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Abstract

Context Landscape ecologists have long realized
the importance of scale when studying spatial pat-
terns and the need for a science of scaling. Remotely
sensed data, a key component of a landscape ecolo-
gist’s toolbox used to study spatial patterns, often
requires scaling to meet study requirements.
Objectives This paper reviews methods for scal-
ing remote sensing-based data, with a specific focus
on spatial pattern analysis, and distills the numer-
ous approaches based on data type. It also discusses
knowledge gaps and future directions.
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Methods Key papers were identified through a
systematic review of the literature. Trends, develop-
ments, and key methods for scaling remotely sensed
data and spatial products derived from these data
were identified and synthesized to detail the gen-
eral progression of a science of scaling in landscape
ecology.

Results Upscaling both continuous and categorical
data can oversimplify data, creating challenges for
spatial pattern analysis. Object-based and neighbor-
hood approaches can help, and since patch boundaries
are more likely to align with objects than pixels, these
may be better options for landscape ecologists. Many
downscaling methods exist, but these approaches
are not being widely employed for spatial pattern
analysis.

Conclusions A diverse range of scaling methods are
available to landscape ecologists, but work remains
to integrate them into spatial pattern analysis. Mov-
ing forward, advances in computer science and engi-
neering should be explored and cross-disciplinary
research encouraged to further the science of scaling
remotely sensed data.
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Fig. 1 Selected milestones contributing to the progression of
the science of scaling. Milestones are grouped under founda-
tional work and reviews, technological landmarks and events,
and scaling methods. These milestones are not intended to
be all-inclusive. IALE-North America—North American
Regional Association of the International Association for

Introduction

Spatial pattern analysis is a cornerstone of landscape
ecology that has fostered unprecedented develop-
ments in both theory and practice (Wu et al. 2002).
The wide availability of remote sensing data, par-
ticularly with the opening of the archives such as
Landsat (Zhu et al. 2019), has made it increasingly
easy for researchers to quantify spatial patterns in
landscapes (Frazier and Kedron 2017). However, the
remote sensing data that form the basis for many spa-
tial pattern analyses are captured at a fixed resolution,
prompting researchers to change the scale (resolution)
of the data in order to match observational or mod-
eling objectives.

Ecologists have long recognized the biases asso-
ciated with translating information across scales
(Meentemeyer and Box 1987; Turner et al. 1989a, b;
Levin 1992; Jelinski and Wu 1996), and much work
in landscape ecology has focused on how chang-
ing the scale of a dataset (grain and extent) impacts
derived spatial patterns, using both categorical
(Turner et al. 1989b; Saura 2004; Wu 2004) and con-
tinuous data (Frazier 2016). Findings have shown that
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landscape pattern analysis is highly sensitive to grain,
or spatial resolution (Turner et al. 1989a, b; Wu et al.
2002; Hall et al. 2004; Wu 2004), and a mismatch
between the grain of the process and the pattern may
produce incorrect conclusions (Galpern and Manseau
2013). Foundational, theoretical work (e.g.,(Allen
and Starr 1982; Turner et al. 1989a; Wiens 1989;
Levin 1992)) along with technological advances
including the Landsat missions starting in 1972 and
ArcGIS Desktop in the late 1990s, allowed for many
different methods for scaling spatial data to emerge
(Fig. 1). These and other studies promoted scaling
issues to the front of the research agenda in landscape
ecology through the 1990s and early 2000s, prompt-
ing Wu and Hobbs (2002) to identify scaling as one
of the top research priorities for the discipline, and it
continues to be an important topic in the field (Lang
2008; Zhang et al. 2014; Chambers et al. 2016; Ke
et al. 2017; Li et al. 2017; Kedron et al. 2018; Lang
et al. 2019).

However, despite recognition of the importance of
scale and a plethora of studies testing the impacts of
scale on spatial patterns, questions persist about which
methods to use in different contexts (Ge et al. 2019),
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particularly for the remote sensing (and remote sensing-
derived) data on which many spatial pattern analyses
rest. When data that have been scaled are subsequently
used for spatial pattern analysis, it adds an additional
layer of complexity (loss of rare land cover types, sen-
sitivity of patterns to grain size, etc.). Even with gradi-
ent surface models (McGarigal et al. 2009) and hybrid
approaches to characterize landscapes, measuring
landscape patterns that accurately characterize ecologi-
cal processes at multiple scales continues to challenge
landscape ecologists.

