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ABSTRACT

Ultralight bosons are a proposed solution to outstanding problems in cosmology and particle physics:
they provide a dark-matter candidate while potentially explaining the strong charge-parity problem. If
they exist, ultralight bosons can interact with black holes through the superradiant instability. In this
work we explore the consequences of this instability on the evolution of hierarchical black holes within
dense stellar clusters. By reducing the spin of individual black holes, superradiance reduce the recoil
velocity of merging binary black holes, which, in turn, increases the retention fraction of hierarchical
merger remnants. We show that the existence of ultralight bosons with mass 2 x 107 < p/eV <
2 x 10713 would lead to an increased rate of hierarchical black hole mergers in nuclear star clusters.
An ultralight boson in this energy range would result in up to ~ 60% more present-day nuclear star
clusters supporting hierarchical growth. The presence of an ultralight boson can also double the rate of
intermediate mass black hole mergers to = 0.08 Gpc=2 yr~! in the local Universe. These results imply
that a select range of ultralight boson mass can have far-reaching consequences for the population of
black holes in dense stellar environments. Future studies into black hole cluster populations and the

spin distribution of hierarchically formed black holes will test this scenario.

1. INTRODUCTION

A number of extensions to the Standard Model
of particle physics propose the existence of a the-
oretical ultralight boson with a mass between p ~
10733 — 10719V (Arvanitaki et al. 2010; Arvanitaki &
Dubovsky 2011; Ringwald 2013). These particles can
provide solutions to outstanding problems in cosmology
and fundamental particle physics such as by being viable
candidates for dark matter (Jaeckel & Ringwald 2010;
Hui et al. 2017; Hu et al. 2000) or solving the strong
charge-parity problem (Peccei & Quinn 1977a,b; Wein-
berg 1978). While ultralight bosons are not expected
to strongly interact with particles from the Standard
Model (Dine et al. 1981; Shifman et al. 1980; Kim 1979),
the weak equivalence principle requires them to gravi-
tate in a similar manner to visible matter (Detweiler

1980).
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If an ultralight bosonic wave exists in the vicinity
of a spinning black hole, the wave can become gravi-
tationally bound to the black hole. The bosonic field
may be amplified by the extraction of rotational energy
from the black hole through a process known as su-
perradiance (Klein 1929; Dicke 1954; Zel’Dovich 1971,
1972; Press & Teukolsky 1972; Bekenstein 1973; Beken-
stein & Schiffer 1998; Brito et al. 2015, 2020). Super-
radiant amplification of the bosonic field can be unsta-
ble, leading to the exponential growth of the bosonic
wave (Press & Teukolsky 1972), forming a macroscopic
quantum object, or boson cloud (e.g., Balakumar et al.
2020). This superradiant instability occurs most rapidly
when the Compton wavelength of the particle is compa-
rable to the outer horizon radius of a spinning black
hole, and only ceases when the angular frequency of
the black hole’s rotation equals the frequency of the
bosonic wave (Arvanitaki et al. 2010; Bekenstein 1973;
Brito et al. 2015; Bekenstein & Schiffer 1998). The final
astrophysical system, following unstable black hole su-
perradiance, is a lighter black hole with a reduced spin,
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surrounded by a macroscopic boson cloud (Brito et al.
2017a). This matter configuration can also lead to long-
lasting, nearly monochromatic gravitational-wave radi-
ation from the rotation of the boson cloud-black hole
system (Yoshino & Kodama 2014), often referred to as
a continuous gravitational-wave signal.

Directed searches for continuous waves from ultralight
boson clouds around black hole merger remnants have
not yet been undertaken because the signal is likely too
weak to observe with current observatories (Isi et al.
2019; Sun et al. 2020). Nonetheless, non-detections of an
incoherent stochastic background from the continuous-
wave emission have placed tentative constraints on bo-
son masses of (2-3.8) x 10713 eV given particular as-
sumptions about the black hole formation spin distribu-
tion (Tsukada et al. 2019; Brito et al. 2017b; Tsukada
et al. 2021).

Furthermore, by studying the spins of the population
of resolved binary black hole (BBH) mergers, constraints
exclude boson masses between (1.3 — 2.7) x 10713 eV
assuming negligible boson self-interactions (Ng et al.
2021a,b). Other observations of black holes such as the
recent images of M87* from the Event Horizon Tele-
scope (Akiyama et al. 2019; Davoudiasl & Denton 2019),
and radial velocity and photometric data from Cygnus
X-1 (Iorio 2008; Orosz et al. 2011; Reid et al. 2011; Mid-
dleton 2016; Isi et al. 2019) have excluded the presence
of ultralight bosons in different regions of the boson
mass parameter space. Ultimately, there is no strong
evidence yet for either the existence or absence of ultra-
light bosons.

A population of low-spin black holes produced by su-
perradiance would have wide-ranging astrophysical con-
sequences. In dense stellar environments, such as nu-
clear star clusters or globular clusters, low-spin, first-
generation (1G) black holes can merge hierarchically
to form second-generation (2G) black holes (Zwart &
McMillan 2000; Miller & Lauburg 2009; Downing et al.
2010; Rodriguez et al. 2015, 2016, 2018; Antonini & Ra-
sio 2016; Petrovich & Antonini 2017; Fragione & Koc-
sis 2018; Antonini et al. 2019; Arca-Sedda & Gualan-
dris 2018; Kremer et al. 2020a). By decreasing black-
hole spins through superradiance, the gravitational-
wave recoil velocities are reduced (Campanelli et al.
2006, 2007a,b; Gonzélez et al. 2007b,a; Lousto et al.
2010; Lousto & Zlochower 2013; Varma et al. 2019).
Lower recoil velocities lead to a higher retention frac-
tion of binary black hole merger remnants (Merritt et al.
2004; Varma et al. 2020), and subsequent enhancement
of hierarchical black hole growth as a result (Antonini
et al. 2019; Rodriguez et al. 2018, 2019).

The remainder of the manuscript is structured as fol-
lows. In Sec. 2, we discuss the theory of black hole
superradiance in the context of scalar bosons and its
impact on individual black holes.! We summarize our
semi-analytic model for studying black hole mergers in
dense star clusters (based on Antonini et al. 2019), in
Sec. 3. We present results from cluster simulations in re-
lation to both individual clusters and the population as
a whole in Sec. 4. Finally, we outline the implications of
superradiance for recently observed black hole mergers,
and the possibility for the detection of ultralight bosons
in this boson mass regime in Sec. 5.

2. BLACK HOLE SUPERRADIANCE

In this section we summarize the key expressions
from Brito et al. (2020) to provide the relevant the-
ory for including the effects of ultralight bosons in clus-
ter simulations. We work with the analytic approxi-
mations for the evolution of boson clouds around spin-
ning black holes (Ternov et al. 1978; Detweiler 1980;
Baryakhtar et al. 2017), as opposed to the coupled dif-
ferential equations governing the black hole-boson cloud
system assuming quasi-adiabatic evolution (Brito et al.
2015). Though these approximations are accurate in the
limit o < 0.1, the errors are insignificant when extrapo-
lated (Pani et al. 2012).

