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A B S T R A C T   

Environmental managers have been striving to optimize landscape structure to achieve a sustained supply of 
ecosystem services (ESs). However, we still lack a full understanding of the relationships between landscape 
structure and ESs due to the absence of thorough investigations on the variability of these relationships in space 
and time. To fill this critical gap, we assessed landscape structure alongside four important ESs (agricultural 
production (AP), carbon sequestration (CS), soil conservation (SC), and water retention (WR)) in the Wuhan 
metropolitan area (WMA), and then analyzed the spatiotemporal impacts of landscape structure on ESs from 
2000 to 2020 using Geographically and Temporally Weighted Regression. The results show only AP maintained a 
stable growth trend over the past two decades, while the other ESs fluctuated considerably with a noticeable 
decline in SC and WR. The importance of landscape structure in influencing ESs varies by time and place, 
depending on the local landscape composition and configuration. In general, landscape composition has a 
stronger and less temporally stable impact on ESs compared to configuration. Furthermore, increases in land
scape diversity, as measured through Shannon’s diversity index, and the percentage of woodlands were found to 
contribute to the simultaneous benefits of multiple ESs, but in most cases the effects of landscape structure on 
different ESs were different or even opposite, suggesting that trade-offs are critical in landscape management. 
The findings highlight the complex response of ESs to dramatically changing landscapes in the WMA and can 
guide decision-makers in precise spatial arrangement and temporal adjustments to improve current landscape 
management.   

1. Introduction 

Ecosystem services (ESs) refer to the multiple benefits people obtain 
from ecosystems and are seen as the basis for human survival and 
development (Costanza et al., 1997; Daily, 1997; Gong et al., 2021; 
MEA, 2005; Torres et al., 2021). Humans have long been accelerating 
resource exploitation and land development to meet the needs of a 
growing population (Davisa et al., 2016; Kremen and Merenlender, 
2018; Verhagen et al., 2016). These actions have driven dramatic 
landscape changes and caused numerous adverse ecological conse
quences, such as habitat fragmentation, soil erosion, and water pollu
tion, among others (Abera et al., 2021; Estoque and Murayama, 2016; 
IPBES, 2019). Fortunately, a global movement to prevent the degrada
tion of ecosystems is emerging and has inspired a great deal of 

exploratory research. As a discipline concerned with heterogeneous 
landscape change and how it affects ecosystem function, landscape 
ecology works to reconcile the dynamic relationship between humans 
and nature (Forman, 1995; Karimi et al., 2021). It asserts any landscape 
can be managed to optimize specific ecological functions as well as the 
supply and delivery of ESs (Forman, 1995; Lee et al., 2015). As a result, 
managers often attempt to shape optimal spatial patterns of landscape 
structure to maintain a sustainable supply of ESs (Haines-Young and 
Chopping, 1996; Wu, 2021). In this context, studying how landscape 
structure drives ESs is increasingly seen as a first step toward better 
landscape management for multiple services (Eigenbrod, 2016; Tran 
et al., 2021). 

Landscape structure is the arrangement of land use and land cover 
(LULC) across a landscape and is characterized by both the composition 
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(i.e., amount) and configuration (i.e., spatial arrangement) of LULC 
types (Eigenbrod, 2016; Karimi et al., 2021; Šímová and Gdulová, 
2012). Heterogeneous landscapes accommodate the dynamic flows of 
energy and material and thus control many ecological processes (Chen 
et al., 2021; Haines-Young and Chopping, 1996; Turner et al., 2001). 
These processes are often disrupted by landscape structure changes, 
causing a decline in biodiversity and ecological functions, which in turn 
leads to a loss of ESs (Hu et al., 2021; Kindu et al., 2016). For example, 
the decline of mangroves on a global scale caused a loss of about 86 Mt 
of carbon stock between 2000 and 2012 (Hamilton and Friess, 2018). 
Thus, landscape structure change is one of the most significant, wide
spread, and long-lasting drivers of ESs (Estoque and Murayama, 2016; 
Pan et al., 2021; Sonter et al., 2017; Xu et al., 2020). The first effect that 
is usually observed is the impact of changes in landscape composition, i. 
e., increased competition among ESs in the region (Lamy et al., 2016; 
Yohannes et al., 2021). A common example is deforestation to support 
growth in agricultural areas, which increases local food production but 
weakens other services such as timber supply, climate regulation, and 
water retention. ESs have been also found to be affected by landscape 
configuration (Kremen and Merenlender, 2018; Xu et al., 2020), and it is 
generally accepted that higher fragmentation or low connectivity can 
result in a vulnerable ecosystem and jeopardize the formation of ESs 
(Guiomar et al., 2015; Zeng et al., 2017). Conversely, proper landscape 
management can help maintain ESs. For instance, Lee et al. (2015) found 
that the configuration of paddy rice fields is critical for regulation ser
vices including flood mitigation and microclimate regulation. In sum
mary, the importance of landscape structure for different ESs has been 

disclosed by numerous studies and has become a key reference for 
landscape management (Duarte et al., 2018; Verhagen et al., 2016). 

