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ABSTRACT
Linear recurrence operators in characteristic ? are classi�ed by
their ?-curvature. For a recurrence operator !, denote by j (!)
the characteristic polynomial of its ?-curvature. We can obtain
information about the factorization of ! by factoring j (!). The
main theorem of this paper gives an unexpected relation between
j (!) and the true singularities of !. An application is to speed
up a fast algorithm for computing j (!) by desingularizing ! �rst.
Another contribution of this paper is faster desingularization.
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1 INTRODUCTION
Singularities of linear di�erence operators can be divided into
two groups, true (i.e. non-removable) singularities, and remov-
able singularities. Desingularization (detecting or removing remov-
able singularities) can expedite various algorithms for di�erence
or di�erential equations. An early application [14] appeared in
DEtools[Homomorphisms] in Maple 10. Other algorithms that ben-
e�t from reducing the number of singularities include �nding closed
form solutions and factoring, e.g. LREtools[RightFactors] in
Maple 2021.

In characteristic ? , linear recurrence operators can be classi�ed
by the so-called ?-curvature. For a recurrence operator ! in char-
acteristic ? , denote by j (!) the characteristic polynomial of its
?-curvature. Our main result states that the denominator of j (!)
determines the true singularities of !, including their multiplicities,
up to shift equivalence.
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The algorithm Xi_theta_d from [3, p. 7] computes j (!), multi-
plied by a denominator bound, by computing its / -adic expansion.
One application of our theorem is that we can replace the denomi-
nator bound by the exact denominator. This lowers the required
/ -adic precision, which can speed up the computation, see subsec-
tion 5.2.

We want desingularization to take less time than the time it saves
in applications. Then it is useful to compute a partial desingulariza-
tion (where the goal is to remove most removable singularities, at
a fraction of the cost of a full desingularization). We give various
algorithms for this in section 6.

2 PRELIMINARIES
2.1 Desingularization
Let � be a �eld. Let % = � [G] [~] and ⇡ = � (G) [~]. If 5 2 % , then
5 is called primitive if the gcd of its coe�cients in � [G] is 1. If
5 2 ⇡ � {0}, then there is 2 2 � (G) � {0}, unique up to a factor in � ,
for which 2�1 5 2 % is primitive. The content of 5 , denoted Cont(5 ),
is this 2 , while the primitive part of 5 is Prim(5 ) = 2�1 5 2 % . A
version of Gauss’s lemma says Cont(51 52) = Cont(51)Cont(52).

Let g be the shift-operator. If A (G) is a rational function then the
product g ·A (G) equals A (G+1) ·g . This product and the usual addition
turn P := � [G] [g] and D := � (G) [g] into non-commutative rings.
The product corresponds to compositions of operators, where ! =Õ=
8=0 08 (G)g8 2 D operates on~ (G) as !(~ (G)) = Õ=

8=0 08 (G)~ (G+8).
If ! 2 D � {0} we can de�ne Cont(!) 2 � (G) and Prim(!) 2 P

in the same way as before.

De�nition 2.1. An operator ! 2 P is called Gaussian if

8�2D �! 2 P =) � 2 P .

If ! is Gaussian then ! is primitive. In the commutative case, the
two properties are equivalent by Gauss’s lemma. It is known that
Gauss’s lemma does not hold in the non-commutative case, which
is illustrated in Example 2.3 below (see also [9, p. 27]).

An element ! =
Õ=
8=0 08 (G)g8 2 P corresponds to a recurrence

relation !(~ (G)) = 0, i.e.

0= (G)~ (G + =) + 0=�1 (G)~ (G + = � 1) + · · · + 00 (G)~ (G) = 0. (1)

So we can express ~ (A ) in terms of ~ (A � 1), . . . ,~ (A � =) where
A = G + =. The expression is not de�ned when A is a root of the
denominator, which is 0= (A � =). Hence we de�ne:

De�nition 2.2. Let ! =
Õ=
8=0 08 (G)g8 2 P be primitive. If 0= < 0

then de�ne ord(!) := = and let lc(!) be 0= (G � =) divided by its
leading coe�cient (to make it monic). The singularities of ! are the
monic irreducible factors of lc(!) in � [G] (or equivalently, their
roots in � ) with their multiplicities.

Example 2.3. Let

! = G2 (G2 + 1)g � (G + 1) (G2 + 2G + 2) 2 Q[G] [g] .
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Substituting G 7! G � ord(!) in the leading coe�cient we obtain
lc(!) = (G�1)2 ((G�1)2+1). With repetition indicating multiplicity,
the singularities are G � 1, G � 1, (G � 1)2 + 1, or equivalently 1, 1,
1 ±
p
�1. Let

� =
1

(G + 1)
�
G2 + 2G + 2

� (10g + 11G2 + 15G + 14) .

