi-Newton methods have
been proposed to accelerate convergence of SA methods [6, 24, 9, 52, 12], but includ-
ing curvature information in SA methods is not trivial. Contrary to deterministic
methods, which are known to benefit from the use of second-order information (con-
sider, e.g., the natural step size of one and local quadratic convergence of Newton's
method), noisy curvature estimates in stochastic methods may have harmful effects
on the robustness of the iterations [12]. Furthermore, SA methods cannot achieve a
convergence rate that is faster than sublinear [1], and additional care must be taken
to handle nonlinear, nonconvex problems arising in DNN training. The performance
and convergence properties of SA methods depend heavily on the properties of the
objective function and on the choice of the learning rate.

In this paper, we seek to simplify the training of DNNs by exploiting the separa-

bility inherent in most common DNN architectures. We assume that the network, G,
is parameterized by two blocks of weights, W and \bfittheta , and is of the form

(1.1) G(\cdot ,W,\bfittheta ) = WF (\cdot ,\bfittheta ),

where F , also referred to as a feature extractor, is a parameterized, nonlinear function.
The important observation here is that the DNN is nonlinear in \bfittheta and, crucially, is
linear in W. Any DNN whose last layer does not contain a nonlinear activation
function can be written in this form, so our definition includes many state-of-the-
art DNNs; see, e.g., [27, 41, 31, 30, 44] and following works like [46, 49, 34]. In a
supervised learning framework, the goal is to find a set of network weights, (W,\bfittheta ),
such that WF (y,\bfittheta ) \approx c for all input-target pairs (y, c) in a data space. Training
the network means learning the network weights by minimizing an expected loss or
discrepancy of the DNN approximation over all input-target pairs (y, c) in a training
set, while generalizing well to unobserved input-target pairs.

Main contributions. In this paper, we describe slimTrain, a sampled limited-

memory training method that exploits the separability of the DNN architecture to
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leverage recently developed sampled Tikhonov methods for automatic regularization
parameter tuning [34, 13]. For the linear weights in a regression framework, we obtain
a stochastic linear least-squares problem, and we use recent work on sampled limited-
memory methods to approximate the global curvature of the underlying least-squares
problem. Such methods can be viewed as row-action or SA methods and can speed
up the initial convergence and improve the accuracy of iterates [13]. As discussed
above, applying a second-order SA method to the entire problem is not trivial and
obtaining curvature information for the nonlinear weights is computationally expen-
sive, particularly for deep networks. As our approach only incorporates curvature in
the final layer of the network, where we have a linear structure, its computational
overhead is minimal. In doing so, not only can we improve initial convergence of
DNN training, but we also can select the regularization parameter automatically by
exploiting connections between the learning rate of the linear weights and the regular-
ization parameter for Tikhonov regularization [11]. Thus, slimTrain is an efficient,
practical method for training separable DNNs that is memory-efficient (i.e., working
only on mini-batches), exhibits faster initial convergence compared to standard SA
approaches (e.g., ADAM), produces networks that generalize well, and incorporates
automatic hyperparameter selection.

This paper is organized as follows. In section 2, we describe separable DNN archi-
tectures and review various approaches to train such networks, with special emphasis
on variable projection. Notably, we provide new theoretical analysis to support a vari-
able projection stochastic approximation method. In section 3, we introduce our new
slimTrain approach that incorporates sampled limited-memory Tikhonov (slimTik)
methods within the nonlinear learning problem. Here, we describe cross-validation-
based techniques to automatically and adaptively select the regularization parameter.
Numerical results are provided in section 4, and conclusions follow in section 5.

2. Exploiting separability with variable projection. Given the space of
input features \scrY \subseteq \BbbR 

nin and the space of target features \scrC \subseteq \BbbR 
ntarget , let \scrD \subseteq \scrY \times \scrC 

be the data space containing input-target pairs (y, c) \in \scrD . We focus on separable
DNN architectures that consist of two separate phases: a nonlinear feature extractor
F : \scrY \times \BbbR 

n\theta \rightarrow \BbbR 
nout parametrized by \bfittheta \in \BbbR 

n\theta followed by a linear model W \in 
\BbbR 

ntarget\times nout . In general, the goal is to learn the network weights, (W,\bfittheta ), by solving
the stochastic optimization problem

min
\bfW ,\bfittheta 

\BbbE L(WF (y,\bfittheta ), c) +R(\bfittheta ) + S(W),(2.1)

where L : \BbbR ntarget\times \scrC \rightarrow \BbbR is a loss function, and R : \BbbR n\theta \rightarrow \BbbR and S : \BbbR ntarget\times nout \rightarrow 
\BbbR are regularizers. Here, \BbbE denotes the expected value over a distribution of input-
target pairs in \scrD .

Choosing an appropriate loss function L is task-dependent. For example, a least-
squares loss function promotes data-fitting and is well suited for function approxima-
tion tasks whereas a cross-entropy loss function is preferred for classification tasks
where the network outputs are interpreted as a discrete probability distribution [28].
In this work, we focus on exploiting separability to improve DNN training for func-
tion approximation or data fitting tasks such as partial differential equation (PDE)
surrogate modeling [49, 55] and dimensionality reduction such as autoencoders [23].
Hence, we restrict our focus to a stochastic least-squares loss function with Tikhonov
regularization

min
\bfW ,\bfittheta 

\Phi (W,\bfittheta ) \equiv \BbbE 
1
2 \| WF (y,\bfittheta ) - c\| 22 + \alpha 

2 \| L\bfittheta \| 
2
2 +

\lambda 
2 \| W\| 

2
F,(2.2)
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where \Phi : \BbbR 
ntarget\times nout \times \BbbR 

n\theta \rightarrow \BbbR is the objective function, L is a user-defined
operator, \| \cdot \| F is the Frobenius norm, and \alpha , \lambda \geq 0 are the regularization parameters
for \bfittheta and W, respectively.

2.1. SA methods that exploit separability. A standard, and the current
state-of-the-art, approach to solve (2.2) is stochastic optimization over both sets of
weights (W,\bfittheta ) simultaneously (i.e., joint estimation). While generic and straight-
forward, this fully coupled approach can suffer from slow convergence (e.g., due to
ill-conditioning) and does not attain potential benefits that can be achieved by treating
the separate blocks of weights differently (e.g., exploiting the structure of the arising
subproblems). We seek computational methods for training DNNs that exploit sepa-
rability, i.e., we treat the two parameter sets \bfittheta and W differently and exploit linearity
in W. Three general approaches to numerically tackle the optimization problem (2.2)
while taking advantage of the separability are as follows.

Alternating directions. One approach that exploits separability of the vari-
ables \bfittheta and W is alternating optimization [3]. For (2.2), this corresponds to alternat-
ing between two stochastic optimization problems. Note for simplicity of presentation
we assume that each of following optimization problems has a unique minimizer. Sup-
pose we initialize \bfittheta 0. Then, at the kth iteration, we embark on

(2.3) Wk = arg min
\bfW 

\Phi (W,\bfittheta k - 1)

and

(2.4) \bfittheta k = arg min
\bfittheta 

\Phi (Wk,\bfittheta ).

Notice that convergence of this approach can be slow when variables are tightly cou-
pled [2, 53]. Furthermore, this approach is not practical in our settings, since min-
imization problems (2.3) and (2.4) are computationally expensive, particularly the
nonconvex, high-dimensional, often nonsmooth optimization problem for \bfittheta .

Block coordinate descent. A practical alternative for alternating directions is
block coordinate descent. The general idea of a block coordinate descent approach
for (2.2) is to approximate the alternating optimization of (2.3) and (2.4) via iter-
ative update schemes (e.g., one iteration of an iterative optimization step) for each
set of variables [53]. Note that under certain assumptions, a block coordinate de-
scent method applied to two sets of parameters has been shown to converge [33, 42].
Although a block coordinate descent approach provides a computationally appealing
alternative to the fully coupled and alternating directions approaches, this approach,
like alternating directions, suffers from slow convergence when the blocks are tightly
coupled.