Researchers have characterized landscape structure (often using 
landscape metrics) based on LULC derived from remote sensing and 
assessed the physical or economic value of ESs (Chen et al., 2021; Pet
roni et al., 2022; Redhead et al., 2020; Zhang et al., 2020). Regression 
models or spatial analysis are then used to detect the relationship be
tween landscape structure and ESs (Lamy et al., 2016; Yohannes et al., 
2021; Yuan et al., 2021). However, most prior studies assume that the 
relationship is spatiotemporally stationary (Chen et al., 2021; Tran et al., 
2021). Few studies provide insight into how the effects of landscape 
structure on ESs vary in time and space. This is an important limitation 
for environmental management, resulting in the inability to know when 
and where a plan should be implemented (Wu, 2021). To fill this critical 
gap, local regression models can provide an alternative (Lyu et al., 2022; 
Nassauer, 1995; Wu et al., 2018). A recent study in New Zealand 
addressed the spatial stationarity limitation by using spatial local 
regression models to support local, spatially differentiated landscape 
management (Tran et al., 2021). When temporal nonstationarity must 
also be considered, geographically temporally weighted regression 
(GTWR) can offer a solution by establishing spatiotemporal weights 
(Guo et al., 2017; Huang et al., 2010; Ma et al., 2018). This work in
troduces GTWR to study the dynamic relationship between landscape 
structure and ecosystem services. 

The Wuhan metropolitan area (WMA) is located in the geographical 
center of China and consists of nine major cities, where hundreds of 
mountains and numerous rivers and lakes form a particularly distinctive 

Fig. 1. The administrative districts and catchments of the WMA (a), location of the WMA in China (b), variation in elevation (c), and land use/land cover types in 
2020 (d). 
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and complex ecosystem (Chen et al., 2021; Zeng et al., 2015). Rapid 
urban expansion in recent years has driven drastic changes in the spatial 
structure and landscape characteristics in the WMA, increasing the risk 
of ecological resource losses and degradation of ecosystem functioning 
(Wen et al., 2021). The primary aim of this study is to detect how 
landscape structure dynamically affects ESs across time and space based 
on the spatiotemporal heterogeneity of drivers. To that end, we first 
assess four typical ESs (i.e., agricultural production, carbon sequestra
tion, soil conservation, and water retention) alongside the landscape 
composition and configuration characteristics of 336 hydrological 
catchments in the WMA. GTWR is then applied to analyze spatiotem
poral relationships between landscape structure and ESs during the 
period 2000–2020. The results of the study can be utilized by managers 

and planners to improve current landscape management. 

2. Materials and methods 

2.1. Study site 

The WMA is located in the eastern part of Hubei province where the 
Yangtze and Han rivers merge (Fig. 1). It is a regional economic hub 
centered on the mega-city of Wuhan and encompassing eight peripheral 
cities (Ezhou, Huanggang, Huangshi, Qianjiang, Tianmen, Xiaogan, 
Xiantao, and Xianning). The 58,000 km2 of land comprises a variety of 
landforms, including plains, hills, and mountains. The WMA has long 
been known as the “land of fish and rice”. The rich cropland and wet
lands not only provide a large number of agricultural products but also 
create a unique idyllic landscape, making the WMA a popular tourism 
destination. Meanwhile, benefiting from the favorable natural condi
tions and transportation network, the WMA has played a crucial role in 
China’s modernization. In the last two decades, this region has become 
one of the fastest growing and largest metropolitan areas in China. 
Driven by the “Rise of Central China” plan, the population has grown to 
32 million, and the GDP is around 2.64 trillion. However, the growth 
process has not been entirely positive as environmental pollution and 
ecological degradation have also risen. The continuous expansion of 
built-up areas has encroached on the surrounding natural and high- 
quality arable lands, creating habitat fragmentation and a decline in 
biodiversity. Approximately 15,000 ha of lakes in Wuhan alone have 
been converted to alternative land uses, which has weakened the 
regulating function of ecosystems considerably and led to increased 
natural disasters (Zeng et al., 2015). In Huangshi and Ezhou, more than 
10,000 ha of abandoned mining lands have caused serious waste and 
pollution, threatening the health and well-being of residents. Today, led 
by the Chinese government, the WMA is making great efforts to build a 
resource-saving and environment-friendly society. However, it is still a 
formidable challenge to effectively balance socio-economic develop
ment and environmental protection. This particular context provides a 

Table 1 
Details and sources for the datasets used in this study.  