2.1. The superradiant condition

The superradiant condition is simply that the boson’s
angular frequency, w = p/h, must satisfy (Bekenstein
1973; Brito et al. 2020)

3

1 X
2GM 14T
where m is the magnetic quantum number correspond-
ing to a specific boson cloud mode and gy is the angu-
lar frequency of the black hole’s outer horizon (Teukol-
sky 2015). Furthermore, the black hole’s angular fre-
quency is a function of the its mass, M, dimensionless
spin, x, and dimensionless outer radius, 7y = ry /rpg =
1++4/1 — x2, where rgy = GM/C2 where the characteris-
tic black hole length scale which is half the Schwarzschild
radius. The energy eigenstates of the boson cloud take
a similar form to those of a hydrogen atom, and are
denoted by radial n, orbital [/, and magnetic quantum
numbers (Ternov et al. 1978; Detweiler 1980).

(1)

w
7<QBHE
m

L We focus on scalar (spin-0) bosons (Damour et al. 1976; Ternov
et al. 1978; Detweiler 1980; Yoshino & Kodama 2014). How-
ever, the general conclusions can be applied to spin-1 (East 2017;
Frolov et al. 2018; Siemonsen & East 2020) and spin-2 (de Rham
2014; Hinterbichler 2012) bosons if efficient black hole spindown
is possible.
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To highlight this comparison, we define the effective
fine-structure constant for the “black hole atom” as the
ratio of the characteristic length scale to the boson’s
Compton wavelength, X = he/p,

TBH GMp

o= —

A hed 2)

Large values of « lead to significant growth of the boson
cloud. If the inequality in Eq. (1) is satisfied, the bo-
son cloud extracts rotational energy from the black hole,
leading it to spin down. Unstable growth of the boson
cloud ceases when the angular frequency of the bosonic
wave equals mSlgy.

In order to incorporate the effect of superradiance, we
compute the final mass and spin of a black hole accord-
ing to Eq. (1) (Isi et al. 2019; Brito et al. 2017a),

My~ M (1 22X, (3)

m
4o rm
! (4)

X = TaZ e
Here the subscripts ¢ and f refer to the initial and final
states of the boson cloud-black hole system, respectively,
if the boson cloud is given enough time to saturate a
given mode. However, the cloud saturates fully only if
A ~ rgg. Otherwise the cloud does not grow appreciably
during the lifetime of the black hole.

2.2. Superradiance timescales and evolution

The occupation number of a given energy state grows
exponentially at the rate (Ternov et al. 1978; Detweiler
1980; Baryakhtar et al. 2017),

Fjlmn ~ 2042j+2l+577+ (mQBH - W)lemna (5)
where Cjjp,y is a dimensionless factor dependent on the
quantum state inhabited by the ultralight bosons, and
j is the total angular momentum quantum number. In

the case of scalar ultralight bosons, j = [, and (Ternov
et al. 1978; Detweiler 1980)

2y 0
Jjlmn (l+n+1)21+4n! (2l)!<2l+1>!
2

l
< T (k20 -2 + 4%;omBH ~w)?). (6)
k=1

The growth rate of the occupation number can be used
to approximate the timescale for the size of the cloud
to grow by one e-fold, often known as the instability
timescale.

Typically, the size of the boson cloud saturates at
~ 180 e-folds of the instability timescale (cf. Eq. 14

from Baryakhtar et al. 2017), which we use to com-
pute an approximate growth timescale around a black
hole (Arvanitaki & Dubovsky 2011; Arvanitaki et al.
2010; Baryakhtar et al. 2017; Ng et al. 2021a),

(scalar) 180
: N —. 7
gtmn Fjlrrm ( )
The growth timescale scales as

) o Mo, ®)

where it is clear that when a < 0.1, the instability
growth rate is greatly reduced (Brito et al. 2015).

Finally, due to the greatly differing timescales between
states, the mode which determines the final spin of the
black hole is the mode with the lowest final spin that
grows within the age of the black hole, or evolution
timescale, Tevol (e.g. see Fig. 1 in Ng et al. (2021a),
Fig. 3 in Baryakhtar et al. (2017)). Motivated by the
strong fine-structure constant dependence, and the asso-
ciated strong mass dependence, the quasi-adiabatic dif-
ferential equations governing the evolution of the black
hole-boson cloud system can be largely ignored. We
consider a black hole to have undergone superradiance
only if its age exceeds the growth timescale of the fastest
growing mode. For the remainder of this manuscript, we
focus on the first three [ = m = 1,2,3, n = 0, states.

An important corollary of Egs. (4)—(7) is that there are
regions of the mass-spin parameter space, also known as
the Regge plane, where a black hole cannot exist if an
ultralight boson is present (Brito et al. 2015, 2017a; Ar-
vanitaki & Dubovsky 2011). These ezclusion regions are
strongly dependent of the boson’s mass and the evolu-
tion timescale of the black hole population. In Fig. 1,
we present the exclusion regions as governed by the first
three | = m =1,2,3, n = 0 energy eigenstates over the
black hole mass range relevant for hierarchical growth
from stellar mass black holes. Each m corresponds to
a particular “bump” in the excluded region, with the
m = 1 mode contributing at lower black hole masses.
Furthermore, increasing the evolution timescale of the
systems results in the growth of boson clouds around
lower mass black holes.

3. SEMI-ANALYTIC CLUSTER MODEL

To model the evolution of dense stellar clusters such
as nuclear star clusters, we follow Antonini et al. (2019)
which applies Hénon’s principle (Hénon 1975) to sim-
ulate the evolution of dense stellar environments. In
this section, we briefly summarize the key components
of the cluster model and the evolution of the cluster’s
black hole population. Please refer to App. A for the
full details of the model.
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Figure 1. Exclusion regions for black holes in the presence of three different scalar ultralight bosons, with masses 107'3,
3x107"% and 107 eV (cf. Fig 1 from Brito et al. 2017a). The darker-coloured regions bounded by the solid curves correspond
to black hole mass-spin parameter space within which any black hole would be spun down via superradiance after Teyo1 = 10 Myr.
Since binary black hole merger delay time distribution has little support for systems merging within 10 Myr of formation (e.g.
Britt et al. 2021), we expect all black holes to allow for superradiant cloud growth for at least 10 Myr. Therefore, the observation
of a black hole within the darker region of the parameter space can rule out some range of boson mass. The lighter region
bounded by the dashed curves corresponds to when the black holes are given 10 Gyr to evolve.

