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Abstract 
Context  Landscape ecologists have long realized 
the importance of scale when studying spatial pat-
terns and the need for a science of scaling. Remotely 
sensed data, a key component of a landscape ecolo-
gist’s toolbox used to study spatial patterns, often 
requires scaling to meet study requirements.
Objectives  This paper reviews methods for scal-
ing remote sensing-based data, with a specific focus 
on spatial pattern analysis, and distills the numer-
ous approaches based on data type. It also discusses 
knowledge gaps and future directions.

Methods  Key papers were identified through a 
systematic review of the literature. Trends, develop-
ments, and key methods for scaling remotely sensed 
data and spatial products derived from these data 
were identified and synthesized to detail the gen-
eral progression of a science of scaling in landscape 
ecology.
Results  Upscaling both continuous and categorical 
data can oversimplify data, creating challenges for 
spatial pattern analysis. Object-based and neighbor-
hood approaches can help, and since patch boundaries 
are more likely to align with objects than pixels, these 
may be better options for landscape ecologists. Many 
downscaling methods exist, but these approaches 
are not being widely employed for spatial pattern 
analysis.
Conclusions  A diverse range of scaling methods are 
available to landscape ecologists, but work remains 
to integrate them into spatial pattern analysis. Mov-
ing forward, advances in computer science and engi-
neering should be explored and cross-disciplinary 
research encouraged to further the science of scaling 
remotely sensed data.
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Introduction

Spatial pattern analysis is a cornerstone of landscape 
ecology that has fostered unprecedented develop-
ments in both theory and practice (Wu et  al. 2002). 
The wide availability of remote sensing data, par-
ticularly with the opening of the archives such as 
Landsat (Zhu et  al. 2019), has made it increasingly 
easy for researchers to quantify spatial patterns in 
landscapes (Frazier and Kedron 2017). However, the 
remote sensing data that form the basis for many spa-
tial pattern analyses are captured at a fixed resolution, 
prompting researchers to change the scale (resolution) 
of the data in order to match observational or mod-
eling objectives.

Ecologists have long recognized the biases asso-
ciated with translating information across scales 
(Meentemeyer and Box 1987; Turner et al. 1989a, b; 
Levin 1992; Jelinski and Wu 1996), and much work 
in landscape ecology has focused on how chang-
ing the scale of a dataset (grain and extent) impacts 
derived spatial patterns, using both categorical 
(Turner et al. 1989b; Saura 2004; Wu 2004) and con-
tinuous data (Frazier 2016). Findings have shown that 

landscape pattern analysis is highly sensitive to grain, 
or spatial resolution (Turner et al. 1989a, b; Wu et al. 
2002; Hall et  al. 2004; Wu 2004), and a mismatch 
between the grain of the process and the pattern may 
produce incorrect conclusions (Galpern and Manseau 
2013). Foundational, theoretical work (e.g.,(Allen 
and Starr 1982; Turner et  al. 1989a; Wiens 1989; 
Levin 1992)) along with technological advances 
including the Landsat missions starting in 1972 and 
ArcGIS Desktop in the late 1990s, allowed for many 
different methods for scaling spatial data to emerge 
(Fig.  1). These and other studies promoted scaling 
issues to the front of the research agenda in landscape 
ecology through the 1990s and early 2000s, prompt-
ing Wu and Hobbs (2002) to identify scaling as one 
of the top research priorities for the discipline, and it 
continues to be an important topic in the field (Lang 
2008; Zhang et  al. 2014; Chambers et  al. 2016; Ke 
et al. 2017; Li et al. 2017; Kedron et al. 2018; Lang 
et al. 2019).

Fig. 1   Selected milestones contributing to the progression of 
the science of scaling. Milestones are grouped under founda-
tional work and reviews, technological landmarks and events, 
and scaling methods. These milestones are not intended to 
be all-inclusive. IALE-North America—North American 
Regional Association of the ​International Association for 

Landscape Ecology; NEON—National Ecological Observatory 
Network; FAA—Federal Aviation Administration. The FAA’s 
Part 107 rules regulate drone pilot certification and operating 
requirements (Frazier and Singh 2021). *Indicates a review 
paper

However, despite recognition of the importance of 
scale and a plethora of studies testing the impacts of 
scale on spatial patterns, questions persist about which 
methods to use in different contexts (Ge et  al. 2019), 
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particularly for the remote sensing (and remote sensing-
derived) data on which many spatial pattern analyses 
rest. When data that have been scaled are subsequently 
used for spatial pattern analysis, it adds an additional 
layer of complexity (loss of rare land cover types, sen-
sitivity of patterns to grain size, etc.). Even with gradi-
ent surface models (McGarigal et al. 2009) and hybrid 
approaches to characterize landscapes, measuring 
landscape patterns that accurately characterize ecologi-
cal processes at multiple scales continues to challenge 
landscape ecologists.