Variable projection (VarPro). A compromise between alternating directions
and block coordinate descent is to solve (2.3) with respect to W while performing an
iterative update method for (2.4) with respect to \bfittheta . This can be seen as a stochastic
approximation version of a variable projection approach [21]. Formally, we can write
the iteration in terms of the reduced stochastic optimization problem

min
\bfittheta 

\Phi red(\bfittheta ) \equiv \Phi (\widehat W(\bfittheta ),\bfittheta ),(2.5)

where

(2.6) \widehat W(\bfittheta ) = arg min
\bfW 

\BbbE 
1
2 \| WF (y,\bfittheta ) - c\| 22 + \lambda 

2 \| W\| 
2
F.
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Notice that (2.6) is a stochastic Tikhonov-regularized linear least-squares problem
and, under the assumption that the order of expectation and differentation is inter-
changeable, there exists a closed form solution, i.e.,

(2.7) \widehat W(\bfittheta ) = \BbbE cF (y,\bfittheta )\top 
\bigl( 
\Sigma \bfy (\bfittheta ) + \bfitmu \bfy (\bfittheta )\bfitmu \bfy (\bfittheta )

\top + \lambda I
\bigr)  - 1

.

Here, \bfitmu \bfy (\bfittheta ) = \BbbE F (y,\bfittheta ) and \Sigma \bfy (\bfittheta ) = \BbbE (F (y,\bfittheta )  - \bfitmu \bfy )(F (y,\bfittheta )  - \bfitmu \bfy )
\top . Details of

the derivation can be found in Appendix A.

2.2. Theoretical justification for VarPro in SA methods. After solving for
\widehat W(\bfittheta ) in (2.6), VarPro uses an iterative scheme, typically an SGD variant, to update
\bfittheta . The key is to ensure that the mini-batch gradients used to update \bfittheta are unbiased.
To the best of our knowledge, we provide the first theoretical analysis demonstrating
that VarPro in an SA setting produces an unbiased estimate of the gradient. We
note that the derivation, presented for stochastic Tikhonov-regularized least-squares
problems, can be extended to any objective function which is convex with respect to
the linear weights, such as when using a cross-entropy loss function.

In the context of the DNN training problem, let \scrT \subseteq \scrD be a finite training set.
At the kth training iteration, we select a mini-batch of the training set, \scrT k \subset \scrT . For
the \scrT k we seek to minimize the function

(2.8) \Phi k(W,\bfittheta ) =
1

| \scrT k| 
\sum 

(\bfy ,\bfc )\in \scrT k

1
2 \| WF (y,\bfittheta ) - c\| 22 + \alpha 

2 \| L\bfittheta \| 
2
2 +

\lambda 
2 \| W\| 

2
F .

A VarPro SA method applied to (2.5) considers the reduced functional at the kth
iteration,

\Phi red
k (\bfittheta ) = \Phi k(\widehat W(\bfittheta ),\bfittheta ),(2.9)

where \widehat W(\bfittheta ) is obtained from (2.6), i.e., the solution to the stochastic Tikhonov-
regularized linear least-squares problem over the entire data space.

To update the nonlinear weights, we select a ``descent"" direction pk with respect
to \bfittheta and compute the next iterate,

(2.10) \bfittheta k = \bfittheta k - 1 + \gamma pk(\bfittheta k - 1;\widehat W(\bfittheta k - 1)).

Here, \gamma denotes an appropriate learning rate and pk is a direction that is computed
based on the current estimate of \bfittheta k - 1 with respect to the current batch \scrT k. The
selection of pk depends on the chosen stochastic optimization method and requires
knowing information about the derivative of (2.8). Explicitly, we compute the deriv-
ative of \Phi red

k with respect to \bfittheta by

D\bfittheta \Phi 
red
k (\bfittheta ) = D\bfittheta \Phi k(\widehat W(\bfittheta ),\bfittheta )

= [D\bfW \Phi k(W,\bfittheta )]
\bfW =\widehat \bfW (\bfittheta )

\cdot D\bfittheta 
\widehat W(\bfittheta ) +

\Bigl[ 
D\widetilde \bfittheta \Phi k(\widehat W(\bfittheta ), \widetilde \bfittheta )

\Bigr] 
\widetilde \bfittheta =\bfittheta 

.
(2.11)

Note that, contrary to VarPro derivations in deterministic settings [21, 14, 34], the

first term in (2.11) does not vanish. This is because \widehat W(\bfittheta ) satisfies the optimality
conditions for \Phi , the objective function for expected value minimization problem (2.6),
but may not be optimal for \Phi k, the objective function for the current batch. However,
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we observe that the term vanishes in expectation over all samples, that is,

\BbbE 

\Bigl( 
[D\bfW \Phi k(W,\bfittheta )]

\bfW =\widehat \bfW (\bfittheta )
\cdot D\bfittheta 

\widehat W(\bfittheta )
\Bigr) 
= [D\bfW \BbbE \Phi k(W,\bfittheta )]

\bfW =\widehat \bfW (\bfittheta )
\cdot D\bfittheta 

\widehat W(\bfittheta )

= [D\bfW \Phi (W,\bfittheta )]
\bfW =\widehat \bfW (\bfittheta )

\cdot D\bfittheta 
\widehat W(\bfittheta )

= 0.

(2.12)

Since SA methods can handle unbiased noisy gradients, one could define a VarPro
SGD approach using the following unbiased estimator for the gradient:

(2.13) pk(\bfittheta ;\widehat W(\bfittheta )) =  - 
\Bigl[ 
D\widetilde \bfittheta \Phi k(\widehat W(\bfittheta ), \widetilde \bfittheta )

\Bigr] \top 
\widetilde \bfittheta =\bfittheta 

,

where the derivative is

D\bfittheta \Phi k(W,\bfittheta ) = D\bfittheta 

\left( 
 1

| \scrT k| 
\sum 

(\bfy ,\bfc )\in \scrT k

1
2 \| WF (y,\bfittheta ) - c\| 22 + \alpha 

2 \| L\bfittheta \| 
2
2

\right) 
 

=
1

| \scrT k| 
\sum 

(\bfy ,\bfc )\in \scrT k

\bigl( 
WF (y,\bfittheta )\top  - c

\bigr) 
WD\bfittheta F (y,\bfittheta ) + \alpha \bfittheta \top L\top L.

(2.14)

Note that D\bfittheta F (y,\bfittheta ) can be obtained through back propagation which can be par-
allelized over samples. Because (2.11) is equal to the gradient of the full objective
function \Phi in expectation, we say the update for \bfittheta in (2.10) using (2.13) is unbiased.

2.3. Challenges of VarPro in stochastic optimization. The appeal of a
VarPro approach is marred by the impracticality of computing \widehat W(\bfittheta ) in (2.6). For

each mini-batch update of \bfittheta , one would need to recompute \widehat W(\bfittheta ), which requires
propagating many samples through the network. Since a computation is costly, in
terms of time and storage, we can only obtain an approximation of \widehat W(\bfittheta ) in practice.

One way to approximate \widehat W(\bfittheta ) is to replace the vector \bfitmu \bfy (\bfittheta ) and the matrix

\BbbE cF (y,\bfittheta )\top with sample mean approximations and the covariance matrix \Sigma \bfy (\bfittheta ) with
a sample covariance matrix. The accuracy of the approximation, and hence the ex-
pected bias of the gradients for the nonlinear weights, will depend on the size of
the sample. However, these quantities still depend on \bfittheta , and hence for any itera-
tive process where \bfittheta is being updated, these values need to be recomputed at each
iteration.

A practical strategy to approximate \widehat W(\bfittheta ) is to use a sample average approx-
imation (SAA) approach. In SAA methods, one first approximates the expected
loss using a (large and representative) sample. The resulting optimization problem
is deterministic and a wide range of optimization methods with proven theoretical
guarantees can be used. For example, inexact Newton methods may be utilized to
obtain fast convergence [5, 36, 54]. Solving a deterministic SAA optimization problem
with an efficient solver guarantees the linear model fits the sampled data optimally
at each training iteration. Note that if an SAA approach were used to solve both
(2.5) and (2.6) with the same (fixed) sample set, then this would be equivalent to the
variable projection SAA approach described in [34]. Indeed, there are various recent
works [34, 40, 16] that exploit the separable structures (1.1) of neural networks in
SAA settings in order to accelerate convergence. However, the disadvantage of SAA
methods is that very large batch sizes are needed to obtain sufficient accuracy of the
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approximation and to prevent overfitting. Although parallel computing tools (e.g.,
GPU and distributed computing) and strategies such as repeated sampling may be
used, the storage requirements for SAA methods remain prohibitively large.

