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A B S T R A C T   

Landscape ecological risk reflects the extent to which ecosystems are threatened by human activities and 
environmental changes and is increasingly seen as the basis for decision-making in regional ecosystem man
agement. Although the Yangtze River Economic Belt (YREB) has experienced drastic land use changes affected by 
human activities, the spatiotemporal heterogeneity of ecological risk in the region has not been thoroughly 
investigated. This study develops and applies an ecological risk assessment framework that integrates landscape 
pattern characteristics and landscape vulnerability dynamics to analyze spatiotemporal variations in landscape 
ecological risk in the YREB from 2000 to 2018. The results show moderate risk levels across most of the YREB 
during the study period, but risk was notably higher in the western and northern regions. Due to the gradual 
improvement in regional policies and the implementation of ecosystem restoration projects, there is a clear trend 
of risk reduction, and the area previously designated as high or medium–high risk was reduced by more than 
150,000 km2 over the study period. Approximately 45% of the study area, where the risks are more difficult to 
mitigate or maintain at lower levels, was identified as a key area for future risk management. Significant 
spatiotemporal differences in ecological risks underscore the necessity of implementing spatially differentiated 
risk management strategies and long-term dynamic monitoring. This study provides a reference for future land 
use optimization and sustainable landscape management in the YREB.   

1. Introduction 

Maintaining the stability of ecosystem structure and functions is at 
the core of sustainable development (Luo et al., 2018; Paukert et al., 
2011; Wade et al., 2011). However, intense human activities cause 
profound changes in landscape patterns and ecological processes, 
generating certain ecological risks that seriously threaten human well- 
being (Bryan et al., 2018; Frazier et al., 2019; Wang et al., 2020). 
There is a growing interest in using ecological risk assessment (ERA) to 
manage risk and support ecosystem conservation. ERA is the process of 
evaluating the likelihood that adverse ecological effects may occur or 
are occurring as a result of exposure to one or more stressors (Forbes and 
Galic, 2016; USEPA, 1998). It links human activities to environmental 
conditions and provides a way to identify problems that pose a hazard to 
ecosystems, thereby playing an active role in the decision-making of 
environmental managers (Mann et al. 2021; Piet et al. 2017; Shea and 
Thorsen 2012). 

Early ERAs focused on particular site-specific hazards in small 
geographic areas, such as monitoring the impact of toxic chemicals on 
local human health (Landis, 2003; Loibl and Smidt, 1996; Suter, 1990). 
In recent decades, the growing scope of climate change and human ac
tivities has triggered numerous regional and global environmental crises 
and challenges (Hope, 2006; Lal et al., 2021; Landis et al., 2013). There 
has been a clear trend of broadening the scope of ERAs to accommodate 
larger-scale impacts and management responses. However, as scale in
creases, it becomes increasingly difficult to deal with compounding risks 
and their complex spatial heterogeneity (Serveiss, 2002; Wang et al., 
2020). Within this context, landscape ecological risk has been proposed 
and defined as the possible adverse consequences of the interaction of 
landscape patterns and ecological processes under the influence of 
natural or human factors (Ayre and Landis, 2012; Hunsaker et al., 1990; 
Peng et al., 2015a). In this framework, “landscape” refers to a spatially 
heterogeneous area consisting of a combination of local ecosystems or 
land use types (Forman, 1995; Gaines et al., 2004). It is widely 
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considered an ideal scale for studying human activities and their envi
ronmental effects (Wu, 2019). The framework treats the deviation of a 
heterogeneous landscape mosaic from the optimal landscape pattern as 
an indicator of risk and emphasizes risk expression in terms of specific 
spatial patterns for ecological functions and processes (Cao et al., 2019; 
Xu et al., 2021). Moreover, the evaluation object of a landscape ERA is 
the integral landscape in the region rather than a single ecosystem, 
which highlights the goal of protecting the overall structure and func
tions of the entire landscape. To some extent, it enables the character
ization of integrated ecological risks from multiple stressors through 
landscape features and provides a pathway for ecological risk mitigation 
based on landscape pattern optimization (Goussen et al., 2016; Zhang 
et al., 2020). As a result, landscape ERA has become an important tool in 
macroecosystem management (Mo et al., 2017; Van den Brink et al., 
2016). 