Data Detail Source 

Administrative 
boundaries 

Shapefile, 
polygon 

Data Center for Resources and 
Environmental Sciences, Chinese 
Academy of Sciences (http://www. 
resdc.cn) 

Digital elevation model 
(DEM) 

Rater, 30 m 

LULC data Rater, 30 m 
Catchment boundaries Shapefile, 

polygon 
HydroSHEDS dataset (https://hydrosh 
eds.org) 

Meteorological data Shapefile, 
point 

China Meteorological Data Service 
Centre (http://data.cma.cn) 

Net primary productivity 
(NPP) 

Rater, 500 m US National Aeronautics and Space 
Administration (http://modis.gsfc. 
nasa.gov) 

Normalized difference 
vegetation index 
(NDVI) 

Rater, 1 km Geospatial Data Cloud (http://www.gs 
cloud.en/); US Geological Survey 
(USGS) (https://www.usgs.gov) 

Socioeconomic data Text, county 
level 

Statistical Yearbook of Hubei province 
and cities in the WMA 

Soil data Rater, 1 km Harmonized World Soil Database 
(HWSD) version 1.21, International 
Institute for Applied Systems Analysis 
(IIASA), https://iiasa.ac.at/  

Fig. 2. A flowchart for analyzing the relationship between landscape structure and ESs. Notes: AP—Agricultural production, CS—Carbon sequestration, SC—Soil 
conservation, and WR—Water retention. 
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valuable opportunity to explore the sustainable management of land
scapes in urbanized areas, making the WMA well suited for this study. 

2.2. Materials 

The data used in this study are administrative and catchment 
boundaries, a digital elevation model (DEM), LULC data, meteorological 
data, net primary productivity (NPP) data, normalized difference 
vegetation index (NDVI), economic statistics, and soil data (Table 1). 
Administrative and catchment boundaries were used as the basic units of 
analysis and mapping; LULC data (cropland, woodland, grassland, water 
body, built-up land, and unused land) were used to compute landscape 
pattern. The remaining datasets are used to assess ESs. Data are for the 
years 2000, 2010, and 2020 except for the DEM, boundary, and soil, 
which are invariant. Meteorological monitoring station data were con
verted into continuously distributed spatial data using kriging interpo
lation. All spatial data were converted to the same coordinate system 
and spatial resolution (500m × 500m). 

2.3. Methods 

This study was conducted following the workflow in Fig. 2. First, 336 
hydrological catchment units for mapping and analysis were created 
based on the HydroSHEDS dataset. Catchments are an appropriate unit 
because of their association with many ecological processes (Lehner and 
Grill, 2013; Xu et al., 2020; Zhang et al., 2022). Incomplete catchments 
located at the edge of the WMA (usually less than 1 km2 in area) were 
incorporated into the nearest superior catchment to which they belong. 
We then assessed the landscape structure characteristics (see section 
2.3.1) and ESs (see section 2.3.2) of each catchment in 2000, 2010, and 
2020. Finally, local regression models were constructed with landscape 
structure and ESs as explanatory and explained variables, respectively, 
and used to analyze the effects of changes in landscape structure on four 
different ESs (see section 2.3.3). 

2.3.1. Quantification of landscape structure 
Landscape metrics are important tools for measuring landscape 

composition and configuration (Duflot et al., 2017; Lausch et al., 2015). 
In this study, the landscape composition in each catchment was char
acterized by Shannon’s diversity index (SHDI), largest patch index (LPI), 
percentage of landscape (PLAND), and patch density (PD), while the 
landscape configuration was characterized by interspersion & juxtapo
sition index (IJI), edge density (ED), area-weighted mean patch shape 
index (AWMSI), and aggregation index (AI) (see Appendix A for a 
detailed description of the metrics). Note that PLAND, PD, AWMSI, and 
AI computed at the class level were only applied to the three most 
important LULC types with the largest areas in the WMA: cropland, 
woodland, and water bodies. Change in built-up land is closely related to 
the three aforementioned LULC types, while grasslands and unused 
lands occupy relatively less area in the study region. These metrics were 
selected to: (1) include a reasonable mix of metrics to comprehensively 
characterize the spatial structure of the landscape, such as landscape 
diversity, spatial heterogeneity, and fragmentation (Zhang et al., 2020); 
(2) include highly recommended and reliable metrics with reference to 

previous studies (Su et al., 2012); (3) prioritize easily understood and 
computable landscape metrics to improve understanding and replica
bility for decision-makers; and (4) use the smallest number of parsi
monious and independent metrics possible to reduce information 
redundancy (Duarte et al., 2018; Machado et al., 2017). All landscape 
metrics were computed using FRAGSTAT v4.2 (McGarigal et al., 2012). 