To summarize section 2, the widely used, fully coupled approach (optimizing over
\bfittheta and W simultaneously) and the alternating minimization approach represent two
extremes: the former is a tractable approach, but ignores the separable structure while
the latter exploits separability, but is computationally intractable in the stochastic
setting. Although a block coordinate descent approach decouples the parameters
and replaces expensive optimization solves with iterative updates, a VarPro approach
can mathematically eliminate the linear weights, thereby reducing the problem to a
stochastic optimization problem in \bfittheta only. The resulting noisy gradient estimates for
\bfittheta are unbiased when \widehat W(\bfittheta ) is computed exactly, making VarPro compatible with SGD

variants to update \bfittheta . However, computing \widehat W(\bfittheta ) when also updating \bfittheta is intractable
and poor approximations may lead to a large bias in the gradients for \bfittheta . Hence,
providing an effective and efficient way to approximate \widehat W(\bfittheta ) is crucial to obtain a
practical implementation of VarPro stochastic optimization.

3. Sampled limited-memory DNN training with slimTrain. We present
slimTrain as a tractable variant of VarPro in the SA setting, which adopts a sampled
limited-memory Tikhonov scheme to approximate the linear weights and to estimate
an effective regularization parameter for the linear weights. The key idea is to approx-
imate the linear weights using the output features obtained from recent mini-batches
and nonlinear weight iterates. By storing the output features from the most recent
iterates, slimTrain avoids additional forward and backward propagations through
the neural network which, especially for deep networks, is computationally the most
expensive part of training, and hence adds only a small computational overhead to
the training.

3.1. Sampled Tikhonov methods to approximate \widehat W(\bfittheta ). As described

in section 2, approximating \widehat W(\bfittheta ) well is challenging, but important for reducing bias
in the gradient for \bfittheta ; see (2.12). This motivates us to use state-of-the-art iterative
sampling approaches to solve stochastic, Tikhonov-regularized, linear least-squares
problems. For exposition purposes, we first reformulate (2.6) as

(3.1) \widehat w(\bfittheta ) = arg min
\bfw 

\BbbE 
1
2 \| A(y,\bfittheta )w  - c\| 22 + \lambda 

2 \| w\| 
2
2,

where w = vec(W) \in \BbbR 
ntargetnout concatenates the columns of W in a single vector,

A(y,\bfittheta ) = F (y,\bfittheta )\top \otimes Intarget
with \otimes denoting the Kronecker product. This Kronecker

structure extends to a mini-batch \scrT k. Suppose we order the samples (yi, ci) \in \scrT k for
i = 1, . . . , | \scrT k| . Then, the final layer can be expressed for vectorized linear weights as

WZk(\bfittheta ) \approx Ck

vec -  -  -  -  - \rightarrow \leftarrow  -  -  -  -  - 
mat

Ak(\bfittheta )w \approx bk,

D
o

w
n
lo

ad
ed

 1
2
/1

6
/2

2
 t

o
 1

7
0
.1

4
0
.1

4
2
.2

5
2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SLIMTRAIN---AN SA METHOD FOR SEPARABLE DNNs A2329

where

Zk(\bfittheta ) =
\bigl[ 
F (y1,\bfittheta ) \cdot \cdot \cdot F (y| \scrT k| ,\bfittheta )

\bigr] 
\in \BbbR 

nout\times | \scrT k| ,

Ck =
\bigl[ 
c1 \cdot \cdot \cdot c| \scrT k| 

\bigr] 
\in \BbbR 

ntarget\times | \scrT k| ,

Ak(\bfittheta ) = Zk(\bfittheta )
\top \otimes Intarget

\in \BbbR 
| \scrT k| ntarget\times noutntarget , and

bk = vec(Ck) =

\left[ 
  

c1
...

c| \scrT k| 

\right] 
  \in \BbbR 

ntarget| \scrT k| .

Henceforth, in this section, since \bfittheta is fixed in (3.1), we use Ak = Ak(\bfittheta ) for presenta-
tion purposes.

Introduced in [47, 13], sampled Tikhonov (sTik) and sampled limited-memory
Tikhonov (slimTik) methods are specialized iterative methods developed for solving
stochastic regularized linear least-squares problems. For an initial iterate w0, the kth
sTik iterate is given by

(3.2) wk(\Lambda ) = arg min
\bfw 

1

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left[ 
       

A1

...
Ak - 1

Ak\sqrt{} 
\Lambda +

\sum k - 1
i=1 \Lambda iI

\right] 
       
w  - 

\left[ 
       

A1wk - 1

...
Ak - 1wk - 1

bk\sum k - 1
i=1 \Lambda i\surd 

\Lambda +
\sum k - 1

i=1 \Lambda i

wk - 1

\right] 
       

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

,

where wk - 1 is the previously computed estimate, A1, . . . ,Ak - 1 are matrices contain-

ing previously computed output features, \Lambda +
\sum k - 1

i=1 \Lambda i > 0, and \Lambda is a regularization
parameter estimate. The sTik iterates can also be expressed in update form as an
SA method,

(3.3) wk(\Lambda ) = wk - 1  - Bk(\Lambda )gk(wk - 1,\Lambda ),

with gk(wk - 1,\Lambda ) = A\top 
k (Akwk - 1 - bk) +\Lambda wk - 1 containing gradient information for

the current mini-batch and Bk(\Lambda ) = ((\Lambda +
\sum k - 1

i=1 \Lambda i)I +
\sum k

i=1 A
\top 
i Ai)

 - 1 containing
global curvature information of the least-squares problem. Note that contrary to
standard SA methods, (3.3) does not require a learning rate or a line search parameter.
The learning rate can be interpreted as one, which is optimal for Newton's method.

Importantly, the regularization parameter \lambda in (3.1), which is typically required
to be set in advance, has been replaced with a new parameter estimate \Lambda which can be
chosen adaptively at each iteration. Each \Lambda k corresponds to a regularization param-
eter at iteration k and can change at each iteration (\Lambda j , j = 1, . . . , k  - 1, correspond
to regularization parameters from previous iterations). In fact, the parameters \lambda and
\Lambda k's are directly connected. After one epoch (e.g., iterating through all training sam-

ples), the sTik iterate is identical to the Tikhonov solution of (3.1) with \lambda =
\sum k

i=1 \Lambda i,
where k is the number of iterations required for one epoch. We exemplify the con-
vergence of sTik in Figure 1 when approximating the MATLAB peaks function [25].
Moreover, it has been shown that sTik iterates converge asymptotically to a Tikhonov
solution and subsequently adaptive parameter selection methods were developed in
[47].

Since (3.2) and (3.6) correspond to standard Tikhonov problems, extensions
of standard regularization parameters methods, such as the discrepancy principle

D
o

w
n
lo

ad
ed

 1
2
/1

6
/2

2
 t

o
 1

7
0
.1

4
0
.1

4
2
.2

5
2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2330 E. NEWMAN, J. CHUNG, M. CHUNG, AND L. RUTHOTTO

Convergence in one epoch
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abs. diff.
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Fig. 1. Illustration comparing convergence of sTik and ADAM with a fixed regularization
parameter for solving (3.1). We consider approximating the MATLAB peaks function, f : \BbbR 2 \rightarrow \BbbR ,
using training data located on a uniform grid. We apply a fixed nonlinear transformation to each
point in the domain to form the rows of Ak \in \BbbR 

| \scrT k| \times | \bfw | and the corresponding true function values
are stored in bk \in \BbbR 

| \scrT k| , where | w| is the number of linear weights. The constant regularization
parameters are \Lambda k = \lambda 

80
, where 80 is the number of iterations in one epoch. Both | w| and \lambda are

chosen arbitrarily and the number of iterations depends on the number of training points and the
batch size. The best linear weights are given by the Tikhonov solution, \widehat w = (A\top A + \lambda I) - 1A\top b,
and the corresponding best function approximator is A\widehat w. To the left, we plot the convergence of the
relative error \| wk  - \widehat w\| 2/\| \widehat w\| 2 for each iteration k in a single epoch. By design, sTik converges to
the least-squares solution in one epoch whereas ADAM makes little progress. To the right, the middle
row shows the function approximations for different sTik iterates, Awk, and the bottom row shows
the absolute difference of the approximation with the best approximation. The top row depicts the
true peaks function (left) and the best approximation obtained from the Tikhonov solution (right).