As theories have developed rapidly, a method for quantifying land
scape ecological risk based on pattern-process feedback mechanisms has 
recently been proposed (Li et al., 2020; Peng et al., 2015a; Wang et al., 
2021). Specifically, the method relies on two main indicators: landscape 
disturbance and landscape vulnerability. The product of these two in
dicators is used to estimate potential ecological losses, which is then 
combined with risk probabilities to calculate the specific risk value of 
the region (Cao et al., 2019). To date, this method has been adopted in 
many regional studies on river basins (Wang et al., 2020), coastal areas 
(Zhang et al., 2020), ecologically fragile areas (Gong et al., 2021; Jin 
et al., 2019; Wang et al., 2021), mining areas (Peng et al., 2015b), and 
megacities (Li et al., 2020; Mo et al., 2017), among others. These studies 
have demonstrated the advantages of the method, i.e., the integrated 
characterization and spatial visualization of ecological risks with limited 
in situ observations, and some have noted possible limitations (Wang 
et al., 2021). Reliable quantification is a prerequisite for the analysis and 
management of ecological risks. The oversimplification of key steps in 
the existing method (i.e., quantifying landscape vulnerability as a con
stant based on expert opinion) is a major concern (Cao et al., 2019; Mo 
et al., 2017; Wang et al., 2021). In reality, ecosystems represent a dy
namic continuum of functioning and can be characterized by varying 
degrees of vulnerability according to changes in external stressors as 
well as internal properties (Hunsaker et al., 1990; Landis et al., 2013; 

Solovjova, 2019). Approaches that consider only the static differences 
between landscape types do not sufficiently reflect the spatial and 
temporal heterogeneity of risk, especially in larger areas or across time 
(Goussen et al., 2016; Paukert et al., 2011). Therefore, this method still 
needs targeted improvements for practical application. 

The Yangtze River Economic Belt (YREB) is an important geographic 
region in China with a large population, an active economy, and rich 
ecological resources (Zhang et al., 2021). After years of high-intensity 
development and unsustainable land use, a series of eco- 
environmental problems have occurred, such as vegetation degrada
tion, rapid contraction of lakes and wetlands, and substantial water and 
air pollution (Hu et al., 2017; Li et al., 2014). To support environmental 
management in the YREB, recent research has paid considerable atten
tion to various forms of ERAs of effects such as natural disasters (Zhang 
et al., 2017), environmental pollution (Wu et al., 2019), climate change 
(Meng et al., 2016), and deteriorating human health (Hu et al., 2017). 
However, few studies have investigated the consequences of the cu
mulative effects of human activities and environmental changes on 
natural ecosystems across the YREB, and this knowledge gap has pre
vented progress in regional environmental management. 

The objective of this paper is to develop and apply an ERA frame
work that integrates landscape pattern characteristics and landscape 
vulnerability dynamics to analyze spatiotemporal variations in land
scape ecological risk in the YREB from 2000 to 2018. We hypothesize 
that there is significant spatiotemporal heterogeneity in landscape 
ecological risk in the YREB due to human activities and associated 
environmental changes. To test this hypothesis, we first improve the 
current, landscape pattern-based method to develop a landscape ERA 
model that is more appropriate for dynamic studies. We then calculate 
the landscape ecological risk index (LERI) to analyze the changes in risk 
in the YREB from a spatiotemporal perspective. Based on the findings, 
we propose key areas and targeted advice for future risk management. In 
the context of increasingly strict ecological protection and accelerated 
socioeconomic development, this study supports land use optimization 
and sustainable landscape management in the YREB. 

Fig. 1. The location of the YREB. Note: The 11 provinces/municipalities are labeled in bold font; from west to east, pink dotted circles mark the Cheng-Yu, middle 
reaches of the Yangtze River, and Yangtze River Delta urban agglomerations. 
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2. Materials and methods 

2.1. Study area 

The YREB consists of 11 provinces/municipalities along the Yangtze 
River and spans three major regions in China (Fig. 1). It covers 
approximately 2.05 million km2, accounting for 21.27% of the total land 
area of China. After years of rapid development, the YREB occupies a 
leading position in China’s overall economic development. In 2018, the 
total GDP and resident population of the YREB were approximately 
4230.26 billion yuan and 598.71 million, respectively, both accounting 
for more than 40% of the national totals. Three major urban agglom
erations (i.e., Cheng-Yu, the middle Yangtze River, and the Yangtze 
River Delta) have formed, showing the great vitality of regional eco
nomic development. 

At the same time, the YREB is seen as a demonstration zone of the 
ecological civilization concept in China, playing an irreplaceable role in 
maintaining national ecological security. Over 40% of the YREB is 
forested, and the area of surface water bodies comprises approximately 
20% of the total in China (Zhang et al., 2021). However, the ecological 
environment has been extensively degraded by human activities, posing 
a serious threat to ecological security and sustainable development. 
Recognizing the need to protect the ecological environment, the Chinese 
government proposed an ambitious goal of green development in the 
YREB in 2016 (Liu et al., 2018). Within this context, quantifying the 
spatiotemporal patterns of landscape ecological risk will contribute to 
establishing risk alert mechanisms and is important for coordinated 
development between economic prosperity and ecological security. 

2.2. Materials 

The data needed to measure ecological risk are shown in Table 1. The 
land use database is currently one of the most accurate remote sensing- 
based monitoring products in China, and its comprehensive evaluation 
accuracy is above 93% (Ning et al., 2018; Zhang et al., 2020). Land use is 

Table 1 
Dataset details and sources.  

