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Environmental managers have been striving to optimize landscape structure to achieve a sustained supply of
ecosystem services (ESs). However, we still lack a full understanding of the relationships between landscape
structure and ESs due to the absence of thorough investigations on the variability of these relationships in space
and time. To fill this critical gap, we assessed landscape structure alongside four important ESs (agricultural
production (AP), carbon sequestration (CS), soil conservation (SC), and water retention (WR)) in the Wuhan
metropolitan area (WMA), and then analyzed the spatiotemporal impacts of landscape structure on ESs from
2000 to 2020 using Geographically and Temporally Weighted Regression. The results show only AP maintained a
stable growth trend over the past two decades, while the other ESs fluctuated considerably with a noticeable
decline in SC and WR. The importance of landscape structure in influencing ESs varies by time and place,
depending on the local landscape composition and configuration. In general, landscape composition has a
stronger and less temporally stable impact on ESs compared to configuration. Furthermore, increases in land-
scape diversity, as measured through Shannon’s diversity index, and the percentage of woodlands were found to
contribute to the simultaneous benefits of multiple ESs, but in most cases the effects of landscape structure on
different ESs were different or even opposite, suggesting that trade-offs are critical in landscape management.
The findings highlight the complex response of ESs to dramatically changing landscapes in the WMA and can
guide decision-makers in precise spatial arrangement and temporal adjustments to improve current landscape
management.

exploratory research. As a discipline concerned with heterogeneous
landscape change and how it affects ecosystem function, landscape

1. Introduction

Ecosystem services (ESs) refer to the multiple benefits people obtain
from ecosystems and are seen as the basis for human survival and
development (Costanza et al., 1997; Daily, 1997; Gong et al., 2021;
MEA, 2005; Torres et al., 2021). Humans have long been accelerating
resource exploitation and land development to meet the needs of a
growing population (Davisa et al., 2016; Kremen and Merenlender,
2018; Verhagen et al., 2016). These actions have driven dramatic
landscape changes and caused numerous adverse ecological conse-
quences, such as habitat fragmentation, soil erosion, and water pollu-
tion, among others (Abera et al., 2021; Estoque and Murayama, 2016;
IPBES, 2019). Fortunately, a global movement to prevent the degrada-
tion of ecosystems is emerging and has inspired a great deal of
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ecology works to reconcile the dynamic relationship between humans
and nature (Forman, 1995; Karimi et al., 2021). It asserts any landscape
can be managed to optimize specific ecological functions as well as the
supply and delivery of ESs (Forman, 1995; Lee et al., 2015). As a result,
managers often attempt to shape optimal spatial patterns of landscape
structure to maintain a sustainable supply of ESs (Haines-Young and
Chopping, 1996; Wu, 2021). In this context, studying how landscape
structure drives ESs is increasingly seen as a first step toward better
landscape management for multiple services (Eigenbrod, 2016; Tran
et al., 2021).

Landscape structure is the arrangement of land use and land cover
(LULQ) across a landscape and is characterized by both the composition
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Fig. 1. The administrative districts and catchments of the WMA (a), location of the WMA in China (b), variation in elevation (c), and land use/land cover types in

2020 (d).

(i.e., amount) and configuration (i.e., spatial arrangement) of LULC
types (Eigenbrod, 2016; Karimi et al., 2021; Simova and Gdulov4,
2012). Heterogeneous landscapes accommodate the dynamic flows of
energy and material and thus control many ecological processes (Chen
et al., 2021; Haines-Young and Chopping, 1996; Turner et al., 2001).
These processes are often disrupted by landscape structure changes,
causing a decline in biodiversity and ecological functions, which in turn
leads to a loss of ESs (Hu et al., 2021; Kindu et al., 2016). For example,
the decline of mangroves on a global scale caused a loss of about 86 Mt
of carbon stock between 2000 and 2012 (Hamilton and Friess, 2018).
Thus, landscape structure change is one of the most significant, wide-
spread, and long-lasting drivers of ESs (Estoque and Murayama, 2016;
Pan et al., 2021; Sonter et al., 2017; Xu et al., 2020). The first effect that
is usually observed is the impact of changes in landscape composition, i.
e., increased competition among ESs in the region (Lamy et al., 2016;
Yohannes et al., 2021). A common example is deforestation to support
growth in agricultural areas, which increases local food production but
weakens other services such as timber supply, climate regulation, and
water retention. ESs have been also found to be affected by landscape
configuration (Kremen and Merenlender, 2018; Xu et al., 2020), and it is
generally accepted that higher fragmentation or low connectivity can
result in a vulnerable ecosystem and jeopardize the formation of ESs
(Guiomar et al., 2015; Zeng et al., 2017). Conversely, proper landscape
management can help maintain ESs. For instance, Lee et al. (2015) found
that the configuration of paddy rice fields is critical for regulation ser-
vices including flood mitigation and microclimate regulation. In sum-
mary, the importance of landscape structure for different ESs has been

disclosed by numerous studies and has become a key reference for
landscape management (Duarte et al., 2018; Verhagen et al., 2016).