With the increased volume of remote sensing data
being produced daily and the growing need to rescale
these data for modeling in landscape ecology, it is an
opportune time to review the choices for scaling and
how those choices impact subsequent analyses. The
objective of this review is to survey methods for scal-
ing remotely sensed data for spatial pattern analysis
with a specific focus on two broad categories of scal-
ing: upscaling and downscaling. Within each of those
categories, we detail methods for scaling the two data
types most commonly used in spatial pattern analyses:
continuous data and discrete/categorical data. Through
a systematic review of the literature, we summarize
the trends and developments used within the discipline
for scaling data for spatial pattern analysis. Key papers
were identified for this article through a systematic
review of the literature using keywords and keyword
combinations such as, “scaling”+"technique”, “scal-
ing”+“remote sensing,” “downscaling,” “upscaling”
and others. Journal databases including Landscape
Ecology, Remote Sensing of Environment, International
Journal of Remote Sensing, the ISPRS Journal of Pho-
togrammetry and Remote Sensing as well as Google
Scholar were all exhaustively searched until relevant
papers were no longer identified. Scaling techniques
were categorized and theoretical and methodological
developments, persistent issues, and gaps were identi-
fied from roughly 200 core papers. We synthesize scal-
ing options and develop a conceptual decision tree for
researchers. Finally, we propose future research direc-
tions and highlight other disciplines that landscape
ecologists might consult when seeking to scale data.
We begin by clarifying scale concepts and defining how
we use the terms ‘scale’ and ‘scaling’ in this review.
For the sake of brevity, we have chosen to use the term
remote sensing to also include remote sensing-derived
datasets.

Scale concepts and terminology
Definitions and term usage

Across the sciences, the term “scale” has been used to
describe many similar but subtly different concepts.
Schneider (2009) notes the Oxford English Diction-
ary offers 15 different definitions of scale. The term
is used several different ways even within ecology
and landscape ecology, and these variations compli-
cate discussions (Wu 2007). Therefore it is important
to define the terms as they are used in each situa-
tion (Schneider 2009). Here, we use the term ‘“scale”
to refer to the spatial scale of a measured variable,
which determines the minimum resolvable area, or
resolution. The term “fine scale” is used to refer to
detailed maps and “coarse scale” for maps with larger
pixel sizes and/or less detail.

A distinction must also be made between the terms
“scale” and “scaling”. To “scale” something is the
verb form and means to change the size while main-
taining the same proportions. This verb form is often
referred to as “scaling”, which should not be confused
with the term scaling as it is used in the physical sci-
ences to describe a manifestation of the underlying
dynamics and geometry relating key processes over
broad ranges (Brown et al. 2004). Hereafter, we adopt
the first definition and define scaling as a change of
the spatial size of the measurement unit. We focus
specifically on spatial scaling while recognizing that
temporal, and organizational scaling are important
concepts in landscape ecology. We are interested in
the observational scale, which is the scale at which
measurements are made or sampling is conducted
and is distinct from intrinsic scale, which is the scale
at which a pattern or process operates. We focus on
scaling remotely sensed data, and do not review other
geospatial data as they fall outside the scope.

General methods and data types

Methods for scaling remotely sensed data are gener-
ally classified as either “upscaling” or “downscaling”
(Fig. 2). Upscaling involves coarsening the resolution
by aggregating a larger number of smaller units into
a smaller number of larger units. Upscaling assumes
the existence of an aggregate property. Downscaling
involves disaggregating data from a larger unit into
multiple smaller units to make the resolution finer.
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Fig. 2 A schematic of upscaling and downscaling with exam-
ples of feature scales, typical imagery and data types for rep-
resentation, and common metrics extracted from the data.
ASTER Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer, AVHRR Advanced Very High Resolution

Detection and Ranging, LISS Linear Imaging Self Scanning,
MERIS Medium Resolution Imaging Spectrometer, MODIS
Moderate Resolution Imaging Spectroradiometer, SRTM Shut-
tle Radar Topography Mission, and VIRS Visible Infrared
Imaging Radiometer Suite

Radiometer, DEM Digital Elevation Model, LiDAR Light
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Both upscaling and downscaling are commonly per-
formed using remote sensing-based data to change
the scale for analysis. Some researchers also recog-
nize a third category —sidescaling— in which the reso-
lution is maintained (Ge et al. 2019). Sidescaling is
typically employed when obtaining area-to-area pre-
dictions and is not discussed further in this review.
For both upscaling and downscaling, the type of
data being scaled determines which methods are
appropriate. Two data types are commonly used for
spatial pattern analysis in landscape ecology. The
first type is continuous data, such as remote sensing
reflectance values, vegetation indices, or digital ele-
vation models (DEMs). These data vary continuously
over the landscape and can be directly used to com-
pute gradient surface metrics (McGarigal et al. 2009;
Kedron et al. 2018) or they can be thresholded into
discrete categories for patch-based analyses (Arnot
et al. 2004; Frazier and Wang 2011). While this
review focuses on optical data, the same scaling prin-
ciples can be applied to the products of point cloud
data (LiDAR, etc.) that landscape ecologists use. The
second, more common, type of data used in spatial
pattern analysis are categorical data, such as land use
and land cover (LULC) maps. These datasets are typi-
cally derived from remote sensing reflectance bands,
but the pixels have been reassigned to thematic class
codes. These datasets are used directly to compute
traditional patch-based landscape metrics. The data
type and scaling method can have a number of differ-
ent impacts on the spatial patterns derived from them,
and these impacts are the focus of the review below.