With the increased volume of remote sensing data 
being produced daily and the growing need to rescale 
these data for modeling in landscape ecology, it is an 
opportune time to review the choices for scaling and 
how those choices impact subsequent analyses. The 
objective of this review is to survey methods for scal-
ing remotely sensed data for spatial pattern analysis 
with a specific focus on two broad categories of scal-
ing: upscaling and downscaling. Within each of those 
categories, we detail methods for scaling the two data 
types most commonly used in spatial pattern analyses: 
continuous data and discrete/categorical data. Through 
a systematic review of the literature, we summarize 
the trends and developments used within the discipline 
for scaling data for spatial pattern analysis. Key papers 
were identified for this article through a systematic 
review of the literature using keywords and keyword 
combinations such as, “scaling” + ”technique”, “scal-
ing” + “remote sensing,” “downscaling,” “upscaling” 
and others. Journal databases including Landscape 
Ecology, Remote Sensing of Environment, International 
Journal of Remote Sensing, the ISPRS Journal of Pho‑
togrammetry and Remote Sensing as well as Google 
Scholar were all exhaustively searched until relevant 
papers were no longer identified. Scaling techniques 
were categorized and theoretical and methodological 
developments, persistent issues, and gaps were identi-
fied from roughly 200 core papers. We synthesize scal-
ing options and develop a conceptual decision tree for 
researchers. Finally, we propose future research direc-
tions and highlight other disciplines that landscape 
ecologists might consult when seeking to scale data. 
We begin by clarifying scale concepts and defining how 
we use the terms ‘scale’ and ‘scaling’ in this review. 
For the sake of brevity, we have chosen to use the term 
remote sensing to also include remote sensing-derived 
datasets.

Scale concepts and terminology

Definitions and term usage

Across the sciences, the term “scale” has been used to 
describe many similar but subtly different concepts. 
Schneider (2009) notes the Oxford English Diction-
ary offers 15 different definitions of scale. The term 
is used several different ways even within ecology 
and landscape ecology, and these variations compli-
cate discussions (Wu 2007). Therefore it is important 
to define the terms as they are used in each situa-
tion (Schneider 2009). Here, we use the term “scale” 
to refer to the spatial scale of a measured variable, 
which determines the minimum resolvable area, or 
resolution. The term “fine scale” is used to refer to 
detailed maps and “coarse scale” for maps with larger 
pixel sizes and/or less detail.

A distinction must also be made between the terms 
“scale” and “scaling”. To “scale” something is the 
verb form and means to change the size while main-
taining the same proportions. This verb form is often 
referred to as “scaling”, which should not be confused 
with the term scaling as it is used in the physical sci-
ences to describe a manifestation of the underlying 
dynamics and geometry relating key processes over 
broad ranges (Brown et al. 2004). Hereafter, we adopt 
the first definition and define scaling as a change of 
the spatial size of the measurement unit. We focus 
specifically on spatial scaling while recognizing that 
temporal, and organizational scaling are important 
concepts in landscape ecology. We are interested in 
the observational scale, which is the scale at which 
measurements are made or sampling is conducted 
and is distinct from intrinsic scale, which is the scale 
at which a pattern or process operates. We focus on 
scaling remotely sensed data, and do not review other 
geospatial data as they fall outside the scope.

General methods and data types

Methods for scaling remotely sensed data are gener-
ally classified as either “upscaling” or “downscaling” 
(Fig. 2). Upscaling involves coarsening the resolution 
by aggregating a larger number of smaller units into 
a smaller number of larger units. Upscaling assumes 
the existence of an aggregate property. Downscaling 
involves disaggregating data from a larger unit into 
multiple smaller units to make the resolution finer. 
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Fig. 2   A schematic of upscaling and downscaling with exam-
ples of feature scales, typical imagery and data types for rep-
resentation, and common metrics extracted from the data. 
ASTER Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer, AVHRR Advanced Very High Resolution 
Radiometer, DEM Digital Elevation Model, LiDAR Light 

Detection and Ranging, LISS Linear Imaging Self Scanning, 
MERIS Medium Resolution Imaging Spectrometer, MODIS 
Moderate Resolution Imaging Spectroradiometer, SRTM Shut-
tle Radar Topography Mission, and VIRS Visible Infrared 
Imaging Radiometer Suite
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Both upscaling and downscaling are commonly per-
formed using remote sensing-based data to change 
the scale for analysis. Some researchers also recog-
nize a third category –sidescaling– in which the reso-
lution is maintained (Ge et  al. 2019). Sidescaling is 
typically employed when obtaining area-to-area pre-
dictions and is not discussed further in this review.

For both upscaling and downscaling, the type of 
data being scaled determines which methods are 
appropriate. Two data types are commonly used for 
spatial pattern analysis in landscape ecology. The 
first type is continuous data, such as remote sensing 
reflectance values, vegetation indices, or digital ele-
vation models (DEMs). These data vary continuously 
over the landscape and can be directly used to com-
pute gradient surface metrics (McGarigal et al. 2009; 
Kedron et  al. 2018) or they can be thresholded into 
discrete categories for patch-based analyses (Arnot 
et  al. 2004; Frazier and Wang 2011). While this 
review focuses on optical data, the same scaling prin-
ciples can be applied to the products of point cloud 
data (LiDAR, etc.) that landscape ecologists use. The 
second, more common, type of data used in spatial 
pattern analysis are categorical data, such as land use 
and land cover (LULC) maps. These datasets are typi-
cally derived from remote sensing reflectance bands, 
but the pixels have been reassigned to thematic class 
codes. These datasets are used directly to compute 
traditional patch-based landscape metrics. The data 
type and scaling method can have a number of differ-
ent impacts on the spatial patterns derived from them, 
and these impacts are the focus of the review below.