(DP), unbiased predictive risk minimization (UPRE), and generalized cross valida-
tion (GCV) techniques can be utilized. Indeed, sampled regularization parameter
selection methods sDP, sUPRE, and sGCV for sTik and slimTik and their connec-
tion to the overall regularization parameter \lambda can be found in [47]. In this work,
we focus on regularization parameter selection via sGCV since this method does not
require any further hyperparameters (e.g., noise level estimates for the mini-batch),
and we have observed that sGCV provides favorable \lambda estimates. For details on the
GCV function, see original works [22, 51] and books [26, 50]. The sGCV parameter
at the kth slimTik iterate can be computed as

(3.4) \Lambda k = arg min
\Lambda 

| \scrT k| \| Akwk(\Lambda ) - bk\| 22\bigl( 
| \scrT k|  - tr

\bigl( 
AkTk(\Lambda )A\top 

k

\bigr) \bigr) 2 ,

where

(3.5) Tk(\Lambda ) =

\Biggl( \Biggl( 
\Lambda +

k - 1\sum 

i=1

\Lambda i

\Biggr) 
In +

k\sum 

i=k - r

A\top 
i Ai

\Biggr)  - 1

.

For some problems, e.g., inverse problems where Ak represent large-scale forward
model matrices, sTik may not be practical since each iteration requires either solving
a least-squares problem (3.2) whose coefficient matrix is growing at each iteration
or updating matrix Bk. To alleviate the memory burden, a variant of sTik called
the sampled limited-memory Tikhonov (slimTik) method was proposed in [47]. Let
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r \in \BbbN 0 be a memory depth parameter. Then, the kth slimTik iterate has the form

(3.6) wk(\Lambda ) = arg min
\bfw 

1

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left[ 
       

Ak - r

...
Ak - 1

Ak\sqrt{} 
\Lambda +

\sum k - 1
i=1 \Lambda iI

\right] 
       
w  - 

\left[ 
       

Ak - rwk - 1

...
Ak - 1wk - 1

bk\sum k - 1
i=1 \Lambda i\surd 

\Lambda +
\sum k - 1

i=1 \Lambda i

wk - 1

\right] 
       

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

.

We provide a few remarks about the slimTik method. For linear least-squares
problems, it can be shown that for the case r = 0, the slimTikmethod is equivalent to
the stochastic block Kaczmarz method. Furthermore, for linear least-squares problems
with a fixed regularization parameter, theoretical convergence results for slimTik with
memory r = 0 were developed in [13]. We point out that limited memory methods like
slimTik were initially developed to address problems where the size of w is massive,
but this is not necessarily the case in DNN training where the number of weights
in w may be modest. However, as we will see in subsection 3.2, a limited memory
approach is suitable and can even be desirable in the context of solving nonlinear
problems, where nonlinear parameters have direct impact on the model matrices Ak.
In this work, we are interested in incorporating extensions of slimTik with adaptive

regularization parameter selection for nonlinear problems that exploit separability.

3.2. slimTrain. Our proposed SA algorithm, slimTrain takes advantage of the
separable structure of many DNNs and integrates the slimTik method for efficiently
updating the linear parameters and for automatic regularization parameter tuning.
We consider the slimTik update of W to serve as an approximation of the eliminated
linear weights in VarPro SA from (2.6). Specifically, at the kth iteration, \widehat W(\bfittheta ) \approx 
Wk = mat(wk(\Lambda k)), where

(3.7) wk(\Lambda k) = arg min
\bfw 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left[ 
  

Mk

Ak(\bfittheta k - 1)\sqrt{} \sum k

i=1 \Lambda iI

\right] 
  w  - 

\left[ 
  

Mkwk - 1

bk\sum k - 1
i=1 \Lambda i\surd \sum 
k
i=1 \Lambda i

wk - 1

\right] 
  

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

,

with

(3.8) Mk =

\left[ 
  
Ak - r(\bfittheta k - r - 1)

...
Ak - 1(\bfittheta k - 2)

\right] 
  

and \Lambda k is computed using the sGCV method (cf. (3.4)). For the first r iterates,
matrices with nonpositive indices are set to zero. Notice that this is not equivalent
to the slimTik method for arg min\bfW \Phi (W,\bfittheta k - 1), since there is no inner iterative
process and because of the dependence on previous \bfittheta j . A summary of the algorithm
is provided in Algorithm 3.1. We impose standard stopping criteria for supervised
learning methods [23].

We note that an SA method that incorporates the slimTikmethod was considered
for separable nonlinear inverse problems in [11], but there are some distinctions. First,
the results in [11] use a fixed regularization parameter, but here we allow for adap-
tive parameter choice, which has previously only been considered for linear problems.
We note that updating regularization parameters in nonlinear problems (especially
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Algorithm 3.1 slimTrain: sampled limited-memory training for separable DNNs.

1: Training Data: \scrT \subseteq \scrD 
2: Hyperparameters: memory depth r \in \BbbN 0, mini-batch size nbatch, learning rate

\gamma , regularization parameter \alpha 
3: Initialize: \bfittheta 0 \in \BbbR 

n\theta , W0 \in \BbbR 
ntarget\times nout

4: while stopping criteria not satisfied do
5: randomly partition \scrT into mini-batches such that \scrT =

\bigsqcup 
k \scrT k and | \scrT k| = nbatch

6: for k = 1, . . . , \lfloor | \scrT | /nbatch\rfloor do
7: select mini-batch \scrT k
8: forward propagate network to obtain Ak(\bfittheta k - 1)
9: select \Lambda k using sGCV  \triangleleft (3.4)

10: compute Wk = mat(wk(\Lambda k))  \triangleleft (3.7)
11: compute derivatives of \bfittheta via backpropagation  \triangleleft (2.14)

[D\bfittheta \Phi k(Wk,\bfittheta )]\bfittheta =\bfittheta k - 1
\equiv 
\bigl[ 
D\bfittheta (

1
2\| Ak(\bfittheta )wk(\Lambda k),\bfittheta )\| 22 + \alpha 

2 \| L\bfittheta \| 
2
2

\bigr] 
\bfittheta =\bfittheta k - 1

12: select search direction pk

13: update \bfittheta k = \bfittheta k - 1 + \gamma pk(\bfittheta k - 1;Wk)
14: update memory matrix  \triangleleft (3.8)

Mk+1 =
\bigl[ 
Ak - r+1(\bfittheta k - r)

\top . . . Ak(\bfittheta k - 1)
\top 
\bigr] \top 

15: end for
16: end while

stochastic ones) is a challenging task, and currently there are no theoretical justifi-
cations. Second, all forward matrices were recomputed for each new set of nonlinear
parameters in [11]. That is, for updated estimate \bfittheta k - 1,

(3.9) Mk =

\left[ 
  
Ak - r(\bfittheta k - 1)

...
Ak - 1(\bfittheta k - 1)

\right] 
  .

Such an approach would be computationally demanding for DNN learning problems,
since this would require revisiting previous mini-batches and recomputing the forward
propagation matrix for new parameters \bfittheta k - 1. Instead, we propose using (3.8), and
we will show that these methods can perform well in practice.

4. Numerical results. We present a numerical study of training separable
DNNs using slimTrain with automatic regularization parameter selection. In this
section, we first provide a general discussion on numerical considerations of our pro-
posed method in subsection 4.1. In subsection 4.2, we explore the relationship between
various slimTrain hyperparameters (e.g., batch size, memory depth, regularization
parameters) in a function approximation task. Our results show that automatic reg-
ularization parameter selection can mitigate poor hyperparameter selection. In sub-
section 4.3, we apply slimTrain to a PDE surrogate modeling task and show that it
outperforms the state-of-the-art ADAM for the default hyperparameters. In subsec-
tion 4.4, we apply slimTrain to a dimensionality-reduction task in which the linear

D
o

w
n
lo

ad
ed

 1
2
/1

6
/2

2
 t

o
 1

7
0
.1

4
0
.1

4
2
.2

5
2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SLIMTRAIN---AN SA METHOD FOR SEPARABLE DNNs A2333

weights are applied via a convolution. Notably, we observe faster convergence and,
particularly with limited training data, improved results compared to ADAM.