3.1. Ewolution of cluster properties density, pn o,
To model the global properties of a cluster, we assume

the heating rate from black hole binaries in the core

Foy ~ 2.3 x10° Mg, (km s~ )2 Myr— M2/ p2r8
of the cluster balances the energy flow into the whole

5 P50 (12a)
Teno ~ 7.5 Myr Msps o/, (12b)
cluster, known as Hénon’s principle (Hénon 1961, 1975; '
~ 50km s~' M3t/ (12¢)
Gieles et al. 2011; Breen & Heggie 2013; Kremer et al. Vesc,0 = mn s 5 P50 ¢
2019). The half-mass radius, heating rate, and escape

velocity of the cluster evolve as where Ms = Mo /10° Mg and ps,0 = pn,o/10” Mo pe™?,
and pp, = 3My/ 8mry3. All the quantities are dependent
on only the initial density of the cluster and the cluster

mass.
_ 2/3
() =m0 <§M + 1) / , (9) 3.2. FEwvolving the black hole population
TA\2 T

3C(t— t ) 573 Within our cluster model, we must first create a first
E (t) = o (5—0 + 1) , (10) generation black hole population. First generation black
Trh,0 s holes’ masses are assumed to follow the inferred POWER
Vese () = Vesc.o (g C(i;SO) 4 1) _ (11) Law + PEAK model (Talbot & Thrane 2018) from

the second gravitational-wave transient catalog from the
LIGO/Virgo Collaboration (Abbott et al. 2020a), with
an additional strict mass cut-off at 45 M. This model is
a combination of a power-law describing low mass black

Here t¢ is the time at which the first black holes begin holes, and a Gaussian peak at higher masses motivated

to heat the cluster, and ¢ ~ 0.1 (Gieles et al. 2011;

Alexander & Gieles 2012) is a dimensionless factor. The
initial half-mass radius, heating rate and escape velocity
are dependent only on the cluster mass, M and initial

by the prediction of a pair-instability supernova upper
mass-gap precluding the formation of black holes with
masses between ~ 45 Mg and ~ 130 My (Barkat et al.
1967; Fryer et al. 2001; Heger & Woosley 2002; Belczyn-
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ski et al. 2016; Spera & Mapelli 2017; Stevenson et al.
2019).

All 1G black holes are considered to be initially non-
spinning, motivated by studies which indicate that iso-
lated black holes are likely to form with small spins
(x £0.01) (Fuller & Ma 2019). The total mass of the
first generation black holes within the cluster is fixed
to 2% of the cluster mass (Lockmann et al. 2010; An-
tonini et al. 2019; Kremer et al. 2020b). Additionally,
each black hole is initialized with a natal supernova kick
velocity (Hobbs et al. 2005; Fryer & Kalogera 2001),
though this has a minimal effect on the initial popula-
tion. Finally, the black holes are deposited within the
cluster at the initial half mass radius, r, 0. Each black
hole is expected to settle within the core of the cluster
on the dynamical friction timescale, 74¢(7h,0, to) (Binney
& Tremaine 2011),

7% Vese (1)

Tdf(T, t) ~ 0346m,

(13)
where In A ~ 10 and assumes the King (1966) cluster
model to relate the cluster’s velocity dispersion to escape
velocity.

Once the first black holes settle within the cluster’s
core, a black hole binary might form through dynamical
three-body interactions (Ivanova et al. 2005; Morscher
et al. 2015; Park et al. 2017). We let only one black hole
binary exist at any one time such that it dominates the
heating of cluster. The binary is formed according to
a mass distribution given by oc (M; + M)* (O’Leary
et al. 2016). The required heating rate of the cluster is
balanced with the loss of energy from the binary in the
core of the cluster (Antonini et al. 2019; Kremer et al.
2019). The timescale during which dynamical interac-
tions dominate the energy flow of the cluster is given by

GM;1 M,

20,

Tdyn = E_l(t)’ (14)
where a,, = max(acj, agw). Here aej is the binary sep-
aration at which the binary is ejected, and agw is the
separation at which gravitational-wave radiation dom-
inates. Since we are focusing on denser stellar envi-
ronments, the majority of binary systems are likely to
merge within the cluster rather can be ejected. The
ejection of the interloper black holes is also incorpo-
rated (see App. A.3). We calculate the separation at
which gravitational-wave radiation dominates by equat-
ing the separation evolution due to dynamical interac-
tions and gravitational-wave emission (Peters 1964). We
compute the timescale for the binary to merge due to
gravitational-wave radiation as Taw = am/|agw|. At
this point in the binary’s evolution, we modify the black

holes” masses and spins according to Egs. (4) and (3) to
incorporate the effects of superradiance, ensuring each
black hole’s age exceeds to the growth timescale of the
boson cloud.

3.3. Black hole merger remnants

A vital component to the semi-analytic model is the
computation of the black hole merger remnant prop-
erties. In particular, due to the conservation of lin-
ear momentum, the final remnant black hole receives
a kick from the anisotropic emission of gravitational
waves (Campanelli et al. 2006, 2007a,b; Gonzélez et al.
2007b,a; Lousto et al. 2010; Lousto & Zlochower 2013;
Varma et al. 2019; Merritt et al. 2004; Varma et al.
2020). This recoil velocity, vg, determines whether the
remnant remains in the core, is ejected from the core and
has to settle through dynamical friction, or is ejected
from the cluster entirely. We utilize the PRECESSION
code (Gerosa & Kesden 2016) to determine the final
mass (Barausse et al. 2012), spin (Barausse & Rezzolla
2009), and recoil velocity of the remnant black hole. The
details of the calculation of the recoil velocity are out-
lined in App. B.

The salient features of the recoil velocity calculation
for the study of hierarchical mergers arise from black
hole binary spins and mass ratios. It has been found
that the largest kicks are typically a result of special spin
configurations known as superkicks (Campanelli et al.
2007a; Gonzdlez et al. 2007a) and hang-up kicks (Lousto
& Zlochower 2011, 2013). These spin configurations can
lead to recoil velocities up to ~ 5000 kms—!. Conversely,
non-spinning binaries typically lead to the smallest recoil
velocities. For example, the largest recoil velocity a non-
spinning binary can produce is only ~ 170kms~! for
q ~ 1/3 (Gonzélez et al. 2007b). In order to quantify
the binary’s total spin and explore its contribution to
hierarchical mergers, we introduce a mass-weighted spin
magnitude,

MEx1 + M3y

o) X1+ ¢*x2 _
(My + My)?

(1+q)*

(15)

After calculating the properties of the merger rem-
nant, we determine if or where it should be re-introduced
into the black hole population. If the recoil velocity ex-
ceeds the escape velocity of the cluster at the time of the
IETZEr, Uk > Vesc(tmerge), then the remnant is ejected
from the cluster. Alternatively, if vi < Vesc(tmerge), the
remnant is retained and placed at a radius (Antonini
et al. 2019)

vi (¢
Tin &~ Th(tmerge>\/(v2 ebC( merge) g — 1. (16)

esc (tmerge) - vk)
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If "in < Th(tmerger)/10, & conservative estimate of the
core radius (Hurley 2007; Madrid et al. 2012), then the
remnant black hole remains in the core. Otherwise, the
binary must first settle in the core due to dynamical
friction (cf. Eq. (13)). After the merger remnant has
either been ejected (over a period 7qyn) or retained (over
a period of Tqyn+7Gw) either in the core or in the cluster,
we repeat process outlined above by generating a new
black hole binary to support the heating rate condition.
The simulation is concluded when either only one black
hole remains, too few black holes remain for dynamical
hardening, or 13 Gyr have passed.