Upscaling
Upscaling continuous data

Upscaling continuous data can be relatively straight-
forward since values can be numerically summarized
within the larger unit. The most basic approaches use
descriptive statistics (e.g., mean, median) to re-assign
the set of values within the larger aggregate pixel to a
single value, which may be categorical, (e.g., Riitters
et al. 1997) (Fig. 3), while others simply use the cen-
tral pixel (Bian and Butler 1999) or a random pixel
(He et al. 2002) as the output value. A comparison of
the impacts of mean and central pixel resampling on
spatial pattern metrics found that, while mean aggre-
gation filters out small patches, it produces more sta-
ble results for certain landscape metrics than other
approaches (Raj et al. 2013), while central pixel resa-
mpling can substantially magnify small effects. Mean
aggregation was also used in a study examining scal-
ing effects on gradient surface metrics. Results indi-
cated that mean aggregation led to non-linear changes
in metric values with resolution, suggesting that some
amount of information loss occurs during the aggre-
gation process (Frazier 2016). In short, while simple,
numerical upscaling approaches are easy to use, they
can impact spatial pattern analysis by oversimplify-
ing the data resulting in data loss, eliminating rare or
small patches, and magnifying small effects.

To overcome the loss of heterogeneity that occurs
with simple numerical methods, neighborhood-based
(focal or moving window) approaches have been used

Fig. 3 Upscaling of a digital elevation model (DEM) using the mean of the input cells to generate a coarser resolution raster. Mini-
mum and maximum values change as input cells of the DEM are upscaled from 30-m to 150-m and 300-m
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to capture a greater amount of the surrounding infor-
mation during the aggregation process. The theoreti-
cal basis for using focal windows is that the digital
value given to a pixel results not just from the ground
sampling area of that pixel but also from objects in
neighboring pixels (Cracknell 1998; Jensen 2016).
Galpern and Manseau (2013) used a focal window
approach to upscale continuous resistance surfaces
representing movement impedances in order to match
the grain of analysis to the true functional grain of
the organism. The authors showed that focal windows
could increase accuracy when identifying the relative
importance of landscape features influencing connec-
tivity, but that accuracy ultimately depended on the
numerical operator employed (e.g., min, mean, max),
as these operators performed differently depending on
the spatial patterns in the landscape.

The moving window data aggregation (MWDA)
method (Graham et al. 2019) is a more recent
approach that uses focal windows to compute vari-
ability in continuous rasters and then use that hetero-
geneity as the basis for aggregation to a coarser res-
olution. The authors show that MWDA can capture
information about the landscape spatial structure that
is lost when using a direct aggregation approach, and
that the method is particularly useful in landscapes
where there is spatial autocorrelation in the envi-
ronmental predictor variables (e.g. fragmented land-
scapes) and when the process scale is small relative
to the aggregated resolution.The MWDA method is
available as an R package (grainchanger.r).

Variance has also been incorporated into upscal-
ing/aggregation through object-based methods.
The object-specific upscaling (OSU) method was
designed to reduce scaling errors by dividing a scene
into homogeneous regions called objects and using
those objects to guide aggregation (Hay et al. 2001).
OSU defines multiscale spatial thresholds based on
progressively increasing windows where the spectral
variance of image objects are scale-dependent. These
scale-dependent measures are then used as weighting
functions to determine the upscaled values (Hay et al.
1997). A multiscale extension of OSU uses hierarchi-
cal sampling and evaluates each pixel in relation to
coarse grain objects (Hay et al. 2001). More recently,
object-based segmentation coupled with Moran’s I
has been used to translate higher resolution training
data for coarser resolution land cover classifications
(Bihamta Toosi et al. 2020).

@ Springer

Fractals represent another approach for upscal-
ing continuous data. Fractals are self-similar shapes
that repeat their fundamental patterns at ever increas-
ing or decreasing scales. They can be used to trans-
late information across scales by informing a scaling
transfer model that corrects for scaling effects based
on the fractal relationship between approximate and
exact pixel measurements (Gupta et al. 2000; Wu
et al. 2015). Wu et al. (2015) use fractal theory to
develop a relationship between image spatial resolu-
tion and leaf area index (LAI), which is a continuous
vegetation index computed directly from remote sens-
ing reflectance measurements. Their results showed
that the fractal-based scaling model performed well
in estimating LAI and evaluating the scaling bias.