4.1. Efficient implementation. Training separable DNNs with slimTrain

adds some computational costs compared to existing SA methods like ADAM; how-
ever, those are modest in many cases and the overhead in computational time can
be reduced by an efficient implementation. The additional costs stem from solving
for the optimal linear weights in (3.6) and approximating the optimal regulariza-
tion parameter using the sGCV function (3.4). The costs of these steps depend on
the size of the nonlinear feature matrix, Ak \in \BbbR 

| \scrT k| ntarget\times noutntarget , the size of the
memory matrix, Mk, which contains r blocks of nonlinear features from previous
batches, and the number of linear weights. In the case when the linear weights are
applied via dense matrix, we can exploit the Kronecker structure in our problem;
see subsection 3.1 for details. The Kronecker structure results in solving ntarget least-
squares problems simultaneously where each problem is moderate in size (typically,
on the order of 102 or 103). Due to the modest problem size, we use a singular value
decomposition (SVD) to solve the least-squares problem. We also reuse the SVD
factors for efficiently adapting the regularization parameter. For the peaks and sur-
rogate modeling experiments (subsections 4.2 and 4.3), we implement the Kronecker-
structure framework in MATLAB. The code is available in the Meganet.m repository
on https://github.com/XtractOpen/Meganet.m.

In the case when the linear weights parameterize a linear operator (most impor-
tantly, a convolution), efficient iterative solvers, such as LSQR [38] that only require
matrix-vector products and avoid forming the matrix explicitly, can be used to find
the optimal linear weights. Such methods were employed in [11] where the authors ap-
plied slimTik to massive, separable nonlinear inverse problems where the data matrix
could not be represented all-at-once. Modifications of the sGCV function using sto-
chastic trace estimators can then be used for estimating the regularization parameter
efficiently; for more details, see [47].

In subsection 4.4, the linear weights parameterize a convolution layer with several
input but only one output channel. Exploiting the separability between the different
channels and the small number of weights per channel, we form the nonlinear feature
matrix, Ak, explicitly in our implementation. This allows us to use the same SVD-
based automatic regularization parameter selection as in the dense case. To be precise,
the columns of Ak are shifted copies of the batch data, which is large, but accessible
(on the order of 105). Importantly, the number of columns (copies of the data) is
small because the number of weights parameterizing the linear operator, denoted | w| ,
is small (on the order of 102). We can construct the data matrix Ak efficiently by
taking advantage of the structure of convolutional operators; each channel has its
own linear weights and the samples share the same weights. For storage efficiency,
we can form the smaller matrix A\top 

k Ak \in \BbbR 
| \bfw | \times | \bfw | one time, and use the update

rule (3.3) to adjust the linear weights. We implement the convolutional operator
framework in PyTorch [39]. The code is available on github at https://github.com/
elizabethnewman/slimTrain.

4.2. Peaks. To explore the hyperparameters in slimTrain, we examine a scalar
function approximation task. We train a DNN to fit the peaks function in MATLAB,
which is a mixture of two-dimensional Gaussians. We use a small residual neural
network (ResNet) [27] with a width of w = 8 and a depth of d = 8 corresponding to
a final time of T = 5. Further details about the ResNet architecture can be found
in Appendix B. The nonlinear feature extractor maps F : \BbbR 2 \times \BbbR 

528 \rightarrow \BbbR 
8, where
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Fig. 2. Convergence of training loss for the peaks experiment when training with slimTrain

with a learning rate of \gamma = 10 - 3. Each row corresponds to a different choice of fixed regularization
parameter for W, \lambda = 100, 10 - 3, 10 - 10. When training with adaptive regularization parameter
selection, the initial regularization parameter \Lambda 0 is set to be the same as the fixed regularization
parameter. Each column corresponds to a different batch size, | \scrT k| = 1, 5, 10. Each convergence
plot consists of dashed and solid lines corresponding to using a fixed regularization parameter and
adaptively choosing the regularization parameter using sGCV, respectively. The color of each line
corresponds to memory depth r = 0, 5, 10 and, additionally, r = 100 for | \scrT k| = 1.

528 is the number of weights in \bfittheta . The final linear layer introduces the weights W \in 
\BbbR 

1\times 9, where the number of columns equals the width of the ResNet plus an additive
bias. Our training data consists of 2,000 points sampled uniformly on the domain
[ - 3, 3] \times [ - 3, 3]. We display the convergence of slimTrain for various combinations
of hyperparameters in Figure 2.

The interplay between number of output features, the batch size, and the memory
depth is apparent in Figure 2. In this scalar-function example, we seek nine weights
(i.e., W \in \BbbR 

1\times 9) to fit (r+1)| \scrT k| samples. With small memory depth and batch size,
the problem is underdetermined (or not sufficiently overdetermined) and solving for
W significantly overfits the given batch at each iteration. This results in the slow,
oscillatory convergence behavior, particularly with a batch size of | \scrT k| = 1 (Figure 2,
first column). When the memory depth and batch size are large enough (e.g., r = 100
in the | \scrT k| = 1), the linear least-squares problem is sufficiently overdetermined and
the training loss converges faster and to a lower value (Figure 2, purple line in first
column).

Solving the optimization problem and decreasing the loss of the training data is
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1.79 ˆ 10
´1

Fig. 3. DNN approximations for the peaks experiment with batch size of | \scrT k| = 5 and a learning
rate of \gamma = 10 - 3. The results use the network weights corresponding to the lowest validation loss
for each training method. Each block row corresponds to a different choice of fixed regularization
parameter for W, \lambda = 100, 10 - 3, 10 - 10. The top rows of images in each block depict the DNN
approximations of the peaks function. The bottom rows of images in each block depict the absolute
difference of the DNN approximations and the true peaks function. The DNN weights used provided
the smallest validation loss during training. The relative error of the DNN approximation versus
the true function is displayed below the corresponding absolute difference image.

a proxy to the goal of DNN training: to generalize to unseen data. To illustrate the
generalizability of DNNs trained with slimTrain, we display the DNN approximations
in Figure 3 corresponding to a batch size of | \scrT k| = 5 (second column of Figure 2) of
the convergence plots.

Exemplified in Figure 3, the choice of regularization parameter for W signifi-
cantly impacts the approximation quality of the network when training with a fixed
regularization parameter (Figure 3, second column set of figures). If the optimiza-
tion problem over-regularizes the linear weights (\lambda = 100), the DNN approximation
is smoother than the true peaks function and does not fit the extremes tightly (Fig-
ure 3, first row). In the under-regularized case (\lambda = 10 - 10) with a small memory
depth (r = 0), W overfits the batches and the DNN approximation does not gener-
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Fig. 4. Regularization parameters selected by approximately minimizing the sGCV function
in the peaks example for a learning rate of \gamma = 10 - 3 and an initial regularization parameter of
\Lambda 0 = 10 - 10. Each column corresponds to a different batch size, | \scrT k| = 1, 5, 10, respectively. Each
row corresponds to a different memory depth, r = 0, 5, 10, respectively. In each image, the horizontal
axis is the number of epochs, in this case 50, and the vertical axis is the number of iterations per
epoch. For example, when the batch size is | \scrT k| = 5, the vertical axis has 400 iterations (the number
of training samples divided by the batch size). Each pixel corresponds to the regularization parameter
used for a particular batch and the batches change because we shuffle the training data at the start
of each epoch. The images are displayed in log scale. The first few regularization parameters in each
case are small (top left corner of each image) because we start with a small initial regularization
parameter.

alize well (e.g., we miss the small peaks) (Figure 3, third row). With a well-chosen
regularization parameter (here, \lambda = 10 - 3), the DNN approximation is close to the
true peaks function, but tuning this regularization parameter can be costly (Figure 3,
second row). In comparison, the DNN approximations when automatically choosing a
regularization parameter using the sGCV method are good approximations and look
similar, no matter the initial regularization parameter or memory depth (Figure 3,
first column set of figures).