4. RESULTS

We create a grid of ~ 1800 simulations in the space of
cluster mass M, initial density py 0, and boson mass p.
We select log-uniformly spaced cluster masses between
105 and 2 x 10® M, initial densities between 103 and
10" Mg, pc™3, and boson masses between 5 x 1071° and
5 x 10713 eV. We run the simulations with and without
ultralight bosons.?

4.1. Individual cluster simulations

In Fig. 2 we plot the total mass of the binary black
hole system as a function of the coalescence time. These
merger evolution tracks are plotted for four different ul-
tralight boson masses (and for the case of no ultralight
boson) using two different initial cluster densities. The
shape of the points contained to retained (blue square)
or ejected (red cross) binary systems. Different initial
densities lead to different escape velocities and dynam-
ical friction timescales. The denser cluster (left), with
an initial density of pno = 1.9 x 105 Mg pc3, has an
initial escape velocity of vesc,0 = 391.8 km s~1. Whereas,
the less dense cluster (right) only has an initial escape
velocity of vVesc,0 = 224.2kms™ .

There are two distinct epochs during a black hole pop-
ulation’s evolution in a cluster. Initially, the black hole
population undergoes random, dynamical interactions
which lead to mergers and formation of 2G or third-
generation (3G) black holes. Since the black hole bina-
ries formed early within the cluster have similar total
masses, the chance any two black holes become a bi-
nary is small, though heavier black holes are slightly
more likely to form binaries (O’Leary et al. 2016). This
epoch is categorized by remnant masses typically less
than ~ 200 Mg in the early cluster evolution. Even-
tually, however, one black hole tends to become suffi-

2 For each point in the grid, we run 30 sub-simulations to average

over random fluctuations.

ciently massive to dominate, leading to the second evo-
lutionary phase. Since the heavy black hole will pri-
marily form binaries with much smaller black holes,
the resulting small mass ratio can lead to significantly
reduced gravitational-wave recoil velocities (Gonzélez
et al. 2007b). This black hole therefore seeds hierar-
chical growth in the cluster. This period of evolution is
seen by a track of increasing total binary mass with the
merger coalescence time in Fig. 2.

In the left column of Fig. 2, we show the binary black
hole mergers which occurr in a cluster simulation with
Mg = 1.1 x 10" Mg and pno = 1.9 x 106 Mgpe™3. We
see that all simulations are able to support hierarchical
black hole growth. However, the existence of ultralight
boson at some masses can change the time at which hi-
erarchical growth starts to occur. This is due to the
spin down of 2G+1G and 2G+2G generation black hole
mergers (cf. Fig. 1) when bosons of masses ~ 2x 10714 —
2x 1073 eV exist helping retain more merger remnants.
By retaining more massive black holes, the formation of
a hierarchical black hole seed is more likely to occur ear-
lier in the simulation. The simulation result in the top
panel (p = 7.6 x 1071° eV) is similar to the case when no
ultralight boson exists because the boson cloud instabil-
ity growth rate is significantly reduced for stellar mass
black holes. However, there is some indication of spin-
down from superradiance in the high mass, hierarchical
growth regime.

On the right of Fig. 2, we show the results from a
cluster with My = 1.1 x 10" Mg and pho = 6.6 x
10* My pc=3.  Only one particular ultralight boson,
with a mass of © = 4.1 x 107" eV, can facilitate hi-
erarchical black hole growth. The clear difference be-
tween this simulation and the remaining four is that
the binary systems with a total mass ~ 80 — 200 Mg
have mass-weighted spins (x) < 0.15. The impor-
tant result from these individual simulations is
that the presence of ultralight bosons can im-
pact what cluster properties support hierarchical
growth. For the remainder of the manuscript, we use
the scenario where p = 4.1 x 10~ eV as our best-case
scenario example.

In Fig. 3, we plot the distributions of the binary
black hole merger properties for all 2G+2G and 2G+1G
mergers for cluster simulations presented in Fig. 2. We
use the full set of 30 simulations for each set of initial
cluster parameters, and show the distributions for the
p=41x10"eV, 2.2x 10713 eV and no ultralight bo-
son simulations. The left plot shows the distributions in
the case where all clusters lead to hierarchical growth.
The bulk of the kick velocity distributions lay below the
initial escape velocity, vesc,0, Of the cluster. Crucially,
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Figure 2. Total binary black hole merger mass versus the coalescence time of the merger from simulations with M. =
1.1 x 107 Mg and two different initial densities. From top to bottom, each row is an increasingly large boson mass except the
bottom row, which shows the results when no boson is present. The two columns show how the results change for different initial
densities. The shape of the points corresponds to whether the merger remnant was ejected (red cross) or retained (blue square).
Two distinct phases of dynamical interactions and hierarchical black hole growth are present. The denser cluster (left) allows
for all clusters to dynamically form heavy black holes (M > 103 Mg). The inclusion of ultralight bosons with u = 4.1 x 107 eV
leads to hierarchical black hole growth in less dense cluster where growth does not occur under normal circumstances (right).
The fractions of simulations leading to hierarchical black hole growth (fuier) are also stated.
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in the 4 = 4.1 x 10~ eV results (orange), we see two
spin populations corresponding to systems which have
undergone substantial superradiance ({x) < 0.15), and
a population which has not ({x) ~ 0.3-0.45). The low-
spin population is entirely retained within the cluster.

In the right panel, only the p = 4.1 x 107'4eV
(orange) distribution corresponds to a system capable
of hierarchical growth. In these results, the majority
of black holes are spun down to the low-spin popula-
tion, and are still retained. Conversely, in the cases of
p = 2.2 x 1073 eV and no ultralight boson, the black
holes are not spun-down enough to reduce the veloc-
ity distribution significantly. Therefore the majority of
second-generation black holes are ejected upon merging
with another black hole.

4.2. Hierarchical growth in present-day clusters

For each set of simulations with a given ultralight bo-
son mass and cluster properties, we compute the fraction
of the repeated 30 simulations which result in the for-
mation of a black hole with a mass > 1000 M@3. We
denote this fraction fiier (Antonini et al. 2019). We use
fhier as a proxy for the fraction of simulations leading
to hierarchical growth within the cluster. We compute
the region within which more than 50% of the simula-
tions for a given initial effective radius Reg and clus-
ter mass undergo hierarchical growth, i.e., fpier > 0.5.
We compare the region of the effective radius-cluster
mass (Rer — M) parameter space where clusters sup-
port hierarchical growth with a population of globular
clusters (Baumgardt et al. 2019) and nuclear star clus-
ters (Georgiev et al. 2016). For the nuclear star cluster
population, we plot the 152 nuclear star clusters with
cluster mass uncertainty less than an order of magni-
tude, and effective radius estimates with only positive
radius support. However, we use the full population of
228 nuclear star clusters from (Georgiev et al. 2016) in
future calculations. These results are presented in Fig. 4
for p = 4.1 x 107 eV (orange), as well as simulations
where no ultralight boson is present (hatched blue).