Upscaling

Upscaling continuous data

Upscaling continuous data can be relatively straight-
forward since values can be numerically summarized 
within the larger unit. The most basic approaches use 
descriptive statistics (e.g., mean, median) to re-assign 
the set of values within the larger aggregate pixel to a 
single value, which may be categorical, (e.g., Riitters 
et al. 1997) (Fig. 3), while others simply use the cen-
tral pixel (Bian and Butler 1999) or a random pixel 
(He et al. 2002) as the output value. A comparison of 
the impacts of mean and central pixel resampling on 
spatial pattern metrics found that, while mean aggre-
gation filters out small patches, it produces more sta-
ble results for certain landscape metrics than other 
approaches (Raj et al. 2013), while central pixel resa-
mpling can substantially magnify small effects. Mean 
aggregation was also used in a study examining scal-
ing effects on gradient surface metrics. Results indi-
cated that mean aggregation led to non-linear changes 
in metric values with resolution, suggesting that some 
amount of information loss occurs during the aggre-
gation process (Frazier 2016). In short, while simple, 
numerical upscaling approaches are easy to use, they 
can impact spatial pattern analysis by oversimplify-
ing the data resulting in data loss, eliminating rare or 
small patches, and magnifying small effects.

Fig. 3   Upscaling of a digital elevation model (DEM) using the mean of the input cells to generate a coarser resolution raster. Mini-
mum and maximum values change as input cells of the DEM are upscaled from 30-m to 150-m and 300-m

To overcome the loss of heterogeneity that occurs 
with simple numerical methods, neighborhood-based 
(focal or moving window) approaches have been used 
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to capture a greater amount of the surrounding infor-
mation during the aggregation process. The theoreti-
cal basis for using focal windows is that the digital 
value given to a pixel results not just from the ground 
sampling area of that pixel but also from objects in 
neighboring pixels (Cracknell 1998; Jensen 2016). 
Galpern and Manseau (2013) used a focal window 
approach to upscale continuous resistance surfaces 
representing movement impedances in order to match 
the grain of analysis to the true functional grain of 
the organism. The authors showed that focal windows 
could increase accuracy when identifying the relative 
importance of landscape features influencing connec-
tivity, but that accuracy ultimately depended on the 
numerical operator employed (e.g., min, mean, max), 
as these operators performed differently depending on 
the spatial patterns in the landscape.

The moving window data aggregation (MWDA) 
method (Graham et  al. 2019) is a more recent 
approach that uses focal windows to compute vari-
ability in continuous rasters and then use that hetero-
geneity as the basis for aggregation to a coarser res-
olution. The authors show that MWDA can capture 
information about the landscape spatial structure that 
is lost when using a direct aggregation approach, and 
that the method is particularly useful in landscapes 
where there is spatial autocorrelation in the envi-
ronmental predictor variables (e.g. fragmented land-
scapes) and when the process scale is small relative 
to the aggregated resolution.The MWDA method is 
available as an R package (grainchanger.r).

Variance has also been incorporated into upscal-
ing/aggregation through object-based methods. 
The object-specific upscaling (OSU) method was 
designed to reduce scaling errors by dividing a scene 
into homogeneous regions called objects and using 
those objects to guide aggregation (Hay et al. 2001). 
OSU defines multiscale spatial thresholds based on 
progressively increasing windows where the spectral 
variance of image objects are scale-dependent. These 
scale-dependent measures are then used as weighting 
functions to determine the upscaled values (Hay et al. 
1997). A multiscale extension of OSU uses hierarchi-
cal sampling and evaluates each pixel in relation to 
coarse grain objects (Hay et al. 2001). More recently, 
object-based segmentation coupled with Moran’s I 
has been used to translate higher resolution training 
data for coarser resolution land cover classifications 
(Bihamta Toosi et al. 2020).

Fractals represent another approach for upscal-
ing continuous data. Fractals are self-similar shapes 
that repeat their fundamental patterns at ever increas-
ing or decreasing scales. They can be used to trans-
late information across scales by informing a scaling 
transfer model that corrects for scaling effects based 
on the fractal relationship between approximate and 
exact pixel measurements (Gupta et  al. 2000; Wu 
et  al. 2015). Wu et  al. (2015) use fractal theory to 
develop a relationship between image spatial resolu-
tion and leaf area index (LAI), which is a continuous 
vegetation index computed directly from remote sens-
ing reflectance measurements. Their results showed 
that the fractal-based scaling model performed well 
in estimating LAI and evaluating the scaling bias.