Upscaling categorical data

When upscaling categorical data, majority rules aggre-
gation (MRA) is a common choice, especially for LULC
data. MRA assigns the LULC comprising the majority
of the contributing pixels to the aggregate pixel (Benson
and MacKenzie 1995; Moody and Woodcock 1995).
The similar random rule-based (RRB) method randomly
selects a class from the fine-scaled pixels and assigns it
to the coarser map, maintaining cover type proportions
but disaggregating categories and changing spatial pat-
terns (He et al. 2002). Since MRA ignores proportions
and assumes within-pixel values are homogenous, small
effects can be substantially magnified (Holt et al. 1996).
In other words, aggregating fine-scaled, mixed pixels
could result in over or underrepresentation of a phenom-
enon, pattern, or class and rare or sparse land covers may
be eliminated (Xu et al. 2020). MRA can distort land
cover type proportions and frequently produces clumpy
landscapes, while RRB can produce disaggregated spa-
tial patterns (He et al. 2002; Raj et al. 2013).
Aggregation methods like MRA and RRB do not
incorporate an understanding or measure of ecologi-
cal processes, which some have argued makes them
unsuitable for upscaling data that will ultimately be
used for ecological analysis (Graham et al. 2019).
Saura (2004) examined the effects of MRA on for-
est fragmentation indices by comparing aggregated
values to actual sensor measurements and found that
MRA tended to produce more fragmented patterns
compared to actual sensor readings. Garcia-Gigorro
and Saura (2005) also used an MRA filter to aggre-
gate categorical data but compared it to a point-spread
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function (PSF), in which surrounding pixels provide
a weighted contribution to the aggregate value. The
authors found the PSF aggregation better mimicked
the way in which the sensor captured the data and so
fragmentation indices computed from PSF-scaled ras-
ters had lower errors.

The point-centered distance-weighted moving win-
dow (PDW) method also attempts to overcome the
limitation that MRA and RRB do not consider the
relative proportion of each land cover type by using a
weighted sampling net to maintain proportions when
upscaling or downscaling (Gardner et al. 2008). First,
the center point of the pixel in the map to be created
is located and recorded in real dimensions. Then, the
geometry of the sampling net is determined by the
number of points and the distance between the points.
Finally, the normalized frequency distribution of land
cover types obtained from the data sampled at each
point in the net is used, and the cover type of the
rescaled map is randomly selected from the normal-
ized frequency distribution of cover types (Gardner
et al. 2008). Spatial autocorrelation can be included
when using PDW, making it more robust compared to
central pixel resampling and MRA (Raj et al. 2013).

Downscaling

Downscaling is usually a more difficult challenge
than upscaling because it requires allocating coarser
data, where there is little information about the spa-
tial distribution of values, to finer scales, where

Fig. 4 Downsampling of 1-km Visible Infrared Imaging
Radiometer Suite (VIIRS) data to 500-m and 250-m via resa-
mpling. As resolution becomes increasingly fine, minimum

values must be spatially distributed. Due to the lack
of within-grain information, robust downscaling often
requires stochastic or probabilistic approaches.

Downscaling continuous data
Resampling

The most basic form of downscaling continua is resa-
mpling, or downsampling, where a larger pixel is
partitioned into smaller units, and the value from the
larger is allocated to the smaller units (Fig. 4). When
no a priori information for how the values should be
distributed spatially at the smaller scale is available,
downsampling often assigns the value from the larger
pixel to all of the smaller pixels. Downsampling in
this manner does not actually change pixel values and
can falsely suggest a higher level of heterogeneity
is present. Scale-related findings must be cautiously
interpreted in these instances (Frazier et al. 2021),
and oversight can be difficult to detect and misleading
in ecological modeling studies (Sillero and Barbosa
2021). Bilinear and cubic convolution approaches
can also be used in the absence of a priori informa-
tion to interpolate pixel values at the finer resolution
that fall between pixel centers in the coarser image.
Depending on the method, interpolated values may
contain uncertainties and biases that can propagate
into spatial pattern analyses. Despite these drawbacks
though, resampling continues to be widely used when
researchers need to downscale data.

and maximum values of pixels do not change but the number
of columns and rows increases within the image, as does data
volume
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Image Fusion

Image fusion combines images from multiple data-
sets to produce an output that is more informative at
fine scales than any of the individual inputs. Image
fusion can function for downscaling when spectral
information from a finer resolution is combined with
coarser-scale spatial information. Sometimes called
‘pansharpening’, early fusion methods recalculated
the hue, intensity, and saturation of each pixel at the
finer scale based on correlations between the multi-
spectral and panchromatic bands (Haydn et al. 1982;
Gillespie et al. 1987). Spectral distortions and spatial
artefacts were common with pansharpening, prompt-
ing a series of improvements (Ranchin et al. 2003;
Nencini et al. 2007; Shah et al. 2008; Pardo-Iguzquiza
et al. 2011; Golibagh Mahyari and Yazdi 2011). More
recently, deep learning algorithms have been used
(Huang et al. 2015; Azarang and Ghassemian 2017;
Yang et al. 2017; Seo et al. 2020), and in some cases
the trained learning network has been shown to gen-
eralize well to images from different satellites without
the need for retraining (Yang et al. 2017). Deep learn-
ing methods have a greater computational demand
and sometimes require higher-level machine learning
expertise by the user. Bayesian-based methods have
also been explored, but can be limited due to the dif-
ficulty identifying an appropriate statistical model
for image representation (Pandit and Bhiwani 2021).
Developing efficient pansharpening approaches
remains an active research area (Kaur et al. 2021).
Other types of image fusion include Kalman filter-
ing (KF), which is a recursive algorithm for integrat-
ing disparate remotely sensed data by minimizing the
mean of the squared errors (Welch and Bishop 2006.
KF integrates observations and their uncertainties,
does not require explicit parameter tuning, and hence
is well-suited for large extent applications.