Then

�! = 10 (G + 1) g2+
⇣
11G3 � 18G2 + 35G � 50

⌘
g�11G2�15G�14,

so Gauss’s lemma does not hold for P ✓ D, since

Cont(�!) = Cont(!) = 1 < Cont(�).
Now lc(�!) = G + 1 � ord(�!) = G � 1 (we divided by 10 to make
it monic). Compared to !, the singularity (G � 1)2 + 1 disappeared,
as well as one of the two copies of G � 1.

L���� 2.4 ([9, T������ 4.1.7, C�������� 4.1.9] ). Let ! 2 P.
For : = 0, 1, 2, . . . let

I: = {0} [ {lc(�!) : � 2 D,�! 2 P, ord(�) = :} (2)

and let I1 be their union. Then I0 ✓ I1 ✓ I2 ✓ · · · ✓ I1 are ideals
in � [G].

P����. To show I: ✓ I:+1, take a non-zero 0 2 I: . So 0 =
lc(�!) for some� of order: . Replacing� by g� shows that0 2 I:+1.
Clearly I: is closed under � [G]-multiplication, and it is not di�cult
to show that it is closed under addition as well. ⇤

De�nition 2.5 (Essential parts, removable parts, [9, pp. 31-32]).
With notations as in Lemma 2.4, let lc: (!) be the monic generator
of I: for : = 0, 1, 2, . . . ,1. Call lc: (!) the essential part of the
leading coe�cient at order : . Note that lc0 (!) = lc(Prim(!)) and
lc; (!) divides lc: (!) if ; � : . Let rp: (!) = lc (!)

lc: (!) 2 � [G] and call
it the removable part of the leading coe�cient at order : .

Factors (or roots) of lc(!) are divided into two (possibly over-
lapping) sublists: Factors of lc1 (!) are the true singularities of !.
Factors of rp1 (!) are the removable singularities. In Example 2.3
the true singularity is G � 1 and the removable singularities are
G � 1, (G � 1)2 � 1.

De�nition 2.6. Let ! 2 P be primitive. We call � 2 D a desin-
gularizer if �! 2 P. Such � is said to be trivial if � 2 P (that
implies lc(!) | lc(�!), so no singularities were removed). A desin-
gularizer � is optimal at order : if lc(�!) = lc: (!) and ord(�)  : ;
when : = 1, we say � is optimal since it removes all removable
singularities while introducing no new singularities.

An optimal desingularizer at order : exists because I: is a prin-
cipal ideal; � [G] is a PID.

2.2 LCLM method for desingularization
Some algorithms for desingularizing linear recurrence operators can
be found in the literature such as [1, 2, 4, 5, 9, 15], where [1, 2, 4, 9]
aim for full desingularization and [15] focuses on desingularization
over ' [G] where ' is not a �eld. Here we describe the so-called
LCLM method, published in [5]. LCLM stands for the least common
left multiple and GCRD the greatest common right divisor. Themain
result of [5] is restated below, where we focus on the recurrence

case while the original version also applies to other types of Ore
operators.

T������ 2.7 (R������������ �� T������ 6 �� [5]). Suppose
! 2 P. Introduce new constants 20, 21, . . . , 2: that are algebraically
independent over � . Denote �̂ = � (20, 21, . . . , 2: ). Consider

!0 = Prim(LCLM(!, 20 + 21g + · · · + 2:g: )) 2 �̂ [G] [g] .
Then lc(!0) = lc: (!) 5 where 5 2 �̂ [G] has no non-trivial factor in
� [G].

The original form of Theorem 6 in [5] is:
Let @ be an irreducible polynomial which appears with multiplicity 4
in lc(!) and let<  4 be maximal such that @< | lc (!)

lc: (!) for : 2 N.
Let � = 20 + 21g + · · · + 2:g: in � (20, . . . , 2: ) [G] [g], where 20, . . . , 2:
are new constants that are algebraically independent over � . Denote
!0 = Prim(LCLM(!,�)). Then the multiplicity of @ in lc(!0) is 4�<.

The proof in [5] also holds when 4 = < = 0, which results in
Theorem 2.7. It was stated for the case char(� ) = 0, but the proof
is valid for positive characteristic as well.

R����� 1. Theorem 2.7 implies lc: (!) stays the same if! is viewed
as an operator in ⇢ (G) [g] where ⇢ is a �eld extension of � , as the �eld
extension does not a�ect !0 = Prim(LCLM(!, 20 + 21g + · · · + 2:g: )).

Theorem 2.7 implies the following desingularization algorithm.

Algorithm 1: LCLM_Method

Input :a primitive operator ! =
Õ=
8=0 08g

8 2 � [G] [g] and
positive integer :

Output : lc: (!)
1 � Õ:

8=0 28g
8 , where 20, 21, . . . , 2: are new constants that

are algebraically independent over � ;
2 !0  Prim(LCLM(�, !));
3 return gcd(lc(!), lc(!0));

The discussion following the main theorem in [5] states that in
characteristic 0, instead of new constants, we can let 20, 21, . . . , 2:
be random elements in � . In this case the algorithm is Monte-Carlo,
meaning it returns the desired result with a high probability. The
Monte-Carlo version is much faster since it avoids computations
in a transcendental extension of � . It was implemented ([14]) with
: = 1 by the second author in 2004.