Researchers have characterized landscape structure (often using
landscape metrics) based on LULC derived from remote sensing and
assessed the physical or economic value of ESs (Chen et al., 2021; Pet-
roni et al., 2022; Redhead et al., 2020; Zhang et al., 2020). Regression
models or spatial analysis are then used to detect the relationship be-
tween landscape structure and ESs (Lamy et al., 2016; Yohannes et al.,
2021; Yuan et al., 2021). However, most prior studies assume that the
relationship is spatiotemporally stationary (Chen et al., 2021; Tran et al.,
2021). Few studies provide insight into how the effects of landscape
structure on ESs vary in time and space. This is an important limitation
for environmental management, resulting in the inability to know when
and where a plan should be implemented (Wu, 2021). To fill this critical
gap, local regression models can provide an alternative (Lyu et al., 2022;
Nassauer, 1995; Wu et al., 2018). A recent study in New Zealand
addressed the spatial stationarity limitation by using spatial local
regression models to support local, spatially differentiated landscape
management (Tran et al., 2021). When temporal nonstationarity must
also be considered, geographically temporally weighted regression
(GTWR) can offer a solution by establishing spatiotemporal weights
(Guo et al., 2017; Huang et al., 2010; Ma et al., 2018). This work in-
troduces GTWR to study the dynamic relationship between landscape
structure and ecosystem services.

The Wuhan metropolitan area (WMA) is located in the geographical
center of China and consists of nine major cities, where hundreds of
mountains and numerous rivers and lakes form a particularly distinctive
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Table 1
Details and sources for the datasets used in this study.
Data Detail Source
Administrative Shapefile, Data Center for Resources and
boundaries polygon Environmental Sciences, Chinese
Digital elevation model Rater, 30 m Academy of Sciences (http://www.
(DEM) resdc.cn)
LULC data Rater, 30 m
Catchment boundaries Shapefile, HydroSHEDS dataset (https://hydrosh
polygon eds.org)
Meteorological data Shapefile, China Meteorological Data Service
point Centre (http://data.cma.cn)

Net primary productivity
(NPP)

Rater, 500 m US National Aeronautics and Space
Administration (http://modis.gsfc.
nasa.gov)

Geospatial Data Cloud (http://www.gs
cloud.en/); US Geological Survey
(USGS) (https://www.usgs.gov)
Statistical Yearbook of Hubei province
and cities in the WMA

Harmonized World Soil Database
(HWSD) version 1.21, International
Institute for Applied Systems Analysis
(IIASA), https://iiasa.ac.at/

Normalized difference
vegetation index
(NDVI)

Socioeconomic data

Rater, 1 km

Text, county
level

Soil data Rater, 1 km

and complex ecosystem (Chen et al., 2021; Zeng et al., 2015). Rapid
urban expansion in recent years has driven drastic changes in the spatial
structure and landscape characteristics in the WMA, increasing the risk
of ecological resource losses and degradation of ecosystem functioning
(Wen et al., 2021). The primary aim of this study is to detect how
landscape structure dynamically affects ESs across time and space based
on the spatiotemporal heterogeneity of drivers. To that end, we first
assess four typical ESs (i.e., agricultural production, carbon sequestra-
tion, soil conservation, and water retention) alongside the landscape
composition and configuration characteristics of 336 hydrological
catchments in the WMA. GTWR is then applied to analyze spatiotem-
poral relationships between landscape structure and ESs during the
period 2000-2020. The results of the study can be utilized by managers

Journal of Environmental Management 325 (2023) 116575
and planners to improve current landscape management.
2. Materials and methods
2.1. Study site

The WMA is located in the eastern part of Hubei province where the
Yangtze and Han rivers merge (Fig. 1). It is a regional economic hub
centered on the mega-city of Wuhan and encompassing eight peripheral
cities (Ezhou, Huanggang, Huangshi, Qianjiang, Tianmen, Xiaogan,
Xiantao, and Xianning). The 58,000 km? of land comprises a variety of
landforms, including plains, hills, and mountains. The WMA has long
been known as the “land of fish and rice”. The rich cropland and wet-
lands not only provide a large number of agricultural products but also
create a unique idyllic landscape, making the WMA a popular tourism
destination. Meanwhile, benefiting from the favorable natural condi-
tions and transportation network, the WMA has played a crucial role in
China’s modernization. In the last two decades, this region has become
one of the fastest growing and largest metropolitan areas in China.
Driven by the “Rise of Central China” plan, the population has grown to
32 million, and the GDP is around 2.64 trillion. However, the growth
process has not been entirely positive as environmental pollution and
ecological degradation have also risen. The continuous expansion of
built-up areas has encroached on the surrounding natural and high-
quality arable lands, creating habitat fragmentation and a decline in
biodiversity. Approximately 15,000 ha of lakes in Wuhan alone have
been converted to alternative land uses, which has weakened the
regulating function of ecosystems considerably and led to increased
natural disasters (Zeng et al., 2015). In Huangshi and Ezhou, more than
10,000 ha of abandoned mining lands have caused serious waste and
pollution, threatening the health and well-being of residents. Today, led
by the Chinese government, the WMA is making great efforts to build a
resource-saving and environment-friendly society. However, it is still a
formidable challenge to effectively balance socio-economic develop-
ment and environmental protection. This particular context provides a
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Table 2
Explanation and calculation method for the four ecosystem services.
Ecosystem service Unit Model Required data
Agricultural million yuan/ Spatial allocation based on LULC and NPP LULC maps, NPP data, gross agricultural production data, and
production ha administrative boundaries
Carbon t/ha InVEST carbon storage and sequestration model LULC maps, NDVI, and the carbon stock parameters.
sequestration
Soil conservation t/ha InVEST sediment retention model DEM, LULC maps, meteorological data, NDVI, soil data, and empirical