Methods based on Taylor series—an expansion
of a function into an infinite sum of polynomial
terms— have also been used for image fusion downs-
caling. The Taylor expansion assumes that most func-
tions are smooth over the range of interest, so a poly-
nomial can be fit to approximate it. In remote sensing,
Taylor series expansion methods (TSEM) model the
relationship between surface properties, such as radi-
ance or surface fluxes and heterogeneity and variance/
covariance functions, and applies these relationships
to aggregate or disaggregate map features (Hu and
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Islam 1997). TSEM has been refined for nonlin-
ear functions and to correct scaling bias (Gao et al.
2001; Garrigues et al. 2006). A recent iteration of
TSEM is the physical scaling method (PSM), which
uses contexture and radiative transfer theory (Tian
et al. 2003). TSEM is conceptually straightforward,
but computations can be arduous, and TSEMs can be
unwieldy with many variables (Pelgrum 2000; Male-
novsky et al. 2007; Wu and Li 2009).

Despite the large body of research on image fusion
for downscaling, these techniques have been used
sparingly in landscape ecology. Townsend et al.
(Townsend et al. 2009) compared 15-m pansharp-
ened Landsat images to 30-m images in an analysis
of spatial patterns in protected areas and found that
the pansharpened images produced lower classifica-
tion accuracies, possibly due to noise introduced by
the fusion process. Chen et al. (2020) used TSEM to
attribute surface temperature anomalies to different
LULC spatial patterns, but the application was not
directly used for pattern analysis. Beyond these, pan-
sharpening has been used in landscape ecology for
estimating aboveground biomass (Doyog et al. 2021)
and counting wildlife (Duporge et al. 2020). How-
ever, an opportunity exists to use the validated fusion
methods described above for downscaling in order to
increase the spatial resolution of data for spatial pat-
tern investigations.

Interpolation

Interpolation inferrs a downscaling solution through
a model but does not resolve it through the produc-
tion of new, fine resolution data (Atkinson 2013).
This is in contrast to the use of the term interpola-
tion to predict between sparsely distributed points.
Bilinear or bicubic interpolation samples nearby
pixels to estimate the values for finer resolution
pixels. Another, more advanced example is spatial
area-to-point (ATP) kriging, which predicts values
on a scale smaller than the original data (Kyriakidis
2004; Yoo and Kyriakidis 2006; Goovaerts 2006).
Since it is not possible to measure remote sensing
on a strictly point scale, the punctual semivariogram
required for ATP kriging must be estimated through
a de-regularization or deconvolution procedure (Kyri-
akidis 2004; Yoo and Kyriakidis 2006; Goovaerts
2006). Other kriging methods include downscaling
cokriging for image sharpening (Pardo-Igizquiza
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et al. 2006), geographically weighted ATP regression
kriging, which considers spatial autocorrelation (Jin
et al. 2018), and multiscale geographically weighted
regression kriging, which is a hybrid of multiscale
geographically weighted regression (MGWR) and
ATP kriging (Yang et al. 2019). Geographically
weighted ATP regression kriging has been used to
downscale temperature data when studying species’
range shifts (Platts et al. 2019), and bilinear interpo-
lation has been used to downscale projected climate
data to study climate change impacts on tree species
(Attorre et al. 2011). Landscape metrics have been
used to aid ATP residual kriging by providing sup-
plemental information on the density of land cover
patches (Liu et al. 2008), but studies using ATP krig-
ing to downscale data prior to computing spatial pat-
tern metrics are lacking.

Super-resolution mapping

Super-resolution mapping, sometimes called sub-
pixel mapping (SPM), attempts to resolve the spatial
distribution of land covers from a continuous raster
of land cover proportions. SPM techniques are often
applied to data that have been generated through
spectral unmixing (i.e., spectral mixture analysis;
(Keshava and Mustard 2002)). Many SPM methods
rely on fundamental theories of maximum spatial
dependency to guide the placement of sub-pixels (Li
et al. 2014), with others incorporating training mod-
els and ancillary data such as histograms, transition
probabilities, and variograms into algorithm develop-
ment (Boucher et al. 2008; Wang et al. 2016). More
recently, machine learning and deep learning meth-
ods have been implemented to resolve high resolution
spatial information in images (Nigussie et al. 2011;
Yu et al. 2013; Zhang et al. 2016; Ling and Foody
2019). However, these approaches do not always out-
perform simpler methods (Sharifi et al. 2019), and
they can be computationally intensive.