We refer to the algorithm where : = 1 as order-1 LCLM method.
The Monte-Carlo version of order-1 LCLM method is useful in
practice since it strikes a good balance between bene�t and cost.
The LCLM computation is much faster for : = 1 than for larger : ,
and, in experiments, particularly section 5.2.2, lc1 (!) is often very
close to lc1 (!). We will further speed up the algorithm in Section 6.

2.3 p-Characteristic polynomial
From here until Section 6, � will be a �eld of characteristic ? , where
? is a prime number.

A general theory of linear di�erence equations in positive char-
acteristic is developed in [13, Chapter 5]. In [3], ?-characteristic
polynomials of recurrence operators (and di�erential operators)
over F? [G] are studied and an algorithm for computing them is
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given. An algorithm for computing ?-characteristic polynomials of
operators in Z[G] [g] for a number of ? is presented in [10], based
on the algorithm from [3]. We will give more information about
these algorithms in subsection 2.4.

Let / = G? � G = G (G + 1) · · · (G + ? � 1). A straight-forward
calculation shows / is �xed by g and hence elements in � (/ ) are
g-constants. In fact, � (/ ) is the �eld of g-constants; to see this,
notice that � (G) is a �eld extension of � (/ ) with [� (G) : � (/ )] = ?
which is a prime and hence there is no proper intermediate �eld.
(In general, if 5 2 � (G) � � , then [� (G) : � (5 )] is the maximum of
the degrees of the numerator and denominator of 5 .)

LetN : � (G) ! � (/ ) denote the normmap of the �eld extension
� (G)/� (/ ). It is given by the formula

N : 5 (G) 7! 5 (G) 5 (G + 1) · · · 5 (G + ? � 1) .
Denote) = g? . The center ofD is � (/ ) [) ]. Since � (G) [) ] ✓ D,

any D-module is naturally an � (G) [) ]-module, that is, an � (G)-
vector space equipped with an � (G)-linear map.

De�nition 2.8. For a D-module" , call the � (G)-linear map in-
duced by ) the ?-curvature of" .

For an operator ! 2 D, de�ne its ?-curvature to be that of
the D-module D/D!. Denote j (!) 2 � (G) [) ] its characteristic
polynomial with ) as the variable. Call j (!) the ?-characteristic
polynomial of !.

A characteristic polynomial is monic by de�nition so the lead-
ing coe�cient of ! is lost in j (!). To reinsert it, denote j̃ (!) =
N(lc(!))j (!). It is called the reduced norm of ! in [3].

L���� 2.9. Properties of ?-characteristic polynomials.
(i) For ! 2 D, j (!) 2 � (/ ) [) ].
(ii) For ! 2 D, j (!) 2 D!.
(iii) For !1, !2 2 D, j (!1!2) = j (!1)j (!2) and j̃ (!1!2) =

j̃ (!1) j̃ (!2).
(iv) For !1, !2 2 D, if GCRD(!1, !2) = 1, then

j (LCLM(!1, !2)) = j (!1)j (!2) .
(v) For ! 2 P, j̃ (!) 2 � [/ ] [) ] and deg/ ( j̃ (!))  degG (!).
(vi) If ! 2 � (/ ) [) ] then j̃ (!) = !? .

P����. All except item (iv) are proved in [3, Section 3] for the
case � = F? and the proofs are valid for a general �eld � with posi-
tive characteristic. We now prove (iv). Denote ! = LCLM(!1, !2). If
GCRD(!1, !2) = 1 thenD/D! � D/D!1�D/D!2 asD-modules
(and hence as � (G) [) ]-modules). Now (iv) follows from the fact that
characteristic polynomials are multiplicative on direct sums. ⇤

Lemma 2.9(iii) implies that an operator factors only when its
?-characteristic polynomial factors (as a polynomial in � (/ ) [) ]).
In fact, the ?-characteristic polynomial tells us even more. See [6]
and [12] for discussions on this topic in the di�erential case. The
?-characteristic polynomial is also useful for testing or proving
irreducibility of operators in Q(G) [g] by reduction modulo ? .

2.4 BCS algorithm and Pagès’ algorithm
Bostan, Caruso and Schost (2015) present an algorithm for comput-
ing the ?-characteristic polynomial of a linear recurrence operator
in F? [G] [g], called Xi_theta_d in [3, p. 7]. We refer to it as the

BCS algorithm. Their implementation in Magma is available at
https://github.com/schost.

The BCS algorithm takes a prime ? and a di�erence operator ! 2
F? [G] [g] as its input and computes j̃ (!) 2 F? [/ ] [) ] (making j̃ (!)
monic gives j (!)). The algorithm computes j̃ (!) in F? [[/ ]] [) ] to
precision $ (/degG (!)+1) which su�ces by Lemma 2.9(v).