Water retention m>/ha

balance principle

InVEST water yield model based on the Budyko curve and water

parameters.
DEM, LULC maps, meteorological data, soil data, and empirical
parameters.

valuable opportunity to explore the sustainable management of land-
scapes in urbanized areas, making the WMA well suited for this study.

2.2. Materials

The data used in this study are administrative and catchment
boundaries, a digital elevation model (DEM), LULC data, meteorological
data, net primary productivity (NPP) data, normalized difference
vegetation index (NDVI), economic statistics, and soil data (Table 1).
Administrative and catchment boundaries were used as the basic units of
analysis and mapping; LULC data (cropland, woodland, grassland, water
body, built-up land, and unused land) were used to compute landscape
pattern. The remaining datasets are used to assess ESs. Data are for the
years 2000, 2010, and 2020 except for the DEM, boundary, and soil,
which are invariant. Meteorological monitoring station data were con-
verted into continuously distributed spatial data using kriging interpo-
lation. All spatial data were converted to the same coordinate system
and spatial resolution (500m x 500m).

2.3. Methods

This study was conducted following the workflow in Fig. 2. First, 336
hydrological catchment units for mapping and analysis were created
based on the HydroSHEDS dataset. Catchments are an appropriate unit
because of their association with many ecological processes (Lehner and
Grill, 2013; Xu et al., 2020; Zhang et al., 2022). Incomplete catchments
located at the edge of the WMA (usually less than 1 km? in area) were
incorporated into the nearest superior catchment to which they belong.
We then assessed the landscape structure characteristics (see section
2.3.1) and ESs (see section 2.3.2) of each catchment in 2000, 2010, and
2020. Finally, local regression models were constructed with landscape
structure and ESs as explanatory and explained variables, respectively,
and used to analyze the effects of changes in landscape structure on four
different ESs (see section 2.3.3).

2.3.1. Quantification of landscape structure

Landscape metrics are important tools for measuring landscape
composition and configuration (Duflot et al., 2017; Lausch et al., 2015).
In this study, the landscape composition in each catchment was char-
acterized by Shannon’s diversity index (SHDI), largest patch index (LPI),
percentage of landscape (PLAND), and patch density (PD), while the
landscape configuration was characterized by interspersion & juxtapo-
sition index (1JI), edge density (ED), area-weighted mean patch shape
index (AWMSI), and aggregation index (AI) (see Appendix A for a
detailed description of the metrics). Note that PLAND, PD, AWMSI, and
Al computed at the class level were only applied to the three most
important LULC types with the largest areas in the WMA: cropland,
woodland, and water bodies. Change in built-up land is closely related to
the three aforementioned LULC types, while grasslands and unused
lands occupy relatively less area in the study region. These metrics were
selected to: (1) include a reasonable mix of metrics to comprehensively
characterize the spatial structure of the landscape, such as landscape
diversity, spatial heterogeneity, and fragmentation (Zhang et al., 2020);
(2) include highly recommended and reliable metrics with reference to

previous studies (Su et al., 2012); (3) prioritize easily understood and
computable landscape metrics to improve understanding and replica-
bility for decision-makers; and (4) use the smallest number of parsi-
monious and independent metrics possible to reduce information
redundancy (Duarte et al., 2018; Machado et al., 2017). All landscape
metrics were computed using FRAGSTAT v4.2 (McGarigal et al., 2012).