The selected regularization parameters are related to the ill-posedness of the prob-
lem, as illustrated for the \lambda = 10 - 10 case in Figure 4. When the batch size is | \scrT k| = 1
(Figure 4, first column), the linear least-squares problem is underdetermined for mem-
ory depths r = 0 and r = 5 and is overdetermined when r = 10. To avoid overfitting
in the underdetermined cases, larger regularization parameters are selected. In the
overdetermined case, overfitting is less likely and thus less regularization is needed.

With an adequate choice of memory depth and batch size, training a DNN with
slimTrain decreases the training loss and generalizes well to unseen data. The choice
of regularization parameter significantly impacts the resulting network: too much
regularization and the training stagnates; too little regularization and the training
oscillates. Employing adaptive regularization parameter selection mitigates these ex-
tremes and simplifies the costly a priori step of tuning the parameter.
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Table 1

Training and validation loss in the CDR experiment for batch size | \scrT k| = 5, 10 and learning
rates \gamma = 10 - 3, 10 - 2, 10 - 1. We display the loss after the first 20 epochs to compare early perfor-
mance. Because the memory depth does not significantly impact convergence, we display the loss
for slimTrain with a memory depth of r = 0. Closeness between the training and validation losses
indicates good generalization. The best overall performance (lowest loss) is achieved by slimTrain

with a batch size of | \scrT k| = 10, denoted in bold.

\gamma = 10 - 3 \gamma = 10 - 2 \gamma = 10 - 1

Train Valid Train Valid Train Valid

| \scrT 
k
| 
=

5 slimTrain, r = 0 42.98 41.17 22.06 22.25 18.74 23.25
ADAM 1453.00 1338.00 45.24 42.73 8.07 8.70

| \scrT 
k
| 
=

1
0 slimTrain, r = 0 47.65 52.95 4.28 5.30 15.61 16.60

ADAM 4405.00 4143 49.92 41.23 10.67 10.71

4.3. PDE surrogate modeling. Due to their approximation properties, there
has been increasing interest in using DNNs as efficient surrogate models for compu-
tationally expensive tasks arising in scientific applications. One common task is PDE
surrogate modeling in which a DNN replaces expensive linear system solves [37, 4, 56,
49]. Here, we consider a parameterized PDE

c = \scrP u, where \scrA (u,y) = 0,(4.1)

where u is the solution to a PDE defined by \scrA and parameterized by y (which could
be discrete or continuous). In our case, the solution is measured at discrete points
given by the linear operator \scrP and the observations are contained in c. The goal is to
train a DNN as a surrogate mapping from parameters y to observables c and avoid
costly PDE solves.

In our experiment, we consider the convection diffusion reaction (CDR) equation
which models physical phenomena in many fields including climate modeling [48] and
mathematical biology [17, 8]. As its name suggests, the CDR equation is composed
of three terms: a diffusion term that encourages an even distribution of the solution
u (e.g., chemical concentration), a convection (or advection) term that describes how
the flow (e.g., of the fluid containing the chemical) moves the concentration, and
a reaction term that captures external factors that affect the concentration levels.
In our example, the reaction term is a linear combination of 55 different reaction
functions and the parameters y \in \BbbR 

55 are the coefficients. The observables c \in \BbbR 
72

are measured at the same six spatial coordinates and 12 different time points; for
details, see [34]. We train a ResNet with a width of w = 16 and a depth of d = 8
corresponding to a final time of T = 4; see Appendix B for further details. The linear
weights in the final, separable layer are stored as a matrix W \in \BbbR 

72\times 17, where the
number of columns is the width of the ResNet plus an additive bias. The results of
training the ResNet with slimTrain are displayed in Figure 5. The major takeaway
is that slimTrain exploits the separable structure of the ResNet and, as a result,
trains the network faster and fits the observed data better (lower loss) than ADAM
with the recommended learning rate (\gamma = 10 - 3).

In Table 1, we examine whether the performance of slimTrain and ADAM gen-
eralizes to unseen after 20 epochs; we choose 20 epochs to analyze early performance
and because the training loss decreases more slowly after 20 epochs in Figure 5. The
training and validation losses are close for both slimTrain and ADAM, indicating
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Fig. 5. Convergence results for the training loss (mean squared error without regularization)
for the CDR experiment. The rows correspond to different batch sizes, | \scrT k| = 5, 10, and the columns
correspond to different learning rates, \gamma = 10 - 3, 10 - 2, 10 - 1. The colorful, solid lines depict the
convergence of the training loss using slimTrain with sGCV regularization parameter selection.
Each color corresponds to a different memory depth, r = 0, 5, 10. The black line with markers
depicts the convergence of the training loss using ADAM. (Figure in color online.)

that both training algorithms produce networks that generalize well. For ADAM's
suggested learning rate, \gamma = 10 - 3, slimTrain achieves a validation loss that is two
orders of magnitude less than that of ADAM. When the learning rate is tuned to
\gamma = 10 - 1, the performance of ADAM improves, but the overall best performance
is achieved by slimTrain. Most significantly, the performance of slimTrain is less
sensitive to the choice of learning rate.

As with the numerical experiment in subsection 4.2, there is a relationship be-
tween batch size, memory depth, and the number of output features. In this exper-
iment, because W \in \BbbR 

72\times 17, we solve 72 independent least-squares problems with
17 unknowns in each problem. Illustrated in Figure 6, when the memory depth is
small (r = 0, 5), each least-squares problem is underdetermined or not sufficiently
overdetermined, and hence more regularization on W is needed to avoid overfitting.
Because we use sGCV to automatically select the regularization parameter, the train-
ing with slimTrain achieves a comparable loss for all memory depths. In addition,
the learning rate to update \bfittheta plays a role in the regularization parameters chosen.
When the learning rate is large (\gamma = 10 - 1), the output features of the network can
change rapidly. As a result, larger regularization parameters are selected, even in the
sufficiently overdetermined case (r = 10), to avoid fitting features that will change
significantly at the next iteration.

In this surrogate modeling example, slimTrain converges faster to the same or
a better accuracy than ADAM using the recommended learning rate (\gamma = 10 - 3) by
exploiting the separability of the DNN architecture. Tuning the learning rate can
improve the results for ADAM, but training with slimTrain produces comparable
results and reaches a desirable loss in the same or fewer epochs. Using sGCV to
select the regularization parameter on the weights W provides more robust training,
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Fig. 6. Effect of learning rate and memory depth on the choice of regularization parameters
in the CDR experiment. The presented plots are from training using slimTrain for a batch size of
| \scrT k| = 5. We show the regularization parameters (in log scale) obtained for various learning rates
(columns) and memory depths (rows).

adjusting automatically to the various hyperparameters (memory depth, learning rate)
to produce consistent convergence.

4.4. Autoencoders. Autoencoders are a dimensionality-reduction technique
using two neural networks: an encoder that represents high-dimensional data in a low-
dimensional space and a decoder that reconstructs the high-dimensional data from
this encoding, illustrated in Figure 7. Training an autoencoder is an unsupervised
learning problem that can be phrased as an optimization problem,

min
\bfw ,\bfittheta dec,\bfittheta enc

\Phi auto(w,\bfittheta dec,\bfittheta enc) \equiv \BbbE 
1
2\| K(w)Fdec(Fenc(y,\bfittheta enc),\bfittheta dec) - y\| 22(4.2)

+ \alpha enc

2 \| \bfittheta enc\| 22 + \alpha dec

2 \| \bfittheta dec\| 22 + \lambda 
2 \| w\| 

2
2,

where the components of the objective function are the following:
\bullet Encoder: Fenc : \scrY \times \BbbR 

| \bfittheta enc| \rightarrow \BbbR 
nlat is the encoding neural network that

reduces the dimensionality of the input features nin to an intrinsic dimension

nlat with nlat \ll nin. Typically, the true intrinsic dimension is not known
and must be chosen manually. The weights are \bfittheta enc \in \BbbR 

| \bfittheta enc| , the number of
encoder weights is | \bfittheta enc| , and the regularization parameter is \alpha enc \geq 0.

\bullet Decoder feature extractor: Fdec : \BbbR nlat \times \BbbR 
| \bfittheta dec| \rightarrow \BbbR 

nout is the decoder
feature extractor. The weights are \bfittheta dec \in \BbbR 

| \bfittheta dec| , the number of weights is
| \bfittheta dec| , and the regularization parameter is \alpha dec \geq 0.