For ! 2 P, the �rst part of Lemma 2.9(v) implies thatN(lc(!)) is
a denominator bound for j (!). The BCS algorithm uses this bound
to ensure that what it computes in F? [[/ ]] [) ] is in F? [/ ] [) ],
not just in F? (/ ) [) ]. We will show that (partial) desingularization
leads to sharper denominator bounds. That reduces the required
/ -adic precision, speeding up the computation. In fact, our main
result Theorem 3.1 says that full desingularization gives the exact
denominator.

For an operator ! 2 Q(G) [g], let j? (!) be the ?-characteristic
polynomial of its reduction modulo ? . Pagès (2021) gives an algo-
rithm for computing j? (!) for a number of primes at the same
time, in the case where ! 2 Z[G] [g] has a leading coe�cient in Z
([10, Algorithm 3]). The algorithm is based on the BCS algorithm.

3 MAIN THEOREM AND COROLLARIES
Again, in the Main Theorem, its proof and its applications, � is a
�eld of characteristic ? .

Let denom(·) be the monic denominator of a rational function,
or of a polynomial with rational function coe�cients. We will use
this notation in the cases � [G] ⇢ � (G) and � [/ ] [) ] ⇢ � (/ ) [) ].

T������ 3.1. For ! 2 � [G] [g], denom(j (!)) = N(lc1 (!)).
The theorem quickly implies two corollaries, expressed in terms

of the following de�nition.

De�nition 3.2. Let A1, A2 2 � (G) � {0}. We say that A1 and A2 are
shift equivalent, denoted A1 ⇠ A2, if g � A1

A2
has a non-zero solution

in � (G), in other words, if there exists 5 2 � (G) � {0} for which
A1
A2

= g (5 )
5 .

If A (G) has a factor @(G) in the numerator or denominator, and
one replaces @(G) by its shift @(G + 1), then the result is shift-
equivalent to A (G). Note that A1 ⇠ A2 if and only if N(A1) = N(A2).

C�������� 3.3. If D/D!1 � D/D!2 for !1, !2 2 D, then
lc1 (!1) and lc1 (!2) are shift equivalent, so !1 and !2 have the
same true singularities up to shifts.

C�������� 3.4. For !1, !2 2 D, if
• ! = !1!2, or
• ! = LCLM(!1, !2) and GCRD(!1, !2) = 1

then lc1 (!) and lc1 (!1)lc1 (!2) are shift equivalent.
We did not expect Theorem 3.1 because these corollaries do not

hold in characteristic 0:

Example 3.5. Let !1 = g � 1 2 Q(G) [g] and
! = !1G = g · G � G = (G + 1)g � G .

Then G is a true singularity by applying Lemma 4 in [4, p. 4]. How-
ever, neither !1 nor G has true singularities, which disproves the
analogue of Corollary 3.4 in characteristic 0. It is also a counter-
example to the analogue of Corollary 3.3 since D/D!1 � D/D!.
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Another potential application of Theorem 3.1 is testing full desin-
gularization; once we have j (!) for ! 2 � [G] [g], the shift equiva-
lence class of lc(!) is known.

4 PROOF OF THE MAIN THEOREM
This section is devoted to the proof of Theorem 3.1. We start with
an easy lemma.

L���� 4.1. For any �, ! 2 D
denom(j (�!)) = denom(j (�)) denom(j (!)) .

P����. Lemma 2.9(iii) and Gauss’s lemma for � (/ ) [) ] gives
Cont(j (�!)) = Cont(j (�))Cont(j (!)).

Notice that j (·) is monic by de�nition, and the denominator of a
monic polynomial is the reciprocal of the content. ⇤

4.1 Special case, Gaussian operators
Gaussian operators are de�ned in De�nition 2.1. In the following
lemma we characterize them in terms of desingularization. In fact,
Gaussian operators are exactly those that do not have any remov-
able singularities.

L���� 4.2. Let ! 2 P. The following are equivalent.
1. ! is Gaussian, i.e. 8�2D �! 2 P =) � 2 P.
2. Every desingularizer is trivial.
3. Cl(!) = P!, where Cl(!) := D!

—P. (This is called theWeyl
closure in [11].)

4. lc(!) = lc1 (!), i.e. there are no removable singularities.

P����. Items 2 and 3 are reformulations of item 1, and immedi-
ately imply item 4. It remains to show that item 4 implies item 1.
Suppose that lc(!) = lc1 (!) and �! 2 P. To prove: � 2 P.