Upscaling categorical data

When upscaling categorical data, majority rules aggre-
gation (MRA) is a common choice, especially for LULC 
data. MRA assigns the LULC comprising the majority 
of the contributing pixels to the aggregate pixel (Benson 
and MacKenzie 1995; Moody and Woodcock 1995). 
The similar random rule-based (RRB) method randomly 
selects a class from the fine-scaled pixels and assigns it 
to the coarser map, maintaining cover type proportions 
but disaggregating categories and changing spatial pat-
terns (He et al. 2002). Since MRA ignores proportions 
and assumes within-pixel values are homogenous, small 
effects can be substantially magnified (Holt et al. 1996). 
In other words, aggregating fine-scaled, mixed pixels 
could result in over or underrepresentation of a phenom-
enon, pattern, or class and rare or sparse land covers may 
be eliminated (Xu et  al. 2020). MRA can distort land 
cover type proportions and frequently produces clumpy 
landscapes, while RRB can produce disaggregated spa-
tial patterns (He et al. 2002; Raj et al. 2013).

Aggregation methods like MRA and RRB do not 
incorporate an understanding or measure of ecologi-
cal processes, which some have argued makes them 
unsuitable for upscaling data that will ultimately be 
used for ecological analysis (Graham et  al. 2019). 
Saura (2004) examined the effects of MRA on for-
est fragmentation indices by comparing aggregated 
values to actual sensor measurements and found that 
MRA tended to produce more fragmented patterns 
compared to actual sensor readings. Garcia-Gigorro 
and Saura (2005) also used an MRA filter to aggre-
gate categorical data but compared it to a point-spread 
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function (PSF), in which surrounding pixels provide 
a weighted contribution to the aggregate value. The 
authors found the PSF aggregation better mimicked 
the way in which the sensor captured the data and so 
fragmentation indices computed from PSF-scaled ras-
ters had lower errors.

The point-centered distance-weighted moving win-
dow (PDW) method also attempts to overcome the 
limitation that MRA and RRB do not consider the 
relative proportion of each land cover type by using a 
weighted sampling net to maintain proportions when 
upscaling or downscaling (Gardner et al. 2008). First, 
the center point of the pixel in the map to be created 
is located and recorded in real dimensions. Then, the 
geometry of the sampling net is determined by the 
number of points and the distance between the points. 
Finally, the normalized frequency distribution of land 
cover types obtained from the data sampled at each 
point in the net is used, and the cover type of the 
rescaled map is randomly selected from the normal-
ized frequency distribution of cover types (Gardner 
et  al. 2008). Spatial autocorrelation can be included 
when using PDW, making it more robust compared to 
central pixel resampling and MRA (Raj et al. 2013).

Downscaling

Downscaling is usually a more difficult challenge 
than upscaling because it requires allocating coarser 
data, where there is little information about the spa-
tial distribution of values, to finer scales, where 

values must be spatially distributed. Due to the lack 
of within-grain information, robust downscaling often 
requires stochastic or probabilistic approaches.

Downscaling continuous data

Resampling

The most basic form of downscaling continua is resa-
mpling, or downsampling, where a larger pixel is 
partitioned into smaller units, and the value from the 
larger is allocated to the smaller units (Fig. 4). When 
no a priori information for how the values should be 
distributed spatially at the smaller scale is available, 
downsampling often assigns the value from the larger 
pixel to all of the smaller pixels. Downsampling in 
this manner does not actually change pixel values and 
can falsely suggest a higher level of heterogeneity 
is present. Scale-related findings must be cautiously 
interpreted in these instances (Frazier et  al. 2021), 
and oversight can be difficult to detect and misleading 
in ecological modeling studies (Sillero and Barbosa 
2021). Bilinear and cubic convolution approaches 
can also be used in the absence of a priori informa-
tion to interpolate pixel values at the finer resolution 
that fall between pixel centers in the coarser image. 
Depending on the method, interpolated values may 
contain uncertainties and biases that can propagate 
into spatial pattern analyses. Despite these drawbacks 
though, resampling continues to be widely used when 
researchers need to downscale data.

Fig. 4   Downsampling of 1-km Visible Infrared Imaging 
Radiometer Suite (VIIRS) data to 500-m and 250-m via resa-
mpling. As resolution becomes increasingly fine, minimum 

and maximum values of pixels do not change but the number 
of columns and rows increases within the image, as does data 
volume
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Image Fusion

Image fusion combines images from multiple data-
sets to produce an output that is more informative at 
fine scales than any of the individual inputs. Image 
fusion can function for downscaling when spectral 
information from a finer resolution is combined with 
coarser-scale spatial information. Sometimes called 
‘pansharpening’, early fusion methods recalculated 
the hue, intensity, and saturation of each pixel at the 
finer scale based on correlations between the multi-
spectral and panchromatic bands (Haydn et al. 1982; 
Gillespie et al. 1987). Spectral distortions and spatial 
artefacts were common with pansharpening, prompt-
ing a series of improvements (Ranchin et  al. 2003; 
Nencini et al. 2007; Shah et al. 2008; Pardo-Iguzquiza 
et al. 2011; Golibagh Mahyari and Yazdi 2011). More 
recently, deep learning algorithms have been used 
(Huang et  al. 2015; Azarang and Ghassemian 2017; 
Yang et al. 2017; Seo et al. 2020), and in some cases 
the trained learning network has been shown to gen-
eralize well to images from different satellites without 
the need for retraining (Yang et al. 2017). Deep learn-
ing methods have a greater computational demand 
and sometimes require higher-level machine learning 
expertise by the user. Bayesian-based methods have 
also been explored, but can be limited due to the dif-
ficulty identifying an appropriate statistical model 
for image representation (Pandit and Bhiwani 2021). 
Developing efficient pansharpening approaches 
remains an active research area (Kaur et  al. 2021). 
Other types of image fusion include Kalman filter-
ing (KF), which is a recursive algorithm for integrat-
ing disparate remotely sensed data by minimizing the 
mean of the squared errors (Welch and Bishop 2006. 
KF integrates observations and their uncertainties, 
does not require explicit parameter tuning, and hence 
is well-suited for large extent applications.