The lower right region, corresponding to denser and
heavier clusters, unsurprisingly supports hierarchical
growth. Our bounds are similar to those presented in
Antonini et al. (2019) for the scenario with no ultra-
light boson, though here we empirically compute the re-
gion of parameter space supporting hierarchical growth.
The inclusion of superradiance extends the region within

3 This threshold is somewhat arbitrary, as we still compute similar
fractions when considering a mass threshold as low as ~ 400 M.
This is because once a ~ 400 M ® black hole is formed, hierarchi-
cal growth almost always follows.

which hierarchical growth is supported further into the
astrophysical population of clusters, though it still does
not permit hierarchical growth in globular clusters. Im-
portantly, the orange contour includes a higher percent-
age of the nuclear star cluster population. Furthermore,
the highlighted contour region only corresponds to the
initial conditions, whereas it is inevitable that the clus-
ters have evolved since their formation. To illustrate
this, we evolve clusters with initial conditions along the
contour to an age of 10 Gyr, shown by the dashed curves
in Fig. 4. A larger proportion of the nuclear star clus-
ter population is contained under this contour. How-
ever, given that the age of present-day clusters is not
well known, it is difficult to interpret whether hierarchi-
cal growth might have previously occurred in observed
clusters.

In order to interpret the significance of the differ-
ence between the hierarchical growth regions for sim-
ulations with and without superradiance, we compute
the fraction of nuclear star clusters from Georgiev
et al. (2016), which presently would support hierarchi-
cal growth, fnsc, i.e., those nuclear star clusters that
lie within the contours in Fig. 4. See App. C for de-
tails about the calculation and uncertainty estimation.
As an example, for the contours presented in Fig. 4,
the fraction of present-day NSCs which can sustain hi-
erarchical growth is &~ 4.5% in the absence of ultralight
bosons and = 7% in the presence of a boson with a
mass of = 4.1 x 1071*eV. The fraction in the absence
of ultralight bosons is less than the value presented in
Antonini et al. (2019) (fnsc ~ 10%) as we empirically
generate the contour from simulations, as well as explic-
itly integrate under it to calculate fysc. The values of
fnsc for different boson masses are presented in Fig. 5.
The fraction peaks at p ~ 4.1 x 10714 eV, corresponding
to a &~ 60% increase in the number of clusters capable
of supporting hierarchical growth presently. There is
also an increased number of clusters currently capable
of supporting hierarchical growth if bosons with masses
pe~2x 107 — 2 x 107 eV exist.

4.3. Synthetic present-day black-hole population

To understand the distribution of binary black hole
mergers in present-day clusters, we generate a synthetic
population, which we evolve to a similar state as the
observed population. We generate cluster masses from
log,o(Ma/Mg) ~ N (1 = 6.3,0 = 0.8) and initial den-
sities from log(pn,0/Me pc™3) ~ N(u = 4.5,0 = 1.5).
Each cluster is evolved to an age drawn at random from
logyo(tage/Gyr) ~ N (1 = 0.31,0 = 1). These distribu-
tions are chosen such that the evolved population visu-
ally appears similar to the observed nuclear star cluster
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for all binaries forming a third generation (3G) black hole, two second generation black holes (2G+2G) and second generation
and first generation (2G+1G) merger events. The black lines corresponds to the initial escape velocity of the cluster, vesc,o.
The distributions correspond to six panels in Fig. 2, when p = 4.1 x 107*, 2.2 x 107 *® eV and no ultralight boson is present.
Of these ultralight boson masses, only u = 4.1 x 107** eV (orange) facilitates hierarchical black hole growth in both example
clusters considered. Therefore, black holes spinning down due to superradiance directly leads to a higher retention fraction of
black holes and consequently a higher chance of hierarchical growth.

properties from Georgiev et al. (2016). We evolve 4.8 x
10% clusters with properties drawn randomly from these
distributions, for scenarios where y = 4.1 x 10~ eV
and no ultralight boson exists. The final merger is then
included in the merger population. The individual black
hole properties from both scenarios, along with the spin-
down limits set by g = 4.1 x 107'*eV, are shown in
Fig. 6. The densities of the merger fraction, f,,, in mass
and spin are also presented.

From the one-dimensional marginal distributions, the
inclusion of superradiance from bosons with p = 4.1 x
10~ eV clearly leads to an enhancement of the number
of black holes with masses above 100 Mg in the popula-
tion of merging binary systems. Furthermore, a distinct
2G population with spins ~ 0.7 is observed. This is
present regardless of the presence of the ultralight bo-
son, as the majority of black holes in this population
are not old enough to undergo any significant superra-
diant boson cloud growth. Additionally, the superradi-
ant instability leads to a strong correlation between the
black hole spin and mass in the mass range from ~ 80—
300 My, as the black holes are maximally spun down
through the formation of a boson cloud. Finally, there
is a trend of reduced spins as the black holes become

heavier. This is due to the fact that these black holes
are formed through high mass ratio mergers, which typ-
ically reduce the spin of the merger remnant. This is
present in both scenarios.

5. IMPLICATIONS

The process of black-hole superradiance can increase
the number of nuclear star clusters where hierarchical
black hole growth occurs while impacting the black hole
merger population. The signature of this distinct popu-
lation may be detectable by gravitational-wave detectors
such as Advanced LIGO (Aasi et al. 2015) and Advanced
Virgo (Acernese et al. 2014; Abbott et al. 2020b,c,d).

5.1. Gravitational-wave source population

In Fig. 7, we plot the mass-spin distribution while
taking into account gravitational-wave detector selec-
tion biases. The primary black hole mass-spin 1o and
20 two-dimensional credible intervals for GW190412,
GW190517, and GW190521, as well as the sec-
ondary black hole intervals for GW190521 are also
shown (shown as dashed contours, Abbott et al.
2020d,b,c).
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Figure 4. Effective radius (Reg) — cluster mass (M) pa-
rameter space that can support hierarchical growth, and
present-day populations for globular clusters (Baumgardt
et al. 2019) and nuclear star clusters (Georgiev et al. 2016).
The solid orange and hatched blue contours correspond to
the regions of the parameter-space where more than 50% of
cluster simulations at a given point can support hierarchical
growth if 4 = 4.1 x 107'* eV or if no ultralight boson exists,
respectively. We assume the effective radius is approximately
given by the half-mass radius as Res =~ 0.75r,. Any observed
cluster within this contour is capable of undergoing hierar-
chical black hole growth now or in the future. The dashed
contours indicate the evolved state of the bounded region af-
ter 10 Gyr. A cluster under the dashed contours might have
supported hierarchical growth in the two scenarios.