By partial fraction decomposition, � = �1 + �2 where �1 2 P
and�2 =

Õ
@8g8 with the numerator of @8 having lower degree than

its denominator. Since �! and �1! are in P, their di�erence �2!
is in P as well. If �2 < 0, then the leading coe�cient of �2! will
have lower degree than lc(!), contradicting item 4. Thus �2 = 0
and hence � 2 P. ⇤

Lemma 2.9(v) says that j̃ (!) = N(lc(!))j (!) 2 � [/ ] [) ] when
! 2 P, in other words

denom(j (!)) | N (lc(!)) . (3)

Here we give a sharper denominator bound.

L���� 4.3. For ! 2 � [G] [g], denom(j (!)) | N (lc1 (!)).

P����. Let � 2 D be an optimal desingularizer of !, then
lc(�!) = lc1 (!). From Lemma 4.1 and Equation (3) applied to �!,
denom(j (!)) | denom(j (�!)) | N (lc(�!)) = N(lc1 (!)) . ⇤

Next we show that our denominator bound is exact for Gaussian
operators. The next section will prove the general case by exploiting
the fact that any operator has a Gaussian left multiple.

L���� 4.4. If ! 2 � [G] [g] is Gaussian, then
denom(j (!)) = N(lc1 (!)) .

P����. Denote 5 = Prim(j (!)) 2 � [/ ] [) ]. By Lemma 2.9(ii),
5 2 D! so there exists & 2 D such that

&! = 5 . (4)

In fact & 2 P since ! is Gaussian. Lemma 2.9(v) says j̃ (&), j̃ (!) 2
� [/ ] [) ]. Applying j̃ to Equation (4), and Lemma 2.9(vi), gives

j̃ (&) j̃ (!) = j̃ (5 ) = 5 ? . (5)

Now 5 ? 2 � [/ ] [) ] is primitive since 5 is primitive. Then Gauss’s
lemma implies j̃ (!) 2 � [/ ] [) ] is primitive. It follows that

denom(j (!)) = lc( j̃ (!)) = N(lc(!)) = N(lc1 (!))
where the last equality comes from Lemma 4.2, part 4. ⇤

4.2 Proof for the general case
L���� 4.5. Suppose ! 2 P and � =

Õ:
8=0

=8
38
g8 2 D is a desin-

gularizer of !, where =8
38
2 � (G) is in lowest terms for each 8 . Then

N(3: ) | N (rp1 (!)).

P����. Let = be the order of !. The de�nition of lc1 and the
product of the leading terms of � and ! gives

lc1 (!) | g�:�= (
=:
3:

)lc(!)

and hence g�:�= ( =:3: )rp1 (!) 2 � [G]. Since
=:
3:

is a reduced fraction,
we have g�:�= (3: ) | rp1 (!), which leads to

N(3: ) = N(g�:�= (3: )) | N (rp1 (!)).
⇤

L���� 4.6. Suppose ! 2 P and � 2 D is an optimal desingular-
izer of !. Then there exists a positive integer # such that

denom(j (�)) | (N (rp1 (!)))# .

P����. Write � =
Õ:
8=0

=8
38
g8 , where =8

38
2 � (G) is a reduced

fraction for each 8 . We deduce =: = 1,3: = g=+: (rp1 (!)) from
the fact that lc(�!) = lc1 (!). Clearly 3031 · · ·3:� 2 P. Then by
Equation (3) we have

denom(j (�)) | N (lc(3031 · · ·3:�)) = N(3031 · · ·3:�1) . (6)

Now we bound N(3 9 ) in terms of rp1 (!). Let

� 9 = 3:3:�1 · · ·3 9+1 (
9’

8=0

=8
38
g8 )

for 9 = 0, 1, . . . ,: � 1. Notice that

� 9 � 3:3:�1 · · ·3 9+1� = �3:3:�1 · · ·3 9+1 (
:’

8=9+1

=8
38
g8 ) 2 P .

This implies � 9! 2 P, or equivalently, � 9 is a desingularizer of !.
Apply Lemma 4.5 to � 9 :

N(denom(3:3:�1 · · ·3 9+1
= 9
3 9

)) | N (rp1 (!)).

Notice that

3 9 | 3:3:�1 · · ·3 9+1 · denom(3:3:�1 · · ·3 9+1
= 9
3 9

).
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Therefore

N(3 9 ) | N (3:3:�1 · · ·3 9+1) · N (rp1 (!)) .
Recall that N(3: ) | N (rp1 (!)). By downward induction on 9 , we
conclude that

N(3 9 ) | (N (rp1 (!))):�9+1

for 9 = 0, 1, 2, . . . ,: � 1. Then denom(j (�)) is bounded by a power
of rp1 (!) in terms of divisibility due to Equation 6.

⇤

We are now ready to �nish the proof of Theorem 3.1.