Methods based on Taylor series–an expansion 
of a function into an infinite sum of polynomial 
terms– have also been used for image fusion downs-
caling. The Taylor expansion assumes that most func-
tions are smooth over the range of interest, so a poly-
nomial can be fit to approximate it. In remote sensing, 
Taylor series expansion methods (TSEM) model the 
relationship between surface properties, such as radi-
ance or surface fluxes and heterogeneity and variance/
covariance functions, and applies these relationships 
to aggregate or disaggregate map features (Hu and 

Islam 1997). TSEM has been refined for nonlin-
ear functions and to correct scaling bias (Gao et  al. 
2001; Garrigues et  al. 2006). A recent iteration of 
TSEM is the physical scaling method (PSM), which 
uses contexture and radiative transfer theory (Tian 
et  al. 2003). TSEM is conceptually straightforward, 
but computations can be arduous, and TSEMs can be 
unwieldy with many variables (Pelgrum 2000; Male-
novský et al. 2007; Wu and Li 2009).

Despite the large body of research on image fusion 
for downscaling, these techniques have been used 
sparingly in landscape ecology. Townsend et  al. 
(Townsend et  al. 2009) compared 15-m pansharp-
ened Landsat images to 30-m images in an analysis 
of spatial patterns in protected areas and found that 
the pansharpened images produced lower classifica-
tion accuracies, possibly due to noise introduced by 
the fusion process. Chen et al. (2020) used TSEM to 
attribute surface temperature anomalies to different 
LULC spatial patterns, but the application was not 
directly used for pattern analysis. Beyond these, pan-
sharpening has been used in landscape ecology for 
estimating aboveground biomass (Doyog et al. 2021) 
and counting wildlife (Duporge et  al. 2020). How-
ever, an opportunity exists to use the validated fusion 
methods described above for downscaling in order to 
increase the spatial resolution of data for spatial pat-
tern investigations.

Interpolation

Interpolation inferrs a downscaling solution through 
a model but does not resolve it through the produc-
tion of new, fine resolution data (Atkinson 2013). 
This is in contrast to the use of the term interpola-
tion to predict between sparsely distributed points. 
Bilinear or bicubic interpolation samples nearby 
pixels to estimate the values for finer resolution 
pixels. Another, more advanced example is spatial 
area-to-point (ATP) kriging, which predicts values 
on a scale smaller than the original data (Kyriakidis 
2004; Yoo and Kyriakidis 2006; Goovaerts 2006). 
Since it is not possible to measure remote sensing 
on a strictly point scale, the punctual semivariogram 
required for ATP kriging must be estimated through 
a de-regularization or deconvolution procedure (Kyri-
akidis 2004; Yoo and Kyriakidis 2006; Goovaerts 
2006). Other kriging methods include downscaling 
cokriging for image sharpening (Pardo-Igúzquiza 
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et al. 2006), geographically weighted ATP regression 
kriging, which considers spatial autocorrelation (Jin 
et al. 2018), and multiscale geographically weighted 
regression kriging, which is a hybrid of multiscale 
geographically weighted regression (MGWR) and 
ATP kriging (Yang et  al. 2019). Geographically 
weighted ATP regression kriging has been used to 
downscale temperature data when studying species’ 
range shifts (Platts et al. 2019), and bilinear interpo-
lation has been used to downscale projected climate 
data to study climate change impacts on tree species 
(Attorre et  al. 2011). Landscape metrics have been 
used to aid ATP residual kriging by providing sup-
plemental information on the density of land cover 
patches (Liu et al. 2008), but studies using ATP krig-
ing to downscale data prior to computing spatial pat-
tern metrics are lacking.

Super‑resolution mapping

Super-resolution mapping, sometimes called sub-
pixel mapping (SPM), attempts to resolve the spatial 
distribution of land covers from a continuous raster 
of land cover proportions. SPM techniques are often 
applied to data that have been generated through 
spectral unmixing (i.e., spectral mixture analysis; 
(Keshava and Mustard 2002)). Many SPM methods 
rely on fundamental theories of maximum spatial 
dependency to guide the placement of sub-pixels (Li 
et al. 2014), with others incorporating training mod-
els and ancillary data such as histograms, transition 
probabilities, and variograms into algorithm develop-
ment (Boucher et al. 2008; Wang et al. 2016). More 
recently, machine learning and deep learning meth-
ods have been implemented to resolve high resolution 
spatial information in images (Nigussie et  al. 2011; 
Yu et  al. 2013; Zhang et  al. 2016; Ling and Foody 
2019). However, these approaches do not always out-
perform simpler methods (Sharifi et  al. 2019), and 
they can be computationally intensive.