Data Details Resolution Sources 

Land use data 2000, 2005, 2010, 
2015, and 2018 

30 m Data Center for 
Resources and 
Environmental 
Sciences, Chinese 
Academy of Sciences 
(http://www.resdc. 
cn) 

Basic geographic 
data 

Vector data of 
administrative 
boundaries, cities, 
and rivers 

Line/point 
data 

Digital elevation 
model (DEM) 

For extracting the 
slope and elevation 

30 m 

Socioeconomic 
raster data 

Population density 
rasters for 2000, 
2005, 2010, 2015, 
and 2018 

1 km WorldPop data 
platform (https 
://www.worldpop.or 
g) 

GDP density raster 
data* for 2000, 
2005, 2010, and 
2015 

1 km National Earth System 
Science Data Center 
(http://www.geodata. 
cn) 

Meteorological 
data 

Precipitation and 
temperature for 
2000, 2005, 2010, 
2015, and 2018 

Point data China Meteorological 
Data Service Centre 
(http://data.cma.cn) 

Net primary 
productivity 
(NPP) 

2000, 2005, 2010, 
2015, and 2018 

1 km US National 
Aeronautics and Space 
Administration 
(http://modis.gsfc. 
nasa.gov) 

Normalized 
difference 
vegetation index 
(NDVI) 

2000, 2005, 2010, 
2015, and 2018 

1 km US Geological Survey 
(USGS) (https://www. 
usgs.gov) 

Note: Missing GDP density data for 2018 are calculated based on available GDP 
data combined with the real growth rate over the past 15 years and expected 
growth. 

Fig. 2. The three-step framework for analyzing landscape ecological risk and spatiotemporal change.  
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classified into six categories: cropland, woodland, grassland, water, 
urban land, and unused land. Both precipitation and temperature 
datasets (at 1 km spatial resolution) were generated using kriging 
interpolation based on point observations from meteorology stations in 
the YREB. Note that the LERI calculation is performed at the original 
resolution of each dataset to avoid data loss from resampling. 

2.3. Methods 

The framework developed here to analyze landscape ecological risk 
comprises three steps (Fig. 2). In Step 1, a grid with 2324 assessment 
units (30 km × 30 km) covering the entire continental area of the YREB 
is created, following prior studies (Chen et al., 2020; Zhang et al., 2020). 
In Step 2, an improved landscape ERA method is developed to estimate 
the LERI for each grid unit in 2000, 2005, 2010, 2015, and 2018 (see 
section 2.3.1). In Step 3, the patterns and dynamics of ecological risk in 
the YREB during the period 2000–2018 are analyzed, and key areas for 
risk management are discussed. 

2.3.1. Calculation of the LERI 
A landscape pattern-based approach is used here to calculate the 

LERI. This method represents ecological risk as the product of “ecolog
ical loss” and “risk probability” (Cao et al., 2019). “Ecological loss” is 
composed of two components: the landscape disturbance index (Di) and 
landscape vulnerability index (Vi) (Mo et al., 2017; Zhang et al., 2020). 
Di captures the magnitude of landscape disturbance caused by human 
activities and natural changes, and Vi captures the ability of landscape 
components to maintain a stable ecological structure and functions (Li 
et al., 2020). “Risk probability” is estimated based on the area of each 
land use type, which reflects the contribution of each land use type to the 
overall landscape risk (Xu et al., 2021). The LERI is calculated as follows: 

LERIk =
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Dki × Vki

√
×

Aki

Ak
(1)  

where k is the assessment unit, i is the land use type, LERIk is the land
scape ecological risk index of unit k, Dki is the landscape disturbance 
index of land use type i in unit k, Vki is the landscape vulnerability index 
of land use type i in unit k, Aki is the area of land use type i in unit k, and 
Ak is the area of unit k. 

Drawing on recent studies, we chose three landscape metri
cs—fragmentation, separation, and dominance—to calculate Di. Land
scape fragmentation (LFi) describes the fragmentation degree of each 
land use type, which reflects human modification; higher values indicate 
greater landscape disturbance (Mann et al., 2021; Wang et al., 2020). 
Landscape separation (LSi) reflects the degree of separation or isolation 
between land use patches. Land use types with a higher degree of sep
aration are characterized as more dispersed and complex in their 
geographical distribution, which is generally considered negative for 
landscape connectivity (Zhang et al., 2020). Landscape dominance (LDi) 
indicates the degree of influence of a given land use type on the land
scape (Dalloz et al., 2017; Gong et al., 2021). Fragstats software was 
used to compute these landscape metrics (McGarigal et al., 2012). The 
formulae are as follows: 

Dki = aLFki × bLSki × cLDki (2)  

LFki = nki/Aki (3)  

LSki =
Ak

2Aki

̅̅̅̅̅
nki

Ak

√

(4)  

LDki =
Qi + Mki

4
+

Lki

2
(5)  

where LFki, LSki, and LDki are the landscape fragmentation index, land
scape separation index, and landscape dominance index of land use type 

i in unit k, respectively; variables a, b and c represent the weights of LFki, 
LSki and LDki and take the values of 0.5, 0.3 and 0.2, respectively (Li 
et al., 2020; Wang et al., 2021); and nki is the number of patches of land 
use type i in unit k, Qi is the ratio of units of land use type i to the total 
units, Mki is the ratio of the number of patches of land use type i to the 
total number of patches in unit k, Lki is the ratio of the area of land use 
type i to the total area of unit k, and Aki and Ak have the same definitions 
as those given in Eq. (1). 