2.3.2. Estimation of ecosystem services 
We selected four critical and representative ESs based on the situa

tion in the WMA: agricultural production, carbon sequestration, soil 
conservation, and water retention. The Jianghan Plain, where the WMA 
is primarily located, has traditionally been called the “land of fish and 
rice”, providing rich agricultural products for the central China region 
and beyond. Thus, protecting a stable supply of agricultural products is 
important for regional food security. Meanwhile, land degradation and 
natural disasters caused by soil erosion have threatened the sustain
ability of agriculture and the environment due to vegetation clearance 
and agricultural development. Therefore, the protection of soil conser
vation services should be considered a priority for ecological manage
ment (Li et al., 2021). In addition, water retention and carbon 
sequestration services play a key role and have an extensive impact on 
the water cycle and climate regulation, and therefore need to be 
considered in this study (Lamy et al., 2016; Primmer et al., 2021). Note 
that while cultural services related to leisure and recreation are an 
important component of residents’ well-being, they are not considered 
here because of their subjective nature and the lack of sophisticated 
measurement methods. The summary of the models and data used in 
each service is given in Table 2. These services were quantified using 
spatial analysis tools in ArcGIS and Integrated Valuation of Ecosystem 
Services and Tradeoffs (InVEST), developed by the Natural Capital 
Project (Abera et al., 2021; Nelson et al., 2009) (see Appendix B for 
calculation principles and procedures). 

2.3.3. Identifying the relationships between landscape structure and 
ecosystem services 

The GTWR model was selected to analyze the dynamic effects of 
landscape structure on each ecosystem service from 2000 to 2020. As a 
temporal extension of geographically weighted regression (GWR), 
GTWR embeds time information into regression parameters to assess the 
local relationships between explanatory and explained variables (Liang 
et al., 2019; Wu et al., 2018). The model can be defined as: 

Yi = β0(ui, vi, ti) +
∑

k
βk(uk, vk, tk)Xik + εi i = 1, 2, 3, ..., n (1)  

where Yi is the explained variable for the ith sample; Xik is the kth 
explanatory variable for the ith sample; (ui, vi, ti) is the space-time co
ordinate of the ith sample; β0 (ui, vi, ti) is the intercept value, and βk (ui, vi, 
ti) is a set of parameter values the ith sample; εi is the random error. 

Similar to GWR, the local regression coefficient of GTWR is estimated 
based on locally weighted least squares and can be expressed as: 

β̂(ui, vi, ti) =
[
XT W(ui, vi, ti)X

]−1XT W(ui, vi, ti)Y (2)  

where the weighting matrix W (ui, vi, ti) is an m × n diagonal matrix and 

Table 2 
Explanation and calculation method for the four ecosystem services.  

Ecosystem service Unit Model Required data 

Agricultural 
production 

million yuan/ 
ha 

Spatial allocation based on LULC and NPP LULC maps, NPP data, gross agricultural production data, and 
administrative boundaries 

Carbon 
sequestration 

t/ha InVEST carbon storage and sequestration model LULC maps, NDVI, and the carbon stock parameters. 

Soil conservation t/ha InVEST sediment retention model DEM, LULC maps, meteorological data, NDVI, soil data, and empirical 
parameters. 

Water retention m3/ha InVEST water yield model based on the Budyko curve and water 
balance principle 

DEM, LULC maps, meteorological data, soil data, and empirical 
parameters.  
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W(ui, vi, ti) = diag(Wi1,Wi2…Wij…Win); Wij(1 ≤ j ≤ n) is the spatiotem
poral distance decay function, which is determined by the spatiotem
poral distance and bandwidth (Guo et al., 2017; Ma et al., 2018). 

In the GTWR model, each observation has a unique spatiotemporal 
weight matrix, and the degree to which the regression coefficient of an 
observation is influenced by other observations decays with increasing 
spatiotemporal distance. In this study, the Euclidean distance and 
Gaussian distance–decay-based functions are used to calculate the 
spatiotemporal weights (Dong et al., 2019; Huang et al., 2010). The 
mathematical expression is: 

wij = exp
[

−
(

dST
ij

)2
/

h2
]

(3)  

dST
ij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ
[(

ui − uj
)2

+
(
vi − tj

)2
]

+ μ
(
ti − tj

)2
√

(4)  

where dST is the spatiotemporal distance; λ and μ are the spatial factor 
and distance factor, respectively; h is the bandwidth. The optimal 
bandwidth is chosen based on the minimum cross-validation (CV) value. 

GTWR performance was evaluated based on a comparison of two 
traditional models (i.e., OLS and GWR), and ANOVA tests were per
formed to obtain statistical parameters (Guo et al., 2017; Liang et al., 
2019; Ma et al., 2018). 

Fig. 3. Variation in landscape metrics in terms of composition (a–h) and configuration (i–p). Note: The name of each class-level metric is distinguished by the 
abbreviation of the corresponding LULC type (i.e., cropland (cl), woodlands (wl), and water bodies (wb)). 