Spatial pattern metrics have been used to inform
SPM algorithms, similar to ATP residual kriging
(described above). Su (2019) used the scale-invariant
concept of fractals to guide a Hopfield neural network
for SPM. Despite much progress related to SPM in
the image processing and pattern recognition com-
munities in the past decade though, these techniques
have not been widely applied in landscape ecology,
perhaps due to the computational complexities and

lack of a universal method (Frazier 2015). More
research may also be needed on the upper and lower
limits of scaling in SPM (Ge et al. 2019) before the
techniques can be widely applied in ecological inves-
tigations. One example of their use for spatial pattern
analysis is from Muad and Foody (2012), who used
SPM to delineate lakes and evaluate their shape char-
acterization (area, perimeter, compactness). SPM pro-
vided results that closely matched the ground data,
but the authors found it did not outperform interpo-
lation downscaling techniques (bilinear and bicubic).

Downscaling categorical land cover data

Landscape ecologists frequently work with remote
sensing data that have already been transformed into
categorical land cover classes. Land cover data such
as the National Land Cover Database, Coordination of
Information on the Environment, Copernicus, Glob-
eLand30, and others are often produced from satellite
sensors where the nominal scale is fixed. When finer
scale data are needed, statistical downscaling tech-
niques can be used to translate relationships between
the coarser-grained categorical data and finer-grained
covariates (e.g., climate, landforms, human activity,
etc.) to produce fine-grained predictions (Atkinson
2013). Relationships between the response variable
and covariates are typically modeled using regression
(Dendoncker et al. 2006), with advanced techniques
using generalized additive modeling with constrained
optimization (Hoskins et al. 2016) or integrating geo-
statistics via block-to-point kriging to include an esti-
mation of uncertainty (Poggio et al. 2013).

An alternative approach researchers have adopted
when seeking to downscale data is to downscale
the landscape metric values themselves, rather than
the land cover raster from which they were derived.
While this approach does not technically down-
scale remote sensing pixels, these techniques are an
important research area of landscape ecology. These
techniques rest on the empirical evidence that many
landscape metrics exhibit consistent and robust scal-
ing relationships across a range of spatial grains
or extent (Turner et al. 1989a, b; Wu 2004). These
relationships between metric and scale often follow
a power law relationship (Frazier et al. 2021), and
this function can be extrapolated to predict the data
at finer scales (Saura and Castro 2007; Argafiaraz
and Entraigas 2014; Frazier 2014). Success has been
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variable though (Frazier 2015) because coarse-grain-
ing the land cover rasters, which is required to derive
the scaling function, introduces statistical biases.
Researchers are working to overcome these biases,
but a universal method is not yet available.

Discussion and synthesis

This review highlights the plethora of upscaling and
downscaling methods for remote sensing data that
are available to landscape ecologists. Several sum-
mary points emerge. First, with upscaling, the over-
simplification of results is a persistent challenge with
both continuous and categorical data. The underly-
ing heterogeneity and landscape structure can be
lost during aggregation, and rare categorical classes
may disappear entirely, which ultimately impacts the
accuracy of spatial pattern analyses performed on the
data. Oversimplification is more likely to occur when
using basic methods, such as mean or central pixel
resampling, whereas neighborhood approaches such
as MWDA are designed to better preserve the spatial
structure of underlying heterogeneity. Since heteroge-
neity ultimately drives the spatial patterns measured
across a landscape, preserving heterogeneity during
upscaling or downscaling should be the primary con-
sideration for landscape ecologists.

The review found that object-based approaches
can overcome some of the challenges with precision
and accuracy that result from pixel-based techniques.
These object-based approaches present an interest-
ing dilemma for landscape ecologists though. Since
patch boundaries are more likely to align with spa-
tial objects than individual pixels, these approaches
may be viable options for upscaling and downscaling
when the aim is ultimately to compute spatial pat-
tern analyses. However, object-based approaches are
designed to collapse inter-pixel heterogeneity based
on spatial and spectral similarity, so it is important
to ensure that the scale of the original image dataset
being upscaled is finer than the observational scale
at which the phenomenon of interest presents. Oth-
erwise, identified objects may not represent homog-
enous patches, and upscaling will simply increase
uncertainty.

Regarding downscaling, resampling is the most
basic technique to implement, but it does not actu-
ally change pixel values and can therefore falsely
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suggest a higher level of heterogeneity is present.
More advanced interpolation, fusion, and sub-pixel
mapping methods have been developed by the remote
sensing community, but landscape ecologists do not
appear to be utilizing these techniques to improve
the spatial resolution of datasets prior to computing
spatial pattern analyses. When downscaling categori-
cal land cover data, regression-based approaches that
correlate covariates to land cover are common, how-
ever, care must be taken to ensure that the variables
used in downscaling are not also used in any ancillary
analyses with the downscaled data, otherwise collin-
earity is likely.