\bullet Decoder final layer: K(\cdot ) : \BbbR | \bfw | \rightarrow \BbbR 
nin\times nout is a linear operator, mapping

w to a matrix K(w). For instance, K(w) could be a sparse convolution
matrix which can be accessed via function calls. The learnable weights w
have a regularization parameter \lambda \geq 0.
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y P R
784

encode
latent space

R
nlat

decode

py P R
784

Fig. 7. Illustration of autoencoder for the MNIST data. The goal is to represent high-
dimensional data in a low-dimensional, latent space for dimensionality reduction and feature ex-
traction [23]. The encoder is a neural network that maps input data y to the latent space with
intrinsic dimension nlat (typically user-defined). The decoder is a neural network that maps from
the latent space to obtain an approximation of the original input, \widehat y.

For notational simplicity, we let \bfittheta = (\bfittheta enc,\bfittheta dec) and \alpha = \alpha enc = \alpha dec for the
remainder of this section.

In this experiment, we train a small autoencoder on the MNIST dataset [31].
The data consists of 60,000 training and 10,000 test gray-scale images of size 28\times 28
(i.e., 784 input features). We implement convolutional neural networks for both the
encoder and decoder with intrinsic dimension nlat = 50; see details in Appendix C.
Unlike the dense matrices in the previous experiments, the final, separable layer is a
(transposed) convolution. Because convolutions use few weights and the prediction
is high-dimensional, the least-squares problem is always overdetermined for this ap-
plication. Hence, we require only a moderate memory depth in our experiments and,
motivated by our results in subsections 4.2 and 4.3, we use a memory depth of r = 5
when training with slimTrain.

The convergence results comparing slimTrain and ADAM are presented in Fig-
ure 8. Here, we see that training with slimTrain converges faster than ADAM in
the first 10 epochs and to a comparable lowest loss after 50 epochs. Each training
scheme forms an autoencoder that approximates the MNIST data accurately and gen-
eralizes well, even after the first epoch. However, the absolute difference between the
slimTrain approximation and the true test images after the first epoch is noticeably
less noisy than the ADAM-trained approximations after the first epoch, particularly
for a poor choice of regularization parameter on w (e.g., \lambda = 100). We note that
because we employ automatic regularization parameter selection, the performance of
slimTrain was nearly identical with different initial regularization parameters, \Lambda 0.
We display the case that produced slightly less oscillatory convergence.

Using a good choice of the regularization parameter on the nonlinear weights
(\alpha = 10 - 10) is partially responsible for the quality approximations obtained for each
training method. The results in Figure 9 support our choice of a small regularization
parameter on \bfittheta . It can be seen that smaller regularization parameters on \bfittheta produce
better DNN approximations. When \alpha is poorly chosen (in this case, when \alpha is large),
slimTrain produces a considerably smaller loss than training with ADAM. Hence,
training with slimTrain and sGCV can adjust to poor hyperparameter selection,
even when those hyperparameters are not directly related to the regularization on w.

In addition to adjusting regularization parameters for the linear weights, we found
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(a) Convergence of ADAM and slimTrain

Initial evaluation + full 50 epochs Epochs 1 to 10

(b) DNN approximations after one epoch

True ADAM slimTrain

λ “ 100 λ “ 10´1
λ “ 10´10 Λ0 “ 10´10

D
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test loss 7.73 ˆ 101 5.92 ˆ 101 6.31 ˆ 101 3.74 ˆ 10
1

after 1 epoch

Fig. 8. Training loss convergence and visualizations of MNIST autoencoder approximations.
For the convergence plots, the networks are trained for 50 epochs and with recommended learning
rate of \gamma = 10 - 3, batch size of | \scrT k| = 32, regularization parameter \alpha = 10 - 10 for \bfittheta , and 50, 000
training images plus 10, 000 for validation. For ADAM, we train with three different regularization
parameters for w, \lambda = 100, 10 - 1, 10 - 10. When using slimTrain, we automatically select the regu-
larization parameters using sGCV with initial parameter \Lambda 0 = 10 - 10 and choose a modest memory
depth of r = 5. We display the DNN approximations after the first epoch below the convergence
plots. The top row of MNIST images are, from left to right, 16 test images, the approximation from
the ADAM-trained networks with various regularization parameters on w, and the approximation
obtained from slimTrain. The bottom row oiages are the absolute differences (in log scale) between
the network approximations and the true test images. The value below the absolute difference images
is the test loss over all 10, 000 test images after the first epoch.

that training with slimTrain offers significant performance benefits in the limited-
data setting; see Figure 10. When only a few training samples were used, training
with slimTrain produces a lower training and validation loss. In the small training
data regime, the optimization problem is more ill-posed and there are fewer network
weight updates per epoch. Hence, the automatic regularization selection and fast
initial convergence of slimTrain produce a more effective autoencoder.

Consistent with the results in our previous experiments, in the autoencoder exam-
ple with a final convolutional layer, slimTrain converges faster initially than ADAM
to a good approximation and is less sensitive to the choice regularization on the
nonlinear weights, \bfittheta . In the case of limited data, a common occurrence for scientific
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Fig. 9. Effect of regularization parameters on the minimum loss. We vary the regularization
parameter \alpha of \bfittheta for both ADAM (blue) and slimTrain (black), the regularization parameter \lambda on
w for ADAM, and the initial regularization parameter \Lambda 0 on w for slimTrain. For simplicity, we
set the (initial) regularization parameters equal, \alpha = \lambda = \Lambda 0. The height of each bar is the training
(solid) and validation (striped) loss for the network that obtained the lowest validation loss in 50
epochs for the given hyperparameters. (Figure in color online.)

applications, the training problem becomes more ill-posed. Here, slimTrain produces
networks that fit and generalize better than ADAM. By solving for good weights w
and automatically choosing an appropriate regularization parameter at each iteration,
slimTrain achieves more consistent training performance for many different choices
of hyperparameters.

5. Conclusions. We addressed the challenges of training DNNs by exploiting
the separability inherent in most commonly used architectures whose output depends
linearly on the weights of the final layer. Our proposed algorithm, slimTrain, lever-
ages this separable structure for function approximation tasks where the optimal
weights of the final layer can be obtained by solving a stochastic regularized lin-
ear least-squares problem. The main idea of slimTrain is to iteratively estimate
the weights of the final layer using the sampled limited-memory Tikhonov scheme
slimTik [13], which is a state-of-the-art method to solve stochastic linear least-squares
problems. By using slimTik to update the linear weights, slimTrain provides a rea-
sonable approximation for the optimal linear weights and simultaneously estimates an
effective regularization parameter for the linear weights. The latter point is crucial---
slimTrain does not require a difficult-to-tune learning rate and automatically adapts
the regularization parameter for the linear weights, which can simplify the training
process. In our numerical experiments, slimTrain is less sensitive to the choice of
hyperparameters, which can make it a good candidate to train DNNs for new datasets
with limited experience and no clear hyperparameter selection guidelines.

From a theoretical perspective, slimTrain can be seen as an inexact version of
the variable projection [20, 35] (VarPro) scheme extended to the stochastic approxi-
mation (SA) setting. Using this viewpoint, we show in subsection 3.2 that we obtain
unbiased gradient estimates for the nonlinear weights when the linear weights are es-
timated accurately. This motivates the design of slimTrain as a tractable alternative
to VarPro SA, which is infeasible as it requires re-evaluation of the nonlinear feature
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Fig. 10. Mean loss of MNIST autoencoder for small number of training data with a batch size
of 32. All networks were trained for 50 epochs for 10 different weight initializations using the same
hyperparameters as with the full training data in Figure 8. For each initialization, we choose the
network that produced the minimal validation loss over 50 epochs. In the plot, each point denotes
the mean loss over the 10 runs and the bands depict one standard deviation from the mean.

extractor over many samples after every training step. The computational costs of
slimTrain are limited as it reuses features from the most recent batches and there-
fore adds little computational overhead; see subsection 4.1. In addition, slimTrain
approximates the optimal linear weights obtained from VarPro, thereby reducing the
bias introduced by the approximation when updating the nonlinear weights.