Fig. 4. The distribution and changes of AP (agricultural production), CS (carbon sequestration), SC (soil conservation), and WR (water retention) in the WMA. Notes: 
The units for AP, CS, SC, and WR are million-yuan, million t, million t, and million m3, respectively. 
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3. Results 

3.1. Changes in landscape structure and ecosystem services from 2000 to 
2020 

LULC changes in the WMA over the past 20 years have been domi
nated by a considerable decrease in cropland and an increase in built-up 
land and woodland. The 16 metrics assessing landscape composition and 
configuration show changing landscape patterns in the WMA, with an 
increase in landscape heterogeneity, diversity, and patch shape 
complexity over the 20-year study period (Fig. 3). Specifically, SHDI, IJI, 
and ED increased, while LPI decreased, indicating the expansion of non- 
dominant patches, the increased interspersion of landscape types, and 
the fragmentation trend of patches in the WMA. At the class level, there 
were considerable differences between LULC types. Temporal trends 
were similar for woodlands and water bodies but different from crop
lands. For instance, the percentage and shape complexity of woodlands 
and water bodies has been continuously increasing, while cropland has 
been decreasing. Although cropland and woodland have higher metrics 
values, they exhibit greater variation between catchments. In contrast, 
the water bodies exhibit smaller areas and more regular shapes in most 

of the catchments (Fig. 3c–h and 3k–p). 
In 2020, the total agricultural production (AP), carbon sequestration 

(CS), soil conservation (SC), and water retention (WR) in the WMA were 
228.86 billion CNY, 335.44 billion tons, 4034.43 billion tons, and 
11358.41 billion m3, respectively. During 2000–2020, AP maintained a 
stable growth trend as the demand and agricultural productivity 
continued to improve, while the other ESs fluctuated considerably with 
a noticeable decline in SC and WR. The catchment-level AP, CS, SC, and 
WR ranged from 8.31 to 286.85, 0.14–3.53, 0.11–13.95, and 
2.43–160.18, respectively (Fig. 4). The four ESs show different spatial 
patterns, despite all having many catchments with low values. The 
higher AP catchments are mainly concentrated in the midwestern re
gions, which is related to the distribution of cropland. The higher 
catchments of other services are mainly distributed in the north and 
south, showing a greater spatial association with woodlands. AP is also 
the only service dominated by continuous growth catchment though out 
the study area, whereas CS decreased extensively from 2000 to 2010 and 
then increase rapidly (Fig. 4a and b). For SC and WR, they showed a 
broad increase in the first decade with larger growth in the East, and an 
overall decline in the second decade (Fig. 4c and d). 

3.2. Relationship between landscape structure and ecosystem services 

3.2.1. Identifying the relationships using the GTWR model 
Multicollinearity among landscape variables and their correlation 

with ESs were first tested to screen for appropriate explanatory variables 
to construct each service prediction model. Ten landscape structure 
variables were used to predict AP, CS, and WR. Nine were used to predict 
SC. All selected landscape variables are statistically and significantly 
correlated with ESs, and there was no severe multicollinearity detected 
between them (see Appendix C for details). GTWR outperformed OLS 
and GWR according to most metrics (Table 3). R2 increases when using 
GTWR and is 0.412 and 0.451 higher than OLS and GWR in the esti
mation of AP. The RSS of the GTWR model is also reduced by at least 
294.629 and 42.667 compared to the RSS of the OLS and GWR models, 
respectively. This suggests a significant improvement in the prediction 
ability of GTWR. In addition, GTWR has the lowest AICc for all ESs 
except SC, which suggests that it is more appropriate to model the 
relationship between landscape structure and ESs with the GTWR 

Table 3 
ANOVA comparison between GTWR and OLS/GWR model.  

Variable Model R2 RSS AICc 

AP OLS 0.412 591.642 2345.496 
GTWR-OLS 0.507 −510.230 −1356.843 
GWR 0.451 553.077 2346.700 
GTWR-GWR 0.468 −471.665 −1358.047 

CS OLS 0.602 401.021 1953.496 
GTWR-OLS 0.300 −302.263 −820.016 
GWR 0.722 280.298 1791.240 
GTWR-GWR 0.180 −181.541 −657.760 

SC OLS 0.566 437.082 2038.294 
GTWR-OLS 0.293 −294.629 −617.074 
GWR 0.816 185.120 1384.670 
GTWR-GWR 0.042 −42.667 36.550 

WR OLS 0.574 429.413 2022.450 
GTWR-OLS 0.403 −405.498 −2401.526 
GWR 0.619 383.666 1952.710 
GTWR-GWR 0.357 –359.751 −2331.786  

Fig. 5. Boxplots for regression coefficients of AP, CS, SC, and WR. Notes: Bw is the bandwidth of the GTWR model, RSS is the residual sum of squares, and AICc is the 
Akaike’s information criterion adjusted for small sample sizes. The landscape composition and configuration variables are marked in red and blue, respectively. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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model. 
The results of the GTWR showed good performance in predicting ESs. 