Vulnerability is conceptualized as susceptibility to exposure to per
turbations or external stresses, sensitivity to perturbation, and a lack of 
adaptive capacity (De Lange et al., 2010; Gallopín, 2006). In prior 
research, the vulnerability of different land use types was ranked by 
experts, with 6 being the most vulnerable and 1 the least vulnerable: 
unused land = 6, water = 5, cropland = 4, grassland = 3, woodland = 2, 
and urban land = 1 (Chen et al., 2020; Li et al., 2020; Wang et al., 2020). 
These rankings are used as an empirical value (EVi) in this study and 
then combined with a composite adjustment factor (CFk) to obtain a 
modified vulnerability index (Vki) that reflects the spatial and temporal 
heterogeneity of landscape vulnerability. These indicators are computed 
as follows: 

Vki = EVi × CFk (6)  

CFk = EFk/EFk (7)  

EFk =
∑8

j=1
wj × mjk (8)  

where Vki is the modified landscape vulnerability index of land use type i 
in unit k, EVi is the empirical value of landscape vulnerability of land use 
type i, CFk is an adjustment factor for unit k, EFk is the weighted sum of 
indicators in unit k, wj is the weight of indicator j, and mjk is the stan
dardized index value. 

The adjustment factor (CFk) that we introduce here is calculated 
using multiple indicators related to the three dimensions of vulnera
bility: exposure, sensitivity, and adaptive capacity. As an intrinsic 
property of an ecosystem, vulnerability is revealed only under external 
disturbances (Dai et al., 2021). Therefore, in most formulations, expo
sure is considered one element constituting vulnerability that reflects 
how the ecosystem comes into contact with stressors (De Lange et al., 
2010; Khan et al., 2021). Sensitivity is an intrinsic property of the 
ecosystem and is defined as the degree to which the system is affected by 
those perturbations (Qiu et al., 2015). Vulnerability increases with 
sensitivity, making the structure and functions of the landscape more 
susceptible to change by external disturbances. Adaptive capacity is the 
system’s ability to cope with hazards and their consequences, in contrast 
to vulnerability (Gallopín, 2006). Ecosystems with stronger adaptive 
capacity can reduce ecological risks by moderating or offsetting the 
potential for damage (Huang et al., 2012). In sum, we selected eight 
indicators to account for these three dimensions based on previous 
studies that have confirmed the reliability of these indicators for quan
tifying landscape vulnerability (Appendix A and B). 

2.3.2. Analysis of spatiotemporal change in landscape ecological risk 
The analysis of spatiotemporal changes in the LERI is conducted in 

three steps (Fig. 2). First, ecological risk levels are classified using nat
ural breaks. Natural breaks are ideal for visualizing naturally occurring 
tendencies in the data, as they reduce within-class variance and maxi
mize between-class variance (Liu et al., 2019; Picado-Aguilar and 
Aguero-Valverde, 2020). The LERIs for all units from 2000, 2005, 2010, 
2015, and 2018 were combined and classified into ten intervals. Every 
two adjacent intervals were combined, resulting in five risk levels. 

Second, the rate of risk change index (RRC) is constructed to 
compare the difference in the rate of the LERI increase between units in 
different periods, thus identifying the spatial and temporal heteroge
neity of risk changes (Zhong et al., 2020). The RRC index is the average 
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annual increase in the LERI of a unit as a percentage of the initial LERI 
value. Large, positive index values indicate faster rates of risk growth, 
smaller values indicate slower risk growth, and negative values indicate 
decreased risk. RRC is computed as follows: 

RRCk = (LERIt2
k − LERIt1

k )/LERIt1
k ×

1
Δt

× 100% (9)  

where RRCk is the rate of risk change of unit k; LERIkt2 and LERIkt1 are the 
landscape ecological risk index of unit k at time t1 and t2, respectively; 
and Δt is the time span from t1 to t2. 

Third, the stability of the ecological risk of each unit is observed by 
calculating the coefficient of variation in the LERI (CVR) (Döring and 
Reckling, 2018). In general, the larger the CVR is, the weaker the risk 
stability. The CVR is calculated as follows: 

CVRk = SDk/MNk (10)  

where CVRk is the coefficient of variation in the LERI in unit k, SDk is the 
standard deviation of the LERI in unit k, and MNk is the mean of the LERI 
in unit k. 