P���� �� T������ 3.1. It remains to show that N(lc1 (!)) |
denom(j (!)) for any ! 2 P. There exists a su�ciently large : such
that lc: (!) = lc1 (!). Introduce new constants 20, . . . , 2: that are
algebraically independent over � and denote ⇢ = � (20, 21, . . . , 2: ).
Let

!0 = Prim(LCLM(2:g: + · · · + 20, !)) 2 ⇢ [G] [g] .
Theorem 2.7 says lc(!0) = lc1 (!) 5 , where 5 2 ⇢ [G] has no non-
trivial factor in � [G]. It follows from De�nition 2.5 (see also Equa-
tion 2) that lc1 (!) | lc1 (!0) and hence rp1 (!0) | 5 . Remark 1
guarantees lc1 (!) does not change as we shift from � to ⇢. Let �
be an optimal desingularizer of !0. By Lemma 2.9 ((iii) and (iv)), we
have

j (�!0) = j (�)j (2:g: + · · · + 20)j (!). (7)
Since 20, . . . , 2: are g-constants, Lemma 2.9(v) implies

denom(j (2:g: + · · · + 20)) = 1.

Applying Lemma 4.1 to Equation (7) gives

denom(j (�!0)) = denom(j (�)) denom(j (!)) .
Since �!0 is Gaussian, we know from Lemma 4.4

denom(j (�!0)) = N(lc1 (�!0)),
which equals N(lc1 (!0)) since � is an optimal desingularizer of
!0. As a consequence,

N(lc1 (!)) | N (lc1 (!0)) = denom(j (�)) denom(j (!)) . (8)

Lemma 4.6 says denom(j (�)) is a factor of 5 # for some su�ciently
large # , so denom(j (�)) has no non-trivial factor in � [G]. By
taking only factors in � [G] in Equation 8, we obtain the desired
result N(lc1 (!)) | denom(j (!)) .

⇤

5 APPLICATION TO COMPUTATIONS
In this section � = F? .

5.1 Algorithm
Let ! 2 P and U = rp: (!). Theorem 3.1 implies that N(U), which
is in F? [/ ], is a factor of j̃ (!). Dividing this factor away reduces
the degree bound from Lemma 2.9(v) to

deg/ ( N (U)�1 j̃ (!) )  degG (!) � degG (U) (9)

which becomes an equality when : is su�ciently large. However,
we use : = 1 to minimize the time spent computing U . The reduced
degree bound allows us to recover j (!) from a lower precision
/ -adic expansion. That leads to the following algorithm.

Algorithm 2: Xi_p_desing
Input :prime ? and ! 2 F? [G] [g]
Output :Prim(j (!)) 2 F? [/ ] [) ]

1 Pick : � 1 and compute lc: (!) and U := rp: (!) 2 F? [G].
We use : = 1 to minimize the time spent in this step.

2 Compute N(U) 2 F? [/ ]. Let E be its / -adic valuation in
F? [[/ ]] and let V = /�EN(U) 2 F? [/ ].
For computing N(·) see Step 3 of Xi_theta_d in [3].

3 Let 31 = deg/ (V) and 3 := degG (!). Apply the BCS
algorithm with 3 replaced by 3 � 31 to ! to obtain j̃ (!) up
to the precision $ (/3�31+1). Denote the result by j1.

4 Compute V�1 in F? [[/ ]] up to $ (/3�31�E+1).
This can be done by applying the extended Euclidean
algorithm to V and /3�31�E+1.

5 Compute V�1 · (/�E j1) in F? [[/ ]] [) ] up to the precision
$ (/3�31�E+1). This gives N(U)�1j1 2 F? [/ ] [) ].
Return its primitive part (with respect to ) ).
Note: N(U)�1j1 and N(U)�1 j̃ (!) agree to precision
$ (/3�31�E+1) which su�ces by (9).

Step 3 is where we save CPU time over the original algorithm
from [3] if 31 > 0. If 31 = 0 then there is no improvement in
e�ciency. In this case one would expect our algorithm to be slower
due to some extra steps; however, as we will see in the following
section, the extra steps cost so little time that the time di�erence is
negligible.

5.2 Implementation and timings
Our Magma implementation of algorithm Xi_p_desing is available
at https://www.math.fsu.edu/~yzhou/desingandpcurv/pcurv/
Our experiments can also be found at this URL. Note: �rst load the
implementation of [3] at https://github.com/schost/pCurvature (�le
pCurvature.mgm).

5.2.1 OEIS operators. The following table presents the data of
our experiments on two operators from OEIS ([7], [8]). Here 31
is de�ned in the Step 3 of Xi_p_desing; each running time is the
average of ten runs.

OEIS index order G-degree 31 BCS Xi_p_desing

A151329 9 18 10 17.2s 9.6s
A002777 4 3 0 6.97s 7.01s
Table 1: Timings for operators from OEIS. ? = 27457.

For OEIS A002777, we expect Xi_p_desing to be slower than
BCS since31 = 0. However, as we can see from the table, the running
time di�erence between two algorithms is nearly unnoticeable,
which indicates that the attempted partial desingularization takes
relatively little time.