The R2 for the AP, CS, SC, and WR prediction models suggest that the 
selected landscape structure variables explain 91.9% of the variance for 
AP, 90.2% for CS, 85.7% for SC, and 97.6% for WR. Landscape 
composition contributes more to ESs, as their regression coefficients 
have overall larger absolute values compared to configuration metrics. 
The coefficient signs indicate that the landscape variables have both 
positive and negative effects on ESs. It can also be found that the effects 
of landscape structure on different ESs were different or even opposite. 
For instance, approximately 90% of the catchments where AI_cl showed 
positive correlation with AP were found to have negative impacts on CS. 
Additionally, the strongest positive metrics are PLAND_wb for AP and 
PLAND_wl for CS, SC, and WR while the strongest negative metrics are 
PD_cl for AP, AI_cl for CS, and Lf_ED for SC and WR (Fig. 5). 

3.2.2. Spatiotemporal pattern of the relationships 
By assigning regression coefficients to catchment distribution maps 

for each year, the spatiotemporal patterns of the relationships between 
landscape metrics and AP, CS, SC, and WR are mapped in Figs. 6–9, 

respectively. For agricultural production, the metrics PLAND_cl and 
PLAND_wb indicate these structural components may impact agricul
tural production to a greater degree in the WMA because the mean ab
solute values of their coefficients are higher than the other variables 
(Fig. 6b and h). It also can be seen that PLAND_cl, PD_cl, and PD_wb are 
mainly positive in their direction of influence during 2000–2020, while 
IJI, AWMSI_cl, and PD_cl have more extensive negative effects. The ef
fects of all observed landscape variables are complex both in the tem
poral and spatial dimensions. On the one hand, the coefficients of 
different levels are dispersed across the landscape. On the other hand, 
the heterogeneity of relationships is also increasing over time, with more 
and more dispersed small clusters emerging, such as for SHDI, AWM
SI_cl, PLAND_wb, and AI_wb (Fig. 6a, f, g, and j). 

Six landscape variables (PD_cl, PD_wl, ED, AWMSI_cl, AWMSI_wl, 
AI_cl, and AI_wl) showed mainly negative effects with carbon seques
tration, evidenced by the dominant gray colors in Fig. 7. Regarding the 
direction of effects, PLAND_wl showed the strongest positive effects 
while AI_cl showed the strongest negative effects. The mean of their 
coefficients reached 0.68 and −0.543, respectively, which are much 
higher than the other variables. Note that despite the continuous change 

Fig. 6. Spatial patterns of regression coefficients in estimating AP (Agricultural production) in 2000, 2010, and 2020. Note: The landscape composition and 
configuration variables are marked in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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in the intensity of influence, all landscape variables except PLAND_wl 
maintain a relatively stable direction of influence. For example, few 
catchments switched from a positive to a negative coefficient for SHDI 
over the past two decades, and there was only a slight reduction in the 
number of highly positive areas (Fig. 7a). 

As demonstrated in Fig. 8, catchments with positive coefficients for 
soil conservation are widely distributed in the WMA from 2000 to 2020, 
while catchments with negative relationships are mainly found for the 
configuration variables such as IJI, ED, and AI_cl. Spatially, the catch
ments with strong negative impacts are primarily located in the north
western part of the WMA, which is a mountainous area with a 
concentration of woodlands. Furthermore, the relationships between 
many of the metrics and SC present a simpler pattern compared to 
agricultural production and carbon sequestration. In other words, 
catchments with the same directional relationships show clustering or 
continuous distribution characteristics, and this trend tends to further 
strengthen over time. 

Results for water retention show a clear difference in the relationship 
with the landscape variables compared to other services (Fig. 9). In 
particular, the maps show the emergence of many turning points, that is, 

the temporal trends from the first decade were reversed in the second 
decade. For instance, many of the new purple areas in IJI in 2010 are 
replaced by gray areas in 2020 (Fig. 9d). A similar pattern can be 
observed for LPI, IJI, ED, PD_cl, PD_wl, AWMSI_cl, and AWMSI_wl. 
Another notable characteristic is the unbalanced ratio of the number of 
catchments with positive coefficients to that of catchments with nega
tive coefficients (approximately 7:3). In addition, all landscape variables 
have a greater positive than negative impact on WR. 

4. Discussion 

4.1. The multiple roles of landscape structure in influencing ecosystem 
services 

As our results confirm, the driving mechanism of ESs in the WMA is 
highly complex when combining temporal nonstationarity with spatial 
characteristics. To better understand this dynamic impact, we quantified 
the attributes of the four dimensions: the direction of the impact, the 
degree of the positive/negative impact, the probability of positive/ 
negative impact, and the instability of the impact (Table 4, see Appendix 

Fig. 7. Spatial patterns of regression coefficients in estimating CS (carbon sequestration) in 2000, 2010, and 2020. Note: The landscape composition and config
uration variables are marked in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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D for calculations of specific indexes). The key findings are summarized 
below. 