By comparing the gravitational-wave detection-
weighted binary black hole populations, we see a num-
ber of distinct features. First, the observed population
is restricted to black holes with individual masses ~ 5—
200 M. These selection biases are well-known and con-
sistent between both scenarios presented here (Messen-
ger & Veitch 2013; Farr 2019). Additionally, the black
hole mass-spin correlation is still observable in the pop-
ulation in the presence of ultralight bosons. Finally,
there is an increase in the number of heavier black hole
detections in the ultralight boson scenario. To quan-
tify the increased number of heavier black-hole merg-
ers populations, we compute the merger rates of both
the total population, R, as well as the intermediate
mass (100 < M/Mg < 1000) population; please refer
to App. D for the details. We summarize the merger
rates calculated and present the observed rates (Abbott
et al. 2020c,a, 2021) in Tab. 5.1. The values calculated
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Figure 5. The fraction (and 30 uncertainty) of observed
nuclear star clusters capable of supporting present-day hi-
erarchical black hole growth under the assumption of the
existence of different ultralight bosons. The fraction is com-
puted from the expression in Eq. (C24), using contours such
as those presented in Fig. 4. In the absence of ultralight
bosons, we find only = 4.5% of observed nuclear star clus-
ters from (Georgiev et al. 2016) can support hierarchical
growth (black interval shown), whereas bosons with masses
of g ~2x1071 —2x 1073 eV lead to an increased fraction
(shown in orange).

in the absence of ultralight bosons are consistent with
the results from Antonini et al. (2019).

From these calculations, nuclear star clusters, regard-
less of whether superradiance occurs, cannot explain the
total observed merger rate from gravitational-wave de-
tectors (Abbott et al. 2020d). This result is expected,
and it is anticipated that field binaries and/or dynam-
ical mergers in globular clusters can explain the bulk
of the observed binary black hole mergers (Dominik
et al. 2013; Neijssel et al. 2019; Eldridge et al. 2019;
Mapelli et al. 2020; Santoliquido et al. 2020; Kremer
et al. 2020b; Zevin et al. 2021; Wong et al. 2021; Ro-
driguez et al. 2021). However, the inclusion of superradi-
ance leads to a doubling of the merger rate of intermedi-
ate mass black-hole mergers to ~ 0.08 f,ypn Gpe ™2 yr—!
for = 4.1 x 10~'* eV bosons. Both inferred values of
Rivmu are consistent with the single-event merger rate
determined for GW190521 (Abbott et al. 2020c, 2021).
Future gravitational-wave observations of heavy mass
binary black hole systems will continue to reduce the
uncertainty in the merger rate of these heavier systems.

Finally, within our simulated population, the inter-
pretations of gravitational-wave observations remain un-
changed in the presence of ultralight bosons. For
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Table 1. Total and intermediate mass black hole merger rates from observations of gravitational waves from stellar mass
black hole mergers (Abbott et al. 2020c,a, 2021) compared to the calculated merger rates from our simulated population
(with 68% credible intervals). The observed intermediate mass black hole merger rate is a single-event rate determined from
GW190521 (Abbott et al. 2020c, 2021). While the total merger rate cannot be justified by hierarchical mergers in nuclear star
clusters, the observed rate of intermediate mass mergers might be explained by such events. The inclusion of superradiance due
to the existence of bosons with = 4.1 x 107 eV leads to a doubling in the intermediate mass black hole merger rate for our
simulated population. Here, fumpu corresponds to the fraction of galaxies without a central massive black hole.
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Figure 6. Distribution of the masses and spins of simu-
lated merging black hole populations within a model cluster
population visually matching the observed nuclear star clus-
ter population from Georgiev et al. (2016) after evolution,
with either an ultralight boson of mass u = 4.1 x 107 '* eV
or no ultralight boson. The red curves correspond to the
Tevol = 10 Myr (solid) and 7Tevor = 10 Gyr (dashed) spindown
exclusion limits when p = 4.1 x 107 eV. With the inclu-
sion of ultralight bosons with p = 4.1 x 107 ** eV, there is
an increased number of heavy black holes in the merging
population as a direct result of more clusters being able to
facilitate hierarchical growth.

GW190521 (Abbott et al. 2020b,¢), we conclude that the
system is likely a 2G+2G binary black hole merger (dis-
cussed in Kimball et al. 2020; Romero-Shaw et al.
2020; Gayathri et al. 2020). Recently, Ng et al.
(2021b) confirmed that the primary black holes from
GW190412 (Abbott et al. 2020e) and GW190517 (Ab-
bott et al. 2020d) exclude non-self-interacting ultra-
light scalar bosons with masses 1.3 — 2.7 x 10713 eV.

From our simulations, we suspect GW190517 might be
a 2G+1G merger too light to be spun-down through su-
perradiance. This is tentatively supported by the results
from Kimball et al. (2020). GW190412 is inconsistent
with our simulated population irrespective of the pres-
ence of ultralight bosons — likely a direct result of our
mass cut-off or spin distribution used. We can neverthe-
less interpret GW190412 as a direct result of hierarchical
and/or dynamical formation (as in Abbott et al. 2020e;
Safarzadeh & Hotokezaka 2020; Rodriguez et al. 2020;
Zevin et al. 2020; Gerosa et al. 2020). For the most im-
pactful boson masses from our analysis, GW190412 and
GW190517 do not provide any information about their
presence.

5.2. Detectability

Currently, the existence of ultralight bosons is purely
hypothetical. In the mass range we are focused on in
this manuscript, p ~ 2 x 10714 — 2 x 1073 eV, their
detection would likely be made by gravitational-wave
detectors via either the direct observation of continu-
ous gravitational waves, as a stochastic background, or
as a feature of the population (Isi et al. 2019; Ng et al.
2021a,b; Tsukada et al. 2019; Sun et al. 2020; Brito et al.
2017b; Tsukada et al. 2021). Other ultralight boson
searches would likely cover a different boson mass range,
which impact black holes of different masses. The de-
tection of ultralight bosons in this energy range is likely
only possible with future generations of gravitational-
wave detectors (Isi et al. 2019; Sun et al. 2020). Isi
et al. (2019) found that the horizon distance for continu-
ous gravitational-wave emission from boson clouds with
masses 10714 — 10713 eV is < 100 Mpc for aLIGO detec-
tors (Aasi et al. 2015). Third-generation gravitational-
wave detectors such as Cosmic Explorer (Reitze et al.
2019) or Einstein Telescope (Maggiore et al. 2020) would
be able to detect continuous gravitational-wave emis-
sion from the desired ultralight bosons out to a horizon
of ~ 1Gpc. Analysing the mass-spin distributions of
the stellar mass black holes may be a more successful
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Figure 7. Simulated binary black hole merger population weighted by their detection probability by a single design sensitivity
aLIGO detector (Aasi et al. 2015) for the p = 4.1 x 10~ eV or no ultralight boson scenarios. The 1o and 20 credible intervals
inferred for the primary black hole properties from GW190412 (Abbott et al. 2020e), GW190517 (Abbott et al. 2020d), and
GW190521 (Abbott et al. 2020b,c) are shown as solid contours. The properties of GW190521’s secondary black hole is given by
the dashed contours. The existence of a p = 4.1 x 107'* eV ultralight boson would lead to an enhancement of heavier binary
systems with lower spins. Currently observations from gravitational waves cannot rule out the existence of ultralight bosons in

the mass range 10714 — 10713 eV.