From a numerical perspective, the benefits of slimTrain, and specifically auto-
mated hyperparameter selection, are demonstrated by the numerical experiments for
both fully connected and convolutional final layers. In subsection 4.2, we explore the
relationship of the slimTrain parameters, observing that memory depth and batch
size play a crucial role in determining the ill-posedness of the least-squares problem to
solve for the linear weights. The regularization parameter adapts to the least-squares
problem accordingly---larger regularization parameters are selected when the problem
is underdetermined. In subsection 4.3, we observe that slimTrain is less sensitive
to the choice of learning rate, outperforming the recommended settings for ADAM.
Again, the regularization parameters adapt to the learning rate---larger parameters
are chosen when the nonlinear weights change more rapidly. In subsection 4.4, we
show that slimTrain can be applied to a final convolutional layer and outperforms
ADAM in the limited-data regime, which is typical in scientific applications.

Appendix A. Stochastic linear Tikhonov problem. In this section, we show
that, under certain assumptions, the stochastic Tikhonov-regularized least-squares
problem (2.6) has a closed form solution (2.7). Let us begin by defining \bfitmu \bfy (\bfittheta ) =

\BbbE F (y,\bfittheta ), \Sigma \bfy (\bfittheta ) = \BbbE (F (y,\bfittheta )  - \bfitmu \bfy )(F (y,\bfittheta )  - \bfitmu \bfy )
\top and \bfitmu \bfc (\bfittheta ) = \BbbE c, \Sigma \bfc = \BbbE (c  - 
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\bfitmu \bfc )(c - \bfitmu \bfc )
\top . Then using the identity

\BbbE (\bfitdelta \top \Lambda \bfitdelta ) = tr(\Lambda \Sigma \bfitdelta ) + \bfitmu \top 
\bfitdelta \Lambda \bfitmu \bfitdelta ,

where tr( \cdot ) denotes the trace of a matrix, we have (sans constant from the regular-
ization term for \bfittheta )

\Phi (W,\bfittheta ) = \BbbE 
1
2 \| WF (y,\bfittheta ) - c\| 22 + \lambda 

2 \| W\| 
2
F(A.1)

= \BbbE 
1
2 (WF (y,\bfittheta ) - c)

\top 
(WF (y,\bfittheta ) - c) + \lambda 

2 \| W\| 
2
F(A.2)

= \BbbE 
1
2F (y,\bfittheta )\top W\top WF (y,\bfittheta ) - \BbbE c\top WF (y,\bfittheta ) + 1

2\BbbE c
\top c+ \lambda 

2 \| W\| 
2
F(A.3)

= 1
2 tr
\bigl( 
W\top W\Sigma \bfy (\bfittheta )

\bigr) 
+ 1

2\bfitmu \bfy (\bfittheta )
\top W\top W\bfitmu \bfy (\bfittheta ) - \BbbE c\top WF (y,\bfittheta )(A.4)

+ 1
2 tr(\Sigma \bfc ) +

1
2\bfitmu 

\top 
\bfc \bfitmu \bfc +

\lambda 
2 \| W\| 

2
F .(A.5)

Notice that this function is quadratic in W, and so for a given \bfittheta a minimizer (2.6)
can be found by differentiation. That is,

(A.6) D\bfW \Phi (W,\bfittheta ) = W\Sigma \bfy (\bfittheta ) +W\bfitmu \bfy (\bfittheta )\bfitmu \bfy (\bfittheta )
\top + \lambda W  - \BbbE cF(y,\bfittheta )\top 

assuming we can switch order D\BbbE = \BbbE D. Now setting D\bfW \Phi = 0, we get

(A.7) \widehat W(\bfittheta )
\bigl( 
\Sigma \bfy (\bfittheta ) + \bfitmu \bfy (\bfittheta )\bfitmu \bfy (\bfittheta )

\top + \lambda I
\bigr) 
= \BbbE cF (y,\bfittheta )\top 

and hence (2.7).

Appendix B. Residual neural networks (ResNets). Residual neural net-
works (ResNets), among the most popular DNN architectures, are composed of layers
of the form

u0 = \sigma (Kiny + bin),(B.1)

uj+1 = uj + h\sigma (Kjuj + bj) for j = 0, . . . , d - 1.(B.2)

The architecture is defined by the width (the number of entries in the feature vectors
uj), the depth (the number of layers d), and the step size h > 0. The key property
of ResNets is the identity mapping or skip connection which enables deeper, more
expressive networks to be trained [27]. Recent work has interpreted ResNets as dis-
cretizations of continuous differential equations or dynamical systems [19] which have
led to notions of stability [25], PDE-inspired architectures [45], and neural ODEs [10].

In subsection 4.2, we train a DNN to map y \in \BbbR 
2 to a scalar c \in \BbbR . The feature

extractor is a ResNet with a width of w = 8 and a depth of d = 8 corresponding to a
final time of T = 5 or equivalently with a step size of h = 5/8. In subsection 4.3, we
train a DNN to map y \in \BbbR 

55 to a scalar c \in \BbbR 
72. The feature extractor is a ResNet

with a width of w = 8 and a depth of d = 8 corresponding to a final time of T = 5
or equivalently with a step size of h = 5/8. In both experiments, we use the smooth
hyperbolic tangent activation function, \sigma (x) = tanh(x).

Appendix C. Autoencoder architecture. We adapt the MNIST autoen-
coder from [32]. The autoencoder consists of two convolutional neural networks with
a user-defined width w and intrinsic dimension d. The width controls the number of
convolutional filters used and the intrinsic dimension is the size of the low-dimensional
embedding. The architecture is described in Table 2.

The final layer is a (transposed) convolution, denoted in subsection 4.1 as K(\cdot ) :
\BbbR 

| \bfw | \rightarrow \BbbR 
nin\times nout . Note that nin > nout in our case. As we did in subsection 3.1,
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Table 2

Autoencoder architecture with a width w = 16 and intrinsic dimension d. For the convolutional
layers, s is the stride and p is the padding. The layer ConvT indicates a transpose convolution. The
dashed line indicates the separable final layer.

Layer type Description \# Feat. out \# Weights w = 16, d = 50

E
n
c Conv. + ReLU w, 4 \times 4 \times 1 filters, s = 2, p = 1 14 \times 14 \times w 16w + w 272

Conv. + ReLU 2w, 4 \times 4 \times w filters, s = 2, p = 1 7 \times 7 \times 2w 32w2 + 2w 8, 224

Affine d \times (49 \cdot 2w) matrix + d \times 1 bias d \times 1 98wd + d 78, 450

D
e
c

Affine (49 \cdot 2w) \times d matrix + (49 \cdot 2w) \times 1 bias 98w \times 1 98wd + 98w 79, 968

Batch norm --- --- --- ---

ConvT. + ReLU w, 4 \times 4 \times 2w filters, s = 2, p = 1 14 \times 14 \times w 32w2 + w 8,208

ConvT. + ReLU 1, 4 \times 4 \times w filter, s = 2, p = 1 28 \times 28 \times 1 16w + 1 257

Total --- 175, 122 + 257

we can express the operation of K(w) \in \BbbR 
nin\times nout on the output features Zk(\bfittheta ) \in 

\BbbR 
nout\times | \scrT k| as a linear operator applied to the weights w; that is,

K(w)Zk(\bfittheta )
de-conv -  -  -  -  - \rightarrow \leftarrow  -  -  -  -  - 
conv

Ak(\bfittheta )w.

The matrix Ak(\bfittheta ) \in \BbbR 
| \scrT k| nin\times | \bfw | has known structure. In particular, each column

of A(\bfittheta ) contains a shifted copy of vec(Zk(\bfittheta )). Na\"{\i}vely, we can form each column of
Ak(\bfittheta ) explicitly by applying the (transposed) convolution operator to ``standard ba-
sis"" filters. Specifically, the jth column of Ak(\bfittheta ) is vec(K(ej)Zk(\bfittheta )), where ej \in \BbbR 

| \bfw | 

is the jth unit vector. In our implementation, we construct Ak(\bfittheta ) by recognizing that
the samples and the channels of Zk(\bfittheta ) are independent, requiring fewer evaluations
of the (transposed) convolution operator.
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