First, most of the landscape variables in the WMA are both positively 
and negatively correlated with a particular service. Prior studies based 
on global regression techniques typically only report a simple relation
ship for two variables (e.g., a landscape variable and an ecosystem 
service variable) (Karimi et al., 2021; Yuan et al., 2021; Yushanjiang 
et al., 2018). This study provides a more detailed explanation of the 
relationship by capturing local variation through GTWR, which leads 
the findings to be quite different from previous studies. It can also be 
found that the effects of the metric SHDI on CS and PLAND_wl on WR are 
entirely positive, and the effects of ED on CS are entirely negative during 
the study period. Similarly, previous studies have identified that 
improving landscape diversity within a specific period of time can help 
increase biodiversity and further enhance CS (Jentsch et al., 2012; 
Whittinghill et al., 2014). However, these findings are specific to this 
study, and the same findings may not necessarily occur in other studies 
of larger scope and longer duration. 

Second, landscape composition was generally more influential on the 
ESs than configuration, which is consistent with prior findings (Lamy 

et al., 2016; Yohannes et al., 2021). For AP, SC, and WR, the strength of 
the relationship between composition variables and ESs is 1.4–3.2 times 
higher than for the configuration variables. PLAND_cl and PLAND_wb 
contribute more to AP than the other variables, which is closely related 
to the agricultural structure of the WMA that has been dominated by 
food crops and fishery products. Meanwhile, PLAND_wl was found to be 
the most critical factor affecting CS, SC, and WR, which highlights the 
important ecological value of woodland resources. These findings 
certainly underscore the important fact that reducing the threat of urban 
development to natural and semi-natural habitats is essential to a sus
tainable future (Haines-Young and Chopping, 1996; Redhead et al., 
2020; Yohannes et al., 2021). 

Third, a landscape can promote one service while inhibiting others, 
which means that there are frequent trade-offs to be faced in the man
agement of landscape change. For example, our findings confirm that 
AWMSI_cl primarily has the effect of weakening AP while increasing the 
other ESs. Therefore, managers need to be clear whether the goal is to 
pursue higher food supply capacity to meet social needs or maintain the 
multifunctionality of the agricultural landscape at the expense of ca
pacity. The former leads to greater regularization of the shape of 

Fig. 8. Spatial patterns of regression coefficients in estimating SC (soil conservation) in 2000, 2010, and 2020. Note: The landscape composition and configuration 
variables are marked in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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farmland to facilitate mechanization and large-scale production (Tran 
et al., 2021). The latter tends to maintain the previously complex 
boundaries of arable land for numerous ecological benefits, such as 
reducing water and nutrient loss and providing habitat for marginally 
dependent animals (Lamy et al., 2016). Moreover, previous studies have 
identified some landscape structure features that facilitate the simulta
neous benefits of multiple ESs (Duarte et al., 2018; Guiomar et al., 2015; 
Zeng et al., 2017). This study also confirmed some of them, such as SHDI 
and PLAND_wl, which have a higher probability of being consistent in 
the direction of the impact on different ESs (Table 4). 

Finally, it can be found that the coefficients of PLAND_cl, PLAND_wl, 
and AI_cl exhibited higher temporal instability over time (i.e., higher 
Inst value) (Table 4). Although the Inst index cannot specifically indicate 
the absolute level of risk due to the lack of a threshold, it can help 
decision-makers make a relatively safe choice for spatial restructuring 
among relevant comparable strategies. From this perspective, opti
mizing the management of regional ESs by adjusting the landscape 
configuration, such as the shape and spatial spacing of the landscape, is a 
safer option in the WMA. These findings contribute a new temporal 
dimension for comparing different ESs drivers, which is an improvement 

over previous studies (Chen et al., 2021; Estoque and Murayama, 2016; 
Hou et al., 2020). 

4.2. Policy implications for landscape management 

Recent research has clarified the benefits of models that take into 
account the heterogeneity of drivers for ESs management (Tran et al., 
2021). This study demonstrates how GTWR can produce local estima
tion parameters at different times and thus produces a multidimensional 
analysis and understanding of the impact of landscape structure on ESs, 
rather than a simple correlation estimate. First, it is possible to know at 
any place and time whether a particular landscape structure positively 
or negatively affects the provisioning of a particular service. Second, it 
permits the further comparison of different landscape structural features 
to control a certain service (i.e., the intensity of promotion or inhibition) 
and identify key drivers. Third, the probability of the positive or nega
tive effect occurring can be estimated within an arbitrary range of re
gions, such as county or municipal administrative areas, using known 
data from the analysis catchments within the region. And finally, it is 
possible to assess the instability of the impact based on its change over 

Fig. 9. Spatial patterns of regression coefficients in estimating WR (water retention) in 2000, 2010, and 2020. Note: The landscape composition and configuration 
variables are marked in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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time, thus measuring the degree to which the observed information 
supports the decision-making. Along these pathways, we can further 
improve many aspects of current landscape management to obtain 
positive changes in ecosystem service provision. 