method for indirectly determining the existence of ul-
tralight bosons (Ng et al. 2021a,b). Ng et al. (2021a)
found that 25772 or 8072° gravitational-wave detec-
tions with signal-to-noise ratios exceeding 30 were re-
quired to determine the presence of ultralight bosons
with g = 10713 eV, for two fiducial first-generation spin
distributions. It is unlikely that these detection num-
bers can be applied to a ~ 107'*eV boson detection
prediction. While current ground-based observatories
provide ultralight boson detection opportunities from
nearby known black holes, future gravitational-wave de-
tectors provide a significantly greater chance.
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A. CLUSTER PROPERTIES UNDER HENON’S PRINCIPLE

A.1. Cluster evolution

Using Hénon’s principle, the heating rate from binary black hole systems in the core of the cluster is balanced against
the energy flow into the cluster as a whole (Hénon 1961, 1975; Gieles et al. 2011; Breen & Heggie 2013). The rate of
energy generation, F, is therefore directly related to the properties of the cluster,

|E|

b= (A1)

where E ~ —0.2GM?2/ry is the total energy of the cluster, M, is the cluster mass, ), is the half-mass radius,
¢ ~ 0.1 (Gieles et al. 2011; Alexander & Gieles 2012) is a dimensionless factor, and 7,5, is the relaxation timescale of
the cluster which can be approximated as (Spitzer & Hart 1971; Antonini et al. 2019)

Mory? 1
G (m)yInA’

Trh = 0.138 (A2)
Here, (m,) is the mean stellar and compact object mass within the cluster and In A ~ 10 is the Coulomb logarithm.
The factor 1 is related to the distribution of masses within the half-mass radius and approximated in Spitzer & Hart
(1971) as ¥ = (m?25)/(m.)*>. For the remainder of the manuscript, we follow Antonini et al. (2019) and assume
low-mass stars dominate the mass distribution of the cluster, such that (m.) = 0.6 My, and ¢ ~ 5.

Finally, by defining the half-mass density, pp = 3M./ 87,3, and escape velocity, Vese o< v/ Ml /Th, We can express
the initial heating rate, relaxation time, and escape velocity at ¢ = ty uniquely in terms of the initial cluster density
and its mass. From Eqgs. (A1) and (A2) (Antonini et al. 2019),

Ey ~ 2.3 x 10° M, (km s71)? Myr_lMg/gpg,/g, (A3a)
Tino = 7.5 Myr Msps o/, (A3b)
Vesc,0 = 50km 571 M2 /0, (A3c)

where M5 = M.1/10° Mg and ps 9 = pn,o/10° Mg pc=3. Here, ty corresponds to the time at which the first black hole
binaries begin to heat the cluster (i.e. when they have entered the cluster’s core) (Breen & Heggie 2013). Furthermore,
we have implicitly assumed that mass loss of the cluster is a negligible contribution to the evolution of the cluster.
Below, we explicitly require a constant M in the calculation of the cluster model’s evolution. The proportionality
constant for the initial escape velocity is derived from the King (1966) cluster model with Wy = 7, where W, is
the central value of the dimensionless form of the cluster’s gravitational potential, uniquely describing the potential’s
shape. This model is used throughout for the calculation of the dynamical features of the clusters.

To derive the time dependence of the cluster properties, we assume no mass loss (constant M) and that the cluster
is always in virial equilibrium. Under these assumptions, the rate of expansion of the cluster is related to the heating
rate as (Hénon 1965)

o B¢ (A4)
Th |E| Trh
following Eq. (Al). Fixing the cluster mass, we have 7, ri/ ? and solve Eq. (A4) for the time evolution of the

half-mass radius from g,
3¢(t—to 2/3
ra(t) = rh,o(fu +1) 7, (A5)
2 Tmo
when t > ty. When t < g, the cluster has not yet extracted energy from the binary population and is assumed to have
the initial half-mass radius. Eq. (A5) can be directly substituted into the expressions for the heating rate and escape

velocity to find

. . _ —5/3
B(t) = Fo (%C“—h“ 1) " (A6)
d
an B §C(t—t0) —-1/3
Uesc(t) - vesc,() (2 Toho + 1) . (A7>
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A.2. Binary black hole evolution

After a binary black hole system has formed, the system undergoes dynamical hardening (Leigh et al. 2018). This
process tightens the binary orbit while heating the cluster via Hénon’s principle (Hénon 1975). This implies that the
rate of energy loss from the binary is approximately equal to the heating rate of the cluster in Eq. (A1),

E(t) ~ 7Ebin~ (AS)
The total energy of the binary during the process of dynamical hardening is

GM, M,

Ein:_ )
b 2a

(A9)
where a is the semimajor axis of the binary’s orbit. Therefore, differentiating both sides of Eq. (A9) and applying
Eq. (A8) to express the semimajor axis evolution of the binary as a function of the heating rate of the cluster leads
to (Antonini et al. 2019)
2a>

- GM M,
We integrate this expression with respect to the semimajor axis from the initial semimajor axis of formation, ap,
to the minimum semimajor axis for which dynamical hardening dominates, a.,. The heating rate is assumed to be
approximately constant over the binary’s evolution. This defines the timescale of dynamical hardening for a binary to

be
@ GMyMs - GMiMsy . _
Tdyn = —/a ﬁE H(t) da ~ #E L), (A11)

a= E(t). (A10)

where we have used the fact that aj, > a,, as seen in Eq. (14).
The lower bound semimajor axis, a,,, is given by

Ay, = max(aej, acw), (A12)

where aej is the semimajor axis for which the binary system is ejected from the cluster through binary-single interac-
tions, and agw is the semimajor axis at which the energy loss from dynamical hardening is equal to the energy loss
from gravitational-wave emission. If the semimajor axis of the binary decreases below a.j, then the binary is ejected
from the cluster prior to merging (Quinlan 1996; Miller & Hamilton 2002; Miller & Lauburg 2009). The value of ae;
is given by (Antonini & Rasio 2016)
MMy g3
Mg v3.(t)’
where Mjo3 = My + Mo+ (M )core is the average total mass of the binary-single interaction, and g3 = (M) core/(M1+M3)
is the mass ratio of the interaction. Since we do not track the individual trajectories and interactions within the cluster,
we use the average black hole mass in the core (excluding the binary), (M)core, to calculate ae;.