3. Results 

3.1. Land use change from 2000 to 2018 

There were considerable differences in the area and change trajec
tories of each land use type across the study period (Fig. 3). In general, 
the YREB is dominated by woodland, cropland, and grassland. Despite a 

Fig. 3. Change in area and percentage of the six land cover types from 2000 to 2018.  

Table 2 
Transfer matrix for the different land cover types from 2000 to 2018 (unit: km2).  

Land use types Land use types in 2018 Total area of land lost 

Cropland Woodland Grassland Water Urban land Unused land 

Land use types in 2000 Cropland 570,986 23,283 6,736 5,295 27,692 106 63,112 
Woodland 22,258 902,144 11,412 1,539 4,783 210 40,202 
Grassland 6,482 13,440 305,714 1,168 1,150 1,002 23,241 
Water 3,183 825 673 54,666 1,702 768 7,151 
Urban land 4,329 505 187 342 46,772 15 5,378 
Unused land 56 144 864 672 29 19,165 1,766 

Total area of land added 36,308 38,197 19,872 9,016 35,355 2,102 140,850  

Fig. 4. Average LERI values for the YREB and provinces from 2000 to 2018. Notes: YN: Yunnan, SC: Sichuan, GZ: Guizhou, CQ: Chongqing, HB: Hubei, HN: Hunan; 
JX: Jiangxi; AH: Anhui, JS: Jiangsu, ZJ: Zhejiang, SH: Shanghai. 
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slight decrease in area of 2109 km2 over the study period, woodland 
remained the most extensive land use type throughout the region, 
covering 940,300 km2 in 2018 and accounting for 46.09% of the YREB. 
In contrast, cropland and grassland decreased at rates of 1491 km2 and 
190 km2 per year, respectively, over the 18-year study period. The cu
mulative reduction in cropland area was 26,843 km2, and this figure 
would have reached 63,112 km2 if the supplementation of cropland by 
other land types had not been taken into account. With the accelerated 
rate if urbanization, urban land was the only land use type for which a 
continual increase was observed over the study period. While the area of 
urban land in 2018 represented only 4.03% of the study area, urban 
areas grew 1.57 times compared to 2000, with a net increase of 29,975 
km2. As a result, in addition to the loss of cropland (approximately 
27,692 km2), approximately 4783 km2 of woodland, 1702 km2 of water, 
and 1150 km2 of grassland were lost to urban development (Table 2). 

3.2. Spatiotemporal dynamics of landscape ecological risk 

3.2.1. Spatial patterns of landscape ecological risk 
The LERI was calculated for all assessment units and averaged across 

the 11 provinces and the entire YREB. The average LERI values of the 

YREB in 2000, 2005, 2010, 2015 and 2018 were 0.1712, 0.1655, 
0.1625, 0.1565 and 0.1566, respectively. These findings demonstrate 
that ecological risk in the YREB decreased steadily from 2000 to 2015 
and then stabilized at a relatively low level. The provincial-scale value 
showed a similar trend. The overall ecological situation in most prov
inces improved significantly from 2000 to 2015, as evidenced by 
decreasing risk, and then stabilized after 2015. Some provinces, 
including Sichuan, Chongqing, Jiangsu, and Shanghai, had relatively 
higher risk throughout the study period, while Yunnan, Guizhou, 
Hunan, and Jiangxi had relatively lower risk (Fig. 4). 

The natural breaks classification resulted in five categories: high 
(0.2176 ≤ LERI ≤ 0.2935), medium–high (0.1838 ≤ LERI < 0.2176), 
medium (0.1570 ≤ LERI < 0.1838), medium–low (0.1339 ≤ LERI <

0.1570), and low (0.0802 ≤ LERI < 0.1339). These results show that the 
risk structure of the YREB changed from predominantly medium to high 
in 2000 and then to predominantly medium–low to low by 2018. This 
change is evidenced by the growth in the dark-green and light-green 
rings in 2018 (Fig. 5a). The number of low-risk units increased by 443 
(19.07%) from 2000 to 2018. The trends for the provinces were similar 
to those for the entire YREB, with the majority seeing growth in the low- 
and medium–low-risk categories and decreases in the high- and 

Fig. 5. Risk structure for the five time periods. (a–l): The percentage of risk levels from 2000 to 2018. (m): The average number of units at different risk levels from 
2000 to 2018. Notes: YN: Yunnan, SC: Sichuan, GZ: Guizhou, CQ: Chongqing, HB: Hubei, HN: Hunan; JX: Jiangxi; AH: Anhui, JS: Jiangsu, ZJ: Zhejiang, SH: Shanghai. 
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medium–high-risk categories (Fig. 5b–l). High- and medium–high-risk 
units were concentrated mainly within Sichuan Province, and the low- 
and medium–low-risk units were concentrated mainly in Yunnan, 
Hunan, and Jiangxi Provinces (Fig. 5m). Shanghai was dominated by 
medium- to high-risk units throughout the study period but had a 
weaker impact on the risk structure changes in the entire YREB due to 
the small size of the province. 