Considerations when scaling data for spatial pattern
analyses

The many scaling methods available can quickly
overwhelm researchers, particularly when consider-
ing the varying levels of complexity that character-
ize the different methods. Choosing the most appro-
priate method often requires considering the scale
of any ecological patterns and processes, discrep-
ancies between the data and the process of interest,
uncertainties and biases in datasets, and limitations
in computer processing, software availability, and
programming familiarity. Just as there is no quin-
tessential scale from which to study ecological phe-
nomena, there is similarly no single method condu-
cive for scaling remote sensing data in all ecological
contexts. A visual, decision-tree guide is provided to
aid researchers in selecting the most appropriate tech-
nique for their data (Fig. 5). Below, we walk through
several considerations that may be important for spa-
tial pattern landscape analyses.

Much like species richness and abundance are
the central tenets of species diversity, patch richness
and abundance are similarly important for landscape
diversity. The elimination of small or rare patches
in a dataset can drastically alter one or both of these
measures, leading to biases in spatial pattern metrics,
and inaccuracies in subsequent pattern-process rela-
tionships. Therefore, researchers must be particularly
cognizant of how a scaling algorithm might alter
patch richness and abundance. In situations where
the upscaled resolution will be larger than the size
of individual patches and it is important to maintain
small or rare patches or values, researchers should
avoid using methods that select a single value (e.g.,
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Fig. 5 Guide for selecting methods for scaling remotely sensed data for spatial pattern analysis. Additional information about each
method can be found in the text as well as in Table 1 of the Supplementary material

min, max, central pixel, etc.). Instead, methods that
closely maintain the original distribution of values,
such as MWDA, are a better option for preserving the
original heterogeneity of the landscape. An excep-
tion is when the land cover/patch type of interest is
known to be characterized by the min or max value.
In cases where this land cover/patch type should be
prioritized, then the appropriate descriptive statistics
can be used. When upscaling categorical data, major-
ity and random rule-based methods are more likely to
eliminate small or rare land covers compared to the
point-centered distance-weighted method. However,
if priority is placed on maintaining the largest or most
dominant patches, then MRA, RRB, or central pixel
resampling methods are likely sufficient. If preserving
land cover type proportions and spatial information
and patterns are the priority, RRB outperforms MRA
(He et al. 2002).

Researchers must also consider the methodo-
logical limitations of each technique, including

assumptions that underlying processes are scale
independent or linear, and whether additional data
are needed (Gao et al. 2015). The extent to which
a method is robust to nonlinearity should be con-
sidered, including selecting methods that are suit-
able for nonlinear relationships. As advanced com-
putational techniques such as machine learning and
deep learning are adopted for rescaling, researchers
should understand how these functions operate so
that they may correctly parameterize models. Plat-
forms like Google Earth Engine (GEE) are making
it easier for researchers to perform these advanced
computational techniques on large datasets, but it is
important to understand how these platforms handle
scale. For instance, scale in GEE must be specified
by the user when exporting imagery or performing
analyses, and the GEE user guide explicitly notes,
“understanding how Earth Engine handles scale is
crucial to interpreting scientific results obtained
from Earth Engine.”
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A way forward
Better incorporating heterogeneity into scaling

Scale and heterogeneity are inherently linked (Turner
1987; Allen and Hoekstra 1991; Kolasa and Pickett
1991; Dutilleul and Legendre 1993; Li and Reynolds
1995), and it is impossible to translate data across
scales without either ignoring heterogeneity or deal-
ing with it explicitly and effectively (Wu 2007). Most
studies do not quantify or test the impact of hetero-
geneity on scaling results (Frazier 2015), leaving a
dearth of understanding with regard to exactly how
scaling impacts heterogeneity and vice versa. Certain
techniques, such as MRA, will introduce different
magnitudes of uncertainty into upscaled data based
on the composition and configuration of the land
cover classes (Frazier 2014; Frazier et al. 2021), and
these aspects should not simply be ignored when res-
caling data. At a minimum, the heterogeneity of the
data being rescaled can be quantified and reported.
Moving forward, researchers should explore the ways
in which heterogeneity impacts scaling and con-
tinue to select and develop methods that deal explic-
itly with heterogeneity or minimize the change in
heterogeneity.

This review highlighted how advances in artificial
intelligence and deep learning are being leveraged
to reduce the loss of heterogeneity and improve the
accuracy of scaling methods. Research applying deep
learning algorithms in remote sensing has grown
increasingly mature (Ma et al. 2019), and improve-
ments continue to be made that decrease processing
time and requirements and better address heterogene-
ous and complex data. The fields of computer vision
and signal processing continue to refine methods that
can be applied to scaling. Examples include new spa-
tial filtering approaches featuring nonlinear decompo-
sition for pansharpening (Pandit and Bhiwani 2021),
using dense blocks in deep networks to efficiently
utilize shallow information for image fusion (Li and
Wu 2019), and employing a Generative Adversarial
Network with structural similarity, gradient loss func-
tions, and concatenating images at each layer of the
deep network to retain more information when fus-
ing images (Fu et al. 2021). Keeping abreast of meth-
odological developments in diverse fields will allow
landscape ecologists to capitalize on innovations and
state-of-the-art approaches to increase the accuracy
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and precision of scaling while minimizing processing
demands.