2.3.2. Estimation of ecosystem services

We selected four critical and representative ESs based on the situa-
tion in the WMA: agricultural production, carbon sequestration, soil
conservation, and water retention. The Jianghan Plain, where the WMA
is primarily located, has traditionally been called the “land of fish and
rice”, providing rich agricultural products for the central China region
and beyond. Thus, protecting a stable supply of agricultural products is
important for regional food security. Meanwhile, land degradation and
natural disasters caused by soil erosion have threatened the sustain-
ability of agriculture and the environment due to vegetation clearance
and agricultural development. Therefore, the protection of soil conser-
vation services should be considered a priority for ecological manage-
ment (Li et al.,, 2021). In addition, water retention and carbon
sequestration services play a key role and have an extensive impact on
the water cycle and climate regulation, and therefore need to be
considered in this study (Lamy et al., 2016; Primmer et al., 2021). Note
that while cultural services related to leisure and recreation are an
important component of residents’ well-being, they are not considered
here because of their subjective nature and the lack of sophisticated
measurement methods. The summary of the models and data used in
each service is given in Table 2. These services were quantified using
spatial analysis tools in ArcGIS and Integrated Valuation of Ecosystem
Services and Tradeoffs (InVEST), developed by the Natural Capital
Project (Abera et al., 2021; Nelson et al., 2009) (see Appendix B for
calculation principles and procedures).

2.3.3. Identifying the relationships between landscape structure and
ecosystem services

The GTWR model was selected to analyze the dynamic effects of
landscape structure on each ecosystem service from 2000 to 2020. As a
temporal extension of geographically weighted regression (GWR),
GTWR embeds time information into regression parameters to assess the
local relationships between explanatory and explained variables (Liang
et al., 2019; Wu et al., 2018). The model can be defined as:

Yy =Py (i, vi 1;) + Zﬂk(’lk:"kv 1W)Xa+e i=1,23,...n (€8]
k

where Y; is the explained variable for the ith sample; X is the kth
explanatory variable for the ith sample; (u;, v;, t;) is the space-time co-
ordinate of the ith sample; fp (w;, v;, t;) is the intercept value, and fx (w;, vi,
t;) is a set of parameter values the ith sample; ¢; is the random error.

Similar to GWR, the local regression coefficient of GTWR is estimated
based on locally weighted least squares and can be expressed as:

Blui,viy 1) = [XTW (i, vi, 1)X] ™ X" W (i, viy 1) )

where the weighting matrix W (u;, v;, t;) is an m x n diagonal matrix and
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Wy, v, t) = diag(Wig,Wip...Wy;...Wi); Wii(1 < j < n) is the spatiotem-
poral distance decay function, which is determined by the spatiotem-
poral distance and bandwidth (Guo et al., 2017; Ma et al., 2018).

In the GTWR model, each observation has a unique spatiotemporal
weight matrix, and the degree to which the regression coefficient of an
observation is influenced by other observations decays with increasing
spatiotemporal distance. In this study, the Euclidean distance and
Gaussian distance-decay-based functions are used to calculate the
spatiotemporal weights (Dong et al., 2019; Huang et al., 2010). The
mathematical expression is:

457 = \/A (0= 0)* + (51— 0)*] +—5)° @
where d°T is the spatiotemporal distance; 1 and x are the spatial factor
and distance factor, respectively; h is the bandwidth. The optimal
bandwidth is chosen based on the minimum cross-validation (CV) value.

GTWR performance was evaluated based on a comparison of two
traditional models (i.e., OLS and GWR), and ANOVA tests were per-
formed to obtain statistical parameters (Guo et al., 2017; Liang et al.,
2019; Ma et al., 2018).

2
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Fig. 4. The distribution and changes of AP (agricultural production), CS (carbon sequestration), SC (soil conservation), and WR (water retention) in the WMA. Notes:
The units for AP, CS, SC, and WR are million-yuan, million t, million t, and million m3, respectively.
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Table 3
ANOVA comparison between GTWR and OLS/GWR model.
Variable Model R? RSS AlCc
AP OLS 0.412 591.642 2345.496
GTWR-OLS 0.507 —510.230 —1356.843
GWR 0.451 553.077 2346.700
GTWR-GWR 0.468 —471.665 —1358.047
CS OLS 0.602 401.021 1953.496
GTWR-OLS 0.300 —302.263 —820.016
GWR 0.722 280.298 1791.240
GTWR-GWR 0.180 —181.541 —657.760
SC OLS 0.566 437.082 2038.294
GTWR-OLS 0.293 —294.629 —617.074
GWR 0.816 185.120 1384.670
GTWR-GWR 0.042 —42.667 36.550
WR OLS 0.574 429.413 2022.450
GTWR-OLS 0.403 —405.498 —2401.526
GWR 0.619 383.666 1952.710
GTWR-GWR 0.357 -359.751 —2331.786
3. Results

3.1. Changes in landscape structure and ecosystem services from 2000 to
2020

LULC changes in the WMA over the past 20 years have been domi-
nated by a considerable decrease in cropland and an increase in built-up
land and woodland. The 16 metrics assessing landscape composition and
configuration show changing landscape patterns in the WMA, with an
increase in landscape heterogeneity, diversity, and patch shape
complexity over the 20-year study period (Fig. 3). Specifically, SHDI, 1JI,
and ED increased, while LPI decreased, indicating the expansion of non-
dominant patches, the increased interspersion of landscape types, and
the fragmentation trend of patches in the WMA. At the class level, there
were considerable differences between LULC types. Temporal trends
were similar for woodlands and water bodies but different from crop-
lands. For instance, the percentage and shape complexity of woodlands
and water bodies has been continuously increasing, while cropland has
been decreasing. Although cropland and woodland have higher metrics
values, they exhibit greater variation between catchments. In contrast,
the water bodies exhibit smaller areas and more regular shapes in most
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of the catchments (Fig. 3c-h and 3k-p).