Spatial pattern metrics have been used to inform 
SPM algorithms, similar to ATP residual kriging 
(described above). Su (2019) used the scale-invariant 
concept of fractals to guide a Hopfield neural network 
for SPM. Despite much progress related to SPM in 
the image processing and pattern recognition com-
munities in the past decade though, these techniques 
have not been widely applied in landscape ecology, 
perhaps due to the computational complexities and 

lack of a universal method (Frazier 2015). More 
research may also be needed on the upper and lower 
limits of scaling in SPM (Ge et al. 2019) before the 
techniques can be widely applied in ecological inves-
tigations. One example of their use for spatial pattern 
analysis is from Muad and Foody (2012), who used 
SPM to delineate lakes and evaluate their shape char-
acterization (area, perimeter, compactness). SPM pro-
vided results that closely matched the ground data, 
but the authors found it did not outperform interpo-
lation downscaling techniques (bilinear and bicubic).

Downscaling categorical land cover data

Landscape ecologists frequently work with remote 
sensing data that have already been transformed into 
categorical land cover classes. Land cover data such 
as the National Land Cover Database, Coordination of 
Information on the Environment, Copernicus, Glob-
eLand30, and others are often produced from satellite 
sensors where the nominal scale is fixed. When finer 
scale data are needed, statistical downscaling tech-
niques can be used to translate relationships between 
the coarser-grained categorical data and finer-grained 
covariates (e.g., climate, landforms, human activity, 
etc.) to produce fine-grained predictions (Atkinson 
2013). Relationships between the response variable 
and covariates are typically modeled using regression 
(Dendoncker et  al. 2006), with advanced techniques 
using generalized additive modeling with constrained 
optimization (Hoskins et al. 2016) or integrating geo-
statistics via block-to-point kriging to include an esti-
mation of uncertainty (Poggio et al. 2013).

An alternative approach researchers have adopted 
when seeking to downscale data is to downscale 
the landscape metric values themselves, rather than 
the land cover raster from which they were derived. 
While this approach does not technically down-
scale remote sensing pixels, these techniques are an 
important research area of landscape ecology. These 
techniques rest on the empirical evidence that many 
landscape metrics exhibit consistent and robust scal-
ing relationships across a range of spatial grains 
or extent (Turner et  al. 1989a, b; Wu 2004). These 
relationships between metric and scale often follow 
a power law relationship (Frazier et  al. 2021), and 
this function can be extrapolated to predict the data 
at finer scales (Saura and Castro 2007; Argañaraz 
and Entraigas 2014; Frazier 2014). Success has been 
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variable though (Frazier 2015) because coarse-grain-
ing the land cover rasters, which is required to derive 
the scaling function, introduces statistical biases. 
Researchers are working to overcome these biases, 
but a universal method is not yet available.

Discussion and synthesis

This review highlights the plethora of upscaling and 
downscaling methods for remote sensing data that 
are available to landscape ecologists. Several sum-
mary points emerge. First, with upscaling, the over-
simplification of results is a persistent challenge with 
both continuous and categorical data. The underly-
ing heterogeneity and landscape structure can be 
lost during aggregation, and rare categorical classes 
may disappear entirely, which ultimately impacts the 
accuracy of spatial pattern analyses performed on the 
data. Oversimplification is more likely to occur when 
using basic methods, such as mean or central pixel 
resampling, whereas neighborhood approaches such 
as MWDA are designed to better preserve the spatial 
structure of underlying heterogeneity. Since heteroge-
neity ultimately drives the spatial patterns measured 
across a landscape, preserving heterogeneity during 
upscaling or downscaling should be the primary con-
sideration for landscape ecologists.

The review found that object-based approaches 
can overcome some of the challenges with precision 
and accuracy that result from pixel-based techniques. 
These object-based approaches present an interest-
ing dilemma for landscape ecologists though. Since 
patch boundaries are more likely to align with spa-
tial objects than individual pixels, these approaches 
may be viable options for upscaling and downscaling 
when the aim is ultimately to compute spatial pat-
tern analyses. However, object-based approaches are 
designed to collapse inter-pixel heterogeneity based 
on spatial and spectral similarity, so it is important 
to ensure that the scale of the original image dataset 
being upscaled is finer than the observational scale 
at which the phenomenon of interest presents. Oth-
erwise, identified objects may not represent homog-
enous patches, and upscaling will simply increase 
uncertainty.

Regarding downscaling, resampling is the most 
basic technique to implement, but it does not actu-
ally change pixel values and can therefore falsely 

suggest a higher level of heterogeneity is present. 
More advanced interpolation, fusion, and sub-pixel 
mapping methods have been developed by the remote 
sensing community, but landscape ecologists do not 
appear to be utilizing these techniques to improve 
the spatial resolution of datasets prior to computing 
spatial pattern analyses. When downscaling categori-
cal land cover data, regression-based approaches that 
correlate covariates to land cover are common, how-
ever, care must be taken to ensure that the variables 
used in downscaling are not also used in any ancillary 
analyses with the downscaled data, otherwise collin-
earity is likely.