At the grid scale, the spatial patterns of the LERI show higher risk in 
the north Yangtze River area, including the eastern Tibetan Plateau, 

Sichuan Basin, and Yangtze River Delta. Areas of lower risk are located 
in the south, mainly the Yunnan-Guizhou Plateau and the Jiangnan Hills 
(Fig. 6a–e). Over the study period, many units transitioned to an adja
cent risk level. For example, many high-risk units shifted to medium
–high risk, particularly in Sichuan, Anhui, and Jiangsu Provinces. Low- 
and medium–low-risk areas expanded, especially moving from south to 
north, and together, these two categories covered over 60% of the study 
area by 2018. Additionally, areas of higher risk emerged in certain urban 
agglomeration areas, such as eastern Sichuan and mideastern Hubei, 

Fig. 6. Maps of landscape ecological risk levels in 2000 (a), 2005 (b), 2010 (c), 2015 (d), and 2018 (e). Notes: L (low), ML (medium–low), M (medium), MH 
(medium–high), H (high). 
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after 2015. 

3.2.2. Spatiotemporal differences in risk changes 
The average RRC value of the YREB was −0.49% during 2000–2018. 

RRC values were lower than the overall YREB value for all provinces 
except Sichuan, Jiangsu, and Shanghai, indicating that the risk for most 
provinces declined faster than the risk for the whole study area. When 
the RRC for the YREB is compared in the different periods, the overall 
risk declined more rapidly in periods I (2000–2005) and III (2010–2015) 
and slightly more slowly in period II (2005–2010), with RRC values of 
−0.68%, −0.79%, and −0.39%, respectively. However, risk in period IV 
(2015–2018) increased at a rate of 0.39% per year. The same trend 
occurred in most of the provinces. In addition, the provinces with the 
most significant changes in each period were Anhui, Jiangxi, and Zhe
jiang in period I; Jiangxi, Shanghai, and Anhui in period II; Guizhou, 
Yunnan, and Chongqing in period III; and Shanghai, Jiangxi and Zhe
jiang in period IV (Fig. 7). 

Changes in ecological risk were unevenly distributed. From 2000 to 
2018, approximately 99.1% of the units showed risk reduction at a rate 
of 0% to −1.59% per year. The remaining units that exhibited slightly 
increased risk were concentrated mainly in eastern Jiangsu and 
Shanghai Provinces (Fig. 8a). In period I, the units with declining risk 
were distributed mostly in the central and western regions (Fig. 8b). In 
period II, there was a clear eastward trend in the areas with declining 
risk. Large contiguous areas of increasing risk emerged in the south
western provinces, such as Yunnan and Sichuan (Fig. 8c). In period III, 
the pattern of units with predominantly declining risk resurfaced, but 
with a generally faster decline in the north and slower decline in the 
south (Fig. 8d). In the last period, the units displaying growth in risk 
increased, covering more than 60% of the study area (Fig. 8e). However, 
the rate of change was generally lower in the units showing risk growth 
than in those with declining risk, so the overall risk in the study area did 
not increase considerably. 

3.3. Key areas for ecological risk management 

Given the limited resources for management, it is necessary to un
derstand where the most important areas are in order to orient policy- 
making efforts accordingly (Grantham et al., 2020; Lu et al., 2020). 
This study sought to identify key areas for future risk management in 
terms of the dynamic characteristics of ecological risk, including risk 
status, risk mitigation effectiveness, and risk stability. Accordingly, the 
three types of key areas are i) stable high-risk areas, ii) risk reduction- 
lagged areas, and iii) risk-unstable areas. Stable high-risk areas are 
places where the risk level remained high during the entire study period; 
these areas thus pose serious and ongoing threats to regional ecological 
security, which is usually of great concern to risk managers. Risk 

reduction-lagged areas are areas where the rate of risk reduction was 
slower, signaling that deficiencies may exist in environmental protection 
measures that managers have implemented. Risk-unstable areas are 
areas that did not maintain a stable level of risk under the influence of 
changing environmental conditions and therefore have a higher proba
bility of increased risk in the future. 

To identify key areas, 20% was determined as a threshold for the 
LERI, RRC, and CVR based on input from experts and local managers. 
Note that the threshold is flexible and can be adjusted in different re
gions. We extracted all units falling above the LERI threshold for stable 
high-risk areas, the RRC threshold for risk reduction-lagged areas, and 
the CVR threshold for risk-unstable areas. Stable high-risk areas 
comprise 413 units, with most distributed in the northwestern portion of 
the YREB and forming two clusters: the West Sichuan Plateau and 
Sichuan Basin (Fig. 9a). Risk reduction-lagged areas comprise 465 units, 
of which 62% overlap with stable high-risk areas (Fig. 9b). The 
remaining units in this category are located mainly in the border area of 
Hubei and Hunan Provinces and the Yangtze River Delta. Risk-unstable 
areas comprise 465 units that have little overlap with the previous two 
types and are scattered in the mountainous and hilly areas of the 
provinces (Fig. 9c). When the three types are combined, there are a total 
of 1046 key units for risk management, accounting for 45% of the study 
area (Fig. 9d). Sichuan Province had the most key areas, followed by 
Yunnan and Jiangxi Provinces. 