The question now is what to expect asymptotically for larger
examples? Should we expect small 31 (few removable singularities)
or high 31 (most singularities are removable)? The answer depends
on how the examples are constructed. For random operators 31 is
typically zero. However, random operators are unlikely to be useful.
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Order-degree curves [4] suggest that 31 is likely to be large for high
order operators coming from creative telescoping.

Chapter 6 in [17] gives a bound for the number of removable
singularities of right-factors. The bound can be large. Of course, the
mere fact that a bound can be high does not imply that the actual
number is also high, so we decided to test this experimentally by
taking LCLM’s of a sequence of operators with increasing orders
and degrees.

5.2.2 LCLM operators. We generate random operators

!1 =
#’
8=0

#’
9=0

08 9G
9g8 , !2 =

#’
8=0

#’
9=0

18 9G
9g8

where 08 9 ’s and 18 9 ’s are random non-zero integers (i.e., !1 and !2
are dense), and calculate the ? = 1987 characteristic polynomial of

! = Prim(LCLM(!1, !2)),
if its order does not drop modulo ? . Table 2 exhibits the results. In
the experiments, we observe that

ord(!) = 2# , degG (!) = 2# 2 + 2# , 31 = 2# 2 .

This suggests that high-order LCLM operators are likely to have
quadraticallymore removable singularities than true singularities. If
true, it would indicate an improvement that is more than a constant
factor. We hope to soon prove this using Chapter 6 in [17].

N 31 BCS Xi_p_desing

5 50 5.8s 1.7s
6 72 14.1s 3.7s
7 98 22.1s 4.9s
8 128 43.5s 8.6s
9 162 73.3s 14.4s
10 200 113.1s 18.2s

Table 2: Timings for LCLM operators.

6 FAST ALGORITHMS FOR
DESINGULARIZATION AT ORDER 1

Convention throughout this section: ! =
Õ=
8=0 08g

8 2 � [G] [g] is
the operator to be desingularized; 08 = 0 for 8 < 0 and 8 > =.

6.1 First algorithm
We present our �rst speedup of the order-1 LCLM method, which
is used in Step 1 of algorithm 2.

The order-1 LCLMmethod computes !0 = LCLM(!, g �2) where
2 is a new constant (or a random number in the Monte-Carlo ver-
sion). To speed this up, our idea is to obtain lc1 (!) while only
computing a portion of !0.

First we express !0 in terms of 2 and coe�cients of !. In fact,
!0 =

Õ=
8=0 2

8!8 , where

!8 = 08g! � g (08�1)! = (08g � g (08�1))!. (10)

Equation 10 Clearly this !0 is a left multiple of !. To verify it is
also a left-multiple of g � 2 , use the fact that the remainder of g8
right-divided by g � 2 is 28 . We skip the tedious computation. As a
result !0 is an LCLM of ! and g � 2 .

The order-1 LCLM method computes !0, which amounts to com-
puting all !8 ’s. The following proposition shows that one can prov-
ably obtain lc1 (!) from just a subset of the !8 ’s.

P���������� 6.1. Let!8 be de�ned by Equation 10.If {81, 82, . . . , 8: } ✓
{0, 1, 2, . . . ,:} such that

gcd(081 ,082 , . . . ,08: ) = 1, (11)

then
gcd(lc0 (!81 ), lc0 (!82 ), . . . , lc0 (!8: )) = lc1 (!) .

The proof will be given in the next section. Note that there
exist 81, 82, . . . , 8: satisfying the gcd condition (Equation 11) if and
only if ! is primitive. The proposition immediately gives rise to
algorithm 3.

Algorithm 3: lc1
Input :a primitive operator ! =

Õ=
8=0 08g

8 2 � [G] [g]
Output : lc1 (!)

1 Find � ⇢ {0, 1, . . . ,=} such that 08 < 0 for any 8 2 � and
gcd(08 | 8 2 � ) = 1. Note: the algorithm is still correct if we
allow 08 = 0 for 8 2 � , but that 8 is redundant since it does
not a�ect the gcd at all.

2 Compute !8 for 8 2 � by Equation 10.
3 Return gcd(lc0 (!8 ) : 8 2 � ).

R����� 2. Computing lc0 (!8 ) = lc(Prim(!8 )) is the most time-
consuming part in the algorithm, because !8 has twice the G-degree
as !.

6.2 Proof
Always assume ! =

Õ=
8=0 08g

8 2 � [G] [g] is primitive and !8 is
de�ned by Equation 10.

L���� 6.2. There exists 1 2 � [G] such that

Cont((g � 1)!) = g=+1 (rp1 (!)) .

P����. Let � 2 D be an optimal desingularizer of ! at order 1.
Then � = 1

31
g � =2

32
, where 31 = g=+1 (rp1 (!)) and =2

32
2 � (G) is a

reduced fraction. Let 1 = 31
=2
32
. Observe that

1! = g · ! � 31�! 2 P . (12)

Due to ! being primitive, 1 has to be a polynomial. Since � is
an optimal desingularizer of ! at order 1, �! 2 P is primitive;
otherwise dividing out the content of �! yields a more optimal
desingularizer. By rearranging Equation 12 we see that 1

31
(g�1)! =

�! is primitive, which completes the proof. ⇤

T������ 6.3. Let ⇠ = (20, 21, . . . , 2=+1) 2 �=+2. Denote

⇠1 =
=+1’
8=0

2808 , ⇠0 =
=+1’
8=0

28g (08�1), !0 = (⇠1g �⇠0)!.