Considerations when scaling data for spatial pattern 
analyses

The many scaling methods available can quickly 
overwhelm researchers, particularly when consider-
ing the varying levels of complexity that character-
ize the different methods. Choosing the most appro-
priate method often requires considering the scale 
of any ecological patterns and processes, discrep-
ancies between the data and the process of interest, 
uncertainties and biases in datasets, and limitations 
in computer processing, software availability, and 
programming familiarity. Just as there is no quin-
tessential scale from which to study ecological phe-
nomena, there is similarly no single method condu-
cive for scaling remote sensing data in all ecological 
contexts. A visual, decision-tree guide is provided to 
aid researchers in selecting the most appropriate tech-
nique for their data (Fig. 5). Below, we walk through 
several considerations that may be important for spa-
tial pattern landscape analyses.

Much like species richness and abundance are 
the central tenets of species diversity, patch richness 
and abundance are similarly important for landscape 
diversity. The elimination of small or rare patches 
in a dataset can drastically alter one or both of these 
measures, leading to biases in spatial pattern metrics, 
and inaccuracies in subsequent pattern-process rela-
tionships. Therefore, researchers must be particularly 
cognizant of how a scaling algorithm might alter 
patch richness and abundance. In  situations where 
the upscaled resolution will be larger than the size 
of individual patches and it is important to maintain 
small or rare patches or values, researchers should 
avoid using methods that select a single value (e.g., 
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Fig. 5   Guide for selecting methods for scaling remotely sensed data for spatial pattern analysis. Additional information about each 
method can be found in the text as well as in Table 1 of the Supplementary material

min, max, central pixel, etc.). Instead, methods that 
closely maintain the original distribution of values, 
such as MWDA, are a better option for preserving the 
original heterogeneity of the landscape. An excep-
tion is when the land cover/patch type of interest is 
known to be characterized by the min or max value. 
In cases where this land cover/patch type should be 
prioritized, then the appropriate descriptive statistics 
can be used. When upscaling categorical data, major-
ity and random rule-based methods are more likely to 
eliminate small or rare land covers compared to the 
point-centered distance-weighted method. However, 
if priority is placed on maintaining the largest or most 
dominant patches, then MRA, RRB, or central pixel 
resampling methods are likely sufficient. If preserving 
land cover type proportions and spatial information 
and patterns are the priority, RRB outperforms MRA 
(He et al. 2002).

Researchers must also consider the methodo-
logical limitations of each technique, including 

assumptions that underlying processes are scale 
independent or linear, and whether additional data 
are needed (Gao et  al. 2015). The extent to which 
a method is robust to nonlinearity should be con-
sidered, including selecting methods that are suit-
able for nonlinear relationships. As advanced com-
putational techniques such as machine learning and 
deep learning are adopted for rescaling, researchers 
should understand how these functions operate so 
that they may correctly parameterize models. Plat-
forms like Google Earth Engine (GEE) are making 
it easier for researchers to perform these advanced 
computational techniques on large datasets, but it is 
important to understand how these platforms handle 
scale. For instance, scale in GEE must be specified 
by the user when exporting imagery or performing 
analyses, and the GEE user guide explicitly notes, 
“understanding how Earth Engine handles scale is 
crucial to interpreting scientific results obtained 
from Earth Engine.”
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A way forward

Better incorporating heterogeneity into scaling

Scale and heterogeneity are inherently linked (Turner 
1987; Allen and Hoekstra 1991; Kolasa and Pickett 
1991; Dutilleul and Legendre 1993; Li and Reynolds 
1995), and it is impossible to translate data across 
scales without either ignoring heterogeneity or deal-
ing with it explicitly and effectively (Wu 2007). Most 
studies do not quantify or test the impact of hetero-
geneity on scaling results (Frazier 2015), leaving a 
dearth of understanding with regard to exactly how 
scaling impacts heterogeneity and vice versa. Certain 
techniques, such as MRA, will introduce different 
magnitudes of uncertainty into upscaled data based 
on the composition and configuration of the land 
cover classes (Frazier 2014; Frazier et al. 2021), and 
these aspects should not simply be ignored when res-
caling data. At a minimum, the heterogeneity of the 
data being rescaled can be quantified and reported. 
Moving forward, researchers should explore the ways 
in which heterogeneity impacts scaling and con-
tinue to select and develop methods that deal explic-
itly with heterogeneity or minimize the change in 
heterogeneity.

This review highlighted how advances in artificial 
intelligence and deep learning are being leveraged 
to reduce the loss of heterogeneity and improve the 
accuracy of scaling methods. Research applying deep 
learning algorithms in remote sensing has grown 
increasingly mature (Ma et  al. 2019), and improve-
ments continue to be made that decrease processing 
time and requirements and better address heterogene-
ous and complex data. The fields of computer vision 
and signal processing continue to refine methods that 
can be applied to scaling. Examples include new spa-
tial filtering approaches featuring nonlinear decompo-
sition for pansharpening (Pandit and Bhiwani 2021), 
using dense blocks in deep networks to efficiently 
utilize shallow information for image fusion (Li and 
Wu 2019), and employing a Generative Adversarial 
Network with structural similarity, gradient loss func-
tions, and concatenating images at each layer of the 
deep network to retain more information when fus-
ing images (Fu et al. 2021). Keeping abreast of meth-
odological developments in diverse fields will allow 
landscape ecologists to capitalize on innovations and 
state-of-the-art approaches to increase the accuracy 

and precision of scaling while minimizing processing 
demands.