4. Discussion 

As an integrated and cumulative consequence of multiple stressors, 
the landscape ecological risk in the YREB is associated with spatiotem
poral changes in environmental, socioeconomic, and political factors. 
Temporally, the overall ecological risk throughout the YREB decreased 
over the study period with the reduction in medium- to high-risk areas; 
this finding is consistent with the ecological construction efforts made 
by the Chinese government. Since 1998, the Chinese government has 
invested approximately $351.6 billion (in 2015 USD) to implement 
nationwide ecological programs such as the Natural Forest Conservation 
Program and the Grain to Green Program (Bryan et al., 2018). In the 
YREB, over 5.73 million hectares of cultivated land concentrated in 
mountainous and hilly areas were converted to woodlands, which 
increased regional forest cover to 41.3% (MEE, 2017). The area of soil 
erosion was reduced by 3.9 million hectares from 2011 to 2018, and the 
frequency of natural disasters such as desertification, landslides, and 
flooding was also considerably reduced (SASS, 2021). In addition, 165 
national nature reserves aimed at preserving important ecosystems and 
habitats for rare species were established in the YREB (Xu et al., 2020). 
In sum, these measures have contributed to environmental improve
ments in the YREB. 

Fig. 7. The rate of risk change for the YREB and provinces in different periods. Notes: YN: Yunnan, SC: Sichuan, GZ: Guizhou, CQ: Chongqing, HB: Hubei, HN: 
Hunan; JX: Jiangxi; AH: Anhui, JS: Jiangsu, ZJ: Zhejiang, SH: Shanghai. 
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However, differentiation policy interventions have also increased the 
unevenness of risk reduction in the YREB. For instance, the Chinese 
government gradually increased its land use control and urban planning 
efforts after the disorderly urban development of the late 20th century 
(Qu et al., 2020; Zhang et al., 2020). The National General Land Use 
Planning in China, implemented in 1996, strictly limits the amount of 
land that can be developed in different areas of an administrative dis
trict, allowing for more sustainable land use for urban development. The 
Regulations of Basic Farmland Protection, announced in 1999, designated 
large areas of high-quality arable land around cities as basic farmland 

that cannot be occupied at will. Rural residential land consolidation 
extended the reach of land use optimization from urban to rural areas, 
thus significantly optimizing the rural landscape structure. Facilitated 
by these measures, ecological conditions around cities in the middle and 
lower reaches of the Yangtze River changed from destructive to restor
ative. In contrast, the upper reaches have been treated cautiously and 
protected from large-scale restoration projects due to the fragile 
ecological conditions, which has caused a lag in ecological risk mitiga
tion in the region (Fig. 8a). 

Spatially, landscape ecological risk in the YREB shows significant 

Fig. 8. Maps of the rate of risk change during 2000–2018 (a), 2000–2005 (b), 2005–2010 (c), 2010–2015 (d), and 2015–2018 (e).  

P. Ran et al.                                                                                                                                                                                                                                     



Ecological Indicators 137 (2022) 108744

10

heterogeneity under the influence of multiple factors. Zonal statistics 
based on elevation intervals show that ecological risk first decreases and 
then increases in response to the changing factors (Fig. 10). More 

specifically, the area below 500 m in elevation consists of plains and hills 
and is mainly in the middle and lower reaches of the Yangtze River, 
where ecological risk is generally low (Fig. 1). There is abundant pre
cipitation and moderate temperatures, which are more suitable for 
wildlife survival and vegetation growth (Li et al., 2014). However, it is 
also an area of concentrated population and economic development, 
with numerous large cities. High-intensity industrial and agricultural 
activities put tremendous pressure on regional ecosystems, increasing 
local ecological risks (Hu et al., 2017). In contrast, the area between 500 
and 2500 m in elevation has less urban and agricultural land use and 
thus significantly less human disturbance of the environment. Addi
tionally, the vegetation density is high, fostered by adequate tempera
tures and precipitation (Lu et al., 2020). These factors are beneficial for 
maintaining natural landscapes and ecological vitality, and the ecolog
ical risk in the region is generally low. As elevation increases above 
2500 m, the topography of the region becomes extremely complex, 
while the temperatures, precipitation, and productivity level of vege
tation also drop to a low level. This leads to increased landscape 
vulnerability, exacerbating the occurrence of natural hazards such as 
desertification, landslides, and debris flows and making the adverse 
ecological consequences of human interference much more severe than 
at lower elevations (Wang et al., 2020). As a result, the West Sichuan 
Plateau exhibited the highest risk during 2000–2018 (Fig. 6a–e). 