Improving spatial resolution through new
technologies

Advances in very high resolution commercial and
personal remote sensing systems (e.g., Planet imagery
and Uncrewed Aerial Systems (UAS), or drones,
respectively) are rapidly increasing the bounds of
remote sensing spatial resolution and creating oppor-
tunities to better understand the impacts of scaling.
As these data become more prevalent and reliable,
they can be used to bridge spatial scales and cali-
brate scaling models (Alvarez-Vanhard et al. 2021).
Fusion methods, such as those developed using neu-
ral networks and deep learning (Song et al. 2018; Zhu
et al. 2018; Jia et al. 2020) can be used to combine
UAS data with coarser, satellite-derived data streams.
However, research to date has focused mainly on
calibration and measurement comparison rather than
image fusion (Alvarez-Vanhard et al. 2021). Nonethe-
less, ecologists are already adopting UAS as a key
tool for bridging gaps between satellite imagery and
in-situ measurements (Revill et al. 2020; Thapa et al.
2021). As ecologists embrace UAS, their use may act
as a catalyst for developing new downscaling methods
and provide data that would otherwise be unavailable.

Open science frameworks to promote
cross-disciplinary research

The push for reproducibility and openness in science,
through platforms such as GEE and open source cod-
ing environments (Brunsdon and Comber 2020) may
serve to further the science of scaling. Platforms like
GitHub host a myriad of packages, scripts, and tuto-
rials on scaling, potentially galvanizing novel and
unconventional ideas. Increased accessibility may
alleviate limitations in scaling science, such as lack
of sufficient training data for machine learning. These
platforms and environments can also reduce compu-
tational time and processing demands. Alternatively,
the progression of scaling science may be impaired
if increased access leads to neglecting the nuances of
remote sensing data, mischaracterizing scale effects,
and improperly scaling data.

Advancing the science of scaling requires cross-
disciplinary research both in regards to theory and
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technology (Wu and Li 2009). Landscape ecologists
can look to the fields of climatology, atmospheric sci-
ence, computer science, and others to develop scaling
approaches pertinent to their research. Questions sur-
rounding implementing multiscale approaches, invar-
iants of scale, and the ability to change scale may
already be partially answered, but the answers are
scattered across disciplines, and this lack of integra-
tion hinders knowledge production (Goodchild and
Quattrochi 1997). Cross disciplinary collaboration
may lead to novel methods of incorporating heteroge-
neity into scaling techniques, a universal method for
developing scaling functions, and closing or shrink-
ing additional knowledge gaps. A number of recent
reviews in adjacent and germane fields have discussed
scale and scaling remotely sensed data (e.g., in earth
science (Ge et al. 2019), irrigation science (Ha et al.
2013), agronomy (Grunwald et al. 2015), geophys-
ics/soil moisture (Peng et al. 2017)), providing ample
opportunity to compare perspectives.

Conclusion

Remotely sensed data and derived products are key
components of landscape analysis, but often need to
be scaled to meet modeling or analysis assumptions.
A plethora of scaling methods are available ranging
from simple techniques with limited computational
demands to more advanced methods that use deep
learning algorithms. However, recognizing the advan-
tages and limitations of different scaling methods as
well as the differences between techniques is obliga-
tory for landscape ecologists studying spatial pat-
terns. Scale biases can add significant uncertainty and
inaccuracies to an analysis. Neglecting these potential
effects can complicate spatial pattern analysis and
obfuscate results. We reviewed the methods available
for upscaling and downscaling remote sensing data
and identified the following key findings.

First, with both upscaling and downscaling, there
is no single appropriate scaling method, and so there
are always tradeoffs that must be considered. While
a diversity of scaling methods are available to land-
scape ecologists, work remains to integrate these into
spatial pattern analyses. Second, landscape ecologists
must be particularly aware of how scaling impacts
patch richness and abundance, as these pillars of
landscape diversity will be impacted differently by

different scaling methods (e.g., through the elimina-
tion of patches, promoting dominance of one class.
etc.). Third, methods that preserve heterogeneity,
such as moving window or object-based approaches,
may ultimately be better suited for spatial pattern
analysis, but more work is needed to understand how
heterogeneity is impacted by scaling and vice versa.
Fourth, the field can focus on leveraging technologi-
cal advances in machine learning and deep learning
and methodological innovations in computer vision
and signal processing. Lastly, plenty of scaling tech-
niques exist, but it appears many are not widely
applied in landscape ecology. We can suggest more
collaborations with remote sensing and signal pro-
cessing scientists, but ultimately, the path forward is
to ensure landscape ecologists know about the differ-
ent options, understand the potential benefits of scal-
ing data (particularly for downscaling), and feel com-
fortable determining an appropriate method.
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