In 2020, the total agricultural production (AP), carbon sequestration
(CS), soil conservation (SC), and water retention (WR) in the WMA were
228.86 billion CNY, 335.44 billion tons, 4034.43 billion tons, and
11358.41 billion m3, respectively. During 2000-2020, AP maintained a
stable growth trend as the demand and agricultural productivity
continued to improve, while the other ESs fluctuated considerably with
a noticeable decline in SC and WR. The catchment-level AP, CS, SC, and
WR ranged from 8.31 to 286.85, 0.14-3.53, 0.11-13.95, and
2.43-160.18, respectively (Fig. 4). The four ESs show different spatial
patterns, despite all having many catchments with low values. The
higher AP catchments are mainly concentrated in the midwestern re-
gions, which is related to the distribution of cropland. The higher
catchments of other services are mainly distributed in the north and
south, showing a greater spatial association with woodlands. AP is also
the only service dominated by continuous growth catchment though out
the study area, whereas CS decreased extensively from 2000 to 2010 and
then increase rapidly (Fig. 4a and b). For SC and WR, they showed a
broad increase in the first decade with larger growth in the East, and an
overall decline in the second decade (Fig. 4c and d).

3.2. Relationship between landscape structure and ecosystem services

3.2.1. Identifying the relationships using the GTWR model
Multicollinearity among landscape variables and their correlation
with ESs were first tested to screen for appropriate explanatory variables
to construct each service prediction model. Ten landscape structure
variables were used to predict AP, CS, and WR. Nine were used to predict
SC. All selected landscape variables are statistically and significantly
correlated with ESs, and there was no severe multicollinearity detected
between them (see Appendix C for details). GTWR outperformed OLS
and GWR according to most metrics (Table 3). R? increases when using
GTWR and is 0.412 and 0.451 higher than OLS and GWR in the esti-
mation of AP. The RSS of the GTWR model is also reduced by at least
294.629 and 42.667 compared to the RSS of the OLS and GWR models,
respectively. This suggests a significant improvement in the prediction
ability of GTWR. In addition, GTWR has the lowest AICc for all ESs
except SC, which suggests that it is more appropriate to model the
relationship between landscape structure and ESs with the GTWR
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Fig. 5. Boxplots for regression coefficients of AP, CS, SC, and WR. Notes: Bw is the bandwidth of the GTWR model, RSS is the residual sum of squares, and AICc is the
Akaike’s information criterion adjusted for small sample sizes. The landscape composition and configuration variables are marked in red and blue, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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model.

The results of the GTWR showed good performance in predicting ESs.
The R? for the AP, CS, SC, and WR prediction models suggest that the
selected landscape structure variables explain 91.9% of the variance for
AP, 90.2% for CS, 85.7% for SC, and 97.6% for WR. Landscape
composition contributes more to ESs, as their regression coefficients
have overall larger absolute values compared to configuration metrics.
The coefficient signs indicate that the landscape variables have both
positive and negative effects on ESs. It can also be found that the effects
of landscape structure on different ESs were different or even opposite.
For instance, approximately 90% of the catchments where Al_cl showed
positive correlation with AP were found to have negative impacts on CS.
Additionally, the strongest positive metrics are PLAND wb for AP and
PLAND_wl for CS, SC, and WR while the strongest negative metrics are
PD_cl for AP, Al cl for CS, and Lf ED for SC and WR (Fig. 5).

3.2.2. Spatiotemporal pattern of the relationships

By assigning regression coefficients to catchment distribution maps
for each year, the spatiotemporal patterns of the relationships between
landscape metrics and AP, CS, SC, and WR are mapped in Figs. 6-9,

respectively. For agricultural production, the metrics PLAND_cl and
PLAND_wb indicate these structural components may impact agricul-
tural production to a greater degree in the WMA because the mean ab-
solute values of their coefficients are higher than the other variables
(Fig. 6b and h). It also can be seen that PLAND_cl, PD_cl, and PD_wb are
mainly positive in their direction of influence during 2000-2020, while
1JI, AWMSI cl, and PD_cl have more extensive negative effects. The ef-
fects of all observed landscape variables are complex both in the tem-
poral and spatial dimensions. On the one hand, the coefficients of
different levels are dispersed across the landscape. On the other hand,
the heterogeneity of relationships is also increasing over time, with more
and more dispersed small clusters emerging, such as for SHDI, AWM-
SI_cl, PLAND_wb, and AI_wb (Fig. 6a, f, g, and j).