Considering the possible negative consequences, future landscape 
management should first aim to maximize comprehensive benefits, i.e., 
fully consider the interactions between different landscapes, especially 
the conservation of landscape multifunction (Verhagen et al., 2016). For 
example, clear legislation should be introduced to control the intensity 
of agricultural land development and soil pollution to avoid the degra
dation of landscape diversity and environmental quality (Raudsep
p-Hearnea et al., 2010). On this basis, a location-based landscape 
planning and management system should be also established (Tran 
et al., 2021; Wu, 2021; Zhu et al., 2020). Spatial prioritization can be set 
for all projected landscape pattern measures, based on the correlation 
between landscape structure and ESs identified in this study. For 
instance, farmland consolidation involving landscape shape adjustment 
should be prioritized for implementation in areas where AWMSI_cl has 
the strongest positive impact on ESs. Meanwhile, there is a need for more 
stringent protection of natural and semi-natural habitats, such as forests, 
wetlands, and agricultural landscapes, as they are the basis for the 
generation of numerous ecological functions (Duflot et al., 2017). As a 
specific measure advocated by the Chinese government, ecological “red 
zones” should be scientifically delineated and implemented in the WMA 
as soon as possible (Zhu et al., 2020). Additionally, improving adapt
ability to changes in landscape patterns and habitat quality is also 
critical. Real-time monitoring of changes in landscape patterns and 
analysis of long-term landscape histories can contribute to adaptive 
governance (Bürgi et al., 2015; Duan et al., 2019; Estoque and Mur
ayama, 2013). For example, we can set thresholds and monitor the 
damage to ESs caused by future urban expansion in real-time, and take 
timely measures to ameliorate the impact so that the adverse conse
quences are always kept within reasonable limits. Finally, it is worth 
noting that it is difficult to accurately predict and control the conse
quences of landscape measures due to the non-linear response of eco
systems. Therefore, any interventions, especially those that are 
irreversible, need to be approached with caution to prevent ecological 
risks. Form this sense, nature-based solutions should receive more 

support for application to ecosystem governance (Virah-Sawmy et al., 
2016). 

4.3. Limitations 

A limitation of this work is the varied data accessibility. Agricultural 
production data were unavailable in some counties and had to be 
substituted with data from higher administrative regions, which con
strains more accurate spatial mapping of AP. Similarly, although the 
covered the last two decades, which includes the fastest period of 
environmental, modeling of longer time series is not possible due to a 
lack of data, which limits this work in detecting longer-term mecha
nisms by which landscape structure affects ESs. Therefore, it will be 
necessary moving forward to track new data and keep this work up to 
date. Another possible limitation is related to the resolution resampling 
of multi-source data and the spatial interpolation of meteorological 
data. These processes can add uncertainty that leads to deviations be
tween the results and the actual situation (Yohannes et al., 2021). 
Furthermore, the mapping and analysis unit used in this study is the 
catchment, which does not completely overlap with administrative 
areas. Future research could consider the creation of other units that 
take into account ecological process modeling and management needs, 
such as units formed by intersecting small catchments with county-level 
administrative areas. 

5. Conclusions 

The pressure from landscape change in urbanized areas continually 
threatens the sustainability and stability of ecosystem service provision. 
In this study, the GTWR model was applied for the first time using 16 
landscape structure metrics and four ESs (i.e., agricultural production, 
carbon sequestration, soil conversation, and water retention) to quantify 
the spatiotemporal changes in the relationship between landscape 
structure and ESs from 2000 to 2020. 

Our results show that GTWR substantially improves the explanatory 
power of ESs compared to traditional OLS or GWR models while effec
tively capturing the spatiotemporal dynamic processes of the effects of 
landscape structure. In the past two decades, the WMA has experienced 

Table 4 
Spatiotemporal variation characteristics of the impact of landscape structure on ecosystem services in the study area. 
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LULC changes characterized by a significant decrease in cropland and a 
rapid increase in built-up land and forest land. As a result, the hetero
geneity of the overall regional landscape continues to increase, while the 
composition of the landscape becomes more homogeneous and the 
morphology becomes more complex. Only agricultural production 
continued to grow among the four ESs, while the remaining ESs expe
rienced significant fluctuations over time. Landscape structure has 
complex mechanisms of influence on ESs in the WMA. On the one hand, 
a landscape variable may be both positively and negatively correlated 
with a particular ES, implying a temporally variable relationship. On the 
other hand, a landscape variable may have opposite effects on different 
services at the same moment and region, which reflects the need for 
trade-offs in landscape management. Compared to landscape configu
ration, landscape composition has an overall higher degree of influence 
on ESs but also a higher degree of temporal instability and therefore 
should receive priority attention. All relationships have changed to 
varying degrees over the past two decades, with the most significant 
changes related to WR showing multiple clear turning points. These 
findings emphasize the importance of implementing a regional, dynamic 
and systematic strategy for ESs management in the WMA. The results of 
the study provide valuable references for policymakers to design effec
tive landscape management systems to mitigate the degradation of ESs. 
More importantly, the successful application of the GTWR model in this 
study encourages space-time thinking in the analysis of ecosystem ser
vice driving mechanisms, which can be regarded as a good start for 
future research. 
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