If agw > aej, the binary will merge within the cluster. Due to the massive and dense clusters considered in
this manuscript, this occurs for almost all binaries. The evolution of the semimajor axis through gravitational-wave
emission is given by (Peters 1964)

Gej >~ 0.2 (A13)

|65 GBMy My(My + M)

aGW = 4 C5a3(1 _ 62)7/2 g(e)? (A14>
where, e is the eccentricity of the binary, and
73 37
=1+ —e*+ —eh. Al5
o) =1+ e+ T (A1)
By equating Eqgs. (A10) and (A14), solving for a leads to the expression (Antonini et al. 2019)
5 32GTMPME (M + Ms)g(e) EL). (A16)

aaw = 5 (1 — e2)7/2

For every binary formed, we generate an eccentricity from the thermal eccentricity distribution o e (Jeans 1919). The
timescale for gravitational-wave emission from the binary is then given by 7aw = a./|agw]|. Just prior to merger, the
effects of superradiance on the individual black holes are incorporated.
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A.3. Interloper ejection

Although it is very unlikely that the binary system is ejected from binary-single interactions, this is not the case for
interlopers. To account for this, the expected number of ejected interlopers as (Antonini et al. 2019)

~ ej
Nej =6 hl(q?,%)’ (A17)
where the interloper mass ratio, g3, is calculated from the mean mass of black holes in the core. With the approximate
number of ejected black hole interlopers calculated, we discard Nej black holes randomly. Generally, this process would
favor the ejection of low mass black holes. However, given that the majority of black holes in the cluster are from the
first generation, this averaged procedure does not change the expected results. The key difference with the inclusion of
interloper ejection is a restriction on the upper mass of the black hole formed through hierarchical black hole mergers.
Since this process removes a fraction of black holes from the cluster, in some simulations this limits the available black
holes for hierarchical growth.

B. RECOIL VELOCITY CALCULATION

We utilize the PRECESSION code (Gerosa & Kesden 2016) to determine the final recoil velocity of the remnant black
hole. The kick velocity fitting formula are constructed from mass weighted spin vector combinations (Gerosa & Kesden
2016),

_ X1S1 - QXQS'2

A TTa , (B18)
~ Xlgl + q2X25'2

where x1,2 are the spin magnitudes of the individual black holes, 5’1,2 are their associated unit vectors, and ¢ = Ms/M;
is the mass ratio. These vectors can also be decomposed into the components parallel and orthogonal to the orbital
angular momentum, L, given as | = X - L oy, =|xx f/\, A=A L oand A, = |A X L.

The formulation of the final magnitude of the kick velocity of the black hole, vy, is constructed from the recoil
velocities from mass, vy, and spin, v, and v, asymmetries in the binary system. The velocity component from
mass asymmetry lies perpendicular to the orbital angular momentum vector, whereas the spin component has some
contribution both parallel to the vector, and in the orbital plane of the binary. This leads to the simple expression for
the magnitude of the kick velocity (Campanelli et al. 2007a),

Vg = \/v?n + 20051 cos B+ v2 | + v? (B20)

s||?

where [ is the angle between the components from mass and spin asymmetry orthogonal to the orbital angular
momentum. Each of the individual terms in Eq. (B20) has been determined through analytical fits to numerical
relativity simulations. The velocity components vy,, vy, and v are calculated as

Uy, = AUQ%_T_Z(l + Bn), (B21)
vs1 = Hn? Ay, (B22)
vg = 160°[AL (Vir + 2Vax) + 4VaX| + 8Vexi)

+2X1LA)(Cy +2C3x))] cos O, (B23)

where 7 = My Ms/(M; + M5)?, and the coefficients have been found through fitting to numerical relativity simulations:
A =12 x 10*kms™!, B = —0.93 (Gonzdlez et al. 2007b), H = 6.9 x 103kms~! (Lousto & Zlochower 2008),
Vi1 = 3677.76kms™!, V4 = 2481.21kms™ !, Vg = 1792.45kms™ !, Vo = 1506.52km s~ (Lousto et al. 2012), Cy =
1140kms~!, C3 = 2481 kms~! (Lousto & Zlochower 2013), and 8 = 145° (Lousto & Zlochower 2008). Finally,
O is the angle between A x L and the infall direction of the black holes at merger, with an additional offset of
~ 200° (Briigmann et al. 2008; Lousto & Zlochower 2009). This angle is assumed to be uniformly distributed from 0
to m (Gerosa & Kesden 2016), and is therefore drawn at random for each merger calculation.
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C. CALCULATING THE FRACTION OF HIERARCHICAL-GROWTH SUPPORTED CLUSTERS

We use Monte Carlo integration to determine the fraction of the individual nuclear star cluster property distributions,
Di(Regt, M), contained within the contour (which itself has uncertainty), where i indexes the cluster. To estimate the
uncertainty on the contours, the uncertainty on the fraction of simulations that demonstrate hierarchical growth must
first be calculated. By assuming the fraction follows a binomial distribution, the uncertainty on fyjer is estimated with
a Wilson score interval (Wilson 1927). The median and confidence interval are fit with a generalized extreme value
(GEV) distribution following Possolo et al. (2019). This allows us to draw 1000 possible fractions at each point in the
parameter space, from which we create 1000 possible hierarchical growth contours. We fit the Nygsc = 228 nuclear
star cluster properties (Georgiev et al. 2016) with GEV distributions (Possolo et al. 2019) as an approximation for
pi(Refr, M) to generate N, = 4 x 10% plausible (Res, M) values for each cluster. We compute the integral as

Nnsc
fNSC,j = pz R, cl (Reffv Cl) dR.gdM
N sc

Nnsc Np

w, >N e(REE MG, (C24)

=1 k=1

stc,‘ ~
/ NNSC

where O (R;f; , M ) evaluates to one for a point within the j*, fuier > 50% contour, and zero otherwise. The value
of fnsc is taken as the median from the distribution fxsc,;, with an uncertainty set by the distribution.

D. CALCULATING MERGER RATES

From the synthetic population presented in Sec. 4.3, the merger rate is estimated following Antonini et al. (2019) as

N
dNgx fomBH = 1

R ~
dV. Nnsc

(D25)

i—1 Tdyn,i7
where dNgy/ dV, = 0.01 Mpc=2 (Conselice et al. 2005) is the number density of nucleated galaxies, and fympn is the
fraction of galaxies without a central massive black hole. For each nuclear star cluster, we compute the reciprocal of
the binary formation timescale, T4yn, as an approximate for the rate of binary mergers within the cluster, since a single
binary dominates the cluster evolution at any one time. Here, f,vpn is kept as a parameter in the expression as its
value is somewhat unconstrained, though expected to be ~ 0.2 — 1 (Seth et al. 2008; Antonini et al. 2015; Nguyen
et al. 2018). Furthermore, the merger rate for which at least one member of the binary is within the black hole mass
range 102 Mo < M < 103 My, is calculated as

dNgy fomBH NNZS:C O(10% < M, /My < 10%)

D26
dV. Nnsc ’ (D26)

RivBH ~ -
dyn,i

i=1
where ©(10% < M ;/Mg < 103) evaluates to one when the condition is satisfied and zero otherwise. This mass-range
corresponds to the lower end of the intermediate mass black hole (IMBH) range (e.g., Greene et al. 2020). The merger
remnant (and possibly also the primary black hole) for GW190521 lies conclusively within this range (Abbott et al.
2020b,c). The calculation in Eq. D26 can be compared to the observed IMBH merger rates.
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