Six landscape variables (PD_cl, PD_wl, ED, AWMSI cl, AWMSI_wl,
Al cl, and AI wl) showed mainly negative effects with carbon seques-
tration, evidenced by the dominant gray colors in Fig. 7. Regarding the
direction of effects, PLAND wl showed the strongest positive effects
while AI cl showed the strongest negative effects. The mean of their
coefficients reached 0.68 and —0.543, respectively, which are much
higher than the other variables. Note that despite the continuous change
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in the intensity of influence, all landscape variables except PLAND_wl
maintain a relatively stable direction of influence. For example, few
catchments switched from a positive to a negative coefficient for SHDI
over the past two decades, and there was only a slight reduction in the
number of highly positive areas (Fig. 7a).

As demonstrated in Fig. 8, catchments with positive coefficients for
soil conservation are widely distributed in the WMA from 2000 to 2020,
while catchments with negative relationships are mainly found for the
configuration variables such as IJI, ED, and Al cl. Spatially, the catch-
ments with strong negative impacts are primarily located in the north-
western part of the WMA, which is a mountainous area with a
concentration of woodlands. Furthermore, the relationships between
many of the metrics and SC present a simpler pattern compared to
agricultural production and carbon sequestration. In other words,
catchments with the same directional relationships show clustering or
continuous distribution characteristics, and this trend tends to further
strengthen over time.

Results for water retention show a clear difference in the relationship
with the landscape variables compared to other services (Fig. 9). In
particular, the maps show the emergence of many turning points, that is,

the temporal trends from the first decade were reversed in the second
decade. For instance, many of the new purple areas in IJI in 2010 are
replaced by gray areas in 2020 (Fig. 9d). A similar pattern can be
observed for LPI, 1JI, ED, PD_cl, PD_wl, AWMSI cl, and AWMSI_wl.
Another notable characteristic is the unbalanced ratio of the number of
catchments with positive coefficients to that of catchments with nega-
tive coefficients (approximately 7:3). In addition, all landscape variables
have a greater positive than negative impact on WR.

4. Discussion

4.1. The multiple roles of landscape structure in influencing ecosystem
services

As our results confirm, the driving mechanism of ESs in the WMA is
highly complex when combining temporal nonstationarity with spatial
characteristics. To better understand this dynamic impact, we quantified
the attributes of the four dimensions: the direction of the impact, the
degree of the positive/negative impact, the probability of positive/
negative impact, and the instability of the impact (Table 4, see Appendix
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D for calculations of specific indexes). The key findings are summarized
below.

First, most of the landscape variables in the WMA are both positively
and negatively correlated with a particular service. Prior studies based
on global regression techniques typically only report a simple relation-
ship for two variables (e.g., a landscape variable and an ecosystem
service variable) (Karimi et al., 2021; Yuan et al., 2021; Yushanjiang
et al., 2018). This study provides a more detailed explanation of the
relationship by capturing local variation through GTWR, which leads
the findings to be quite different from previous studies. It can also be
found that the effects of the metric SHDI on CS and PLAND_wl on WR are
entirely positive, and the effects of ED on CS are entirely negative during
the study period. Similarly, previous studies have identified that
improving landscape diversity within a specific period of time can help
increase biodiversity and further enhance CS (Jentsch et al., 2012;
Whittinghill et al., 2014). However, these findings are specific to this
study, and the same findings may not necessarily occur in other studies
of larger scope and longer duration.

Second, landscape composition was generally more influential on the
ESs than configuration, which is consistent with prior findings (Lamy

et al., 2016; Yohannes et al., 2021). For AP, SC, and WR, the strength of
the relationship between composition variables and ESs is 1.4-3.2 times
higher than for the configuration variables. PLAND_cl and PLAND_wb
contribute more to AP than the other variables, which is closely related
to the agricultural structure of the WMA that has been dominated by
food crops and fishery products. Meanwhile, PLAND_wl was found to be
the most critical factor affecting CS, SC, and WR, which highlights the
important ecological value of woodland resources. These findings
certainly underscore the important fact that reducing the threat of urban
development to natural and semi-natural habitats is essential to a sus-
tainable future (Haines-Young and Chopping, 1996; Redhead et al.,
2020; Yohannes et al., 2021).

Third, a landscape can promote one service while inhibiting others,
which means that there are frequent trade-offs to be faced in the man-
agement of landscape change. For example, our findings confirm that
AWMSI _cl primarily has the effect of weakening AP while increasing the
other ESs. Therefore, managers need to be clear whether the goal is to
pursue higher food supply capacity to meet social needs or maintain the
multifunctionality of the agricultural landscape at the expense of ca-
pacity. The former leads to greater regularization of the shape of