Improving spatial resolution through new 
technologies

Advances in very high resolution commercial and 
personal remote sensing systems (e.g., Planet imagery 
and Uncrewed Aerial Systems (UAS), or drones, 
respectively) are rapidly increasing the bounds of 
remote sensing spatial resolution and creating oppor-
tunities to better understand the impacts of scaling. 
As these data become more prevalent and reliable, 
they can be used to bridge spatial scales and cali-
brate scaling models (Alvarez-Vanhard et  al. 2021). 
Fusion methods, such as those developed using neu-
ral networks and deep learning (Song et al. 2018; Zhu 
et  al. 2018; Jia et  al. 2020) can be used to combine 
UAS data with coarser, satellite-derived data streams. 
However, research to date has focused mainly on 
calibration and measurement comparison rather than 
image fusion (Alvarez-Vanhard et al. 2021). Nonethe-
less, ecologists are already adopting UAS as a key 
tool for bridging gaps between satellite imagery and 
in-situ measurements (Revill et al. 2020; Thapa et al. 
2021). As ecologists embrace UAS, their use may act 
as a catalyst for developing new downscaling methods 
and provide data that would otherwise be unavailable.

Open science frameworks to promote 
cross‑disciplinary research

The push for reproducibility and openness in science, 
through platforms such as GEE and open source cod-
ing environments (Brunsdon and Comber 2020) may 
serve to further the science of scaling. Platforms like 
GitHub host a myriad of packages, scripts, and tuto-
rials on scaling, potentially galvanizing novel and 
unconventional ideas. Increased accessibility may 
alleviate limitations in scaling science, such as lack 
of sufficient training data for machine learning. These 
platforms and environments can also reduce compu-
tational time and processing demands. Alternatively, 
the progression of scaling science may be impaired 
if increased access leads to neglecting the nuances of 
remote sensing data, mischaracterizing scale effects, 
and improperly scaling data.

Advancing the science of scaling requires cross-
disciplinary research both in regards to theory and 
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technology (Wu and Li 2009). Landscape ecologists 
can look to the fields of climatology, atmospheric sci-
ence, computer science, and others to develop scaling 
approaches pertinent to their research. Questions sur-
rounding implementing multiscale approaches, invar-
iants of scale, and the ability to change scale may 
already be partially answered, but the answers are 
scattered across disciplines, and this lack of integra-
tion hinders knowledge production (Goodchild and 
Quattrochi 1997). Cross disciplinary collaboration 
may lead to novel methods of incorporating heteroge-
neity into scaling techniques, a universal method for 
developing scaling functions, and closing or shrink-
ing additional knowledge gaps. A number of recent 
reviews in adjacent and germane fields have discussed 
scale and scaling remotely sensed data (e.g., in earth 
science (Ge et al. 2019), irrigation science (Ha et al. 
2013), agronomy (Grunwald et  al. 2015), geophys-
ics/soil moisture (Peng et al. 2017)), providing ample 
opportunity to compare perspectives.

Conclusion

Remotely sensed data and derived products are key 
components of landscape analysis, but often need to 
be scaled to meet modeling or analysis assumptions. 
A plethora of scaling methods are available ranging 
from simple techniques with limited computational 
demands to more advanced methods that use deep 
learning algorithms. However, recognizing the advan-
tages and limitations of different scaling methods as 
well as the differences between techniques is obliga-
tory for landscape ecologists studying spatial pat-
terns. Scale biases can add significant uncertainty and 
inaccuracies to an analysis. Neglecting these potential 
effects can complicate spatial pattern analysis and 
obfuscate results. We reviewed the methods available 
for upscaling and downscaling remote sensing data 
and identified the following key findings.

First, with both upscaling and downscaling, there 
is no single appropriate scaling method, and so there 
are always tradeoffs that must be considered. While 
a diversity of scaling methods are available to land-
scape ecologists, work remains to integrate these into 
spatial pattern analyses. Second, landscape ecologists 
must be particularly aware of how scaling impacts 
patch richness and abundance, as these pillars of 
landscape diversity will be impacted differently by 

different scaling methods (e.g., through the elimina-
tion of patches, promoting dominance of one class. 
etc.). Third, methods that preserve heterogeneity, 
such as moving window or object-based approaches, 
may ultimately be better suited for spatial pattern 
analysis, but more work is needed to understand how 
heterogeneity is impacted by scaling and vice versa. 
Fourth, the field can focus on leveraging technologi-
cal advances in machine learning and deep learning 
and methodological innovations in computer vision 
and signal processing. Lastly, plenty of scaling tech-
niques exist, but it appears many are not widely 
applied in landscape ecology. We can suggest more 
collaborations with remote sensing and signal pro-
cessing scientists, but ultimately, the path forward is 
to ensure landscape ecologists know about the differ-
ent options, understand the potential benefits of scal-
ing data (particularly for downscaling), and feel com-
fortable determining an appropriate method.
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