Then
lc1 (!) | lc0 (!0) | g�=�1 (⇠1)lc1 (!) .
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P����. Assume ⇠1 < 0 since otherwise it is trivial.
The relation lc1 (!) | lc0 (!0) immediately follows from the def-

inition of lc1. By Lemma 6.2, there exists 1 2 � [G] such that
Cont((g � 1)!) = g=+1 (rp1 (!)). Since

(g � 1)! =
=+1’
8=0

(g (08�1) � 108 )g 9 ,

we have

gcd(g (08�1) � 108 | 9 = 0, 1, . . . ,= + 1) = g=+1 (rp1 (!)). (13)

Notice that
!0 = ⇠1 (g � 1)! + (1⇠1 �⇠0)!,

and in particular

1⇠1 �⇠0 =
=+1’
8=0

12808 �
=+1’
8=0

28g (08�1) =
=+1’
8=0

28 (108 � g (08�1))

is a multiple of g=+1 (rp1) due to Equation 13. Hence 1
g=+1 (rp1)

!0 2
� [G] [g] . When ⇠1 < 0,

lc( 1
g=+1 (rp1 (!))

!0) = 1
rp1 (!)

g�=�1 (⇠1)lc(!) = g�=�1 (⇠1)lc1 (!) .

Then we have

lc1 (!0) = lc(Prim(!0)) | lc( 1
g=+1 (rp1 (!))

!0) = g�=�1 (⇠1)lc1 (!) .

⇤

P���� �� P���������� 6.1. In Theorem 6.3, setting 28 = 1 for
some 8 and 2 9 = 0 for any 9 < 8 yields

lc1 (!) | lc0 (!8 ) | g�=�1 (08 )lc0 (!) .
The desired result follows immediately. ⇤

6.3 Desingularizing both leading and trailing
coe�cients with one !8

The variation in this section handles both leading and trailing
singularities using only one !8 (de�ned in Equation 10) without
checking the gcd condition (Equation 11). One goal of this variation
is to check if it further speeds up the desingularization algorithm.

In the algorithm, tc1 denotes the essential part of the trailing
coe�cient at order 1, which is the counterpart of lc1 for the leading
coe�cient.

Algorithm 4: lc1_tc1

Input :a primitive operator ! =
Õ=
8=0 08g

8 2 � [G] [g] with
000= < 0

Output :;, C 2 � [G] such that lc1 (!) | ; | lc(!) and
tc1 (!) | C | tc(!)

1 8  b=2 c
2 !8  (08g � g (08�1))!
3 ;, C  lc0 (!8 ), tc0 (!8 )
4 ;, C  gcd(g�= (0=), ;), gcd(00, C)
5 return ;, C

algorithms running time G-degree in output
Order-1 LCLM 1.191s 6

lc1 0.055s 6
lc1_tc1 0.092s 6

Table 3: Comparison of di�erent desingularization algo-
rithms

6.4 Examples and comparisons
We have implemented algorithm 3 and algorithm 4 in Maple and
SageMath, and done some experiments to compare the running
time of our algorithm with the order-1 LCLM method. All can be
found at [16]. Below we give an experiment we did in Maple.

Example 6.4. In this example the base �eld isQ. We took random
operators

!1 = (26G4 + 20)g11 � 96G3g9 + 64G5g8 + 45G11g4 � G2g3,
!2 = �55G3g7 + 85G3g4 + 64G4g3 + (�14G8 � 20G4)g + 79G,

and then computed

! = Prim(LCLM(!1, !2)).
The G-degree of ! is 109. We desingularize ! using three di�erent
algorithms. For the LCLMmethod we used the Monte-Carlo version
and randomly choose 2 = 7. The results are shown in the Table 3,
where each time is the average of ten runs.

7 FUTUREWORK
7.1 Application to Pagès’ algorithm
Pagès’ algorithm computes j? (!) for ! 2 Z[G] [g] with the re-
striction lc(!) 2 Z, but with minor adjustments it applies to all
recurrence operators in Z[G] [g]. We expect desingularization to be
bene�cial here as well.

7.2 Di�erential case
The desingularization improvement should also work for the dif-
ferential case or Ore operators. For a di�erential operator ! =Õ=
8=0 08 m

8 2 � [G] [m], we can write LCLM(!, g � 2) =
Õ=
8=0 2

8!8 ,
where

!8 = (08 m � (08�1 + 008 )) !.
We expect that there should also be a di�erential analog of our

main result, Theorem 3.1.
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