P. Ran et al.

(a) LPI -0.13--0.08-0.08 - -0.04 -0.04-0  0-0.04

0.04-0.08 0.08-0.13

(& 11

Journal of Environmental Management 325 (2023) 116575

0-0.09

T
-0.1--0.09 -0.09-0 0.09-0.17 0.17-0.26

0.11-0.47 0.47-0.93

0.93-1.4

() PD_cl 20.17--0.09 -0.09-0  0-0.09

0.09-0.18 0.18-0.27

(d) PD_wl

P
4 B
#:J] )
010

2020

(i) AL cl -0.62--0.33 -0.33-0 0-033 033-067 067-1

T
(h) AWMSI_wl.0.2 --0.15-0.15--0.07 -0.07-0

-0.13-0

T
0-0.13 0.13-026 0.26-0.32

0.1-0.2

-0.1 02-029

2010 (\) 2020

J

0-0.07

0.07-0.15 0.15-0.22

(j) AL_wl

-0.06-0 0-0.07 0.18-0.37 0.37-0.55

Fig. 9. Spatial patterns of regression coefficients in estimating WR (water retention) in 2000, 2010, and 2020. Note: The landscape composition and configuration
variables are marked in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

farmland to facilitate mechanization and large-scale production (Tran
et al.,, 2021). The latter tends to maintain the previously complex
boundaries of arable land for numerous ecological benefits, such as
reducing water and nutrient loss and providing habitat for marginally
dependent animals (Lamy et al., 2016). Moreover, previous studies have
identified some landscape structure features that facilitate the simulta-
neous benefits of multiple ESs (Duarte et al., 2018; Guiomar et al., 2015;
Zeng et al., 2017). This study also confirmed some of them, such as SHDI
and PLAND _wl, which have a higher probability of being consistent in
the direction of the impact on different ESs (Table 4).

Finally, it can be found that the coefficients of PLAND_cl, PLAND_wl,
and Al cl exhibited higher temporal instability over time (i.e., higher
Inst value) (Table 4). Although the Inst index cannot specifically indicate
the absolute level of risk due to the lack of a threshold, it can help
decision-makers make a relatively safe choice for spatial restructuring
among relevant comparable strategies. From this perspective, opti-
mizing the management of regional ESs by adjusting the landscape
configuration, such as the shape and spatial spacing of the landscape, is a
safer option in the WMA. These findings contribute a new temporal
dimension for comparing different ESs drivers, which is an improvement
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over previous studies (Chen et al., 2021; Estoque and Murayama, 2016;
Hou et al., 2020).

4.2. Policy implications for landscape management

Recent research has clarified the benefits of models that take into
account the heterogeneity of drivers for ESs management (Tran et al.,
2021). This study demonstrates how GTWR can produce local estima-
tion parameters at different times and thus produces a multidimensional
analysis and understanding of the impact of landscape structure on ESs,
rather than a simple correlation estimate. First, it is possible to know at
any place and time whether a particular landscape structure positively
or negatively affects the provisioning of a particular service. Second, it
permits the further comparison of different landscape structural features
to control a certain service (i.e., the intensity of promotion or inhibition)
and identify key drivers. Third, the probability of the positive or nega-
tive effect occurring can be estimated within an arbitrary range of re-
gions, such as county or municipal administrative areas, using known
data from the analysis catchments within the region. And finally, it is
possible to assess the instability of the impact based on its change over
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Table 4
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Spatiotemporal variation characteristics of the impact of landscape structure on ecosystem services in the study area.

Potential impact on

Metrics AP CS SC WR

Direc DoD  PoD Inst Direc DoD  PoD Inst Direc DoD  PoD Inst Direc DoD  PoD Inst
1 SHDI °° & — (.124 . = = (0087 °° fim == (.068 n/a n/a n/a n/a
2 LPI n/a n/a n/a n/a . H — 0.059 n/a n/a n/a n/a . i — 0.023
3 PLAND cl X — = (0314 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
4 PLAND wl n/a n/a n/a n/a °°  ammm === (363 e = (.10] . —-— = (2]3
5  PLAND wb . — === (0.120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
6 PD_cl oo H m— (.111 8 H = (0.074 058 o — (.044 e H = (.059
7 PD_wl n/a n/a n/a n/a . H — 0.047 n/a n/a n/a n/a - ' m— (.049
8 PD wb .. . = (0.074 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
9 I e i === (0.101 n/a n/a n/a n/a e H = (.046 L2 i m—— (.032
10 ED n/a n/a n/a n/a . — (145 e ™ m (0.070 e | = (.040
11 AWMSI cl e 1} = (0060 °° & = (0045 c° & (0022 c° | = (.044
12 AWMSI wl  n/a n/a n/a n/a s T = (0062 °° g = (0030 c° | = (.036
13 Alcl L2 H = (.111 U e mmm 0273 . - = (.073 .. H = (.101
14 AL wl 38 H == (.070 O (e = (.107 e o = (.039 U ' = (.040
15 AI_wb 2 H === (0.063 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Notes: Direc, DoD, PoD, and Inst represent the direction of the impact, the degree of positive/negative impact, the probability of positive/negative impact, and the

instability of the impact, respectively. The blue represents the positive impact and the red represents the negative impact. n/a denotes that the metric is not used as an

explanatory variable.

time, thus measuring the degree to which the observed information
supports the decision-making. Along these pathways, we can further
improve many aspects of current landscape management to obtain
positive changes in ecosystem service provision.