Based on our analysis, the following measures are considered to be 
important points of departure for future risk management in the YREB. 
First, we recommend strengthening the leading and supervisory role of 
the government in risk management. A risk management system that 
prioritizes key areas through adequate policy guidance and financial 
support should be established as soon as possible. It will be crucial to 

Fig. 9. Spatial distribution of stable high-risk areas (a), risk reduction-lagged areas (b), risk-unstable areas (c), and key areas for risk management (d).  

Fig. 10. Relationship between the landscape ecological risk index (LERI), 
elevation, and other factors, including GDP, population density (Pop), slope 
(Slp), temperature (Temp), precipitation (Prep), net primary productivity 
(NPP), and normalized difference vegetation index (NDVI). LERI_Dec is the 
difference between the LERI in 2018 and the LERI in 2000. The factor value is 
the mean of the normalized values of all units within the elevation interval 
in 2018. 
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formulate policies and regulations to clarify the responsibilities of all 
entities, including the government, enterprises, and individuals. To 
balance the interests of stakeholders and stimulate environmental con
tributions, ecological compensation must be further improved (Lu et al., 
2020; Xu et al., 2020). In addition, regional coordination mechanisms 
should be established for key conservation areas across administrative 
regions, such as the Chengdu-Chongqing Economic Circle, to jointly 
address major issues of economic development and ecological protec
tion through cooperation (Xu et al., 2021). Second, we recommend 
integrating risk management into development planning. In the next 
round of territorial spatial planning in the YREB, ecological “red zones” 
should be delineated to compulsorily protect valued and fragile 
ecological spaces. Plans should also be made for development intensity, 
industrial land use layout, and the retirement of farming and grazing to 
regulate regional development and construction (Lu et al., 2020). 
Additionally, there is a complementary need to develop detailed con
servation plans with the goal of creating sustainable landscapes for each 
city, especially the construction of green ecological corridors (Luo et al., 
2020). Third, we recommend developing and applying more new tech
nologies. Nature-based solutions should be widely applied to the resto
ration of ecologically fragile areas because of their great potential for 
improving ecological resilience (Virah-Sawmy et al., 2016). In addition, 
ecological monitoring technologies for natural disasters, vegetation 
dynamics, and biodiversity are necessary to prevent possible future 
threats to ecological security. 

There are some limitations in this study. First, the evaluation cells 
were set to a resolution of 30 km × 30 km to reasonably control the 
complexity of the calculation (Mo et al., 2017; Wang et al., 2021). Some 
local risk characteristics cannot be captured at that scale, which means 
that the results are not a panacea that informs all levels of risk man
agement. Comparative analysis of multiple scales is an important di
rection for further research (Li et al., 2020). Second, the accuracy of the 
assessment results is constrained by the underlying data. For example, 
although the land use map used in the study is one of the most accurate 
remote sensing monitoring data products in China (Zhang et al., 2020), 
there are still deviations between the classification results and the actual 
situation. Timely updating of data is necessary for future risk assessment 
and management. Finally, although the suitability of ERA methods 
based on landscape pattern indices has been proven in many studies, 
these methods do not yet provide a desirable assessment endpoint (Gong 
et al., 2021). Incorporating ecosystem services into landscape ERA has 
become a powerful trend due to the great potential to enhance the 
directionality of risk management (Forbes and Galic, 2016; Munns et al., 
2016). In the future, we will make efforts in these directions to advance 
the growth of knowledge and experience. 

5. Conclusions 

Drastic land use changes have significantly altered landscape pat
terns and ecological processes, posing a potential threat to regional 
sustainable development. This study develops an ERA framework that 
integrates landscape patterns and landscape vulnerability dynamics to 
assess landscape ecological risk in the YREB from 2000 to 2018. The 
study is the first attempt of its kind. The results confirm that natural 
conditions and human activities together dominated the spatiotemporal 
patterns of ecological risks in the YREB for the eighteen years of the 
study. The fragile and sensitive environment has made the upper 
Yangtze River the highest-risk area in the YREB. At the same time, 
higher-risk clusters are found in urban areas such as the Cheng-Yu urban 
agglomeration and the Yangtze River Delta urban agglomeration, illus
trating the negative impact of human disturbance on ecosystems. 
Temporally, ecological risk in the YREB presents a decreasing trend, and 
the areas designated as high or medium–high risk decreased by 150,000 
km2. These findings are a positive sign that actions taken by the Chinese 
government, such as reasonable land use control and continuous 
ecological restoration, can reduce ecological risks. Overall, 

approximately 45% of the study area is currently in a relative emergency 
situation for risk management. For the YREB to become a sustainable 
region, it is necessary to strengthen the adaptive management of 
ecological risks through policy innovation, planning guidance, and 
technology innovation for ecosystem restoration. As valuable empirical 
evidence, the findings of this study can be used to directly support the 
decision-making process. In a wider context, this work will benefit those 
seeking to apply similar assessments, especially when performing 
landscape ERA in rapidly changing environmental conditions, as it re
duces assessment uncertainty with improvements to the methodology. 
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