Considering the possible negative consequences, future landscape
management should first aim to maximize comprehensive benefits, i.e.,
fully consider the interactions between different landscapes, especially
the conservation of landscape multifunction (Verhagen et al., 2016). For
example, clear legislation should be introduced to control the intensity
of agricultural land development and soil pollution to avoid the degra-
dation of landscape diversity and environmental quality (Raudsep-
p-Hearnea et al., 2010). On this basis, a location-based landscape
planning and management system should be also established (Tran
etal., 2021; Wu, 2021; Zhu et al., 2020). Spatial prioritization can be set
for all projected landscape pattern measures, based on the correlation
between landscape structure and ESs identified in this study. For
instance, farmland consolidation involving landscape shape adjustment
should be prioritized for implementation in areas where AWMSI _cl has
the strongest positive impact on ESs. Meanwhile, there is a need for more
stringent protection of natural and semi-natural habitats, such as forests,
wetlands, and agricultural landscapes, as they are the basis for the
generation of numerous ecological functions (Duflot et al., 2017). As a
specific measure advocated by the Chinese government, ecological “red
zones” should be scientifically delineated and implemented in the WMA
as soon as possible (Zhu et al., 2020). Additionally, improving adapt-
ability to changes in landscape patterns and habitat quality is also
critical. Real-time monitoring of changes in landscape patterns and
analysis of long-term landscape histories can contribute to adaptive
governance (Biirgi et al.,, 2015; Duan et al., 2019; Estoque and Mur-
ayama, 2013). For example, we can set thresholds and monitor the
damage to ESs caused by future urban expansion in real-time, and take
timely measures to ameliorate the impact so that the adverse conse-
quences are always kept within reasonable limits. Finally, it is worth
noting that it is difficult to accurately predict and control the conse-
quences of landscape measures due to the non-linear response of eco-
systems. Therefore, any interventions, especially those that are
irreversible, need to be approached with caution to prevent ecological
risks. Form this sense, nature-based solutions should receive more
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support for application to ecosystem governance (Virah-Sawmy et al.,
2016).

4.3. Limitations

A limitation of this work is the varied data accessibility. Agricultural
production data were unavailable in some counties and had to be
substituted with data from higher administrative regions, which con-
strains more accurate spatial mapping of AP. Similarly, although the
covered the last two decades, which includes the fastest period of
environmental, modeling of longer time series is not possible due to a
lack of data, which limits this work in detecting longer-term mecha-
nisms by which landscape structure affects ESs. Therefore, it will be
necessary moving forward to track new data and keep this work up to
date. Another possible limitation is related to the resolution resampling
of multi-source data and the spatial interpolation of meteorological
data. These processes can add uncertainty that leads to deviations be-
tween the results and the actual situation (Yohannes et al., 2021).
Furthermore, the mapping and analysis unit used in this study is the
catchment, which does not completely overlap with administrative
areas. Future research could consider the creation of other units that
take into account ecological process modeling and management needs,
such as units formed by intersecting small catchments with county-level
administrative areas.

5. Conclusions

The pressure from landscape change in urbanized areas continually
threatens the sustainability and stability of ecosystem service provision.
In this study, the GTWR model was applied for the first time using 16
landscape structure metrics and four ESs (i.e., agricultural production,
carbon sequestration, soil conversation, and water retention) to quantify
the spatiotemporal changes in the relationship between landscape
structure and ESs from 2000 to 2020.

Our results show that GTWR substantially improves the explanatory
power of ESs compared to traditional OLS or GWR models while effec-
tively capturing the spatiotemporal dynamic processes of the effects of
landscape structure. In the past two decades, the WMA has experienced
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LULC changes characterized by a significant decrease in cropland and a
rapid increase in built-up land and forest land. As a result, the hetero-
geneity of the overall regional landscape continues to increase, while the
composition of the landscape becomes more homogeneous and the
morphology becomes more complex. Only agricultural production
continued to grow among the four ESs, while the remaining ESs expe-
rienced significant fluctuations over time. Landscape structure has
complex mechanisms of influence on ESs in the WMA. On the one hand,
a landscape variable may be both positively and negatively correlated
with a particular ES, implying a temporally variable relationship. On the
other hand, a landscape variable may have opposite effects on different
services at the same moment and region, which reflects the need for
trade-offs in landscape management. Compared to landscape configu-
ration, landscape composition has an overall higher degree of influence
on ESs but also a higher degree of temporal instability and therefore
should receive priority attention. All relationships have changed to
varying degrees over the past two decades, with the most significant
changes related to WR showing multiple clear turning points. These
findings emphasize the importance of implementing a regional, dynamic
and systematic strategy for ESs management in the WMA. The results of
the study provide valuable references for policymakers to design effec-
tive landscape management systems to mitigate the degradation of ESs.
More importantly, the successful application of the GTWR model in this
study encourages space-time thinking in the analysis of ecosystem ser-
vice driving mechanisms, which can be regarded as a good start for
future research.
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